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Models of radiative transfer (RT) are important tools for remote sensing of vegetation, allowing for forward simulations of remotely sensed data as well as inverse estimation of biophysical and biochemical traits from vegetation optical properties. Estimation of foliar protein content is the key to monitor the nitrogen cycle in terrestrial ecosystems, in particular to assess the photosynthetic capacity of plants and to improve nitrogen management in agriculture. However, until now physically based leaf RT models have not allowed for proper spectral decomposition and estimation of leaf dry matter as nitrogen-based proteins and other carbon-based constituents (CBC) from optical properties of fresh and dry foliage. Such an achievement is the key for subsequent upscaling to canopy level and for development of new Earth observation applications.

Therefore, we developed a new version of the PROSPECT model, named PROSPECT-PRO, which separates the nitrogen-based constituents (proteins) from CBC (including cellulose, lignin, hemicellulose, starch and sugars). PROSPECT-PRO was calibrated and validated on subsets of the LOPEX dataset, accounting for both fresh and dry broadleaf and grass samples. We applied an iterative model inversion optimization algorithm and identified the optimal spectral ranges for retrieval of proteins and CBC. When combining leaf reflectance and transmittance within the selected optimal spectral domains, PROSPECT-PRO inversions revealed similarly accurate CBC estimates of fresh and dry leaf samples (respective validation R 2 = 0.96 and 0.95, NRMSE = 9.6% and 13.4%), whereas a better performance was obtained for fresh than for dry leaves when estimating proteins (respective validation R 2 = 0.79 and 0.57, NRMSE = 15.1% and 26.1%). The accurate estimation of leaf constituents for fresh samples is attributed to the optimal spectral feature selection procedure.

We further tested the ability of PROSPECT-PRO to estimate leaf mass per area (LMA) as the sum of proteins and CBC using independent datasets acquired for numerous plant species. Results showed that both PROSPECT-PRO and PROSPECT-D inversions were able to produce comparable LMA estimates across an independent dataset gathering 1685 leaf samples (validation R 2 = 0.90 and NRMSE = 16.5% for PROSPECT-PRO, and R 2 = 0.90 and NRMSE = 18.3 % for PROSPECT-D). Findings also revealed that PROSPECT-PRO is capable of assessing the carbon-to-nitrogen ratio based on the retrieved CBC-toproteins ratio (R 2 = 0.87 and NRMSE = 15.7% for fresh leaves, and R 2 = 0.65 and NRMSE = 28.1% for dry leaves). The performance assessment of newly designed PROSPECT-PRO demonstrates a promising potential for its involvement in precision agriculture and ecological applications aiming at estimation of leaf carbon and nitrogen contents from observations of current and forthcoming airborne and satellite imaging spectroscopy sensors.

INTRODUCTION

Nitrogen (N) is a major nutrient for all living plant organisms, cultivated as well as wild forms. In agriculture, crop yield quality is primarily dependent on protein content, with the N availability being the most critical factor of actual grain protein content [START_REF] Brown | Nitrogen management for hard wheat protein enhancement[END_REF]. N limitation in soil and plants generally restricts the development and growth of roots, suppresses lateral root initiation, increases the carbon-to-nitrogen (C:N) ratio within the plant, reduces photosynthesis, and results in early leaf senescence [START_REF] Kant | Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency[END_REF][START_REF] Paul | Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source:sink imbalance[END_REF][START_REF] Wingler | The role of sugars in integrating environmental signals during the regulation of leaf senescence[END_REF]. On the other hand, N overfertilization is undesirable for quality of both crops and environment. Excess of N reduces yield and decreases its quality (e.g., organoleptic quality), reduces the content of mineral nutrients and secondary metabolites, and increases nitrate content in leaves [START_REF] Albornoz | Crop responses to nitrogen overfertilization: A review[END_REF]. From the environmental perspective, the human activity that altered the global N cycle by through N fertilization of farming systems has negative impacts on terrestrial and aquatic ecosystems [START_REF] Davidson | Excess Nitrogen in the U[END_REF][START_REF] Gruber | An Earth-system perspective of the global nitrogen cycle[END_REF]. The consequences include habitat eutrophication, acidification, and contribution to the accelerated loss of biodiversity caused by decreased competitive advantage of plants adapted to efficient use of nitrogen [START_REF] Vitousek | HUMAN ALTERATION OF THE GLOBAL NITROGEN CYCLE: SOURCES AND CONSEQUENCES[END_REF]. Optimization of N management has, therefore, an important role in mitigating such effects, while securing sufficient and sustainable food production. N concentration in plants is, in general, considered as an important surrogate measure for plant photosynthetic capacity [START_REF] Evans | Photosynthesis and nitrogen relationships in leaves of C3 plants[END_REF], and its remote estimation is, therefore, of a great interest for plant biology and ecology.

Remotely sensed (RS) monitoring of N in vegetation is a prospective tool for N management improvement and for reduction of negative impacts imposed by conventional farming. Decision support systems that use RS information are mostly based on the relationship between leaf N and chlorophyll content. Such monitoring has certain operational advantages, originating from strong chlorophyll a+b spectral absorption features in the visible domain, but also from a great diversity of physically based, data driven and hybrid methods designed to estimate chlorophylls from multi-and hyperspectral data [START_REF] Baret | Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management[END_REF][START_REF] Clevers | Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3[END_REF]Malenovský et al., 2013;[START_REF] Verrelst | Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties -A review[END_REF]. Although a significant amount of literature reported a strong correlation between leaf N and chlorophyll content in crops [START_REF] Baret | Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management[END_REF][START_REF] Clevers | Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content[END_REF][START_REF] Vos | Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage[END_REF][START_REF] Yoder | Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales[END_REF], this relationship does not hold during their senescence and does not appear to be universal, as it is relatively weak across species and ecosystems [START_REF] Asner | Airborne spectranomics: Mapping canopy chemical and taxonomic diversity in tropical forests[END_REF][START_REF] Malenovskỳ | Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer[END_REF]. N is involved in many leaf physiological processes, including photosynthesis, respiration, structural growth and storage capacity building [START_REF] Liu | Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape[END_REF]. This results in multiple N-based leaf biochemical constituents with different physiological roles that are created throughout the plant life cycle in response to changing environmental factors. Chlorophyll pigments contain only a small fraction of N, representing less than 2% of the total leaf N [START_REF] Kokaly | Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies[END_REF]. In comparison, proteins are the major nitrogen-containing biochemical constituents, with Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco enzyme) holding 30-50% of N that is present in green leaves [START_REF] Elvidge | Visible and near infrared reflectance characteristics of dry plant materials[END_REF][START_REF] Kokaly | Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies[END_REF]. Rubisco, the most abundant protein on Earth, catalyzes the photosynthetic fixation of carbon dioxide [START_REF] Sharwood | Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops[END_REF].

