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Abstract. The 2015–2016 El Niño event ranks as one of the
most severe on record in terms of the magnitude and extent
of sea surface temperature (SST) anomalies generated in the
tropical Pacific Ocean. Corresponding global impacts on the
climate were expected to rival, or even surpass, those of the
1997–1998 severe El Niño event, which had SST anoma-
lies that were similar in size. However, the 2015–2016 event
failed to meet expectations for hydrologic change in many
areas, including those expected to receive well above nor-
mal precipitation. To better understand how climate anoma-
lies during an El Niño event impact soil moisture, we inves-
tigate changes in soil moisture in the humid tropics (between
± 25◦) during the three most recent super El Niño events
of 1982–1983, 1997–1998 and 2015–2016, using data from
the Global Land Data Assimilation System (GLDAS). First,
we use in situ soil moisture observations obtained from 16
sites across five continents to validate and bias-correct esti-
mates from GLDAS (r2

= 0.54). Next, we apply a k-means
cluster analysis to the soil moisture estimates during the El
Niño mature phase, resulting in four groups of clustered data.
The strongest and most consistent decreases in soil mois-
ture occur in the Amazon basin and maritime southeastern
Asia, while the most consistent increases occur over eastern
Africa. In addition, we compare changes in soil moisture to
both precipitation and evapotranspiration, which showed a
lack of agreement in the direction of change between these
variables and soil moisture most prominently in the southern
Amazon basin, the Sahel and mainland southeastern Asia.
Our results can be used to improve estimates of spatiotempo-
ral differences in El Niño impacts on soil moisture in tropical
hydrology and ecosystem models at multiple scales.

1 Introduction

The El Niño–Southern Oscillation (ENSO) is one of the ma-
jor coupled ocean–atmosphere modes of variability inter-
nal to the Earth system operating on interannual timescales
(Jones et al., 2001). ENSO refers to basin-wide changes in
the air–sea interaction associated with changes in the sea sur-
face temperatures (SSTs) of the tropical Pacific region. De-
pending on the directionally of the SST deviation, ENSO
events are classified in two modes: El Niño, or the warm
mode, when unusually warm water exists in the eastern trop-
ical Pacific Ocean off the South American coast and La Niña,
or the cool mode, when anomalously cool water pools exist
in approximately the same location (Trenberth, 1997). As-
sociated impacts on weather and climate over terrestrial ar-
eas are variable but typically strongest in the low-latitude
and some of the mid-latitude regions of North and South
America, eastern Africa, Asia and Australia (Ropelewski and
Halpert, 1989); however, the influence of ENSO on weather
and climate has been detected around the globe outside of
these regions through teleconnection (Iizumi et al., 2014).

Although we bring up ENSO here to highlight the mode du-
ality of this climate feature, the focus of our study presented
here is solely on the El Niño mode of ENSO.

An important factor that controls the teleconnection in cli-
mate and weather patterns caused by El Niño is the mag-
nitude of the given El Niño event. Of the 39 El Niño events
that have occurred since 1952, those occurring in 1972–1973,
1982–1983, 1997–1998 and 2015–2016 are categorized as
“super El Niño” events (Hong et al., 2014). Although occur-
ring at a much lower frequency than a non-super El Niño
event, these events account for a disproportionately large
amount of the global climate anomalies associated with El
Niño. There is debate as to whether or not the 2015–2016
event can be classified as a super El Niño based on the lack
of specific features that characterize a super El Niño includ-
ing strong far-eastern Pacific SST anomalies, unusually high
global SSTs, reduced outgoing longwave radiation (OLR),
and weaker surface wind and sea surface height in the east-
ern Pacific (Hameed et al., 2018). We use the definition put
forth by Hong et al. (2014) that defines a super El Niño as
one with Niño-3 SST anomalies greater than one standard
deviation above others in the instrumental record (Trenberth,
1997), coupled with a Southern Hemispheric transverse cir-
culation that is robust relative to that of other El Niños. The
2015–2016 event fits the super El Niño classification using
this definition (Huang et al., 2016; Chen et al., 2017).

Prediction of the climatic or hydrologic response over the
land surface from an El Niño has proved to be difficult even
during a super El Niño event. For example, none of the
25 forecasts of precipitation patterns produced from various
models could accurately predict precipitation over the west-
ern US during the 2015–2016 El Niño event (Wanders et al.,
2017). Indeed, Wanders et al. (2017) reported that less than
half of the forecasts predicted the directionality of precip-
itation changes correctly. An evaluation of the three most
recent super El Niños revealed that although drought dur-
ing January to March (JFM) was widespread over the entire
Amazon basin during the 1982–1983 and 1997–1998 events,
during the 2015–2016 event the western half of the basin ac-
tually got wetter (Jiménez-Muñoz et al., 2016). The authors
indicate that spatial differences in the SST anomaly during
JFM 2015–2016 relative to other super El Niños may have
contributed to this anomaly (e.g., Yu and Zou, 2013).

Given the diversity of El Niño impacts on precipitation,
it is not clear how land surface hydrology at a global scale
may be influenced by El Niño and whether such an influ-
ence may be more region-specific even in tropical areas that
are close to the El Niño source region where impacts are
generally expected to be more pronounced (Schubert et al.,
2016). This lack of understanding is reflected in substantial
multi-spatial and temporal-scale errors in ENSO impacts on
hydrology in models (Zhuo et al., 2016). Of the land sur-
face hydrologic variables, soil moisture is of particular inter-
est due to the scarcity of observations available to properly
evaluate its response to El Niño (Gruber et al., 2018), par-
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ticularly in the low-latitude tropics (Dorigo et al., 2011), as
opposed to the more well studied response of precipitation
over the same region (Ropelewski and Halpert, 1989; Dai
and Wigley, 2000; Chou et al., 2009; Huang and Chen, 2017;
Xu 2017). Moreover, understanding soil moisture variability
to macroclimatic events is useful because of its role in parti-
tioning the energy fluxes at the Earth’s surface (Seneviratne
et al., 2010), as well as its importance as a driver of tropical
biomass productivity (Raddatz et al., 2007) and ecosystem
responses within Earth system models (ESMs; Green et al.,
2019).

Several additional factors highlighted in previous studies
contribute to the uncertainty of how soil moisture will re-
spond to El Niño for different areas. A study in which soil
moisture anomalies were regressed against the Southern Os-
cillation Index (SOI), one of the indices of ENSO intensity,
revealed that within the tropics, soil moisture typically de-
creases during El Niño events, with notable exceptions oc-
curring in extreme southern Africa and parts of South Amer-
ica (Miralles et al., 2014). However, much of the data used in
the analysis from the tropics were actually missing because
they were derived from active and passive microwave satel-
lite sensors that fail to penetrate the ground beneath dense
rainforests, resulting in substantial data gaps throughout the
tropical regions (Liu et al., 2012; Dorigo et al., 2017). An-
other study used a coupled biosphere–hydrology model sim-
ulation and determined that soil moisture decreased in the
Amazon basin during the 2015–2016 super El Niño with
more acute reductions occurring in the northeastern part of
the basin (van Schaik et al., 2018). Given that the study did
not assess changes over the region during other super El Niño
events, it is unclear if a similar spatial pattern emerges during
El Niños that are comparable in magnitude.

