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Abstract 14 

Models of radiative transfer (RT) are important tools for remote sensing of vegetation, allowing for 15 

forward simulations of remotely sensed data as well as inverse estimation of biophysical and biochemical 16 

traits from vegetation optical properties. Estimation of foliar protein content is the key to monitor the 17 

nitrogen cycle in terrestrial ecosystems, in particular to assess the photosynthetic capacity of plants and 18 

to improve nitrogen management in agriculture. However, until now physically based leaf RT models have 19 

not allowed for proper spectral decomposition and estimation of leaf dry matter as nitrogen-based 20 

proteins and other carbon-based constituents (CBC) from optical properties of fresh and dry foliage. Such 21 

an achievement is the key for subsequent upscaling to canopy level and for development of new Earth 22 

observation applications. 23 

Therefore, we developed a new version of the PROSPECT model, named PROSPECT-PRO, which separates 24 

the nitrogen-based constituents (proteins) from CBC (including cellulose, lignin, hemicellulose, starch and 25 

sugars). PROSPECT-PRO was calibrated and validated on subsets of the LOPEX dataset, accounting for both 26 

fresh and dry broadleaf and grass samples. We applied an iterative model inversion optimization 27 

algorithm and identified the optimal spectral ranges for retrieval of proteins and CBC. When combining 28 

leaf reflectance and transmittance within the selected optimal spectral domains, PROSPECT-PRO 29 

inversions revealed similarly accurate CBC estimates of fresh and dry leaf samples (respective validation 30 

R2 = 0.96 and 0.95, NRMSE = 9.6% and 13.4%), whereas a better performance was obtained for fresh than 31 

for dry leaves when estimating proteins (respective validation R2 = 0.79 and 0.57, NRMSE = 15.1% and 32 

26.1%). The accurate estimation of leaf constituents for fresh samples is attributed to the optimal spectral 33 

feature selection procedure. 34 

We further tested the ability of PROSPECT-PRO to estimate leaf mass per area (LMA) as the sum of 35 

proteins and CBC using independent datasets acquired for numerous plant species. Results showed that 36 

both PROSPECT-PRO and PROSPECT-D inversions were able to produce comparable LMA estimates across 37 
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an independent dataset gathering 1685 leaf samples (validation R2 = 0.90 and NRMSE = 16.5% for 38 

PROSPECT-PRO, and R2 = 0.90 and NRMSE = 18.3 % for PROSPECT-D). Findings also revealed that 39 

PROSPECT-PRO is capable of assessing the carbon-to-nitrogen ratio based on the retrieved CBC-to-40 

proteins ratio (R2 = 0.87 and NRMSE = 15.7% for fresh leaves, and R2 = 0.65 and NRMSE = 28.1% for dry 41 

leaves). The performance assessment of newly designed PROSPECT-PRO demonstrates a promising 42 

potential for its involvement in precision agriculture and ecological applications aiming at estimation of 43 

leaf carbon and nitrogen contents from observations of current and forthcoming airborne and satellite 44 

imaging spectroscopy sensors. 45 

 46 

1. INTRODUCTION 47 

Nitrogen (N) is a major nutrient for all living plant organisms, cultivated as well as wild forms. In 48 

agriculture, crop yield quality is primarily dependent on protein content, with the N availability being the 49 

most critical factor of actual grain protein content (Brown et al., 2005). N limitation in soil and plants 50 

generally restricts the development and growth of roots, suppresses lateral root initiation, increases the 51 

carbon-to-nitrogen (C:N) ratio within the plant, reduces photosynthesis, and results in early leaf 52 

senescence (Kant et al., 2011; Paul and Driscoll, 1997; Wingler et al., 2006). On the other hand, N over-53 

fertilization is undesirable for quality of both crops and environment. Excess of N reduces yield and 54 

decreases its quality (e.g., organoleptic quality), reduces the content of mineral nutrients and secondary 55 

metabolites, and increases nitrate content in leaves (Albornoz, 2016). From the environmental 56 

perspective, the human activity that altered the global N cycle by through N fertilization of farming 57 

systems has negative impacts on terrestrial and aquatic ecosystems (Davidson et al., 2011; Gruber and 58 

Galloway, 2008). The consequences include habitat eutrophication, acidification, and contribution to the 59 

accelerated loss of biodiversity caused by decreased competitive advantage of plants adapted to efficient 60 

use of nitrogen (Vitousek et al., 1997). Optimization of N management has, therefore, an important role 61 
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in mitigating such effects, while securing sufficient and sustainable food production. N concentration in 62 

plants is, in general, considered as an important surrogate measure for plant photosynthetic capacity 63 

(Evans, 1989), and its remote estimation is, therefore, of a great interest for plant biology and ecology.  64 

Remotely sensed (RS) monitoring of N in vegetation is a prospective tool for N management improvement 65 

and for reduction of negative impacts imposed by conventional farming. Decision support systems that 66 

use RS information are mostly based on the relationship between leaf N and chlorophyll content. Such 67 

monitoring has certain operational advantages, originating from strong chlorophyll a+b spectral 68 

absorption features in the visible domain, but also from a great diversity of physically based, data driven 69 

and hybrid methods designed to estimate chlorophylls from multi- and hyperspectral data (Baret et al., 70 

2007; Clevers and Gitelson, 2013; Malenovský et al., 2013; Verrelst et al., 2015). Although a significant 71 

amount of literature reported a strong correlation between leaf N and chlorophyll content in crops (Baret 72 

et al., 2007; Clevers and Kooistra, 2012; Vos and Bom, 1993; Yoder and Pettigrew-Crosby, 1995), this 73 

relationship does not hold during their senescence and does not appear to be universal, as it is relatively 74 

weak across species and ecosystems (Asner and Martin, 2009; Homolová et al., 2013). N is involved in 75 

many leaf physiological processes, including photosynthesis, respiration, structural growth and storage 76 

capacity building (Liu et al., 2018). This results in multiple N-based leaf biochemical constituents with 77 

different physiological roles that are created throughout the plant life cycle in response to changing 78 

environmental factors. Chlorophyll pigments contain only a small fraction of N, representing less than 2% 79 

of the total leaf N (Kokaly et al., 2009). In comparison, proteins are the major nitrogen-containing 80 

biochemical constituents, with Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco enzyme) 81 

holding 30–50% of N that is present in green leaves (Elvidge, 1990; Kokaly et al., 2009). Rubisco, the most 82 

abundant protein on Earth, catalyzes the photosynthetic fixation of carbon dioxide (Sharwood, 2017). 83 

Together with other photosynthesis-related proteins, it is the major source of N available for 84 

remobilization among plant parts (Masclaux-Daubresse et al., 2010). For instance, N in oilseed rape 85 
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(Brassica napus) remobilizes from senescing to expanding leaves during the vegetative growth stage and 86 

from senescing leaves to seeds during the reproductive stage (Malagoli, 2005). This indicates that, unlike 87 

chlorophyll, plant nitrogen content does not decrease upon reaching mature growth stages, but is rather 88 

translocated to other organs, which makes the relationship between plant nitrogen and leaf chlorophyll 89 

content through the vegetation growth cycle nonlinear. Consequently, a quantitative non-destructive 90 

retrieval of leaf protein content is expected to be a more reliable proxy of nitrogen content (Berger et al., 91 

2020b).  92 

As reported in the pioneering studies from Curran (1989), Elvidge (1990) and Himmelsbach et al. (1988), 93 

the absorption features corresponding to proteins are caused mainly by N-H bond stretches. They are 94 

located in the shortwave infrared (SWIR) domain between 1500 and 2400 nm, with two additional 95 

features reported in the near infrared (NIR) domain at 910 and 1020 nm. The quantification of proteins 96 

from leaf optical properties is, however, challenging, because of their relatively low concentrations, and 97 

some of their specific absorption features being overlapped by absorption features from water or other 98 

dry matter constituents (Fourty et al., 1996; Jacquemoud et al., 1996). At the canopy scale, additional 99 

confounding factors (e.g., vegetation structure, geometry of acquisition or soil and atmosphere 100 

properties, etc.) also contribute to the reflectance signal measured by optical sensors. Multispectral 101 

systems with broad spectral bands and moderate spectral sampling are insufficient to correctly 102 

differentiate biochemical constituents with narrow and overlapping absorption features. The contiguous 103 

narrow spectral bands measured with imaging spectroscopy are more suitable to differentiate spectral 104 

features corresponding to the combination of multiple optically active constituents (Hank et al., 2019). 105 

Even subtle contributions of proteins to the hyperspectral signal may allow their accurate estimation, if 106 

using appropriate methods. Such methods include multivariate statistical and machine learning 107 

algorithms, physically based approaches or hybrid combinations of both (Verrelst et al., 2019a). 108 
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Physical models offer a certain number of advantages over empirical and machine learning approaches. 109 

The physically explicit representation of the interactions between electromagnetic radiation and 110 

vegetation structures enables forward simulation and inversion of reflectance signals acquired by any 111 

laboratory/field, close-range, airborne or space-borne spectroradiometer. Their main advantages, when 112 

compared to empirical methods, are robustness and transferability, although recent publications suggest 113 

that these advantages may not be as large as expected (Serbin et al., 2019). The definition of a physical 114 

model that includes proteins as an input requires the calibration of specific absorption coefficients for 115 

proteins and other constituents of dry matter in leaves, which has proven to be challenging (Botha et al., 116 

2006; Kokaly et al., 2009). Jacquemoud et al. (1996) developed a version of the PROSPECT model including 117 

specific absorption coefficients for proteins and for different combinations of carbon-based constituents 118 

(CBC), but the model inversion resulted in moderate to good estimates of proteins (R2 between 0.49 and 119 