Together with other photosynthesis-related proteins, it is the major source of N available for remobilization among plant parts [START_REF] Masclaux-Daubresse | Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture[END_REF]. For instance, N in oilseed rape (Brassica napus) remobilizes from senescing to expanding leaves during the vegetative growth stage and from senescing leaves to seeds during the reproductive stage [START_REF] Malagoli | Dynamics of Nitrogen Uptake and Mobilization in Field-grown Winter Oilseed Rape (Brassica napus) from Stem Extension to Harvest: I. Global N Flows between Vegetative and Reproductive Tissues in Relation to Leaf Fall and their Residual N[END_REF]. This indicates that, unlike chlorophyll, plant nitrogen content does not decrease upon reaching mature growth stages, but is rather translocated to other organs, which makes the relationship between plant nitrogen and leaf chlorophyll content through the vegetation growth cycle nonlinear. Consequently, a quantitative non-destructive retrieval of leaf protein content is expected to be a more reliable proxy of nitrogen content (Berger et al., 2020b).

As reported in the pioneering studies from [START_REF] Curran | Remote sensing of foliar chemistry[END_REF], [START_REF] Elvidge | Visible and near infrared reflectance characteristics of dry plant materials[END_REF] and [START_REF] Himmelsbach | Solid-state 13C NMR, FTIR, and NIRS spectroscopic studies of ruminant silage digestion[END_REF], the absorption features corresponding to proteins are caused mainly by N-H bond stretches. They are located in the shortwave infrared (SWIR) domain between 1500 and 2400 nm, with two additional features reported in the near infrared (NIR) domain at 910 and 1020 nm. The quantification of proteins from leaf optical properties is, however, challenging, because of their relatively low concentrations, and some of their specific absorption features being overlapped by absorption features from water or other dry matter constituents [START_REF] Fourty | Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems[END_REF][START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF]. At the canopy scale, additional confounding factors (e.g., vegetation structure, geometry of acquisition or soil and atmosphere properties, etc.) also contribute to the reflectance signal measured by optical sensors. Multispectral systems with broad spectral bands and moderate spectral sampling are insufficient to correctly differentiate biochemical constituents with narrow and overlapping absorption features. The contiguous narrow spectral bands measured with imaging spectroscopy are more suitable to differentiate spectral features corresponding to the combination of multiple optically active constituents [START_REF] Hank | Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges[END_REF].

Even subtle contributions of proteins to the hyperspectral signal may allow their accurate estimation, if using appropriate methods. Such methods include multivariate statistical and machine learning algorithms, physically based approaches or hybrid combinations of both (Verrelst et al., 2019a).

Physical models offer a certain number of advantages over empirical and machine learning approaches.

The physically explicit representation of the interactions between electromagnetic radiation and vegetation structures enables forward simulation and inversion of reflectance signals acquired by any laboratory/field, close-range, airborne or space-borne spectroradiometer. Their main advantages, when compared to empirical methods, are robustness and transferability, although recent publications suggest that these advantages may not be as large as expected [START_REF] Serbin | From the Arctic to the tropics: multibiome prediction of leaf mass per area using leaf reflectance[END_REF]. The definition of a physical model that includes proteins as an input requires the calibration of specific absorption coefficients for proteins and other constituents of dry matter in leaves, which has proven to be challenging [START_REF] Botha | Non-destructive estimation of potato leaf chlorophyll and protein contents from hyperspectral measurements using the PROSPECT radiative transfer model[END_REF][START_REF] Kokaly | Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies[END_REF]. [START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF] developed a version of the PROSPECT model including specific absorption coefficients for proteins and for different combinations of carbon-based constituents (CBC), but the model inversion resulted in moderate to good estimates of proteins (R 2 between 0.49 and 0.67) and different combinations of CBC (R 2 between 0.39 and 0.88) in dry leaves and poor to moderate accuracy for proteins (R 2 <0.05) and CBC (R 2 <0.50) in fresh leaves. [START_REF] Wang | Applicability of the PROSPECT model for estimating protein and cellulose+lignin in fresh leaves[END_REF] updated a later version of PROSPECT to include proteins and lignin plus cellulose. They concluded on the importance of selecting specific spectral domains to obtain optimal results, which was later confirmed by [START_REF] Féret | Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[END_REF] when inverting PROSPECT for estimation of leaf dry mass per area (LMA) and equivalent water thickness (EWT). However, both [START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF] and [START_REF] Wang | Applicability of the PROSPECT model for estimating protein and cellulose+lignin in fresh leaves[END_REF] assumed that only proteins, lignin and cellulose, representing about 75% of LMA, contribute to leaf absorption. They excluded spectral contribution of non-structural carbohydrates (e.g., sugars and starch), which is a significant source of forward and inverse modelling uncertainties.

Our overall objective is to develop a new version of the PROSPECT model capable of differentiating and accurately estimating protein and CBC contents from leaf spectroscopic measurements. The new PROSPECT version, named PROSPECT-PRO, should be applicable to all types of bifacial leaves, including fresh green as well as senescent and dry leaves. As a secondary objective, we intend to identify optimal spectral domains for quantitative estimation of leaf proteins through a PROSPECT-PRO inversion and validate its performance on independent datasets of leaf optical and biochemical measurements. The introduced improvements in PROSPECT-PRO leverage only shortwave infrared (SWIR, 1000-2500 nm) wavelengths, where protein and CBC absorption features are prominent, and therefore does not affect the existing functionality of PROSPECT with respect to foliar pigments.

We provide a general introduction to the PROSPECT model physical principles in Section 2. The data used for the calibration and validation of PROSPECT-PRO are described in Section 3. Explanation of the calibration procedure, including analytical tools for global sensitivity analysis, validation and identification of optimal retrieval spectral domains, is given in Section 4. Section 5 presents the results of the study.

Finally, Section 0 discusses potential applications of and limitations to PROSPECT-PRO, are concluding findings are presented in Section 7.

General introduction of PROSPECT

PROSPECT is a physical model simulating leaf directional-hemispherical reflectance and transmittance [START_REF] Schaepman-Strub | Reflectance quantities in optical remote sensing-definitions and case studies[END_REF] using a relatively low number of biophysical and biochemical input parameters. Its first version was developed by Jacquemoud and [START_REF] Jacquemoud | PROSPECT: A model of leaf optical properties spectra[END_REF] as an extension of the generalized plate model of [START_REF] Allen | Mean effective optical constants of cotton leaves[END_REF][START_REF] Allen | Interaction of isotropic light with a compact plant leaf[END_REF], with later versions developed to include more absorbing constituents [START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF][START_REF] Féret | PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments[END_REF][START_REF] Féret | PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle[END_REF] or to adapt to specific conditions and leaf types, for example needle-shaped leaves [START_REF] Malenovský | Applicability of the PROSPECT model for Norway spruce needles[END_REF]. The PROSPECT model was also the starting point for development of independent extensions modelling RT of leaf chlorophyll fluorescence, such as FluorMODleaf [START_REF] Pedrós | FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model[END_REF]Fluspect (van der Tol et al., 2019;[START_REF] Vilfan | Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics[END_REF]. PROSPECT can be used in forward mode to simulate leaf optical properties from the description of its biochemical and structural properties, or in inverse mode to estimate part or all of these biochemical and structural properties based on measured leaf optical properties. Detailed description of these modes is provided in Section 4.