Building on these previous studies, we evaluate the soil
moisture response to El Niño within the humid tropics from
1979 to 2016 with a focus on three super El Niño events.
We concentrate our assessment on soil moisture because of
its strong controls on energy and water exchanges at the
land–atmosphere interface and because it represents the main
source of water for natural and cultivated vegetation (Prigent
et al., 2005). Soil moisture data for the analysis were de-
rived from the monthly Global Land Data Assimilation Sys-
tem (GLDAS) products at 1 ◦ resolution, which are spatially
continuous across the globe since January 1979 (Rodell et
al., 2004). The continuous temporal resolution of this data
product satisfies one of our goals by enabling the evaluation
of the soil moisture response across the three super El Niños,
1982–1983, 1997–1998 and 2015–2016, which has never be-
fore been done. The continuous spatial coverage of GLDAS
enables analysis of the soil moisture response across all tropi-
cal regions, including dense rainforests, which was limited to
less densely forested areas in studies reliant on remote sens-
ing (e.g., Miralles et al., 2014).

2 Methods

GLDAS data were downloaded from the Giovanni online
data system, which is maintained by the National Aeronau-
tics and Space Administration Goddard Earth Sciences Data
and Information Services Center (NASA GES DISC; Acker
and Leptoukh, 2007). Data from GLDAS are derived from
precipitation gauge records, satellite data, radar precipita-
tion observations and various outputs from numerical mod-
els (Rodell et al., 2004). We used 1979–2016 monthly data
from all four GLDAS land surface models (LSMs) includ-
ing the Variable Infiltration Capacity (VIC) model (Liang et
al., 1994), Community Land Model (CLM; Dai et al., 2003),
Noah LSM (NOAH; Ek et al., 2003) and Mosaic LSM (MO-
SAIC; Koster and Suarez, 1996). GLDAS soil moisture data
are used as the basis for this analysis because soil moisture
estimates from the four individual GLDAS LSMs capture the
range of variability in other similar global soil moisture data
products at the locations of the in situ data that were used in
this study and described in Table 1 (Fig. 1). Other data prod-
ucts in this comparison include the fifth-generation European
Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis soil moisture product (ERA5; Copernicus Cli-
mate Change Service (C3S), 2017), the Modern-Era Retro-
spective analysis for Research and Applications, Version 2
(MERRA2; Gelaro et al., 2017), and the Global Land Evap-
oration Amsterdam Model (GLEAM) (Miralles et al., 2011;
Martens et al., 2017). All three datasets have a spatial resolu-
tion of 0.25◦. To avoid the integration of results from differ-
ent climate zones, which are likely to show a dissimilar soil
moisture response, we targeted only GLDAS pixels consid-
ered to be part of the humid tropics by creating a mask using
data from the Köppen–Geiger climate classification system
(Kottek et al., 2006) obtained from the Spatial Data Access
Tool (SDAT; ORNL DAAC, 2017a). The mask was used in
conjunction with the monthly soil moisture estimates to iso-
late changes specific to the tropical climate zone.

In addition to the four data products mentioned above,
we also considered using the European Space Agency Cli-
mate Change Initiative (ESA CCI) global soil moisture prod-
uct (Dorigo et al., 2017). However, because this product is
derived from observations from satellite microwave sensors
that have difficulty retrieving data beneath dense rainforest
canopies, ESA CCI soil moisture estimates within the tropics
were too sparse to reliably determine the spatially continuous
soil moisture response to El Niño across all tropical regions
(e.g., Liu et al., 2012).

Soil moisture is represented in each of the four GLDAS
LSMs in a sequence of subsurface layers up to a maximum of
3 to 10 layers. Each subsurface layer represented in GLDAS
varies in depth up to an aggregated, multilayer maximum
depth of 3.5 m among the four models. We only used data
from the uppermost group of soil layers within each model
closest to a depth of 0–10 cm. This was done to target the
near-surface soil moisture response to El Niño, as the El Niño
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Figure 1. 1979–2017 monthly time series of mean soil moisture across all in situ data locations shown in Table 1 for multiple data products
including the GLDAS multimodel mean (black, solid), MERRA2 (red, solid), ERA5 (blue, solid) and GLEAM (green, solid), as well as the
individual land surface models that make up GLDAS NOAH (black, short dash), MOSAIC (black, dot), VIC (black, dash dot) and CLM
(black, long dash). Note that the GLEAM time series starts in 1980.

Table 1. Information on geospatial location, record length and monitoring instruments used for in situ observations that were used in the
analysis.

Country Lat (◦ N) Long (◦ E) Land cover type Record length (no. of months)1 Elevation (m) Depth (cm) Instrument2

Australia 1 −17.12 145.63 Rainforest May 2014–Mar 2017 (35) 715 28 COSMOS4

Australia 2 −14.16 131.39 Tropical savanna Jun 2011–Dec 2016 (67) 7.5 38 COSMOS4

Australia 3 −13.08 131.12 Woody savanna Nov 2007–May 2009 (19) 76 0–10 ECFT5

Australia 4 −12.49 131.15 Woody savanna Aug 2001–Dec 2014 (161) 39 0–10 ECFT6

Australia 5 −12.55 131.31 Wetlands Feb 2006–Oct 2008 (33) 4 0–10 ECFT7

Brazil 1 and 23
−2.61 −60.21 Evergreen broadleaf forest Sep 2015–Mar 2016 (14) 130 0–10 TDR8

Brazil 3 −3.02 −54.97 Evergreen broadleaf forest Jul 2000–Feb 2004 (44) 48 0–10 ECFT9

Brazil 4 −2.85 −54.97 Evergreen broadleaf forest Dec 2008–Apr 2016 (47) 200 50 TDR10

Dominican Republic 1 19.76 −70.57 Savanna Feb 2013–Aug 2017 (53) −32 0–10 GPS11

Dominican Republic 2 17.90 −71.67 Savanna Feb 2013–Dec 2016 (56) −17 0–10 GPS11

Ecuador −3.06 −79.24 Wet paramo Jan 2011–Dec 2016 (72) 3780 0–10 TDR12

French Guiana3 5.28 −52.92 Evergreen broadleaf forest Jan 2007–Jan 2017 (133) 20 0–10 ECFT13