0.67) and different combinations of CBC (R2 between 0.39 and 0.88) in dry leaves and poor to moderate 120 

accuracy for proteins (R2<0.05) and CBC (R2<0.50) in fresh leaves. Wang et al. (2015) updated a later 121 

version of PROSPECT to include proteins and lignin plus cellulose. They concluded on the importance of 122 

selecting specific spectral domains to obtain optimal results, which was later confirmed by Féret et al. 123 

(2019) when inverting PROSPECT for estimation of leaf dry mass per area (LMA) and equivalent water 124 

thickness (EWT). However, both Jacquemoud et al. (1996) and Wang et al. (2015) assumed that only 125 

proteins, lignin and cellulose, representing about 75% of LMA, contribute to leaf absorption. They 126 

excluded spectral contribution of non-structural carbohydrates (e.g., sugars and starch), which is a 127 

significant source of forward and inverse modelling uncertainties.  128 

Our overall objective is to develop a new version of the PROSPECT model capable of differentiating and 129 

accurately estimating protein and CBC contents from leaf spectroscopic measurements. The new 130 

PROSPECT version, named PROSPECT-PRO, should be applicable to all types of bifacial leaves, including 131 

fresh green as well as senescent and dry leaves. As a secondary objective, we intend to identify optimal 132 



7 
 

spectral domains for quantitative estimation of leaf proteins through a PROSPECT-PRO inversion and 133 

validate its performance on independent datasets of leaf optical and biochemical measurements. The 134 

introduced improvements in PROSPECT-PRO leverage only shortwave infrared (SWIR, 1000-2500 nm) 135 

wavelengths, where protein and CBC absorption features are prominent, and therefore does not affect 136 

the existing functionality of PROSPECT with respect to foliar pigments. 137 

We provide a general introduction to the PROSPECT model physical principles in Section 2. The data used 138 

for the calibration and validation of PROSPECT-PRO are described in Section 3. Explanation of the 139 

calibration procedure, including analytical tools for global sensitivity analysis, validation and identification 140 

of optimal retrieval spectral domains, is given in Section 4. Section 5 presents the results of the study. 141 

Finally, Section 0 discusses potential applications of and limitations to PROSPECT-PRO, are concluding 142 

findings are presented in Section 7.  143 

 144 

2. General introduction of PROSPECT 145 

PROSPECT is a physical model simulating leaf directional-hemispherical reflectance and transmittance 146 

(Schaepman-Strub et al., 2006) using a relatively low number of biophysical and biochemical input 147 

parameters. Its first version was developed by Jacquemoud and Baret (1990) as an extension of the 148 

generalized plate model of Allen et al. (1970, 1969), with later versions developed to include more 149 

absorbing constituents (Jacquemoud et al., 1996; Féret et al., 2008, 2017) or to adapt to specific 150 

conditions and leaf types, for example needle-shaped leaves (Malenovský et al., 2006). The PROSPECT 151 

model was also the starting point for development of independent extensions modelling RT of leaf 152 

chlorophyll fluorescence, such as FluorMODleaf (Pedrós et al., 2010) and Fluspect (van der Tol et al., 2019; 153 

Vilfan et al., 2018). PROSPECT can be used in forward mode to simulate leaf optical properties from the 154 

description of its biochemical and structural properties, or in inverse mode to estimate part or all of these 155 
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biochemical and structural properties based on measured leaf optical properties. Detailed description of 156 

these modes is provided in Section 4. 157 

In addition to the leaf biochemical variables such as foliar pigments, EWT and LMA, PROSPECT requires a 158 

unique leaf mesophyll structure parameter 𝑁𝑠𝑡𝑟𝑢𝑐𝑡. In a simplified leaf representation, described by the 159 

generalized plate model, it corresponds to the number of uniform compact plates separated by 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 −160 

1 air spaces. 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 describes the complexity of a leaf internal structure, where a low value (1-1.5) 161 

indicates a simpler compact mesophyll tissue (e.g., monocots) while a high value (1.5-2) indicates 162 

mesophyll of a greater complexity containing more intercellular air spaces (e.g., eudicots) (Boren et al., 163 

2019). 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 governs leaf internal light scattering, but it has a negligible impact on leaf absorption. 164 

Higher values of 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 result in a greater reflectance and a decreased transmittance, which is obvious 165 

primarily in spectral domains of low absorption (e.g., NIR wavelengths). To date, 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 is estimated 166 

indirectly from NIR leaf reflectance and transmittance measurements (Féret et al., 2019). Since we used 167 

the most recent model version PROSPECT-D as the basis for establishing a new PROSPECT-PRO, the 168 

wavelength dependent refractive index of leaf interior and the specific absorption coefficients for water 169 

remained identical to PROSPECT-D. 170 

 171 

3. MATERIAL 172 

a. Calibration and validation data to establish PROSPECT-PRO 173 

The calibration and validation datasets must include directional-hemispherical leaf reflectance and 174 

transmittance and corresponding biochemical destructive measurements of the constituents used as 175 

model inputs, but only constituents with optical activity within the spectral range in which calibration is 176 

performed are needed. Since the new additions in PROSPECT-PRO utilize only the SWIR domain covering 177 

protein absorption features, contents of foliar pigments were not required for its calibration. The Leaf 178 

Optical Properties Experiment (LOPEX) dataset, established by the Joint Research Center (JRC) of the 179 
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European Commission (Ispra, Italy) in 1993 (Hosgood et al., 1994), contains optical, physical and 180 

biochemical measurements of more than 50 plant species collected around Ispra, Italy. Although this 181 

species diversity guarantees a certain variability in leaf optical and biochemical properties, the data used 182 

for the calibration of PROSPECT-PRO certainly does not cover the full range of variability across existing 183 

biomes. On the other hand, this dataset has, based on our search, the only publicly available data suitable 184 

for this calibration. We acknowledge that additional datasets obtained from various ecosystem types and 185 

growing conditions are required for a future PROSPECT-PRO verification. The optical properties of leaf 186 

directional-hemispherical reflectance and transmittance were measured with an integrating sphere from 187 

the visible (VIS) to shortwave infrared region (VSWIR, 400-2500 nm). The biochemical measurements of 188 

photosynthetic pigments, water (EWT) and generic dry matter (LMA) content, as well as carbon (C), 189 

hydrogen, oxygen, nitrogen, lignin, proteins, cellulose and starch content are expressed as a percentage 190 

of dry mass. The protein content in the original LOPEX dataset was estimated from the nitrogen content 191 

measured by the Kjeldahl method (Bradstreet, 1954; Sáez-Plaza et al., 2013) using the nitrogen-to-crude 192 

protein conversion factor of 6.25, which is widely used for food materials. We used the revised factor of 193 

4.43, as suggested by Yeoh and Wee (1994) to be more representative of a broader range of vegetation 194 

types. This transformation of the protein content is one of the functional differences between our model 195 

and models calibrated in previous studies (Fourty et al., 1996; Jacquemoud et al., 1996; Wang et al., 2015). 196 

As the original version of LOPEX includes 120 samples, encompassing broad leaves, needles, stalks, and 197 

powders, we used only data corresponding to bifacial monocotyledon and eudicotyledon leaves. The five 198 

reflectance and transmittance measurements taken for each sample were averaged. For some samples, 199 

the measurements of optical properties were taken from both fresh and dry leaves. Therefore, we 200 

separated these measurements and produced two distinct datasets of dry and fresh samples. Chemical 201 

measurements were performed by two independent laboratories in Belgium and France (Verdebout et 202 

al., 1995). Although measurements of both laboratories were relatively consistent, we decided to use the 203 
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chemical analyses from the Belgian laboratory, leading to slightly improved overall results during 204 

calibration and validation stages. The chemical compositions measured several times over the same 205 

samples to test repeatability of lab measurement protocols were averaged. One sample of alder (Alnus 206 

glutinosa) with a particularly low SWIR transmittance (less than 1% on average between 1900 and 2500 207 

nm and across spectral domains with less than 0.1% of transmittance) was discarded from the fresh 208 

samples, because its presence systematically prevented a proper calibration and validation across all tests 209 

of the data. Additionally, two fresh samples of beech (Fagus sylvatica L.) and poplar (Populus canadensis) 210 

leaves were placed in the validation data, because their presence in the calibration data resulted in 211 

systematically poor results. These three samples were all characterized by a high EWT > 0.030 cm (i.e. 30 212 

mg.cm-2). The final selection of the LOPEX dataset resulted in 66 fresh and 49 dry eligible samples.  213 

To our best knowledge, LOPEX is the only open dataset that includes required information on leaf protein 214 

content for the calibration and validation of PROSPECT-PRO. Therefore, we split LOPEX into independent 215 

calibration and validation subsets. To minimize risks of an imbalanced distribution of protein content 216 

between calibration and validation sets, all dry and fresh samples were pooled together, and subsequently 217 

rank ordered based on increasing protein content. Every second sample among this pooled data was 218 

selected for calibration and the remaining samples were used for validation. The calibration datasets will 219 

be referred to as CALIBRATION while the validation datasets will be identified as VALIDATION, and the 220 

combined dataset will be referred to as LOPEX-CALVAL. Dataset mean and range values are provided in 221 

Table 1. The Pearson correlation coefficients for log-transformed biochemical contents of fresh leaf 222 

samples are presented in Figure 1 (Section 5.a). 223 

  224 
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Table 1. Statistical summary, mean values and ranges, of dry matter and protein contents and 225 

concentration for fresh and dry samples included in the CALIBRATION and VALIDATION datasets. 226 

Name 
No. of 

samples 
LMA (mg.cm-2) Proteins (mg.cm-2) 