In addition to the leaf biochemical variables such as foliar pigments, EWT and LMA, PROSPECT requires a unique leaf mesophyll structure parameter 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 . In a simplified leaf representation, described by the generalized plate model, it corresponds to the number of uniform compact plates separated by 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 -1 air spaces. 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 describes the complexity of a leaf internal structure, where a low value (1-1.5) indicates a simpler compact mesophyll tissue (e.g., monocots) while a high value (1.5-2) indicates mesophyll of a greater complexity containing more intercellular air spaces (e.g., eudicots) [START_REF] Boren | Characterizing the Variability of the Structure Parameter in the PROSPECT Leaf Optical Properties Model[END_REF]. 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 governs leaf internal light scattering, but it has a negligible impact on leaf absorption.

Higher values of 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 result in a greater reflectance and a decreased transmittance, which is obvious primarily in spectral domains of low absorption (e.g., NIR wavelengths). To date, 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 is estimated indirectly from NIR leaf reflectance and transmittance measurements [START_REF] Féret | Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[END_REF]. Since we used the most recent model version PROSPECT-D as the basis for establishing a new PROSPECT-PRO, the wavelength dependent refractive index of leaf interior and the specific absorption coefficients for water remained identical to PROSPECT-D.

MATERIAL a. Calibration and validation data to establish PROSPECT-PRO

The calibration and validation datasets must include directional-hemispherical leaf reflectance and transmittance and corresponding biochemical destructive measurements of the constituents used as model inputs, but only constituents with optical activity within the spectral range in which calibration is performed are needed. Since the new additions in PROSPECT-PRO utilize only the SWIR domain covering protein absorption features, contents of foliar pigments were not required for its calibration. The Leaf Optical Properties Experiment (LOPEX) dataset, established by the Joint Research Center (JRC) of the European Commission (Ispra, Italy) in 1993 [START_REF] Hosgood | Leaf Optical Properties Experiment 93[END_REF], contains optical, physical and biochemical measurements of more than 50 plant species collected around Ispra, Italy. Although this species diversity guarantees a certain variability in leaf optical and biochemical properties, the data used for the calibration of PROSPECT-PRO certainly does not cover the full range of variability across existing biomes. On the other hand, this dataset has, based on our search, the only publicly available data suitable for this calibration. We acknowledge that additional datasets obtained from various ecosystem types and growing conditions are required for a future PROSPECT-PRO verification. The optical properties of leaf directional-hemispherical reflectance and transmittance were measured with an integrating sphere from the visible (VIS) to shortwave infrared region (VSWIR, 400-2500 nm). The biochemical measurements of photosynthetic pigments, water (EWT) and generic dry matter (LMA) content, as well as carbon (C), hydrogen, oxygen, nitrogen, lignin, proteins, cellulose and starch content are expressed as a percentage of dry mass. The protein content in the original LOPEX dataset was estimated from the nitrogen content measured by the Kjeldahl method [START_REF] Bradstreet | Kjeldahl Method for Organic Nitrogen[END_REF][START_REF] Sáez-Plaza | An Overview of the Kjeldahl Method of Nitrogen Determination. Part I. Early History, Chemistry of the Procedure, and Titrimetric Finish[END_REF] using the nitrogen-to-crude protein conversion factor of 6.25, which is widely used for food materials. We used the revised factor of 4.43, as suggested by [START_REF] Yeoh | Leaf protein contents and nitrogen-to-protein conversion factors for 90 plant species[END_REF] to be more representative of a broader range of vegetation types. This transformation of the protein content is one of the functional differences between our model and models calibrated in previous studies [START_REF] Fourty | Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems[END_REF][START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF][START_REF] Wang | Applicability of the PROSPECT model for estimating protein and cellulose+lignin in fresh leaves[END_REF].

As the original version of LOPEX includes 120 samples, encompassing broad leaves, needles, stalks, and powders, we used only data corresponding to bifacial monocotyledon and eudicotyledon leaves. The five reflectance and transmittance measurements taken for each sample were averaged. For some samples, the measurements of optical properties were taken from both fresh and dry leaves. Therefore, we separated these measurements and produced two distinct datasets of dry and fresh samples. Chemical measurements were performed by two independent laboratories in Belgium and France [START_REF] Verdebout | Analysis of imaging spectrometer data to evaluate the biochemical content of vegetation, based on the results of a laboratory experiment[END_REF]. Although measurements of both laboratories were relatively consistent, we decided to use the chemical analyses from the Belgian laboratory, leading to slightly improved overall results during calibration and validation stages. The chemical compositions measured several times over the same samples to test repeatability of lab measurement protocols were averaged. One sample of alder (Alnus glutinosa) with a particularly low SWIR transmittance (less than 1% on average between 1900 and 2500 nm and across spectral domains with less than 0.1% of transmittance) was discarded from the fresh samples, because its presence systematically prevented a proper calibration and validation across all tests of the data. Additionally, two fresh samples of beech (Fagus sylvatica L.) and poplar (Populus canadensis) leaves were placed in the validation data, because their presence in the calibration data resulted in systematically poor results. These three samples were all characterized by a high EWT > 0.030 cm (i.e. 30 mg.cm -2 ). The final selection of the LOPEX dataset resulted in 66 fresh and 49 dry eligible samples.

To our best knowledge, LOPEX is the only open dataset that includes required information on leaf protein content for the calibration and validation of PROSPECT-PRO. Therefore, we split LOPEX into independent calibration and validation subsets. To minimize risks of an imbalanced distribution of protein content between calibration and validation sets, all dry and fresh samples were pooled together, and subsequently rank ordered based on increasing protein content. Every second sample among this pooled data was selected for calibration and the remaining samples were used for validation. The calibration datasets will be referred to as CALIBRATION while the validation datasets will be identified as VALIDATION, and the combined dataset will be referred to as LOPEX-CALVAL. Dataset mean and range values are provided in Table 1. The Pearson correlation coefficients for log-transformed biochemical contents of fresh leaf samples are presented in Figure 1 (Section 5.a). et al., 2017). For this, we combined six additional datasets that do not include destructive measurements of leaf proteins: ANGERS, HYYTIALA, ITATINGA, NOURAGUES, PARACOU and LOPEX-Full [START_REF] Féret | Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[END_REF] (see Table 2 for EWT and LMA statistics). Note that LOPEX-Full includes all individual measurements of leaf optical properties, i.e., 330 measurements of LMA and EWT for fresh leaves (66 fresh samples with five repetitions), whereas the LOPEX CALIBRATION and VALIDATION datasets contain averages of these five repetition and their corresponding mean protein contents (for more details see [START_REF] Hosgood | Leaf Optical Properties Experiment 93[END_REF]. 

a. PROSPECT forward modelling and inversion

In forward mode, PROSPECT simulates leaf optical properties based on a set of biophysical and biochemical properties (𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 and leaf biochemistry). In inverse mode, the optimal set of biophysical and biochemical properties can be identified via a variety of methods, for example, using a merit function that minimizes the difference between measured and simulated LOP. A common inversion procedure is based on the numerical minimization of the sum of weighted square errors over all available spectral bands [START_REF] Baret | Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems[END_REF][START_REF] Féret | Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[END_REF]. The minimized merit function 𝑀, using both reflectance and transmittance properties, is expressed as follows:

𝑀(𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 , { 𝐶 𝑖 } 𝑖=1:𝑝 ) = ∑ [𝑊 𝑅,𝜆 × (𝑅 𝜆 -𝑅 ̂𝜆) 2 + 𝑊 𝑇,𝜆 × (𝑇 𝜆 -𝑇 ̂𝜆) 2 ] 𝜆 𝑛 𝜆=𝜆 1 , ( 1 
)
where 𝑝 is the number of chemical constituents accounted for by PROSPECT and retrieved during the inversion, 𝐶 𝑖 the biochemical content per unit of leaf surface for a constituent 𝑖, 𝜆 1 and 𝜆 𝑛 are the first and last wavebands entering the inversion, 𝑅 𝜆 and 𝑇 𝜆 are the experimental reflectance and transmittance measured at waveband 𝜆, 𝑅 ̂𝜆 and 𝑇 ̂𝜆 are the reflectance and transmittance simulated by PROSPECT with {𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 , { 𝐶 𝑖 } 𝑖=1:𝑝 } as input variables, and 𝑊 𝑅,𝜆 and 𝑊 𝑇,𝜆 are the weights applied to the squared difference between experimental and simulated reflectance and transmittance, respectively. Eq. ( 1) can be used to estimate all input variables, or just their limited subset, if a prior information or arbitrary values of some variables are known. In this study, the values of 𝑊 𝑅,𝜆 and 𝑊 𝑇,𝜆 were set to 0 for non-selected and 1 for selected spectral bands, giving all the selected wavelengths the same importance.

b. Calibration of PROSPECT-PRO

The previous PROSPECT versions [START_REF] Féret | PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle[END_REF][START_REF] Féret | PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments[END_REF] had the specific absorption coefficients of LMA defined by implicitly accounting for various dry matter constituents. Since the distinction of all individual LMA constituents is beyond the scope of this study, our primary objective is to replace LMA by nitrogencontaining proteins and CBC as new leaf input constituents in PROSPECT-PRO. Lignin, cellulose, hemicellulose and non-structural carbohydrates (sugars and starch), were grouped in a single unique input called CBC, while the remaining nitrogen-based proteins represent the second standalone input. Please note that from hereafter we refer to the nitrogen-based proteins simply as proteins. Each constituent of CBC has a specific carbon content [START_REF] Ma | Variations and determinants of carbon content in plants: a global synthesis[END_REF] but does not contain N. We used both dry and fresh leaf samples in the CALIBRATION dataset to calibrate the specific absorption coefficients corresponding to these two groups of leaf constituents, assuming that LMA can be split into protein and other CBC contents as follows:

𝐿𝑀𝐴 = 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝐶𝐵𝐶 𝑐𝑜𝑛𝑡𝑒𝑛𝑡. (2) 
where LMA, protein content and CBC content are expressed in mass per leaf surface unit (mg.cm -2 ). This ensures conservation of the mass of absorbing materials and allows us to invert PROSPECT-PRO for an estimation of LMA as the sum of leaf protein and CBC contents.

Absorption 𝑘(𝜆) of a compact leaf layer at wavelength 𝜆, for a given mesophyll structural parameter 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 , is in every PROSPECT model defined as:

𝑘(𝜆) = ∑ 𝐾 𝑠𝑝𝑒,𝑖 (𝜆) × 𝐶 𝑖 𝑖 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 , (3) 
where 𝐾 𝑠𝑝𝑒,𝑖 (𝜆) is the specific absorption coefficient of a constituent 𝑖, and 𝐶 𝑖 is its corresponding content.

In PROSPECT-D, only two input constituents contribute to absorption in the spectral region from 1000 to 2500 nm (focus of this study): water (EWT), with a negligible absorption before 1100 nm, and dry matter (LMA), with a constant absorption between 1000 and 1200 nm. Additional leaf constituents accounted for in PROSPECT-D and absorbing in the VIS-NIR spectral domain up to 1100 nm are brown pigments [START_REF] Ustin | How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality[END_REF]. The brown pigments, observed in senescent leaves as result from oxidation and polymerization of cell constituents, are excluded from our analysis because they exhibit only a minor absorption between 1000 and 1100 nm. Therefore, Eq. ( 3) can be for the purpose of PROSPECT calibration between 1000 and 2500 nm written as follows:

𝑘(𝜆) = 𝐾 𝑠𝑝𝑒,𝐸𝑊𝑇 (𝜆) × 𝐶 𝐸𝑊𝑇 + 𝐾 𝑠𝑝𝑒,𝐿𝑀𝐴 (𝜆) × 𝐶 𝐿𝑀𝐴 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 . (4) 
Following the equivalence in Eq. ( 2), the contribution of LMA to the total absorption can then be decomposed into the proteins and CBC as:

𝐾 𝑠𝑝𝑒,𝐿𝑀𝐴 (𝜆) × 𝐶 𝐿𝑀𝐴 = 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) × 𝐶 𝑃𝑅𝑂𝑇 + 𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 (𝜆) × 𝐶 𝐶𝐵𝐶 , (5) 
where 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) is specific absorption coefficient for proteins, 𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 (𝜆) is specific absorption coefficient for the CBC (both in cm 2 .mg -1 ), and 𝐶 𝑃𝑅𝑂𝑇 and 𝐶 𝐶𝐵𝐶 are the corresponding contents (in mg.cm - 2), respectively. We assume that 𝐾 𝑠𝑝𝑒,𝐿𝑀𝐴 in PROSPECT-D is accurately calibrated, and we use it as a constraint for the calibration of 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 and 𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 , based on Eq. ( 5).

The calibration of PROSPECT-PRO followed the commonly-used two-step process [START_REF] Féret | PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle[END_REF][START_REF] Féret | PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments[END_REF][START_REF] Jacquemoud | PROSPECT: A model of leaf optical properties spectra[END_REF]) that included the additional constraint, i.e. the decomposition of absorption for LMA into proteins and CBC. First, we determined the leaf structure parameter 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡,𝑗 of each leaf 𝑗 in the calibration datasets. 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡,𝑗 was estimated based on a multivariate iterative optimization, simultaneously with three absorption coefficients, using reflectance and transmittance values measured at three wavelengths corresponding to the minimum absorptance (𝜆 1 ), maximum reflectance (𝜆 2 ), and maximum transmittance (𝜆 3 ) of the leaf [START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF]. These values are generally located on the NIR reflectance and transmittance plateau. The iterative optimization was performed using the following merit function:

𝑀 𝑙𝑒𝑎𝑓𝑁 (𝑁 𝑠𝑡𝑟𝑢𝑐𝑡,𝑗 , 𝑘(𝜆 1 ), 𝑘(𝜆 2 ), 𝑘(𝜆 3 )) = ∑ [(𝑅 𝑚𝑒𝑎𝑠,𝑗 (𝜆 𝑙 ) - 3 𝑙=1 𝑅 𝑚𝑜𝑑 (𝑁 𝑠𝑡𝑟𝑢𝑐𝑡,𝑗 , 𝑘(𝜆 𝑙 ))) 2 + (𝑇 𝑚𝑒𝑎𝑠,𝑗 (𝜆 𝑙 ) -𝑇 𝑚𝑜𝑑 (𝑁 𝑠𝑡𝑟𝑢𝑐𝑡,𝑗 , 𝑘(𝜆 𝑙 ))) 2 ], (6) 
where 𝑅 𝑚𝑒𝑎𝑠,𝑗 (𝜆 𝑙 ) and 𝑇 𝑚𝑒𝑎𝑠,𝑗 (𝜆 𝑙 ) are measured directional-hemispherical reflectance and transmittance of leaf 𝑗 at wavelength 𝜆 𝑙 , 𝑅 𝑚𝑜𝑑 and 𝑇 𝑚𝑜𝑑 are the respective modeled values, and 𝑘(𝜆) is the specific absorption coefficient of a compact layer at the wavelength 𝜆, which is being adjusted simultaneously with 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡,𝑗 .