Indonesia −1.97 102.60 Grassland Jun 2013–Sep 2017 (45) 48 30 TDR14

Kenya 0.28 36.87 Savanna and grassland Oct 2011–May 2017 (68) 1824 15 COSMOS4

Malaysia 1.94 103.38 Orchard Dec 2014–Nov 2015 (12) 88 0–5 TDR15

Panama 1 9.16 −79.84 Evergreen broadleaf forest Jul 2012–Nov 2017 (65) 330 0–10 TDR16

Panama 2 9.21 −79.75 Evergreen broadleaf forest Jul 2015–Dec 2017 (30) 203 0–10 EF17

1 Data are not necessarily temporally continuous for every location. 2 COSMOS: cosmic neutron probe; ECFT: eddy covariance flux tower; EF: electromagnetic field; GPS: global positioning system; TDR: time
domain reflectometry. 3 Comprised of two sites at these coordinates. 4 Köhli et al. (2015). 5 Beringer et al. (2011). 6 Beringer et al. (2007). 7 Beringer et al. (2013). 8 Jardine et al. (2019). 9 Goulden et al. (2004).
10 Wu et al. (2016). 11 Larson et al. (2008). 12 Ochoa-Sánchez et al. (2018). 13 Bonal et al. (2008), and see Acknowledgements. 14 Meijide et al. (2018), and see Acknowledgements. 15 Kang et al. (2016).
16 Rubio and Detto (2017). 17 Bretfeld et al. (2018).

signature in soil moisture at shallow depths is likely to be
more prominent and the largest number of in situ observa-
tions that are available for comparison to the GLDAS esti-
mates also come from the near-surface zone. We used the
ensemble mean at 0–10 cm depth from the four models be-
cause the ensemble is considered to provide a more robust
representation of reality (Tebaldi and Knutti, 2007).

Soil moisture estimates from GLDAS were validated
through comparison to in situ observations across 16 sites
spanning five continents (Table 1). These data were accessed
through a variety of sources including the Cosmic-ray Soil
Moisture Observing System (COSMOS; Köhli et al., 2015),

United States Department of Agriculture Soil Climate Anal-
ysis Network (SCAN; Schaefer et al., 2007), Plate Boundary
Observatory (PBO; Larson et al., 2008), International Soil
Moisture Network (ISMN; Dorigo et al., 2011, 2013), several
FLUXNET sites (Goulden et al., 2004; Beringer et al., 2007;
Bonal et al., 2008; Beringer et al., 2011, 2013) and other in-
dividual data collaborators who have made their data avail-
able for use in this study. Data from the individual GLDAS
LSMs were interpolated to the same depths as the in situ data
shown in Table 1 using cubic spline and linear interpolation
prior to ensemble averaging and comparison with the in situ
data. When interpolating data from CLM, which includes soil
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moisture estimates for 10 distinct subsurface layers, cubic
spline interpolation was used. Linear interpolation was used
for the other three GLDAS models, which include soil mois-
ture estimates from either three or four distinct subsurface
layers where cubic spline interpolation would have been less
appropriate. The GLDAS data were compared to in situ data
using the linear relationship shown in Eq. (1).

SMI = β0+β1 ·SMG, (1)

where SMI is the in situ soil moisture observation (%), β0 is
the y intercept (%), β1 is the slope and SMG is the GLDAS
ensemble soil moisture estimate (%). The coefficients of the
linear relationship in Eq. (1) were used to provide a bias-
corrected estimate of soil moisture from GLDAS that was
more representative of the near-surface in situ soil moisture
observations. The bias-corrected estimates are compared to
in situ observations to assess how the application of the bias-
correction method improves the representation of soil mois-
ture at the point scale.

In situ soil moisture observations were compared to cor-
responding GLDAS soil moisture estimates at co-located
depths for pixels that encompassed the in situ observation.
In some situations, adjacent pixels were used if data from
the co-located GLDAS pixels were missing, e.g., over lands
adjacent to inland water bodies or oceans, due to the coarse
resolution of the GLDAS dataset. The same data comparison
was made after removing data from one site in Ecuador and
another from Australia. In situ observations from these sites
were not likely to be representative of the GLDAS data at
1 ◦ resolution given that the sites where data were collected
are either located at a high elevation of 3780 m or season-
ally flooded wetland where the subsurface soil is frequently
saturated. Observations from one site in Brazil were also
removed due to poor agreement between observations and
GLDAS data relative to other sites.

The comparison of soil moisture from GLDAS to in situ
point-based measurements does have an inherent scale mis-
match. For example, measurements at an individual site may
not necessarily represent soil moisture conditions at the scale
of a GLDAS pixel due to heterogeneities in land cover, soil or
topography. However, given the previously noted challenges
regarding the dearth of large-scale moisture measurements
in the tropics, the site-based data represent the best avail-
able source of actual soil moisture content in this region.
Scale mismatch effects are also moderated by use of multiple
sites spanning multiple continents. Site-based measurements
of soil moisture considered to be outliers in terms of how
they compare to the co-located GLDAS pixel soil moisture
estimate are examined further in the discussion section.

The soil moisture response to El Niño for the three super
El Niño events of 1982–1983, 1997–1998 and 2015–2016
was calculated by taking the difference in the GLDAS soil
moisture during the El Niño mature phase of October to De-
cember (OND) and January to March (JFM) from the long-
term 1979–2016 climatological monthly mean (Eqs. 2 and

3).

1SMOND = SMOND−
∑n

1
SM · n−1, (2)

1SMJFM = SMJFM−
∑n

1
SM · n−1, (3)

where SM is the 3-month mean GLDAS soil moisture dur-
ing the mature phase (either OND or JFM) of the focal year
for three super El Niños (1982–1983, 1997–1998 and 2015–
2016) and n indicates the total number of monthly estimates
used in the analysis from 1979 to 2016.
k-Means cluster analysis was used to determine groups of

pixels representing the soil moisture anomaly with a simi-
lar magnitude and direction of change during OND and JFM
across the three super El Niño events. Clustering was based
on the 1SM for OND and JFM that was calculated using
Eqs. (2) and (3). Prior to conducting the analysis, the 1SM
values were rescaled to have a mean of 0 and standard de-
viation of 1. The mean and standard deviation of OND and
JFM 1SM within each clustered region was then used to as-
sess the consistency of soil moisture response for different
clustered regions.

The number of clusters used in the k-means cluster analy-
sis was set to four. This number was selected based on results
from a suite of tests used to determine the optimal number of
clusters using the R package “NbClust” (version 3.0; Char-
rad et al., 2014). Each test uses a set of criteria to generate
a score for the proposed number of clusters (ranged between
4 and 10). We used only tests where the optimal number of
clusters was based on which proposed number of clusters had
the maximum or minimum score so that the proposed clus-
ter groups could be ranked accordingly. The mean ranking
for all tests across all periods (OND and JFM for three super
El Niños) was then used to determine the optimal number of
clusters (Table 2).