Protein concentration 

(%DW) 

CALIBRATION 

Dry 23 5.84 (2.35-9.07) 0.78 (0.38-1.35) 14.32 (7.31-25.22) 

Fresh 33 5.29 (2.58-13.69) 0.66 (0.17-1.23) 13.66 (5.02-26.06) 

VALIDATION 

Dry 26 5.89 (2.55-16.58) 0.77 (0.15-1.37) 13.98 (5.02-26.06) 

Fresh 33 5.18 (1.88-10.88) 0.69 (0.29-1.22) 14.64 (6.97-28.94) 

 227 

b. Data for estimation of LMA from PROSPECT-PRO inversion 228 

Second dataset was assembled to test the capability of PROSPECT-PRO to estimate LMA as the 229 

combination of leaf proteins plus CBC contents in comparison to the previous PROSPECT-D version (Féret 230 

et al., 2017). For this, we combined six additional datasets that do not include destructive measurements 231 

of leaf proteins: ANGERS, HYYTIALA, ITATINGA, NOURAGUES, PARACOU and LOPEX-Full (Féret et al., 2019) 232 

(see Table 2 for EWT and LMA statistics). Note that LOPEX-Full includes all individual measurements of 233 

leaf optical properties, i.e., 330 measurements of LMA and EWT for fresh leaves (66 fresh samples with 234 

five repetitions), whereas the LOPEX CALIBRATION and VALIDATION datasets contain averages of these 235 

five repetition and their corresponding mean protein contents (for more details see Hosgood et al., 1994).  236 

 237 

  238 
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Table 2. Statistical summary, mean values and ranges, of water and dry matter contents for 239 

experimental datasets used to validate LMA estimations from the PROSPECT-PRO inversion. 240 

Name 
No. of 

samples 
EWT (mg.cm-2) LMA (mg.cm-2) 

ANGERS 308 11.47 (4.40 – 34.00) 5.12 (1.66 – 33.1) 

HYYTIALA 96 9.16 (3.68 – 23.73) 6.27 (2.76 – 15.77) 

ITATINGA 415 14.44 (2.20 – 20.20) 10.24 (6.90 – 14.70) 

LOPEX-Full 330 11.13 (0.29 – 52.49) 5.30 (1.71 – 15.73) 

NOURAGUES 262 11.73 (3.20 – 38.10) 10.81 (3.10 – 21.10) 

PARACOU 272 N/A (N/A – N/A) 12.32 (5.28 – 25.56) 

 241 

4. METHODS 242 

a. PROSPECT forward modelling and inversion 243 

In forward mode, PROSPECT simulates leaf optical properties based on a set of biophysical and 244 

biochemical properties (𝑁𝑠𝑡𝑟𝑢𝑐𝑡 and leaf biochemistry). In inverse mode, the optimal set of biophysical 245 

and biochemical properties can be identified via a variety of methods, for example, using a merit function 246 

that minimizes the difference between measured and simulated LOP. A common inversion procedure is 247 

based on the numerical minimization of the sum of weighted square errors over all available spectral 248 

bands (Baret and Buis, 2008; Féret et al., 2019). The minimized merit function 𝑀, using both reflectance 249 

and transmittance properties, is expressed as follows: 250 

 251 

𝑀(𝑁𝑠𝑡𝑟𝑢𝑐𝑡 , { 𝐶𝑖}𝑖=1:𝑝) = ∑ [𝑊𝑅,𝜆 × (𝑅𝜆 − �̂�𝜆)
2
+ 𝑊𝑇,𝜆 × (𝑇𝜆 − �̂�𝜆)

2
]

𝜆𝑛

𝜆=𝜆1

, (1) 

 252 
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where 𝑝 is the number of chemical constituents accounted for by PROSPECT and retrieved during the 253 

inversion, 𝐶𝑖 the biochemical content per unit of leaf surface for a constituent 𝑖, 𝜆1 and 𝜆𝑛 are the first 254 

and last wavebands entering the inversion, 𝑅𝜆 and 𝑇𝜆 are the experimental reflectance and transmittance 255 

measured at waveband 𝜆, �̂�𝜆 and �̂�𝜆 are the reflectance and transmittance simulated by PROSPECT with 256 

{𝑁𝑠𝑡𝑟𝑢𝑐𝑡 , { 𝐶𝑖}𝑖=1:𝑝} as input variables, and 𝑊𝑅,𝜆 and 𝑊𝑇,𝜆 are the weights applied to the squared 257 

difference between experimental and simulated reflectance and transmittance, respectively. Eq. (1) can 258 

be used to estimate all input variables, or just their limited subset, if a prior information or arbitrary values 259 

of some variables are known. In this study, the values of 𝑊𝑅,𝜆 and 𝑊𝑇,𝜆 were set to 0 for non-selected and 260 

1 for selected spectral bands, giving all the selected wavelengths the same importance.  261 

 262 

b. Calibration of PROSPECT-PRO 263 

The previous PROSPECT versions (Féret et al., 2017, 2008) had the specific absorption coefficients of LMA 264 

defined by implicitly accounting for various dry matter constituents. Since the distinction of all individual 265 

LMA constituents is beyond the scope of this study, our primary objective is to replace LMA by nitrogen-266 

containing proteins and CBC as new leaf input constituents in PROSPECT-PRO. Lignin, cellulose, 267 

hemicellulose and non-structural carbohydrates (sugars and starch), were grouped in a single unique input 268 

called CBC, while the remaining nitrogen-based proteins represent the second standalone input. Please 269 

note that from hereafter we refer to the nitrogen-based proteins simply as proteins. Each constituent of 270 

CBC has a specific carbon content (Ma et al., 2018) but does not contain N. We used both dry and fresh 271 

leaf samples in the CALIBRATION dataset to calibrate the specific absorption coefficients corresponding 272 

to these two groups of leaf constituents, assuming that LMA can be split into protein and other CBC 273 

contents as follows: 274 

 275 

𝐿𝑀𝐴 = 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝐶𝐵𝐶 𝑐𝑜𝑛𝑡𝑒𝑛𝑡. (2) 
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 276 

where LMA, protein content and CBC content are expressed in mass per leaf surface unit (mg.cm-2). This 277 

ensures conservation of the mass of absorbing materials and allows us to invert PROSPECT-PRO for an 278 

estimation of LMA as the sum of leaf protein and CBC contents.  279 

Absorption 𝑘(𝜆) of a compact leaf layer at wavelength 𝜆, for a given mesophyll structural parameter 280 

𝑁𝑠𝑡𝑟𝑢𝑐𝑡 , is in every PROSPECT model defined as:  281 

 282 

𝑘(𝜆) =  
∑ 𝐾𝑠𝑝𝑒,𝑖(𝜆) × 𝐶𝑖𝑖

𝑁𝑠𝑡𝑟𝑢𝑐𝑡
, (3) 

 283 

where 𝐾𝑠𝑝𝑒,𝑖(𝜆) is the specific absorption coefficient of a constituent 𝑖, and 𝐶𝑖 is its corresponding content. 284 

In PROSPECT-D, only two input constituents contribute to absorption in the spectral region from 1000 to 285 

2500 nm (focus of this study): water (EWT), with a negligible absorption before 1100 nm, and dry matter 286 

(LMA), with a constant absorption between 1000 and 1200 nm. Additional leaf constituents accounted 287 

for in PROSPECT-D and absorbing in the VIS-NIR spectral domain up to 1100 nm are brown pigments (Ustin 288 

and Jacquemoud, 2020). The brown pigments, observed in senescent leaves as result from oxidation and 289 

polymerization of cell constituents, are excluded from our analysis because they exhibit only a minor 290 

absorption between 1000 and 1100 nm. Therefore, Eq. (3) can be for the purpose of PROSPECT calibration 291 

between 1000 and 2500 nm written as follows: 292 

 293 

𝑘(𝜆) =  
𝐾𝑠𝑝𝑒,𝐸𝑊𝑇(𝜆) × 𝐶𝐸𝑊𝑇 + 𝐾𝑠𝑝𝑒,𝐿𝑀𝐴(𝜆) × 𝐶𝐿𝑀𝐴

𝑁𝑠𝑡𝑟𝑢𝑐𝑡
. (4) 

 294 

Following the equivalence in Eq. (2), the contribution of LMA to the total absorption can then be 295 

decomposed into the proteins and CBC as:  296 
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 297 

𝐾𝑠𝑝𝑒,𝐿𝑀𝐴(𝜆) × 𝐶𝐿𝑀𝐴 = 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) × 𝐶𝑃𝑅𝑂𝑇 + 𝐾𝑠𝑝𝑒,𝐶𝐵𝐶(𝜆) × 𝐶𝐶𝐵𝐶 , (5) 

 298 

where 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) is specific absorption coefficient for proteins, 𝐾𝑠𝑝𝑒,𝐶𝐵𝐶(𝜆) is specific absorption 299 

coefficient for the CBC (both in cm2.mg-1), and 𝐶𝑃𝑅𝑂𝑇 and 𝐶𝐶𝐵𝐶 are the corresponding contents (in mg.cm-300 

2), respectively. We assume that 𝐾𝑠𝑝𝑒,𝐿𝑀𝐴 in PROSPECT-D is accurately calibrated, and we use it as a 301 

constraint for the calibration of 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 and 𝐾𝑠𝑝𝑒,𝐶𝐵𝐶, based on Eq. (5). 302 

The calibration of PROSPECT-PRO followed the commonly-used two-step process (Féret et al., 2017, 2008; 303 