In the second step, 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 and 𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 were computed by inverting PROSPECT-PRO and using the CALIBRATION dataset for each spectral band of interest independently. In order to include the constraint defined in Eq. ( 5), the minimization algorithm was executed in two consecutive phases, which were embedded (nested) in a unique iterative procedure for optimization of 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) and 𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 (𝜆).

During the first phase, the estimated value of 𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 (𝜆) was computed by resolving a system of the following linear equations:

𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 (𝜆) [ 𝐶 𝐶𝐵𝐶,1 𝐶 𝐶𝐵𝐶,2 . . . 𝐶 𝐶𝐵𝐶,𝑛 ] = [ 𝐾 𝑠𝑝𝑒,𝐿𝑀𝐴 (𝜆) × 𝐶 𝐿𝑀𝐴,1 -𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) × 𝐶 𝑃𝑅𝑂𝑇,1 𝐾 𝑠𝑝𝑒,𝐿𝑀𝐴 (𝜆) × 𝐶 𝐿𝑀𝐴,2 -𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) × 𝐶 𝑃𝑅𝑂𝑇,2 . . . 𝐾 𝑠𝑝𝑒,𝐿𝑀𝐴 (𝜆) × 𝐶 𝐿𝑀𝐴,𝑛 -𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) × 𝐶 𝑃𝑅𝑂𝑇,𝑛] , (7) 
where 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) is initially set to a user-defined value, then updated at each iteration. In the second phase, the optimal value of 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) was adjusted by following the strategy defined by the sequential quadratic programming algorithm [START_REF] Fletcher | Practical Methods of Optimization: Fletcher/Practical Methods of Optimization[END_REF]. We minimized the following merit function 𝐽 per wavelength (𝜆):

𝐽 ({𝐾 𝑠𝑝𝑒,𝑖 (𝜆)} 𝑖=1:𝑛 ) = ∑ [(𝑅 𝑚𝑒𝑎𝑠,𝑗 (𝜆) -𝑅 𝑚𝑜𝑑,𝑗 (𝑁 𝑠𝑡𝑟𝑢𝑐𝑡,𝑗 , 𝑘(𝜆))) 2 𝑛 𝑗=1 + (𝑇 𝑚𝑒𝑎𝑠,𝑗 (𝜆) -𝑇 𝑚𝑜𝑑,𝑗 (𝑁 𝑠𝑡𝑟𝑢𝑐𝑡,𝑗 , 𝑘(𝜆))) 2 ], (8) 
with 𝑘(𝜆) defined as follows:

𝑘(𝜆) = 𝐾 𝑠𝑝𝑒,𝐸𝑊𝑇 (𝜆) × 𝐶 𝐸𝑊𝑇 + 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) × 𝐶 𝑃𝑅𝑂𝑇 + 𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 (𝜆) × 𝐶 𝐶𝐵𝐶 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 , (9) 
where 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) is the only unknown term and 𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 (𝜆) is taken from the previous phase. In other words, the 𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 (𝜆) and 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆) values were updated during each iteration until the procedure found the optimum for 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆), and then the final value of 𝐾 𝑠𝑝𝑒,𝐶𝐵𝐶 (𝜆) was obtained from Eq. ( 7), using the optimized 𝐾 𝑠𝑝𝑒,𝑃𝑅𝑂𝑇 (𝜆).

This calibration procedure, expecting correctly defined 𝐾 𝑠𝑝𝑒,𝐿𝑀𝐴 , was performed within the spectral domain of 1000 to 2500 nm, using the same leaf refractive index and the specific absorption coefficients for EWT as defined in PROSPECT-D. The calibration of specific absorption coefficients in the NIR domain is challenging due to a generally low absorption and a possibly significant uncertainty in measured leaf optical properties within this spectral domain. When calibrating the specific absorption for LMA, [START_REF] Féret | PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments[END_REF] set the specific absorption coefficients of LMA to a constant value for wavelengths < 1200 nm.

Here, we fitted an exponential function to the start of absorption of proteins, ensuring smooth transition between the two non-absorptive and absorptive spectral domains, corresponding to the spectral domain between 1440 and 1490 nm. Subsequently, the specific absorption coefficients for CBC between 1000 and 1200 nm were adjusted according to the specific absorption coefficients of LMA from PROSPECT-D, by applying a multiplicative factor corresponding to the average ratio between LMA and CBC in the CALIBRATION dataset.

c. Global sensitivity analysis of PROSPECT-PRO

A global sensitivity analysis (GSA) was carried out for PROSPECT-PRO to quantify the contribution of proteins and CBC constituents to the overall spectral signal. Using a GSA the driving variables of a radiative transfer model can be identified by fully exploring the input parameter space (Verrelst et al., 2019b;[START_REF] Wang | Applicability of the PROSPECT model for estimating protein and cellulose+lignin in fresh leaves[END_REF]. The Matlab software tool GSAT [START_REF] Cannavó | Sensitivity analysis for volcanic source modeling quality assessment and model selection[END_REF], which includes Fourier amplitude sensitivity testing (FAST) analysis and Sobol's method for calculation of the first-order sensitivity coefficients was applied on PROSPECT-PRO simulations from 1000 nm to 2500 nm carried out with the following realistic input parameter ranges for fresh leaves: 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 ~ 1-2 (unitless), EWT ~ 0.001-0.015 cm, protein content (Cp) ~ 0-0.003 g/cm² and CBC content ~ 0-0.01 g/cm². The remaining PROSPECT-PRO input parameters, i.e. chlorophyll content, total carotenoid content, anthocyanin content and brown pigment content, were fixed to arbitrary values since they manifest no absorption between 1000-2500 nm.

d. Optimal spectral domains for estimation of protein and CBC content

In previous studies [START_REF] Colombo | Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling[END_REF][START_REF] Féret | PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments[END_REF][START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF], a PROSPECT model inversion was performed with an iterative optimization of the merit function defined in Eq. ( 8) over the entire optical domain or broad spectral intervals (e.g., VIS-NIR when retrieving leaf pigments and NIR-SWIR when retrieving EWT and LMA), using a uniform weight of 1 across all spectral bands. Féret et al.

(2019) showed the importance of identifying optimal spectral domain for the accurate estimation of LMA and, to a lesser extent, EWT. Investigating a number of spectral ranges between 1000 and 2400 nm, they recommended determination of EWT and LMA with an iterative optimization of leaf optical properties between 1700 and 2400 nm. Although proteins are part of LMA, the hypothesis that proteins and LMA share the same optimal retrieval spectral domain needs appropriate testing. Moreover, the fact that protein absorption is expressed in a number of narrow SWIR spectral features [START_REF] Curran | Remote sensing of foliar chemistry[END_REF][START_REF] Fourty | Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems[END_REF] suggests that proteins and CBC may have slightly different optimal retrieval spectral domains compared to LMA.