The response of precipitation and evapotranspiration (also
obtained from GLDAS) to El Niño was also determined to
compare against the soil moisture responses. The precipita-
tion and evapotranspiration responses (1P and 1ET) to the
three super El Niños are calculated following the same met-
ric for the soil moisture responses (1SM) shown in Eqs. (2)
and (3). The OND and JFM 1SM is compared to 1P and
1ET for the three super El Niños and plotted on maps as
the 1SM :1P and 1SM :1ET ratios. The pixel-wide mean
1SM :1P and 1SM :1ET ratios and standard deviations
for each of the four clustered regions during OND and JFM
are also summarized.

The relationship between soil moisture and El Niño is
further evaluated by calculating the Pearson correlation co-
efficient (r) between the 1979–2016 GLDAS monthly soil
moisture and the monthly Niño-3.4 index (Trenberth, 1997;
Bunge and Clarke, 2009) for all GLDAS pixels in the humid
tropics. The Niño-3.4 index is a variant of the Niño-3 index
region in that it is centered further west (120–170◦W vs. 90–
150◦W) at the same latitude range (5◦ N–5◦ S). The Niño-
3.4 index data were downloaded from the National Oceanic
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Table 2. Mean ranking of proposed cluster groups across OND and
JFM during three super El Niños for tests used in the R package
NbClust (version 3.0). Low scores denote the highest ranking. CCC:
cubic clustering criterion; Cindex: clustering index; SDindex: scat-
tered distance index; SDbw: scattered density.

Test 4 5 6 7 8 9 10

KL1 2.83 4.33 3.83 4.17 5.17 3.50 4.17
CH2 5.00 6.17 5.33 3.50 3.50 1.83 2.67
CCC3 3.33 4.33 3.67 4.33 4.50 3.83 4.00
Cindex4 1.50 2.00 2.83 3.83 5.33 6.17 6.33
DB5 4.33 2.00 2.83 2.83 4.33 6.17 5.50
Silhouette6 2.67 4.50 5.83 4.17 4.00 2.83 3.83
Ratkowsky7 1.00 2.00 3.00 4.00 5.00 6.00 7.00
Ptbiserial8 1.33 1.67 3.00 4.17 4.83 6.00 7.00
McClain9 7.00 6.00 4.83 4.17 2.83 2.00 1.17
Dunn10 3.50 4.67 2.67 3.00 4.50 3.17 4.67
SDindex11 7.00 5.33 4.33 4.00 3.50 2.83 1.00
SDbw12 1.00 2.00 3.17 4.00 4.83 6.17 6.83
Mean 3.38 3.75 3.78 3.85 4.36 4.21 4.51

1 Krzanowski and Lai (1988). 2 Calinski and Harabasz (1974). 3 Sarle (1983). 4 Hubert
and Levin (1976). 5 Davies and Bouldin (1979). 6 Rousseeuw (1987). 7 Ratkowksy and
Lance (1978). 8 Milligan (1981, 1980). 9 McClain and Rao (1975). 10 Dunn (1974).
11 Halkidi et al. (2000). 12 Halkidi and Vazirgiannis (2001).

and Atmospheric Administration (NOAA) Oceanic and At-
mospheric Research–Earth System Research Laboratories–
Physical Sciences Division (OAR–ESRL–PSD), Boulder,
Colorado, website at http://www.esrl.noaa.gov/psd (last ac-
cess: 24 October 2017). The mean correlation was calculated
and summarized for the same regions that were derived from
the cluster analysis. The same correlation analysis was con-
ducted using the soil moisture response, which lagged by up
to 6 months for the four clustered regions during OND and
JFM. Because this failed to increase the amount of variabil-
ity in soil moisture estimates that could be explained by the
Niño-3.4 index over any of the clustered regions by more
than 1 %, we only present correlation results with no lag.

Finally, we calculated the soil moisture response to El
Niño for the tropics using the bias-corrected estimates of
GLDAS soil moisture that were derived from the compar-
isons with the in situ soil moisture data. We compare this
to the unbiased estimates to determine the spatial variability
in the magnitude of mismatch between these two estimates.
Given the limited number of in situ observations that were
available to generate the bias-corrected estimates, we use this
only to highlight regions where a higher density of soil mois-
ture observations might be necessary to improve the accu-
racy of the soil moisture response to El Niño derived from
GLDAS.

3 Results

GLDAS soil moisture estimates were validated against all in
situ soil moisture estimates as well as through the removal

of three outliers (Fig. 2). The exclusion of the Ecuador, Aus-
tralia and Brazil data resulted in an overall reduction in the
number of observations by 15 % but dramatic improvement
in the r2 between GLDAS and in situ estimates from 0.03
to 0.54. Comparison of these datasets following the removal
of outliers reveals a consistent positive bias in the GLDAS
soil moisture estimates relative to in situ observations. Con-
sequently, the equation from the best-fit linear regression line
(Eq. 1) was used to reduce the bias in the GLDAS estimates
(Fig. 2). The use of the bias-corrected soil moisture estimates
from GLDAS resulted in a mean reduction of RMSE across
all sites by 69 % (Fig. 3). The resulting RMSE and r2 coef-
ficient of determination across these sites ranged from 0.03
to 0.24 (mean= 0.08) and 0.00 to 0.88 (mean = 0.45), re-
spectively (Fig. 4). Although the bias correction applied to
GLDAS soil moisture shown in Figs. 2 and 3 was able to
substantially reduce the RMSE between in situ observations
and GLDAS estimates, the overall performance of GLDAS in
terms of r2 is still mixed. Of the in situ sites that were evalu-
ated, 10 had an r2>0.4, while 4 had an r2<0.1 (Fig. 4).

Given the bias observed in the GLDAS soil moisture prod-
uct relative to in situ data over the available record, we also
compared soil moisture estimates from GLDAS to in situ
data only during the mature phase 2015–2016 super El Niño
event to confirm that a similar bias occurred during this pe-
riod. The variability of in situ estimates captured by GLDAS
differed by no more than 2 % when considering only the peak
El Niño months of the 2015–2016 event, thereby demonstrat-
ing that the variability in bias between the two periods was
minimal. Given the higher number of observations when all
months were used (e.g., n= 802 vs. only n= 67), we chose
to base the bias-corrected estimate on the comparison made
using all available months of data to incorporate a greater
number of observations into the analysis.