Jacquemoud and Baret, 1990) that included the additional constraint, i.e. the decomposition of absorption 304 

for LMA into proteins and CBC. First, we determined the leaf structure parameter 𝑁𝑠𝑡𝑟𝑢𝑐𝑡,𝑗  of each leaf 𝑗 305 

in the calibration datasets. 𝑁𝑠𝑡𝑟𝑢𝑐𝑡,𝑗 was estimated based on a multivariate iterative optimization, 306 

simultaneously with three absorption coefficients, using reflectance and transmittance values measured 307 

at three wavelengths corresponding to the minimum absorptance (𝜆1), maximum reflectance (𝜆2), and 308 

maximum transmittance (𝜆3) of the leaf (Jacquemoud et al., 1996). These values are generally located on 309 

the NIR reflectance and transmittance plateau. The iterative optimization was performed using the 310 

following merit function: 311 

 312 

𝑀𝑙𝑒𝑎𝑓𝑁 (𝑁𝑠𝑡𝑟𝑢𝑐𝑡,𝑗 , 𝑘(𝜆1), 𝑘(𝜆2), 𝑘(𝜆3)) = ∑ [(𝑅𝑚𝑒𝑎𝑠,𝑗(𝜆𝑙) −3
𝑙=1

𝑅𝑚𝑜𝑑 (𝑁𝑠𝑡𝑟𝑢𝑐𝑡,𝑗, 𝑘(𝜆𝑙)))
2

+ (𝑇𝑚𝑒𝑎𝑠,𝑗(𝜆𝑙) − 𝑇𝑚𝑜𝑑 (𝑁𝑠𝑡𝑟𝑢𝑐𝑡,𝑗, 𝑘(𝜆𝑙)))
2

], 

(6) 

 313 

where 𝑅𝑚𝑒𝑎𝑠,𝑗(𝜆𝑙) and 𝑇𝑚𝑒𝑎𝑠,𝑗(𝜆𝑙) are measured directional-hemispherical reflectance and transmittance 314 

of leaf 𝑗 at wavelength 𝜆𝑙, 𝑅𝑚𝑜𝑑 and 𝑇𝑚𝑜𝑑 are the respective modeled values, and 𝑘(𝜆) is the specific 315 
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absorption coefficient of a compact layer at the wavelength 𝜆, which is being adjusted simultaneously 316 

with 𝑁𝑠𝑡𝑟𝑢𝑐𝑡,𝑗. 317 

In the second step, 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 and 𝐾𝑠𝑝𝑒,𝐶𝐵𝐶  were computed by inverting PROSPECT-PRO and using the 318 

CALIBRATION dataset for each spectral band of interest independently. In order to include the constraint 319 

defined in Eq. (5), the minimization algorithm was executed in two consecutive phases, which were 320 

embedded (nested) in a unique iterative procedure for optimization of 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) and 𝐾𝑠𝑝𝑒,𝐶𝐵𝐶(𝜆). 321 

During the first phase, the estimated value of 𝐾𝑠𝑝𝑒,𝐶𝐵𝐶(𝜆) was computed by resolving a system of the 322 

following linear equations: 323 

 324 

𝐾𝑠𝑝𝑒,𝐶𝐵𝐶(𝜆)

[
 
 
 
 
 
𝐶𝐶𝐵𝐶,1

𝐶𝐶𝐵𝐶,2

.

.

.
𝐶𝐶𝐵𝐶,𝑛]

 
 
 
 
 

=  

[
 
 
 
 
 
𝐾𝑠𝑝𝑒,𝐿𝑀𝐴(𝜆) × 𝐶𝐿𝑀𝐴,1 − 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) × 𝐶𝑃𝑅𝑂𝑇,1

𝐾𝑠𝑝𝑒,𝐿𝑀𝐴(𝜆) × 𝐶𝐿𝑀𝐴,2 − 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) × 𝐶𝑃𝑅𝑂𝑇,2

.

.

.
𝐾𝑠𝑝𝑒,𝐿𝑀𝐴(𝜆) × 𝐶𝐿𝑀𝐴,𝑛 − 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) × 𝐶𝑃𝑅𝑂𝑇,𝑛]

 
 
 
 
 

, (7) 

 325 

where 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) is initially set to a user-defined value, then updated at each iteration. In the second 326 

phase, the optimal value of 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) was adjusted by following the strategy defined by the sequential 327 

quadratic programming algorithm (Fletcher, 2000). We minimized the following merit function 𝐽 per 328 

wavelength (𝜆): 329 

 330 

𝐽 ({𝐾𝑠𝑝𝑒,𝑖(𝜆)}
𝑖=1:𝑛

)

= ∑[(𝑅𝑚𝑒𝑎𝑠,𝑗(𝜆) − 𝑅𝑚𝑜𝑑,𝑗 (𝑁𝑠𝑡𝑟𝑢𝑐𝑡,𝑗, 𝑘(𝜆)))
2

𝑛

𝑗=1

+ (𝑇𝑚𝑒𝑎𝑠,𝑗(𝜆) − 𝑇𝑚𝑜𝑑,𝑗 (𝑁𝑠𝑡𝑟𝑢𝑐𝑡,𝑗, 𝑘(𝜆)))
2

], 

(8) 

 331 
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with 𝑘(𝜆) defined as follows:  332 

 333 

𝑘(𝜆) =  
𝐾𝑠𝑝𝑒,𝐸𝑊𝑇(𝜆) × 𝐶𝐸𝑊𝑇 + 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) × 𝐶𝑃𝑅𝑂𝑇 + 𝐾𝑠𝑝𝑒,𝐶𝐵𝐶(𝜆) × 𝐶𝐶𝐵𝐶

𝑁𝑠𝑡𝑟𝑢𝑐𝑡
 , (9) 

 334 

where 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) is the only unknown term and 𝐾𝑠𝑝𝑒,𝐶𝐵𝐶(𝜆) is taken from the previous phase. In other 335 

words, the 𝐾𝑠𝑝𝑒,𝐶𝐵𝐶(𝜆) and 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆) values were updated during each iteration until the procedure 336 

found the optimum for 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆), and then the final value of 𝐾𝑠𝑝𝑒,𝐶𝐵𝐶(𝜆) was obtained from Eq. (7), 337 

using the optimized 𝐾𝑠𝑝𝑒,𝑃𝑅𝑂𝑇(𝜆). 338 

This calibration procedure, expecting correctly defined 𝐾𝑠𝑝𝑒,𝐿𝑀𝐴, was performed within the spectral 339 

domain of 1000 to 2500 nm, using the same leaf refractive index and the specific absorption coefficients 340 

for EWT as defined in PROSPECT-D. The calibration of specific absorption coefficients in the NIR domain is 341 

challenging due to a generally low absorption and a possibly significant uncertainty in measured leaf 342 

optical properties within this spectral domain. When calibrating the specific absorption for LMA, Féret et 343 

al. (2008) set the specific absorption coefficients of LMA to a constant value for wavelengths < 1200 nm. 344 

Here, we fitted an exponential function to the start of absorption of proteins, ensuring smooth transition 345 

between the two non-absorptive and absorptive spectral domains, corresponding to the spectral domain 346 

between 1440 and 1490 nm. Subsequently, the specific absorption coefficients for CBC between 1000 and 347 

1200 nm were adjusted according to the specific absorption coefficients of LMA from PROSPECT-D, by 348 

applying a multiplicative factor corresponding to the average ratio between LMA and CBC in the 349 

CALIBRATION dataset. 350 

  351 

c. Global sensitivity analysis of PROSPECT-PRO 352 
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A global sensitivity analysis (GSA) was carried out for PROSPECT-PRO to quantify the contribution of 353 

proteins and CBC constituents to the overall spectral signal. Using a GSA the driving variables of a radiative 354 

transfer model can be identified by fully exploring the input parameter space (Verrelst et al., 2019b; Wang 355 

et al., 2015). The Matlab software tool GSAT (Cannavó, 2012), which includes Fourier amplitude sensitivity 356 

testing (FAST) analysis and Sobol’s method for calculation of the first-order sensitivity coefficients was 357 

applied on PROSPECT-PRO simulations from 1000 nm to 2500 nm carried out with the following realistic 358 

input parameter ranges for fresh leaves: 𝑁𝑠𝑡𝑟𝑢𝑐𝑡~ 1-2 (unitless), EWT ~ 0.001-0.015 cm, protein content 359 

(Cp) ~ 0-0.003 g/cm² and CBC content ~ 0-0.01 g/cm². The remaining PROSPECT-PRO input parameters, 360 

i.e. chlorophyll content, total carotenoid content, anthocyanin content and brown pigment content, were 361 

fixed to arbitrary values since they manifest no absorption between 1000-2500 nm. 362 

 363 

d. Optimal spectral domains for estimation of protein and CBC content 364 

In previous studies (Colombo et al., 2008; Féret et al., 2008; Jacquemoud et al., 1996), a PROSPECT model 365 

inversion was performed with an iterative optimization of the merit function defined in Eq. (8) over the 366 

entire optical domain or broad spectral intervals (e.g., VIS-NIR when retrieving leaf pigments and NIR-367 

SWIR when retrieving EWT and LMA), using a uniform weight of 1 across all spectral bands. Féret et al. 368 

(2019) showed the importance of identifying optimal spectral domain for the accurate estimation of LMA 369 

and, to a lesser extent, EWT. Investigating a number of spectral ranges between 1000 and 2400 nm, they 370 

recommended determination of EWT and LMA with an iterative optimization of leaf optical properties 371 

between 1700 and 2400 nm. Although proteins are part of LMA, the hypothesis that proteins and LMA 372 

share the same optimal retrieval spectral domain needs appropriate testing. Moreover, the fact that 373 

protein absorption is expressed in a number of narrow SWIR spectral features (Curran, 1989; Fourty et al., 374 