The procedure suggested by [START_REF] Féret | Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[END_REF] is limited to the identification of an optimal contiguous spectral domain. As such, it is unable to identify spectral features located in narrow non-contiguous domains separated by suboptimal spectral intervals of varying lengths. To be able to identify also the noncontiguous optimal spectral domains, we adapted a sequential forward feature selection (SFS) technique [START_REF] Kudo | Comparison of algorithms that select features for pattern classifiers[END_REF][START_REF] Marcano-Cedeno | Feature selection using Sequential Forward Selection and classification applying Artificial Metaplasticity Neural Network[END_REF]. SFS is a bottom-up search procedure that starts from an empty feature set and gradually adds features selected based on a minimization criterion. In our study, each spectral feature was defined as a set of 20 spectral bands of the original leaf optical properties with the 1 nm spectral sampling, which allowed for a large number of explored spectral bands and made the computation of the iterative optimization feasible. This way, we created 50 spectral features between 1400 and 2399 nm and applied SFS on these spectral features. We first identified the spectral feature leading to minimum root mean square error (RMSE) when estimating either proteins or CBC from the experimental data. Then we searched for the spectral feature leading to minimum RMSE, if combined with the previously identified spectral feature, until all spectral features were tested. At the final step, all features were sequentially added and ranked based on the search for minimum RMSE, and the full domain 1400 and 2399 nm was used for inversion with the original spectral data.

As the CALIBRATION dataset was dedicated to the calibration of the specific absorption coefficients of proteins and CBC, the accuracy and robustness of PROSPECT inversion for retrieval of these leaf constituents had to be assessed with the independent VALIDATION dataset. Use of the CALIBRATION dataset would be logically defrauded and scientifically incorrect. The selection of optimal spectral domains is not considered as a part of the calibration procedure but expected to be performed before or during a PROSPECT inversion. As such, its robustness would be best ensured when performed on an independent dataset. Unfortunately, due to a limited size of available experimental data, the sample pool could not be reasonably split into three independent CALIBRATION, FEATURE SELECTION and VALIDATION parts.

Therefore, the optimal spectral domains were identified by applying SFS on the VALIDATION dataset.

Once the specific optimal spectral domains for estimation of proteins and CBC were identified, we compared their estimates with results obtained for the spectral domain between 1700 and 2400 nm, identified as optimal for the estimation of LMA and EWT by [START_REF] Féret | Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[END_REF]. Finally, we compared the performances of PROSPECT-PRO and PROSPECT-D for the estimation of LMA using the 1700-2400 nm spectral domain, and by inverting PROSPECT-PRO over the SFS identified optimal spectral domains for proteins and CBC estimations and calculating LMA from Eq. ( 2). This model comparison was carried out for the six additional datasets listed in Table 2.

The normalized RMSE (NRMSE expressed in %) was computed to appraise the difference between the measured and estimated leaf constituents retrieved from the different datasets:

𝑁𝑅𝑀𝑆𝐸 = 1 𝑋 𝑚𝑒𝑎𝑠 ̅̅̅̅̅̅̅̅ √ ∑ (𝑋 𝑚𝑒𝑎𝑠,𝑗 -𝑋 𝑚𝑜𝑑,𝑗 ) 2 𝑛 𝑗=1 𝑛 , (10) 
where 𝑋 𝑚𝑒𝑎𝑠,𝑗 is the measured value and 𝑋 𝑚𝑜𝑑,𝑗 is the values estimated by model inversion for a leaf 𝑗, 𝑋 𝑚𝑒𝑎𝑠 ̅̅̅̅̅̅̅̅ is the mean value of the constituent, and 𝑛 is the number of samples.

All inversions and optimal feature selections were performed with the prospect R package [START_REF] Féret | prospect: an R package to run the leaf model PROSPECT in forward and inverse mode[END_REF], which uses the nonlinear constrained multivariable minimization function of the pracma R package [START_REF] Borchers | pracma: Practical Numerical Math Functions[END_REF].

e. Performances of PROSPECT-D and PROSPECT-PRO in forward modelling

We compared the performances of PROSPECT-D and PROSPECT-PRO for the forward simulation of leaf optical properties, using the structure parameter 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 obtained from inversion and the corresponding biochemical constituents measured in laboratory. This statistical analysis was undertaken to reveal spectral domains impacted by high levels of uncertainty, which is relevant for possible future hybrid inversion applications involving machine learning algorithms trained with PROSPECT-PRO simulated data 21 (e.g., [START_REF] Verrelst | Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties -A review[END_REF]2019a). The comparison was performed by computing the per-wavelength spectral RMSE between measured and simulated reflectance and transmittance of fresh and dry samples from the VALIDATION dataset, and also systematic (𝑅𝑀𝑆𝐸 𝑆 ) and unsystematic (𝑅𝑀𝑆𝐸 𝑈 ) parts of RMSE [START_REF] Willmott | Statistics for the evaluation and comparison of models[END_REF] defined as:

𝑅𝑀𝑆𝐸 𝑆 = √ ∑ (𝑋 ̂𝑚𝑒𝑎𝑠,𝑗 -𝑋 𝑚𝑜𝑑,𝑗 ) 2 𝑛 𝑗=1 𝑛 , (11) 
and

𝑅𝑀𝑆𝐸 𝑈 = √ ∑ (𝑋 ̂𝑚𝑒𝑎𝑠,𝑗 -𝑋 𝑚𝑒𝑎𝑠,𝑗 ) 2 𝑛 𝑗=1 𝑛 , (12) 
where 𝑋 ̂𝑚𝑒𝑎𝑠,𝑗 is an ordinary least square estimate of 𝑋 𝑚𝑒𝑎𝑠,𝑗 , and 𝑛 is the number of samples. Eqs. ( 11) and ( 12) are a complete partitioning of RMSE as follows:

𝑅𝑀𝑆𝐸 2 = 𝑅𝑀𝑆𝐸 𝑈 2 + 𝑅𝑀𝑆𝐸 𝑠 2 (13) 
The 𝑅𝑀𝑆𝐸 𝑆 corresponds to the linear bias of the estimate produced by the model itself, while the 𝑅𝑀𝑆𝐸 𝑈 corresponds to a measure of precision of the model and it is driven by uncertainties in input data.

f. Estimation of the carbon-nitrogen ratio

The carbon:nitrogen (C:N) ratio of plant canopies, crops and crop residues is of great importance for modelling C and N dynamics in natural ecosystem and agricultural systems, as it contains an indicative information about plant growth rate and affects ecosystem response to CO2 [START_REF] Reich | Nitrogen limitation constrains sustainability of ecosystem response to CO2[END_REF]Zheng, 2009). This C:N ratio is also an indicator of the relative allocation of resources in vegetation, an indicator of potential decomposition rate of litter and an important factor promoting soil organic carbon accumulation [START_REF] Zhou | Climate and litter C/N ratio constrain soil organic carbon accumulation[END_REF]. Thus, we tested the possibility of using the CBC:Proteins ratio, estimated from PROSPECT-PRO inversion, as a proxy for the C:N ratio of leaf samples in the LOPEX dataset. We Therefore, we present in Figure 3 only the outcomes for reflectance and absorptance of fresh and dry leaves. GSA identified the spectral regions that contain absorption peaks of proteins (> 1400 nm), but it also shows their relatively low contribution to the spectral signal in these wavelengths, in particular for fresh leaves. CBC play a larger role in driving leaf reflectance and absorptance, with their highest relevance in SWIR, especially above 2000 nm. Yet, the key driving input parameters of PROSPECT-PRO forward simulations of fresh leaf reflectance are the 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 parameter and EWT. As expected, 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 has no impact on leaf absorptance. Water and CBC are the dominant absorbents of fresh and dry leaves, respectively, in the SWIR domain. Although absorption features of proteins between 1600 and 1800 nm and between 2100 and 2300 nm are subtle, GSA confirms that these spectral domains have the greatest potential for retrieval activities for both dry and fresh leaves.