Our results of bias-corrected GLDAS soil moisture
changes over regions derived from the cluster analysis show
that the most consistent and strongest decreases in OND soil
moisture during the three super El Niño events occurred over
the northeastern Amazon basin and maritime southeastern
Asia (Fig. 5a). Regions with the largest and most consis-
tent increases in OND soil moisture over the three events
include eastern and southern equatorial Africa, Latin Amer-
ica and southern India. Notably, the positive anomalies are
much larger in 1982 and 1997 than in 2016. During the
late mature phase of El Niño (JFM), the strongest and most
consistent decreases in soil moisture during the three super
El Niño events were centered north of the Equator, while
consistent increases largely occurred south of the Equator
(Fig. 5b). This pattern holds more or less consistent across
the three major land masses of South America, Africa and
Asia–Australia. The largest overall increase in soil moisture
was centered over the southern Amazon basin. Similar to
the changes observed during OND, the positive anomalies
tended to be larger during the two earlier El Niños of 1983
and 1998.
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Figure 2. In situ soil moisture vs. GLDAS soil moisture during October to December (OND) and January to March (JFM) for El Niño years
1982–1983, 1997–1998 and 2015–2016. Each circle corresponds to one in situ data point in space and time. The left panel includes data from
all 18 sites shown in Table 1, with data from Australia, Ecuador and Brazil highlighted in blue, red and green, respectively. The right panel
shows the same information with the Ecuador, Australia and Brazil site data removed. The blue dashed line and red solid line represent the
1 : 1 line and the regression line, respectively.

Figure 3. Bias-corrected soil moisture estimates from GLDAS rel-
ative to in situ soil moisture observations for all sites with the mean
RMSE shown in red.

Four clusters are shown for each of the OND (Fig. 6a) and
JFM (Fig. 6b) periods. The cluster with the highest soil mois-
ture increases is Cluster 3 followed by Cluster 4, while the
highest soil moisture decreases are found in Cluster 2 fol-
lowed by Cluster 1. The overlap of the cluster results during
OND confirm the locations of the largest, most consistent soil
moisture decreases (denoted by Cluster 2) over the northeast-
ern Amazon basin and increases (denoted by Cluster 3) over
eastern Africa, Latin America and southern India (Fig. 6a).
The mean decrease in soil moisture over the Cluster 2 region
during OND varied between −0.07 to −0.17 over the three
super El Niño events, while the mean increase in soil mois-
ture over the Cluster 3 region varied between 0.03 to 0.07
(Table 3). During JFM the cluster results show decreases cen-

tered north of the Equator and increases south of the Equator
with smaller overall coverage of Cluster 3 occurring in 2016
(Fig. 6b). The overlap of the cluster results during JFM con-
firm the locations of the largest, most consistent soil moisture
decreases (denoted by Cluster 2) over the northeastern Ama-
zon basin and increases (denoted by Cluster 3) over eastern
Africa and the southern Amazon basin (Fig. 6b). The mean
decrease in the Cluster 2 region during JFM varied between
−0.12 to −0.15 over the three super El Niño events, while
the mean increase in Cluster 3 varied between 0.10 to 0.14
(Table 3).

The change in the bias-corrected GLDAS soil moisture
during El Niño is generally tracking that of precipitation
based on the ratio of 1SM to 1P . Both 1SM to 1P were
normalized by their respective 1979-to-2016 mean value
prior to calculating the ratio (Fig. 7a and b). Major excep-
tions to precipitation tracking soil moisture occurred in the
Cluster 4 region where the mean direction of change in pre-
cipitation was opposite that of soil moisture during all OND
El Niño events of OND and JFM 1983 and 1998 (Table 4).
Many of these anomalies are attributed to the lack of agree-
ment between precipitation and the soil moisture direction of
change occurring in the southern Amazon basin, Latin Amer-
ica and equatorial Africa including the Sahel. An amplified
soil moisture response, particularly in the Sahel during OND
1997 and the southern Amazon basin during OND 1997 and
2015, may be an indication of an important role of land–
atmosphere interactions and/or temperature effects.

Similarly, changes in the bias-corrected GLDAS soil mois-
ture is in general tracking that of evapotranspiration based
on the ratio of 1SM to 1ET (Fig. 8a and b). Many of the
same exceptions to this pattern that were noted with precipi-
tation were also observed here: the mean direction of change
in evapotranspiration was opposite to that of soil moisture
primarily in the Cluster 4 region during all periods except
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Figure 4. Bias-corrected estimate from GLDAS (black line) and in situ observation (red line) of soil water content for 16 individual locations
in the humid tropics. RMSE and r2 coefficient of determination for each location are also shown.

JFM 2016 (Table 5). The lack of agreement in the direction of
evapotranspiration and soil moisture change is also strongest
in the southern Amazon basin, Latin America and equatorial
Africa including the Sahel, particularly during OND 1997
and JFM 1998. Amplification of soil moisture relative to
evapotranspiration also occurred, especially in the southern
Amazon basin and equatorial Africa during OND 1997 and
JFM 1998.

The Pearson correlation coefficient (r) between the bias-
corrected GLDAS soil moisture and the Niño-3.4 index for
the humid tropics across the 38-year record is provided in
Fig. 9. In most regions, there is an inverse relationship in-
dicating the occurrence of El Niño leads to decreased soil
moisture within the tropics. The mean correlation over the
clustered regions are provided in Table 6, which indicates
that the strongest mean negative correlations of −0.12 and
−0.09 occurred in Cluster 2 during OND and JFM, respec-
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Figure 5. (a) October-to-December (OND) change in bias-corrected GLDAS soil moisture anomalies during the super El Niño years 1982,
1997 and 2015 relative to the previous years. Anomalies relative to the 1979–2016 period. (b) Same as (a) but for January to March (JFM)
in 1983, 1998 and 2016.

Table 3. Mean and standard deviation of October-to-December (OND) and January-to-March (JFM) change in the soil moisture for clustered
regions in the humid tropics. Statistics computed using OND and JFM bias-corrected GLDAS soil moisture anomalies during El Niño years
1982–1983, 1997–1998 and 2015–2016 and all 3 years relative to the 1979–2016 mean.