1996) suggests that proteins and CBC may have slightly different optimal retrieval spectral domains 375 

compared to LMA. 376 
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The procedure suggested by Féret et al. (2019) is limited to the identification of an optimal contiguous 377 

spectral domain. As such, it is unable to identify spectral features located in narrow non-contiguous 378 

domains separated by suboptimal spectral intervals of varying lengths. To be able to identify also the non-379 

contiguous optimal spectral domains, we adapted a sequential forward feature selection (SFS) technique 380 

(Kudo and Sklansky, 2000; Marcano-Cedeno et al., 2010). SFS is a bottom-up search procedure that starts 381 

from an empty feature set and gradually adds features selected based on a minimization criterion. In our 382 

study, each spectral feature was defined as a set of 20 spectral bands of the original leaf optical properties 383 

with the 1 nm spectral sampling, which allowed for a large number of explored spectral bands and made 384 

the computation of the iterative optimization feasible. This way, we created 50 spectral features between 385 

1400 and 2399 nm and applied SFS on these spectral features. We first identified the spectral feature 386 

leading to minimum root mean square error (RMSE) when estimating either proteins or CBC from the 387 

experimental data. Then we searched for the spectral feature leading to minimum RMSE, if combined 388 

with the previously identified spectral feature, until all spectral features were tested. At the final step, all 389 

features were sequentially added and ranked based on the search for minimum RMSE, and the full domain 390 

1400 and 2399 nm was used for inversion with the original spectral data.  391 

As the CALIBRATION dataset was dedicated to the calibration of the specific absorption coefficients of 392 

proteins and CBC, the accuracy and robustness of PROSPECT inversion for retrieval of these leaf 393 

constituents had to be assessed with the independent VALIDATION dataset. Use of the CALIBRATION 394 

dataset would be logically defrauded and scientifically incorrect. The selection of optimal spectral domains 395 

is not considered as a part of the calibration procedure but expected to be performed before or during a 396 

PROSPECT inversion. As such, its robustness would be best ensured when performed on an independent 397 

dataset. Unfortunately, due to a limited size of available experimental data, the sample pool could not be 398 

reasonably split into three independent CALIBRATION, FEATURE SELECTION and VALIDATION parts. 399 

Therefore, the optimal spectral domains were identified by applying SFS on the VALIDATION dataset. 400 
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Once the specific optimal spectral domains for estimation of proteins and CBC were identified, we 401 

compared their estimates with results obtained for the spectral domain between 1700 and 2400 nm, 402 

identified as optimal for the estimation of LMA and EWT by Féret et al. (2019). Finally, we compared the 403 

performances of PROSPECT-PRO and PROSPECT-D for the estimation of LMA using the 1700-2400 nm 404 

spectral domain, and by inverting PROSPECT-PRO over the SFS identified optimal spectral domains for 405 

proteins and CBC estimations and calculating LMA from Eq. (2). This model comparison was carried out 406 

for the six additional datasets listed in Table 2. 407 

The normalized RMSE (NRMSE expressed in %) was computed to appraise the difference between the 408 

measured and estimated leaf constituents retrieved from the different datasets: 409 

 410 

𝑁𝑅𝑀𝑆𝐸 = 
1

𝑋𝑚𝑒𝑎𝑠
̅̅ ̅̅ ̅̅ ̅̅

√
∑ (𝑋𝑚𝑒𝑎𝑠,𝑗 − 𝑋𝑚𝑜𝑑,𝑗)

2𝑛
𝑗=1

𝑛
 , 

(10) 

 411 

where 𝑋𝑚𝑒𝑎𝑠,𝑗  is the measured value and 𝑋𝑚𝑜𝑑,𝑗 is the values estimated by model inversion for a leaf 𝑗, 412 

𝑋𝑚𝑒𝑎𝑠
̅̅ ̅̅ ̅̅ ̅̅  is the mean value of the constituent, and 𝑛 is the number of samples. 413 

All inversions and optimal feature selections were performed with the prospect R package (Féret and 414 

Boissieu, 2020), which uses the nonlinear constrained multivariable minimization function of the pracma 415 

R package (Borchers, 2019).  416 

e. Performances of PROSPECT-D and PROSPECT-PRO in forward modelling 417 

We compared the performances of PROSPECT-D and PROSPECT-PRO for the forward simulation of leaf 418 

optical properties, using the structure parameter 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 obtained from inversion and the corresponding 419 

biochemical constituents measured in laboratory. This statistical analysis was undertaken to reveal 420 

spectral domains impacted by high levels of uncertainty, which is relevant for possible future hybrid 421 

inversion applications involving machine learning algorithms trained with PROSPECT-PRO simulated data 422 
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(e.g., Verrelst et al., 2015 and 2019a). The comparison was performed by computing the per-wavelength 423 

spectral RMSE between measured and simulated reflectance and transmittance of fresh and dry samples 424 

from the VALIDATION dataset, and also systematic (𝑅𝑀𝑆𝐸𝑆) and unsystematic (𝑅𝑀𝑆𝐸𝑈) parts of RMSE 425 

(Willmott et al., 1985) defined as: 426 

 427 

𝑅𝑀𝑆𝐸𝑆 = √
∑ (�̂�𝑚𝑒𝑎𝑠,𝑗 − 𝑋𝑚𝑜𝑑,𝑗)

2𝑛
𝑗=1

𝑛
 , 

(11) 

 428 

and 429 

 430 

𝑅𝑀𝑆𝐸𝑈 = √
∑ (�̂�𝑚𝑒𝑎𝑠,𝑗 − 𝑋𝑚𝑒𝑎𝑠,𝑗)

2𝑛
𝑗=1

𝑛
 , 

(12) 

 431 

where �̂�𝑚𝑒𝑎𝑠,𝑗  is an ordinary least square estimate of 𝑋𝑚𝑒𝑎𝑠,𝑗, and 𝑛 is the number of samples. Eqs. (11) 432 

and (12) are a complete partitioning of RMSE as follows:  433 

 434 

𝑅𝑀𝑆𝐸2 = 𝑅𝑀𝑆𝐸𝑈
2 + 𝑅𝑀𝑆𝐸𝑠

2 (13) 

 435 

 The 𝑅𝑀𝑆𝐸𝑆 corresponds to the linear bias of the estimate produced by the model itself, while the 𝑅𝑀𝑆𝐸𝑈 436 

corresponds to a measure of precision of the model and it is driven by uncertainties in input data. 437 

 438 

f. Estimation of the carbon-nitrogen ratio 439 

The carbon:nitrogen (C:N) ratio of plant canopies, crops and crop residues is of great importance for 440 

modelling C and N dynamics in natural ecosystem and agricultural systems, as it contains an indicative 441 
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information about plant growth rate and affects ecosystem response to CO2 (Reich et al., 2006; Zheng, 442 

2009). This C:N ratio is also an indicator of the relative allocation of resources in vegetation, an indicator 443 

of potential decomposition rate of litter and an important factor promoting soil organic carbon 444 

accumulation (Zhou et al., 2019). Thus, we tested the possibility of using the CBC:Proteins ratio, estimated 445 

from PROSPECT-PRO inversion, as a proxy for the C:N ratio of leaf samples in the LOPEX dataset. We 446 

established a linear model to estimate the C:N ratio based on the CBC:Proteins ratio as measured in the 447 

fresh samples of the CALIBRATION dataset. We then applied this linear relationship on CBC:Proteins ratio 448 

retrieved from leaf optical properties through PROSPECT-PRO inversion to estimate the C:N ratio for all 449 

samples in both CALIBRATION and VALIDATION datasets. 450 

 451 

5. RESULTS 452 

a. Correlations among biochemical constituents of fresh leaves in LOPEX-CALVAL data 453 

Since descriptive statistics computed for leaf constituents of fresh samples in the LOPEX-CALVAL dataset 454 

revealed that a majority of them does not follow the Gaussian distribution, they were log-transformed by 455 

applying the natural logarithm. The subsequent correlation analysis performed on log-transformed data 456 

indicated potential relationships between individual biochemical compounds. Figure 1 shows the Pearson 457 

correlation coefficients (r) for tested constituents, including the C:N ratio. Proteins are not included, as 458 

they were derived directly from N measurements. The coefficients highlight strong and statistically 459 

significant relationships between carbon (C), hydrogen (H), oxygen (O), lignin, cellulose and LMA. Nitrogen 460 

(N) content is moderately correlated to chlorophyll a+b content (CHL), C, H, O, LMA and EWT. The 461 

moderate correlation between CHL and N (r = 0.51) indicates a modest capacity of CHL to estimate N 462 

across species in the LOPEX dataset. Finally, the C:N ratio was found to be moderately positively correlated 463 

with LMA, C, H, O and individual CBC except starch, and poorly negatively correlated with the N content 464 

(r = -0.36). 465 
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 466 

 

Figure 1. Pearson correlation coefficients computed among log-transformed contents of biochemical 

constituents of fresh leaf samples in the LOPEX-CALVAL dataset. 

 467 

b. Calibration of PROSPECT-PRO 468 

A Matlab version of the new PROSPECT-PRO model is downloadable from the following GitLab repository: 469 

https://gitlab.com/jbferet/prospect_pro_matlab. The R package is including PROSPECT-D is installable 470 

from the GitLab repository: https://jbferet.gitlab.io/prospect/. The specific absorption coefficients 471 

derived for leaf proteins and CBC are displayed in Figure 2. Most of the absorption features reported by 472 

Curran (1989) and Fourty et al. (1996) correspond with the local maxima of the obtained specific 473 

absorption of proteins, although some of them are spectrally shifted towards shorter or longer 474 

wavelengths.  475 

 476 

https://gitlab.com/jbferet/prospect_pro_matlab
https://jbferet.gitlab.io/prospect/
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Figure 2. Specific absorption coefficients for proteins and CBC obtained from calibration of PROSPECT-

PRO using the CALIBRATION dataset. The coefficient corresponding to LMA and water, used in 

PROSPECT-D, are displayed for comparison. Vertical dashed lines indicate wavelengths of absorption 

features linked to proteins by Curran (1989) and Fourty et al. (1996) (red = major and grey = minor 

absorption features). 