Nevertheless, data of high spectral sampling and resolution with a sufficiently high signal-to-noise (SNR)

and an efficient identification of the most optimal retrieval wavelengths within these spectral domains are required to enable the separation of all influencing constituents, especially in future efforts when upscaling the retrieval methods from the leaf to the top-of-canopy level. nm width within the spectral domain between 1400 and 2400 nm. The optimal estimation of proteins was obtained with three spectral features encompassing the spectral domains between 2100 and 2139 nm, and between 2160 and 2179 nm. The later one is located next to the strong protein absorption feature centered at 2180 nm, as noted by [START_REF] Curran | Remote sensing of foliar chemistry[END_REF], [START_REF] Fourty | Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems[END_REF] and [START_REF] Wang | Applicability of the PROSPECT model for estimating protein and cellulose+lignin in fresh leaves[END_REF]. The optimal estimation of CBC was obtained when selecting thirteen 20 nm wide spectral features, four of them located between 1480 and 1800 nm, and nine of them between 2040 and 2399 nm. Inclusion of additional spectral features did not lower accuracy for the CBC estimations, except for spectral domains between 1400 and 1439 nm, and between 1860 and 2000 nm that correspond to the two main water absorption features. In the case of proteins, inclusion of additional spectral information besides the identified optimal spectral features led to an increased NRMSE. The maximum NRMSE increase was obtained when including spectral information corresponding to the main absorption peak of water between 1880 and 2000 nm. for the VALIDATION dataset is shown in Figure 6. The simultaneous retrievals of leaf protein and CBC contents from inversions were performed either over the spectral region from 1700 to 2400 nm or over the optimal spectral features identified with the SFS method. The R codes and data used to produce these results are available in the prospect R package [START_REF] Féret | prospect: an R package to run the leaf model PROSPECT in forward and inverse mode[END_REF].

The results illustrate the importance of selected optimal spectral features for accuracy of leaf constituent estimates, especially when analyzing fresh leaf samples. The estimation of proteins has a slightly higher uncertainty than the estimation of CBC and LMA, which can be explained by a lower contribution of proteins to the spectral signal (Figure 3). Additionally, a lower accuracy obtained for the estimation of protein content from dry leaves is caused mainly by a single sample of dry maple (Acer pseudoplatanus L)

PROSPECT-D inversion over the optimal spectral domain 1700-2400 nm identified by [START_REF] Féret | Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[END_REF] (Figure 7). When analyzing the results per dataset, inversion of PROSPECT-PRO using the optimal spectral domain for protein and CBC content retrievals resulted in a decreased NRMSE for LMA estimations for five out of eight datasets (including the VALIDATION Dry and VALIDATION Fresh datasets). Very similar performances were found for ITATINGA. The increase in NRMSE observed for ANGERS was caused by two samples of Holly osmanthus (Osmanthus heterophyllus), characterized by high LMA and EWT values, while the remaining samples showed comparable estimates. However, this influence of high EWT or LMA contents was not a general feature, as this effect was not observed in case of other datasets that include samples with high LMA. The less accurate performances observed for HYYTIALA corresponds to an increased uncertainty distributed among all samples. Finally, when combining all datasets described in Table 2, the indirect estimation of LMA from the inversion of PROSPECT-PRO using the optimal spectral features was slightly improved, with a 1.8% decrease in NRMSE and comparable R 2 across all data sets.

Still, the differences observed among independent datasets suggest that the optimal spectral features computed for the VALIDATION dataset do not correspond exactly with the optimal spectral features for other datasets. Finally, the version of the model did not influence the estimation of EWT significantly.

Inversions of PROSPECT-D and PROSPECT-PRO conducted over the same spectral domain (1700-2400 nm) resulted in similar outcomes (NRMSE = 11.9 and R 2 = 0.91 for both model inversions when combining all datasets). The results confirm the compatibility between PROSPECT-D and PROSPECT-PRO. reflectance and transmittance and their counterparts produced by PROSPECT-PRO for VALIDATION dry and fresh samples and also samples of the six independent datasets in Table 2 grouped together. The input biochemical constituents correspond to the values obtained from laboratory measurements, while the 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 parameter was obtained from the inversion of PROSPECT-PRO using the spectral information between 1700 and 2400 nm. Since the independent datasets (Figure 8c andf) do not contain protein and CBC content measurements, the resulting statistical indicators are based on values of protein and CBC contents obtained from the model inversion using the optimal spectral features identified with SFS.

Additionally, the PARACOU dataset was excluded from this analysis, as no measurements of EWT were available. parameter was derived by PROSPECT-PRO inversion using the spectral domain from 1700 to 2400 nm.

The green and grey areas highlight the respective optimal spectral domains identified by SFS method for estimation of protein and CBC contents.

VALIDATION dry samples exhibited an 𝑅𝑀𝑆𝐸 between 1 and 2% in the SWIR, increasing in the NIR to as high as 4% for reflectance and 2% for transmittance at 1000 nm. The increasing 𝑅𝑀𝑆𝐸 at shorter wavelengths and also reflectance 𝑅𝑀𝑆𝐸 𝑆 higher than 𝑅𝑀𝑆𝐸 𝑈 may be due to the presence of constituents similar to brown pigments appearing after the drying process, which were not accounted for during the simulation, or by residual model inaccuracies at these wavelengths. 𝑅𝑀𝑆𝐸 𝑈 close to 𝑅𝑀𝑆𝐸 in the SWIR region confirms acceptable model accuracy and moderate bias, and shows that the specific absorption coefficient of LMA as well as proteins and CBC are, in general, able to reassemble dry LOPEX data measurements very well.

In case of fresh VALIDATION samples, the 𝑅𝑀𝑆𝐸 is generally slightly higher and fluctuates between 1 and 3% of reflectance and transmittance intensities. Nevertheless, 𝑅𝑀𝑆𝐸 between 2000 and 2400 nm, where most of the optimal spectral features for the estimation of protein and CBC contents are located, is smaller, between 1 and 2%. Compared to dry samples, the reflectance 𝑅𝑀𝑆𝐸 between 1000 and 1200 nm is lower, which supports our interpretation of increased NIR 𝑅𝑀𝑆𝐸 in dry samples due to the unaccounted presence of absorbing constituents similar to brown pigment such as products from decay pigments (Proctor et al., 2017). The higher 𝑅𝑀𝑆𝐸 combined with corresponding high 𝑅𝑀𝑆𝐸 𝑆 between c. 1500 and 1800 nm suggest that the contribution of water absorption introduces a certain bias in the simulated fresh leaf optical properties.