Region Season 1982–1983 1997–1998 2015–2016 All years

Mean change ± standard deviation

Cluster 1 OND −0.06± 0.02 0.01± 0.02 −0.08± 0.02 −0.04± 0.04
Cluster 2 OND −0.14± 0.03 −0.07± 0.03 −0.17± 0.03 −0.12± 0.05
Cluster 3 OND 0.07± 0.03 0.12± 0.02 0.05± 0.03 0.04± 0.06
Cluster 4 OND 0.01± 0.02 0.06± 0.01 −0.01± 0.02 0.04± 0.03
Cluster 1 JFM −0.08± 0.02 −0.04± 0.03 −0.07± 0.02 −0.08± 0.02
Cluster 2 JFM −0.15± 0.02 −0.12± 0.02 −0.14± 0.03 −0.14± 0.02
Cluster 3 JFM 0.10± 0.03 0.14± 0.03 0.10± 0.03 0.10± 0.03
Cluster 4 JFM 0.01± 0.03 0.06± 0.02 0.02± 0.02 0.01± 0.03
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Figure 6. (a) k-Means cluster analysis results for the October-to-December (OND) 1982, 1997 and 2015 El Niño events and the overlap of
the three periods. Corresponding histograms of soil moisture anomalies for each of the four clusters are also shown. Anomalies relative to
the 1979–2016 period. (b) Same as (a) but for January to March (JFM) in 1983, 1998 and 2016.
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Figure 7. (a) Ratio of bias-corrected GLDAS soil-moisture-to-precipitation change computed using October-to-December (OND) anomalies
during El Niño years 1982–1983, 1997–1998 and 2015–2016 relative to previous years. Anomalies relative to the 1979–2016 period. (b)
Same as (a) but for January to March in 1983, 1998 and 2016.

Table 4. Mean and standard deviation of October-to-December (OND) and January-to-March (JFM) change in the soil-moisture-to-
precipitation ratio for the same regions shown in Table 3. Statistics computed using OND and JFM bias-corrected GLDAS soil moisture
anomalies during El Niño years 1982–1983, 1997–1998 and 2015–2016 and all 3 years relative to the 1979–2016 mean.

Region Season 1982–1983 1997–1998 2015–2016 All years

Mean change ± standard deviation

Cluster 1 OND 1.57± 16.41 −0.01± 3.11 4.72± 53.07 0.31± 7.06
Cluster 2 OND 0.77± 3.76 0.47± 12.16 1.40± 0.53 −0.14± 7.11
Cluster 3 OND 0.39± 8.72 3.33± 47.90 0.26± 6.40 0.60± 6.96
Cluster 4 OND −0.34± 20.35 12.35± 284.91 −1.62± 130.82 0.26± 7.30
Cluster 1 JFM 1.38± 4.26 0.55± 0.73 29.67± 1042.43 0.98± 1.39
Cluster 2 JFM 1.10± 0.20 0.99± 0.21 1.33± 0.86 1.00± 1.16
Cluster 3 JFM 1.18± 1.28 1.84± 2.37 0.92± 0.37 0.98± 1.45
Cluster 4 JFM 0.64± 22.22 −2.41± 80.07 0.72± 7.77 0.97± 1.50
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Figure 8. (a) Ratio of bias-corrected GLDAS soil-moisture-to-evapotranspiration change computed using October-to-December (OND)
anomalies during El Niño years 1982–1983, 1997–1998 and 2015–2016 relative to previous years. Anomalies relative to the 1979–2016
period. (b) Same as (a) but for January to March in 1983, 1998 and 2016.

Table 5. Mean and standard deviation of October-to-December (OND) and January-to-March (JFM) change in the soil-moisture-to-
evapotranspiration ratio for the same regions shown in Table 3. Statistics computed using OND and JFM bias-corrected GLDAS soil moisture
anomalies during El Niño years 1982–1983, 1997–1998 and 2015–2016 and all 3 years relative to the 1979–2016 mean.

Region Season 1982–1983 1997–1998 2015–2016 All years

Mean change ± standard deviation

Cluster 1 OND 3.03± 45.24 −0.21± 1.12 1.98± 24.52 6.21± 69.04
Cluster 2 OND 1.76± 6.31 0.47± 1.86 0.42± 5.76 3.73± 54.78
Cluster 3 OND 3.46± 58.48 0.54± 23.03 0.53± 15.53 1.18± 5.79
Cluster 4 OND −2.46± 57.10 −1.13± 5.46 −4.88± 135.52 1.95± 13.07
Cluster 1 JFM 0.63± 7.48 −0.72± 24.22 1.82± 28.88 0.43± 15.80
Cluster 2 JFM 0.34± 16.37 0.98± 7.30 1.87± 22.99 0.67± 13.15
Cluster 3 JFM 0.72± 2.86 19.11± 387.74 0.67± 1.89 0.36± 16.53
Cluster 4 JFM −0.74± 8.60 −5.97± 135.48 0.34± 3.39 0.30± 17.05

Hydrol. Earth Syst. Sci., 24, 2303–2322, 2020 www.hydrol-earth-syst-sci.net/24/2303/2020/



K. C. Solander et al.: The pantropical response of soil moisture to El Niño 2315

Table 6. Mean and standard deviation of 1979–2016 GLDAS soil
moisture correlation with the Niño-3.4 index for the same regions
shown in Table 3.

Region Season Mean correlation ±
standard deviation

Cluster 1 OND −0.07± 0.10
Cluster 2 OND −0.12± 0.13
Cluster 3 OND −0.06± 0.10
Cluster 4 OND −0.06± 0.10
Cluster 1 JFM −0.06± 0.07
Cluster 2 JFM −0.09± 0.07
Cluster 3 JFM 0.05± 0.06
Cluster 4 JFM 0.00± 0.08

tively. The Cluster 2 group includes the Amazon basin, the
Sahel, southeastern Asia and maritime southeastern Asia,
many of which were also shown to have the strongest and
most consistent decreases in soil moisture during the super
El Niños. The strongest positive correlation of 0.05 occurred
in Cluster 3 during JFM, which includes the southern Ama-
zon basin, eastern Africa and northern Australia. These same
regions also had the strongest and most consistent increases
in soil moisture during the super El Niños.

Changes in the non-bias-corrected GLDAS OND and JFM
soil moisture anomalies are those that correspond to Figs. 5–
9 and are included in the Supplement (Figs. S1–S5). For
both OND and JFM, the application of the bias-corrected
estimate effectively led to a strengthening of the change in
soil moisture anomalies relative to the original GLDAS es-
timates. The strengthening of the magnitude generally falls
between −0.05 and +0.05 with higher values occurring in
regions where the original change in soil moisture anomaly
magnitude is higher in Fig. 5a and b, such as the northeastern
Amazon basin and eastern Africa.

4 Discussion

Our findings generally agree with Miralles et al. (2014),
who also reported a decrease in soil moisture over the east-
ern Amazon basin, the Sahel, mainland southeastern Asia
and northern Australia, as well as an increase over eastern
Africa. Similar to van Schaik et al. (2018), we found more
acute reductions in soil moisture over the northeastern part
of the Amazon basin during OND, but the center of these re-
ductions shifted further west during JFM. This is shown in
Fig. 5a and b as well as Cluster 2 in Fig. 6a and b, which
indicates the decrease in the soil moisture anomaly which
reached a maximum of 0.28 over the Cluster 2 region. How-
ever, our methods allowed for a spatially continuous esti-
mate across regions as well as an assessment of soil moisture
across seasons (e.g., OND vs. JFM) while focusing on super
El Niño events. As a result, we found several key differences

in the soil moisture response to El Niño relative to previous
studies. Specifically, this includes increases in the soil mois-
ture anomaly of up to 0.24 over Latin America during OND,
decreases in the soil moisture anomaly of up to 0.28 over the
Sahel during OND, decreases in the soil moisture anomaly
of up to 0.28 over maritime regions of southeastern Asia dur-
ing both OND and JFM, and increases in the soil moisture
anomaly of up to 0.24 over southern India during OND and
northern Australia during JFM.