 477 

c. Sensitivity of leaf optical properties to proteins and CBC  478 

Results of GSA for PROSPECT-PRO simulated leaf reflectance and transmittance were nearly identical. 479 

Therefore, we present in Figure 3 only the outcomes for reflectance and absorptance of fresh and dry 480 

leaves. GSA identified the spectral regions that contain absorption peaks of proteins (> 1400 nm), but it 481 

also shows their relatively low contribution to the spectral signal in these wavelengths, in particular for 482 

fresh leaves. CBC play a larger role in driving leaf reflectance and absorptance, with their highest relevance 483 

in SWIR, especially above 2000 nm. Yet, the key driving input parameters of PROSPECT-PRO forward 484 

simulations of fresh leaf reflectance are the 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 parameter and EWT. As expected, 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 has no 485 

impact on leaf absorptance. Water and CBC are the dominant absorbents of fresh and dry leaves, 486 
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respectively, in the SWIR domain. Although absorption features of proteins between 1600 and 1800 nm 487 

and between 2100 and 2300 nm are subtle, GSA confirms that these spectral domains have the greatest 488 

potential for retrieval activities for both dry and fresh leaves.  489 

Nevertheless, data of high spectral sampling and resolution with a sufficiently high signal-to-noise (SNR) 490 

and an efficient identification of the most optimal retrieval wavelengths within these spectral domains 491 

are required to enable the separation of all influencing constituents, especially in future efforts when 492 

upscaling the retrieval methods from the leaf to the top-of-canopy level.  493 

 494 

 

Figure 3. Global sensitivity analysis of PROSPECT-PRO input parameters, i.e. leaf structure (𝑁𝑠𝑡𝑟𝑢𝑐𝑡), 

leaf water content (EWT), protein content, carbon-based constituents (CBC) and brown pigments, 

simulating reflectance (left) and absorptance (right) of dry (top) and fresh leaves (bottom), including 

reciprocal interactions in a typical bifacial leaf. The y-axis (‘contribution‘) quantifies the first-order 

effects, implying the contribution of each tested input to the modelled output variance. 

 495 

d. Optimal wavelengths for PROSPECT-PRO retrieval of proteins and CBC content 496 
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Figure 4 shows the NRMSE for the estimation of protein and CBC contents by inverting PROSPECT-PRO 497 

over the VALIDATION dataset and applying the SFS optimization procedure on spectral features with 20 498 

nm width within the spectral domain between 1400 and 2400 nm. The optimal estimation of proteins was 499 

obtained with three spectral features encompassing the spectral domains between 2100 and 2139 nm, 500 

and between 2160 and 2179 nm. The later one is located next to the strong protein absorption feature 501 

centered at 2180 nm, as noted by Curran (1989), Fourty et al. (1996) and Wang et al. (2015). The optimal 502 

estimation of CBC was obtained when selecting thirteen 20 nm wide spectral features, four of them 503 

located between 1480 and 1800 nm, and nine of them between 2040 and 2399 nm. Inclusion of additional 504 

spectral features did not lower accuracy for the CBC estimations, except for spectral domains between 505 

1400 and 1439 nm, and between 1860 and 2000 nm that correspond to the two main water absorption 506 

features. In the case of proteins, inclusion of additional spectral information besides the identified optimal 507 

spectral features led to an increased NRMSE. The maximum NRMSE increase was obtained when including 508 

spectral information corresponding to the main absorption peak of water between 1880 and 2000 nm.  509 

 510 



27 
 

 

Figure 4. NRMSE (%) obtained for the estimation of protein and CBC contents with a PROSPECT-PRO 

inversion applied on the VALIDATION dataset using the SFS method (green = spectral features 

required to reach the minimal NRMSE and red = suboptimal spectral domains increasing NRMSE). 

 511 

Figure 5 illustrates the evolution of NRMSE as the number of spectral features selected with SFS for the 512 

full VALIDATION dataset, as well as for the dry samples and fresh samples separately, increases. The 513 

NRMSE development fluctuates but stays relatively similar until 40 to 45 spectral features when 514 

estimating protein contents for both types of leaves. It dramatically increases for fresh leaves once 515 

spectral features located on the main absorption peak of water are included. Similar results were obtained 516 

for CBC. The errors remain relatively similar around the optimal performance until 40 spectral features, 517 

and also strongly increase when including spectral domains of water absorption. 518 

 519 
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Figure 5. Evolution of NRMSE with an increasing number of spectral features selected with SFS when 

estimating proteins (left) and CBC (right) (grey line = NRMSE computed for all samples in the 

VALIDATION dataset, red line = NRMSE computed for dry samples and green line = NRMSE computed 

for fresh samples in the VALIDATION dataset. The number of features leading to minimum NRMSE for 

all VALIDATION samples is indicated with the violet vertical line. 

 520 

e. PROSPECT-PRO validation by retrieval of leaf protein and CBC contents 521 

Comparison between laboratory measured and PROSPECT-PRO estimated protein, CBC and LMA contents 522 

for the VALIDATION dataset is shown in Figure 6. The simultaneous retrievals of leaf protein and CBC 523 

contents from inversions were performed either over the spectral region from 1700 to 2400 nm or over 524 

the optimal spectral features identified with the SFS method. The R codes and data used to produce these 525 

results are available in the prospect R package (Féret and Boissieu, 2020). 526 

The results illustrate the importance of selected optimal spectral features for accuracy of leaf constituent 527 

estimates, especially when analyzing fresh leaf samples. The estimation of proteins has a slightly higher 528 

uncertainty than the estimation of CBC and LMA, which can be explained by a lower contribution of 529 

proteins to the spectral signal (Figure 3). Additionally, a lower accuracy obtained for the estimation of 530 

protein content from dry leaves is caused mainly by a single sample of dry maple (Acer pseudoplatanus L) 531 
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leaf. The estimation of LMA based on the inversion of PROSPECT-D using the spectral domain between 532 

1700 and 2400 nm produced results similar to those obtained with PROSPECT-PRO (NRMSE = 14.2% for 533 

dry leaves and NRMSE = 34.3% for fresh leaves). 534 

 535 

 

Figure 6. Comparison between laboratory measured and PROSPECT-PRO estimated leaf protein, CBC 

and LMA (proteins + CBC) contents obtained for the VALIDATION dataset using either the spectral 

range from 1700 to 2400 nm (a to c) or the optimal spectral features identified with the SFS method 

(d to f) (see Figure 4 in Section 5.d). 

 536 

f. PROSPECT-PRO and PROSPECT-D compatibility assessed via estimation of LMA and 537 

EWT 538 

Overall, the decomposition of LMA into protein and CBC contents estimated by the PROSPECT-PRO over 539 

the SFS optimized spectral regions slightly outperformed the LMA estimations obtained with the 540 
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PROSPECT-D inversion over the optimal spectral domain 1700-2400 nm identified by Féret et al. (2019) 541 

(Figure 7). When analyzing the results per dataset, inversion of PROSPECT-PRO using the optimal spectral 542 

domain for protein and CBC content retrievals resulted in a decreased NRMSE for LMA estimations for 543 

five out of eight datasets (including the VALIDATION Dry and VALIDATION Fresh datasets). Very similar 544 

performances were found for ITATINGA. The increase in NRMSE observed for ANGERS was caused by two 545 

samples of Holly osmanthus (Osmanthus heterophyllus), characterized by high LMA and EWT values, while 546 

the remaining samples showed comparable estimates. However, this influence of high EWT or LMA 547 

contents was not a general feature, as this effect was not observed in case of other datasets that include 548 

samples with high LMA. The less accurate performances observed for HYYTIALA corresponds to an 549 

increased uncertainty distributed among all samples. Finally, when combining all datasets described in 550 

Table 2, the indirect estimation of LMA from the inversion of PROSPECT-PRO using the optimal spectral 551 

features was slightly improved, with a 1.8% decrease in NRMSE and comparable R2 across all data sets. 552 

Still, the differences observed among independent datasets suggest that the optimal spectral features 553 

computed for the VALIDATION dataset do not correspond exactly with the optimal spectral features for 554 

other datasets. Finally, the version of the model did not influence the estimation of EWT significantly. 555 

Inversions of PROSPECT-D and PROSPECT-PRO conducted over the same spectral domain (1700-2400 nm) 556 

resulted in similar outcomes (NRMSE = 11.9 and R2 = 0.91 for both model inversions when combining all 557 

datasets). The results confirm the compatibility between PROSPECT-D and PROSPECT-PRO. 558 

 559 
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Figure 7. Comparison between measured LMA and its corresponding estimations by inversion of a) 

PROSPECT-D (1700-2400 nm), b) PROSPECT-PRO (1700-2400 nm), and c) PROSPECT-PRO (SFS 

optimized spectral features for proteins and CBC). Values in brackets show the number of samples 

and red fonts indicate the best achieved results per dataset. 