The southern Amazon basin stuck out as one region where
the direction or magnitude of change in soil moisture did not
necessarily match that of precipitation or evapotranspiration.
This may in part be due to the distinction in climate impacts
between the northern and southern Amazon basins during an
El Niño event. The northern Amazon basin is influenced by
displacement of the Intertropical Convergence Zone (ITCZ)
and changes in the Hadley cell positioning during this time,
which forces the ITCZ northward resulting in a reduction
of rainfall (Marengo, 1992). However, the southern Amazon
basin is primarily dependent on the South Atlantic Conver-
sion Zone (SACZ), which is not as influenced by El Niño.
In general, during the peak El Niño season the intensifica-
tion of the SACZ enhances the southerly flow of low-level
jets (LLJs). Circulation blockages produced by the Andes
help to channelize and intensify the LLJs over the southern
Amazon basin, resulting in LLJs having primary control on
temperature and precipitation regimes within the region dur-
ing the austral summer. Consequently, the southern Amazon
basin actually experiences more rain during this time, but the
predictability of the timing and magnitude of this sequence
events and associated impacts on rainfall is generally lower
than that of El Niño for the northern Amazon basin (Marengo
et al., 2002, 2004). Moreover, rainfall processes in the south-
ern Amazon basin depend on the displacement of cold fronts
and mesoscale circulation patterns, which occur at the synop-
tic scale. Thus, the lack of agreement between precipitation
and evapotranspiration change with soil moisture change in
this region occurs because of the strong impacts of atmo-
spheric processes that originate outside of this region (Silva
Dias et al., 2002).

The spatial patterns we identified indicate that the rela-
tionship between soil moisture and El Niño is more nuanced
than what is revealed from the correlation of soil moisture
with the Niño-3.4 index. Although this analysis still indicates
that much of South America, mainland southeastern Asia and
nearby islands respond most strongly to El Niño, the pixels
with stronger correlations do not precisely align with the re-
gions identified where the most consistent directional change
during the three super El Niño events was observed. For ex-
ample, weak correlations (|r|<0.2) between soil moisture
and the Niño-3.4 index were identified throughout the Sahel,
Latin America and mainland southeastern Asia during both
OND and JFM, despite portions of these regions showing a
consistent positive or negative change in soil moisture during
super El Niño events. Several factors might be contributing
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Figure 9. Pearson correlation coefficient between bias-corrected GLDAS soil moisture and the Niño-3.4 index from 1979 to 2016. Colors
indicate regions where the mean correlation was negative (red) and positive (blue).

to this issue. First, as shown in Fig. 5, the Sahel shows more
widespread increases in soil moisture during OND but de-
creases during JFM. Thus, the inverse weak correlation in
this region might be occurring due to contrasting changes in
soil moisture brought on by El Niño during the first and sec-
ond halves of the peak El Niño season. Second, we targeted
the three most recent super El Niños to evaluate the tropi-
cal soil moisture response, while the Niño-3.4 index does not
distinguish between the magnitude or type (e.g., central Pa-
cific or eastern Pacific) of El Niño (Kao and Yu, 2009; Yu
and Zou, 2013). As such, the correlations shown in Fig. 8 are
more representative of mean El Niño conditions, while the
soil moisture changes depicted in Fig. 5a and b are represen-
tative of super El Niño conditions. We refrained from con-
ducting the correlation between soil moisture and the Niño-
3.4 index using only months when the three super El Niños
occurred because this would severely limit the number of ob-
servations available for use in the analysis. Another potential
issue is related to the accuracy of the GLDAS soil moisture
response to El Niño for the tropics, which was dealt with
through comparison to in situ observations.

The large disagreement between in situ and bias-corrected
GLDAS soil moisture for some locations is likely to be the
result of a mismatch in scale between these two datasets. As
a result, GLDAS pixels with greater topography, land cover
or soil heterogeneity are less likely to match in situ obser-
vations. For instance, in the Manaus region of the central
Amazon basin, soils can vary from greater than 90 % clay
on plateaus to greater than 90 % sand in valleys at a hori-
zontal distance of only 500 m, and the soil moisture can vary
from over 100 % in this span (Chauvel et al., 1987; Tomasella
et al., 2008; Cuartas et al., 2012). During dry periods such
as those that typify a peak super El Niño event for this re-
gion, strong variations in soil moisture have been detected at
depths of up to 5 m (Broedel et al., 2017). Because the maxi-
mum soil depth represented by GLDAS is restricted to more
shallow soil layers, the soil moisture variability represented
in GLDAS for this region should be taken with caution. Ide-
ally, multiple in situ observations at greater soil depths could
be used for comparison to each GLDAS pixel that was tested,
but this level of data coverage is generally not available for
soil moisture, particularly in tropical regions (Brocca et al.,
2017). Although GLDAS also includes a 0.25◦ soil moisture
product, the higher-spatial-resolution data only include esti-

mates from one model and do not provide estimates from all
three of the most recent super El Niños.

The spatial patterns exhibited in Figs. 7 and 8 highlight
some important soil moisture feedbacks during El Niño that
may be related to seasonal changes in precipitation recy-
cling, which is known to be a particularly important pro-
cess for moisture generation over the Amazon basin (Eltahir
and Bras, 1994, 1996). For example, there was a large re-
gion over the southern Amazon basin where precipitation
and evapotranspiration were inversely related to soil mois-
ture during OND, and the location of this disagreement gen-
erally shifted further north towards the Equator during JFM.
Likewise, over Africa, there was a large region where precip-
itation and evapotranspiration were inversely related to soil
moisture centered north of the Equator during OND, but the
location of this disagreement shifted south of the Equator
during JFM. Negative feedbacks among these variables oc-
cur either where soils are close to saturation and additional
soil moisture is more likely to result in runoff than increases
in evapotranspiration and precipitation or where soils are so
dry that additional moisture is less likely to cause a corre-
sponding increase in evapotranspiration or precipitation due
to soil moisture suctioning (Seneviratne et al., 2010; Yang et
al., 2018). It is more likely that the latter process is occur-
ring over the Amazon basin, while the former is occurring
over equatorial Africa, given the seasonal occurrence of dry
and wet soil moisture conditions shown over these regions in
Fig. 5. Moreover, strong El Niños are frequently associated
with a negative phase of the Atlantic dipole that displaces the
Inter Tropical Convergence Zone northward, which favors
drier conditions over the Amazon basin and wetter conditions
over sub-Saharan Africa (Hastenrath and Heller, 1977). The
displacement of the ITCZ and Pacific warming in Peru also
weakens trade winds over the Amazon basin, which serves to
limit moisture transport from the Atlantic towards the Ama-
zon basin, further drying out this region (Satyamurty et al.,
2013). The end result of these changes are negative ratios
shown in Figs. 7 and 8, potentially highlighting weaker pre-
cipitation recycling that shifts north from OND to JFM over
the Amazon basin but south from OND to JFM over equato-
rial Africa. When precipitation recycling weakens, a greater
proportion of atmospheric moisture over these regions will
be derived from further away over the ocean rather than lo-
cally over land.

Hydrol. Earth Syst. Sci., 24, 2303–2322, 2020 www.hydrol-earth-syst-sci.net/24/2303/2020/



K. C. Solander et al.: The pantropical response of soil moisture to El Niño 2317

Several strategies exist that can increase confidence in soil
moisture estimates from data products like GLDAS. First, in
situ observations of soil moisture need to improve in both
space and time to evaluate and constrain the land surface
models used in GLDAS. The distribution of soil moisture ob-
servations is much lower in tropical regions than other areas
(Brocca et al., 2017), which is not surprising given the dearth
of hydrologic observations available from developing coun-
tries in tropical regions (Alsdorf et al., 2007) coupled with
the reported decrease in hydrologic monitoring across sites
worldwide (McCabe et al., 2017). In addition, increased par-
ticipation in contributing in situ soil moisture data to online
databases such as FLUXNET (ORNL DAAC, 2017b) and
ISMN (Dorigo et al., 2011, 2013) would help alleviate the
limited access to observational datasets.

Satellite observations of soil moisture can also be used
to fill this gap, but a number of issues exist with histori-
cal satellite-derived estimates of soil moisture. Substantial
biases exist in retrieval algorithms (Entekhabi et al., 2010),
and direct estimates are that restricted to shallow soil depths
are of limited value when soil moisture at greater depths is
needed (McCabe et al., 2017). Such shortcomings have en-
couraged investigations into the relative influence of veg-
etation, soil and topography on soil moisture dynamics to
better upscale point-based measurements of soil moisture to
larger, remotely sensed scales (Gaur and Mohanty, 2016).
Algorithms have been developed to interpolate shallow sub-
surface estimates of soil moisture to the root zone, but a
recent global evaluation of the accuracy of the algorithms
being used for this purpose to generate Soil Moisture Ac-
tive Passive (SMAP) Level 4 data was limited to 17 sites,
with only one occurring within the tropical climate zone (Re-
ichle et al., 2017). Moreover, satellite radar used to observe
soil moisture from many historical missions fails to pene-
trate dense rainforest canopies, making this data of limited
use for many tropical regions. Another issue with satellites is
the limited lifetime of the mission coupled with the lack of
follow-on missions that would enable extension of the obser-
vation record so that impacts from cyclical climate events
like ENSO that occur on decadal timescales can be ade-
quately assessed. As a result, data are often combined from
multiple missions to extend satellite records, which can in-
troduce additional error (Gruber et al., 2019). Access to more
spatially and temporally continuous global soil moisture data
from satellites or assimilation products is thus paramount to
improve the spatial and temporal resolution of soil moisture
estimates and enable better prediction of soil moisture behav-
ior over long timescales (Brocca et al., 2017).

Lastly, the current GLDAS product is produced mainly by
running offline land surface models forced with atmospheric
data from a combination of rain gauge, satellite, and radar
precipitation estimates and outputs (e.g., radiation) from nu-
merical prediction models. Uncertainties and biases in the
land models and forcing data can contribute importantly to
uncertainties and biases in the GLDAS soil moisture (Piao

et al., 2013). Future products that assimilate in situ and re-
motely sensed observations of terrestrial energy and water
storages such as soil moisture and snow and fluxes such as
evapotranspiration, sensible heat flux and runoff will likely
further improve the quality of GLDAS soil moisture for a bet-
ter characterization of impacts from El Niño (e.g., Albergel
et al., 2012; Gruber et al., 2018). This has important impli-
cations for understanding water resources and plant response
to ENSO events, given the role of soil moisture in climate
extremes due to feedbacks with the atmosphere (Seneviratne
et al., 2010).

5 Summary and conclusion

We describe the response of soil moisture in the humid trop-
ics to El Niño while focusing on impacts from the three
most recent super El Niños of 1982–1983, 1997–1998 and
2015–2016 using bias-corrected soil moisture estimates from
GLDAS. The largest and most consistent reductions in the
soil moisture anomaly of up to 0.28 occurred over the north-
ern Amazon basin and the maritime regions of southeastern
Asia, Indonesia and New Guinea. The soil moisture response
is largely consistent with the precipitation and evapotranspi-
ration responses, as indicated by the overwhelmingly positive
ratio of soil moisture change to both precipitation and evap-
otranspiration change over the same period in regions with
a consistent soil moisture response. Some notable excep-
tions include the Sahel and southern Amazon basin, where
a greater number of pixels show that the direction of change
for soil moisture is opposite that of precipitation and evap-
otranspiration. The soil moisture change was amplified rel-
ative to precipitation and evapotranspiration in these areas
particularly during OND, suggesting that the soil moisture
response may be amplified through land–atmosphere inter-
actions and/or the temperature response and differing climate
patterns between the northern and southern Amazon basins.
Indeed, land–atmosphere interactions have been suggested to
play more of an important role in the regional water cycle
over the Amazon basin and Sahel (e.g., Koster et al., 2004;
Wang et al., 2013; Levine et al., 2019), so their role in the
soil moisture response to El Niño deserves more investiga-
tion over these regions in the future.

The comparison of GLDAS estimates to in situ data from
16 reference sites to gauge the utility of these estimates in
large-scale models reveals a considerable variability in the
performance of GLDAS among the different sites. Although
some of the poor performance can invariably be explained
by a mismatch in the scale of in situ observations to the
coarse, 1◦ resolution of GLDAS, improvements in the avail-
ability of ground-based soil moisture observations and ac-
cess to more data from temporally continuous, global soil-
moisture-observing satellite missions that allow for estimates
beneath dense rainforest canopies are necessary to improve
upon these estimates by constraining land model estimates
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through data assimilation. Such an effort will be useful to
increase the accuracy of tropics hydrology and ecosystem
models to make better predictions of El Niño impacts on land
surface hydrology.
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