 560 

g. Forward simulations of leaf optical properties 561 

Figure 8 displays per-wavelength 𝑅𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸𝑆 and 𝑅𝑀𝑆𝐸𝑈 calculated between measured leaf 562 

reflectance and transmittance and their counterparts produced by PROSPECT-PRO for VALIDATION dry 563 

and fresh samples and also samples of the six independent datasets in Table 2 grouped together. The 564 

input biochemical constituents correspond to the values obtained from laboratory measurements, while 565 

the 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 parameter was obtained from the inversion of PROSPECT-PRO using the spectral information 566 

between 1700 and 2400 nm. Since the independent datasets (Figure 8c and f) do not contain protein and 567 

CBC content measurements, the resulting statistical indicators are based on values of protein and CBC 568 

contents obtained from the model inversion using the optimal spectral features identified with SFS. 569 

Additionally, the PARACOU dataset was excluded from this analysis, as no measurements of EWT were 570 

available. 571 
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Figure 8. 𝑅𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸𝑆 and 𝑅𝑀𝑆𝐸𝑈 between measured and PROSPECT-PRO forward simulated leaf 

optical properties. The biochemical constituents were measured in laboratory and the 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 

parameter was derived by PROSPECT-PRO inversion using the spectral domain from 1700 to 2400 nm. 

The green and grey areas highlight the respective optimal spectral domains identified by SFS method 

for estimation of protein and CBC contents. 

 572 

VALIDATION dry samples exhibited an 𝑅𝑀𝑆𝐸 between 1 and 2% in the SWIR, increasing in the NIR to as 573 

high as 4% for reflectance and 2% for transmittance at 1000 nm. The increasing 𝑅𝑀𝑆𝐸 at shorter 574 

wavelengths and also reflectance 𝑅𝑀𝑆𝐸𝑆 higher than 𝑅𝑀𝑆𝐸𝑈 may be due to the presence of constituents 575 

similar to brown pigments appearing after the drying process, which were not accounted for during the 576 

simulation, or by residual model inaccuracies at these wavelengths. 𝑅𝑀𝑆𝐸𝑈 close to 𝑅𝑀𝑆𝐸 in the SWIR 577 

region confirms acceptable model accuracy and moderate bias, and shows that the specific absorption 578 

coefficient of LMA as well as proteins and CBC are, in general, able to reassemble dry LOPEX data 579 

measurements very well. 580 

In case of fresh VALIDATION samples, the 𝑅𝑀𝑆𝐸 is generally slightly higher and fluctuates between 1 and 581 

3% of reflectance and transmittance intensities. Nevertheless, 𝑅𝑀𝑆𝐸 between 2000 and 2400 nm, where 582 



33 
 

most of the optimal spectral features for the estimation of protein and CBC contents are located, is 583 

smaller, between 1 and 2%. Compared to dry samples, the reflectance 𝑅𝑀𝑆𝐸 between 1000 and 1200 nm 584 

is lower, which supports our interpretation of increased NIR 𝑅𝑀𝑆𝐸 in dry samples due to the unaccounted 585 

presence of absorbing constituents similar to brown pigment such as products from decay pigments 586 

(Proctor et al., 2017). The higher 𝑅𝑀𝑆𝐸 combined with corresponding high 𝑅𝑀𝑆𝐸𝑆 between c. 1500 and 587 

1800 nm suggest that the contribution of water absorption introduces a certain bias in the simulated fresh 588 

leaf optical properties.  589 

The 𝑅𝑀𝑆𝐸 lower than 2.1% was found for both reflectance and transmittance of the independent 590 

datasets for wavelengths > 1500 nm, which is slightly lower than the results obtained for fresh 591 

VALIDATION samples. Relatively different and decoupled dynamics between 𝑅𝑀𝑆𝐸 and 𝑅𝑀𝑆𝐸𝑆 suggest 592 

that the contribution of water absorption does not introduce the same bias as observed for fresh 593 

VALIDATION samples. The high 𝑅𝑀𝑆𝐸 and 𝑅𝑀𝑆𝐸𝑈 for both reflectance and transmittance in NIR were 594 

not observed for fresh VALIDATION samples, and they do not reassemble by shape the increases observed 595 

for dry VALIDATION samples. This may be caused by discrepancies in the protocol for the measurement 596 

of the leaf optical properties among datasets. The same analysis performed on the complementary 597 

simulations from PROSPECT-D showed very similar results (results not shown). 598 

 599 

h. Estimation of C:N from CBC:Proteins ratio retrieved from PROSPECT-PRO inversion 600 

The correlation analysis displayed in Figure 1 shows that constituents of CBC, such as cellulose and lignin, 601 

are strongly correlated with leaf C content. We applied the linear model fitted between CBC:Proteins and 602 

C:N ratio of the fresh samples in the CALIBRATION dataset (Eq. (14)) to the CBC:Proteins ratio PROSPECT-603 

PRO estimates for the VALIDATION datasets: 604 

 605 
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𝐶:𝑁 = 2.167 × 𝐶𝐵𝐶: 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠 + 1.565. (14) 

 606 

The results show that the C:N ratio was derived from the CBC and proteins PROSPECT-PRO estimates with 607 

a NRMSE of 28.1% for dry samples, and an exceptionally low NRMSE of 15.7% (R2 of 0.87) for fresh samples 608 

(Figure 9). The poorer performances for dry samples was strongly driven by a single sample of dry chestnut 609 

(Castanea sativa) leaf, and highlights the necessity of further independent verification of the C:N 610 

predictive regression models.  611 

 612 

 

Figure 9. Comparison between the C:N ratio measured in laboratory and the same ratio derived from 

regression (Eq. (14)) established with PROSPECT-PRO estimated protein and CBC contents of dry and 

fresh samples in the VALIDATION dataset. 

 613 

6. DISCUSSION 614 

a. Limitations of experimental data available for PROSPECT-PRO calibration and validation  615 
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Calibration and validation uncertainties are related not only to the physical-empirical model design and 616 

mathematical inversion but also to model inputs, i.e. leaf biochemical and optical measurements 617 

(Malenovský et al., 2019). Although we used in this study only a single nitrogen-to-protein content 618 

conversion multiplicative factor of 4.43, this factor is not constant across all plant species. As reported by 619 

Yeoh and Wee (1994), it can range from 3.28 to 5.16, with an average and standard deviation of 4.43±0.40. 620 

This means that the protein content used for calibration and validation of PROSPECT-PRO contains an 621 

associated uncertainty that is proportional to the unaccounted variability of this conversion factor. This 622 

may also explain the moderately higher uncertainty observed in protein estimates when compared to 623 

LMA and CBC retrievals. Despite this, our results show that the specific absorption coefficients for in vivo 624 

proteins are consistent with absorption features derived from dried and ground leaves reported in 625 

literature (Curran, 1989). In addition, the protein content estimated through model inversion remained 626 

consistent and accurate. 627 

Our study only includes one dataset with measured protein and CBC content. Therefore, the validation is 628 

performed on a limited number of samples (n=26 dry and 33 fresh). As such, the errors and uncertainties 629 

reported might be strongly affected by just few discrepancies in this low number of samples. As reported 630 

in Section 3.a, the presence or absence of a single sample in the calibration dataset significantly impacted 631 

the calibration process and the subsequent capability of the model to properly simulate leaf optical 632 

properties and to estimate leaf constituents. In the same way, the presence of just few validation samples 633 

showing a strong error may lead to difficulties for the statistical interpretation of results obtained from 634 

an inversion. In our case, we encountered a lower accuracy for proteins estimation on dry samples. It was 635 

caused by a single sample, for which either spectral or biochemical measurement error may have 636 

occurred. Additional datasets from various ecosystem types and growing conditions are, therefore, 637 

required to test further limitations of PROSPECT inversions, especially for high contents of EWT and LMA, 638 

as identified for a limited set of samples in this study. Finally, more public datasets containing reliable 639 
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VNIR and SWIR leaf optical properties and corresponding comprehensive and robust laboratory 640 

measurements of leaf biochemical constituents are strongly needed. They would also allow us to explore 641 

a potential differentiation and inclusion of new ecophysiologically important constituents. 642 

 643 

b. Interpretation of GSA 644 

Since 𝑁𝑠𝑡𝑟𝑢𝑐𝑡 has no effect on the leaf absorptance (Figure 3), the GSA of the model biochemical input 645 

parameters to leaf absorbance can be used to identify the most dynamic absorption regions of leaf 646 

constituents. However, it is important to mention that a strong influence of a given constituent does not 647 

mean removal of contributions from other constituents with a lower impact. Although EWT is the main 648 

driver of SWIR absorptance by fresh leaves, the impact of CBC is also significant and in case of dry leaves 649 

even dominant. Therefore, with the prerequisite of a clean spectral acquisition with a high spectral 650 

sampling and resolution, an appropriately parameterized model inversion procedure using selected 651 

optimal spectral features can be successful. Hereby, for the model inversion we took advantage of the 652 

spectral dynamics of absorbing constituents depicted in Figure 2 and Figure 3. There is a very pronounced 653 

increase of protein absorption within the 2100-2200 nm domain, while water absorption is decreasing, 654 

and CBC absorption reaches first a maximum peak and then starts to decrease. This unique contrasting 655 

spectral dynamic, i.e. a change from the local minimum to the local maximum of proteins in contrast to 656 

the other two main absorbers showing moderate changes in absorption, explains the high accuracy we 657 

achieved when estimating protein content from the identified optimal spectral domain. On the other 658 

hand, absorption of EWT and proteins both decrease in the spectral region around 2000 nm, and CBC and 659 

proteins both decrease beyond 2200 nm. These correlated behaviors negatively impact their retrieval 660 

accuracy through a model inversion.  661 

 662 

c. Identification of the optimal spectral features 663 
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The optimal spectral features for estimation of CBC and proteins were defined based on the VALIDATION 664 

dataset only. The analysis showed that the optimal spectral features selected across all tested datasets 665 

were not the same, resulting in an increased NRMSE for LMA estimates of some experimental datasets 666 

(Figure 7). Féret et al. (2019) reached a similar conclusion when identifying specific optimal subdomains 667 

for estimation of EWT and LMA. While Féret et al. (2019) could eventually identify the optimal spectral 668 

domain by combining all available datasets, the lack of protein and CBC content measurements did not 669 

allow us to find the most optimal spectral features across the independent datasets in Table 2. 670 

Finally, better performances obtained for the estimation of both proteins and CBC from fresh leaf 671 

measurements are somewhat in a disagreement with the existing literature on this topic (Fourty et al., 672 

1996; Jacquemoud et al., 1996; Wang et al., 2015). This outcome can be explained by the new spectral 673 

feature selection procedure applied in our study. The results in Figure 5 illustrate why systematically lower 674 

performances were reported when attempting to estimate LMA and proteins by PROSPECT inversion 675 

using a full contiguous spectral information containing spectral regions strongly confounded by water 676 

absorption. They also provide the evidence that water absorption does not significantly interfere with the 677 

spectral information selected as optimal for retrieval of protein and CBC contents in dry but also fresh leaf 678 

samples in this study. Therefore, the PROSPECT-PRO protein and CBC estimation errors do not originate 679 

from the model physical and spectral limitations but from the design of the inversion procedure and from 680 

associated criterions of the minimization functions.  681 

 682 

d. Complementarity of chlorophyll and protein estimates as proxies for nitrogen 683 

content 684 

Despite the known limitations of using chlorophyll a+b content as a proxy of N in remote sensing 685 

monitoring applications, it has proved to be relatively successful in a certain number of cases (Baret et al., 686 

2007). The main advantage of estimating chlorophyll over protein content is its strong optical signal in the 687 
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VNIR (especially red-edge) domain, allowing for its accurate RS estimates even at the canopy level (e.g., 688 

Malenovský et al., 2013). In contrast, the SWIR domain, which is required to estimate protein content, but 689 

is characterized by lower solar energy flux and lower SNR (Guanter et al., 2015). Therefore, even if being 690 

physiologically more robust over a broader range of conditions and vegetation types, the estimation of N 691 

from protein content may be associated with a significantly higher uncertainty originating from a weaker 692 

SNR of the spectroscopic measurements. The enhanced capacity of PROSPECT-PRO to monitor vegetation 693 

C:N ratio and its seasonal changes through the separation of protein and CBC contents may prove useful, 694 

if systematically and rationally complemented by a RS chlorophyll monitoring. 695 

 696 

e. Potential application for a canopy scale ecosystem nitrogen mapping  697 

Physical RT modeling is a key component in revealing the underlying relations between quantitative 698 

vegetation properties and information encoded in RS optical data. In this study, we successfully calibrated 699 

and validated a new PROSPECT-PRO model that separates nitrogen-based protein constituents from other 700 

carbon-based constituents, i.e. cellulose, lignin, hemicellulose, sugars and starch. Unlike previous 701 

attempts, which either resulted in a poor protein content estimation performance (Jacquemoud et al., 702 

1996) or suggested a limited accuracy of LMA predictions (Wang et al., 2015), the indirect estimation of 703 

LMA with PROSPECT-PRO (i.e., the sum of protein and CBC contents) was found to be fully comparable 704 

with the direct estimation of LMA using PROSPECT-D. The performances in forward simulations of leaf 705 

optical properties were also very similar for both model versions. Similar to Féret et al. (2019), an accurate 706 

estimation of LMA and its two components required selection of the appropriate spectral domains. The 707 

relatively narrow spectral domain identified as optimal for the retrieval of proteins (2100-2139 and 2160-708 

2179 nm) must be considered in the future operational applications for nitrogen or LMA monitoring using 709 

field and air-/space-borne imaging spectroscopy. This may be incorporated by applying appropriate 710 

weights for the different spectral domains that optimize the sensitivity of retrieval algorithms to the 711 
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constituents of interest. The unsuitable spectral wavelengths can be identified and removed by hybrid 712 

band selection methods, feature extraction or band weighting procedures (Fassnacht et al., 2014; 713 

Feilhauer et al., 2015; Verrelst et al., 2015).  714 

Results of this study offer a new opportunity for operational RS monitoring and consequent management 715 

of nitrogen in agricultural and natural ecosystems. However, applicability of PROSPECT-PRO for such a 716 

monitoring system is strongly dependent on scalability of the simulated leaf SWIR spectral signatures up 717 

to spatially and spectrally heterogeneous canopies. The potential of transferring a PROSPECT-PRO-based 718 

N estimating method into an operational application in the field is yet to be investigated. Although 719 

proximal remote sensing of small homogeneous canopies, based for instance on the PROCOSINE model 720 

(Jay et al., 2016; Morel et al., 2018), could be considered as an intermediate step, a certain number of 721 

challenges must be addressed first. These include the capacity to perform sufficiently accurate outdoor 722 

canopy measurements, a suppression of the vegetation canopy reflectance angular anisotropy (including 723 

spectral effects of background surfaces and leaf orientation), and an ability to achieve a sufficiently high 724 

signal-to-noise ratio in the SWIR domain. More generally, analyzing canopy reflectance requires 725 

accounting for multiple confounding factors, such as the structural properties of the canopy (i.e., leaf area 726 

index, leaf angle distribution and foliage clumping), spectral properties of soil, understory and 727 

atmosphere, and the sun-object-observer geometry at the time of data acquisition. 728 

Our results indicate the importance of narrow SWIR domains, which will remain to be important also at 729 

the canopy level. Current multispectral spaceborne data (e.g., Landsat 8/9 and Sentinel-2 images) do not 730 

comply with the narrowband SWIR spectral requirements that we identified, and further investigations 731 

are necessary to conclude on feasibility and limitations of its potential use for N mapping using PROSPECT-732 

PRO. An increasing number of available space-borne imaging spectroscopy data (Berger et al., 2020b) is 733 

bringing new opportunities in this field. Several satellite platforms are already operational or close to 734 

launch, e.g. PRISMA (Loizzo et al., 2019), Gaofen-5 (Liu et al., 2019), or EnMap (Guanter et al., 2015), and 735 
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few more candidate missions are in preparation, such as the Copernicus Hyperspectral Imaging Mission 736 

for the Environment (CHIME) (Nieke and Rast, 2018) or NASA’s EMIT (Green et al., 2019) and Surface 737 

Biology and Geology (SBG) missions (Committee on the Decadal Survey for Earth Science and Applications 738 

from Space et al., 2018; Hochberg et al., 2015). Data provided by these instruments holds a strong 739 

prospect for N monitoring. Yet, preparatory studies will be necessary to analyze the potential of 740 

PROSPECT-PRO in simulating sufficiently accurate imaging spectroscopy data of canopies when being 741 

coupled with canopy RT models, for instance with SAIL (Berger et al., 2018; Jacquemoud et al., 2009; 742 

Verhoef et al., 2007), SCOPE (van der Tol et al., 2009) , INFORM (Schlerf and Atzberger, 2006) or DART 743 

(Gastellu-Etchegorry et al., 2017, 2015). Berger et al. (2020a) studied the potential of PROSPECT-PRO 744 

coupled with SAIL for the estimation of crop nitrogen based on airborne imaging spectroscopy. They 745 

performed a sensitivity analysis identifying the most relevant spectral bands for this task and concluded 746 

on the importance of SWIR bands at 2124 and 2234 nm. Their most optimal spectral bands selected in the 747 

NIR and the first part of the SWIR spectra suggest that conclusions of this leaf scale study may differ from 748 

conclusions at the canopy scale. Accounting for the canopy reflectance confounding factors may need an 749 

additional spectral information, coming from different spectral domains than those required at the leaf 750 

scale.  751 

 752 

7. CONCLUSIONS 753 

This study introduces PROSPECT-PRO, a new version of the PROSPECT leaf RT model, capable of 754 

differentiating proteins from other carbon-based constituents as two independent components of LMA. 755 

The calibration of PROSPECT-PRO was based on the assumption that proteins and CBC are the two main 756 

spectrally active constituents of the leaf dry matter. We demonstrated that PROSPECT-PRO performs 757 

similarly in estimating protein and CBC content of both fresh and dry leaves, a marked improvement over 758 
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previous attempts. Errors computed between measured and simulated leaf optical properties were 759 

relatively low for both types of leaves.  760 

Our results, based on leaf optical properties with the 1 nm spectral sampling, revealed that the optimal 761 

estimation of leaf protein content at the leaf scale is obtained when using two narrow spectral domains 762 

between 2100 and 2139 nm, and between 2160 and 2179 nm. The estimation of protein content, assessed 763 

by NRMSE, was found to be slightly less accurate than the estimation of CBC content or total LMA. 764 

Additionally, the C:N ratio was successfully estimated from the CBC:Proteins ratio retrieved by PROSPECT-765 

PRO inversion. Despite these achievements, further investigations, that would be conducted on 766 

independent leaf-scale measurements of leaf optical properties, proteins, nitrogen and LMA, are still 767 

needed. Canopy-scale studies are also required to test the potential of this new model for operational 768 

airborne and space-borne applications. The capability of current satellite multispectral instruments (e.g., 769 

Sentinel-2 and Landsat-8/9) to estimate vegetation protein and CBC contents needs to be investigated in 770 

light of our findings. However, such estimations may remain extremely challenging, considering the coarse 771 

resolution and limited number of spectral bands of these instruments in the SWIR region. Spaceborne 772 

imaging spectroscopy missions with a higher SWIR spectral sampling may be of the critical importance for 773 

a future operational nitrogen-containing protein monitoring of agricultural and natural environments.  774 
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