The 𝑅𝑀𝑆𝐸 lower than 2.1% was found for both reflectance and transmittance of the independent datasets for wavelengths > 1500 nm, which is slightly lower than the results obtained for fresh VALIDATION samples. Relatively different and decoupled dynamics between 𝑅𝑀𝑆𝐸 and 𝑅𝑀𝑆𝐸 𝑆 suggest that the contribution of water absorption does not introduce the same bias as observed for fresh VALIDATION samples. The high 𝑅𝑀𝑆𝐸 and 𝑅𝑀𝑆𝐸 𝑈 for both reflectance and transmittance in NIR were not observed for fresh VALIDATION samples, and they do not reassemble by shape the increases observed for dry VALIDATION samples. This may be caused by discrepancies in the protocol for the measurement of the leaf optical properties among datasets. The same analysis performed on the complementary simulations from PROSPECT-D showed very similar results (results not shown).

h. Estimation of C:N from CBC:Proteins ratio retrieved from PROSPECT-PRO inversion

The correlation analysis displayed in Figure 1 shows that constituents of CBC, such as cellulose and lignin, are strongly correlated with leaf C content. We applied the linear model fitted between CBC:Proteins and C:N ratio of the fresh samples in the CALIBRATION dataset (Eq. ( 14)) to the CBC:Proteins ratio PROSPECT-PRO estimates for the VALIDATION datasets:

𝐶: 𝑁 = 2.167 × 𝐶𝐵𝐶: 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠 + 1.565.

The results show that the C:N ratio was derived from the CBC and proteins PROSPECT-PRO estimates with a NRMSE of 28.1% for dry samples, and an exceptionally low NRMSE of 15.7% (R 2 of 0.87) for fresh samples (Figure 9). The poorer performances for dry samples was strongly driven by a single sample of dry chestnut (Castanea sativa) leaf, and highlights the necessity of further independent verification of the C:N predictive regression models. Calibration and validation uncertainties are related not only to the physical-empirical model design and mathematical inversion but also to model inputs, i.e. leaf biochemical and optical measurements [START_REF] Malenovský | Variability and Uncertainty Challenges in Scaling Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation Canopies[END_REF]. Although we used in this study only a single nitrogen-to-protein content conversion multiplicative factor of 4.43, this factor is not constant across all plant species. As reported by [START_REF] Yeoh | Leaf protein contents and nitrogen-to-protein conversion factors for 90 plant species[END_REF], it can range from 3.28 to 5.16, with an average and standard deviation of 4.43±0.40.

This means that the protein content used for calibration and validation of PROSPECT-PRO contains an associated uncertainty that is proportional to the unaccounted variability of this conversion factor. This may also explain the moderately higher uncertainty observed in protein estimates when compared to LMA and CBC retrievals. Despite this, our results show that the specific absorption coefficients for in vivo proteins are consistent with absorption features derived from dried and ground leaves reported in literature [START_REF] Curran | Remote sensing of foliar chemistry[END_REF]. In addition, the protein content estimated through model inversion remained consistent and accurate.

Our study only includes one dataset with measured protein and CBC content. Therefore, the validation is performed on a limited number of samples (n=26 dry and 33 fresh). As such, the errors and uncertainties reported might be strongly affected by just few discrepancies in this low number of samples. As reported in Section 3.a, the presence or absence of a single sample in the calibration dataset significantly impacted the calibration process and the subsequent capability of the model to properly simulate leaf optical properties and to estimate leaf constituents. In the same way, the presence of just few validation samples showing a strong error may lead to difficulties for the statistical interpretation of results obtained from an inversion. In our case, we encountered a lower accuracy for proteins estimation on dry samples. It was caused by a single sample, for which either spectral or biochemical measurement error may have occurred. Additional datasets from various ecosystem types and growing conditions are, therefore, required to test further limitations of PROSPECT inversions, especially for high contents of EWT and LMA, as identified for a limited set of samples in this study. Finally, more public datasets containing reliable VNIR and SWIR leaf optical properties and corresponding comprehensive and robust laboratory measurements of leaf biochemical constituents are strongly needed. They would also allow us to explore a potential differentiation and inclusion of new ecophysiologically important constituents.

b. Interpretation of GSA

Since 𝑁 𝑠𝑡𝑟𝑢𝑐𝑡 has no effect on the leaf absorptance (Figure 3), the GSA of the model biochemical input parameters to leaf absorbance can be used to identify the most dynamic absorption regions of leaf constituents. However, it is important to mention that a strong influence of a given constituent does not mean removal of contributions from other constituents with a lower impact. Although EWT is the main driver of SWIR absorptance by fresh leaves, the impact of CBC is also significant and in case of dry leaves even dominant. Therefore, with the prerequisite of a clean spectral acquisition with a high spectral sampling and resolution, an appropriately parameterized model inversion procedure using selected optimal spectral features can be successful. Hereby, for the model inversion we took advantage of the spectral dynamics of absorbing constituents depicted in Figure 2 and Figure 3. There is a very pronounced increase of protein absorption within the 2100-2200 nm domain, while water absorption is decreasing, and CBC absorption reaches first a maximum peak and then starts to decrease. This unique contrasting spectral dynamic, i.e. a change from the local minimum to the local maximum of proteins in contrast to the other two main absorbers showing moderate changes in absorption, explains the high accuracy we achieved when estimating protein content from the identified optimal spectral domain. On the other hand, absorption of EWT and proteins both decrease in the spectral region around 2000 nm, and CBC and proteins both decrease beyond 2200 nm. These correlated behaviors negatively impact their retrieval accuracy through a model inversion.

c. Identification of the optimal spectral features

The optimal spectral features for estimation of CBC and proteins were defined based on the VALIDATION dataset only. The analysis showed that the optimal spectral features selected across all tested datasets were not the same, resulting in an increased NRMSE for LMA estimates of some experimental datasets (Figure 7). [START_REF] Féret | Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[END_REF] reached a similar conclusion when identifying specific optimal subdomains for estimation of EWT and LMA. While Féret et al. (2019) could eventually identify the optimal spectral domain by combining all available datasets, the lack of protein and CBC content measurements did not allow us to find the most optimal spectral features across the independent datasets in Table 2.

Finally, better performances obtained for the estimation of both proteins and CBC from fresh leaf measurements are somewhat in a disagreement with the existing literature on this topic [START_REF] Fourty | Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems[END_REF][START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF][START_REF] Wang | Applicability of the PROSPECT model for estimating protein and cellulose+lignin in fresh leaves[END_REF]. This outcome can be explained by the new spectral feature selection procedure applied in our study. The results in Figure 5 illustrate why systematically lower performances were reported when attempting to estimate LMA and proteins by PROSPECT inversion using a full contiguous spectral information containing spectral regions strongly confounded by water absorption. They also provide the evidence that water absorption does not significantly interfere with the spectral information selected as optimal for retrieval of protein and CBC contents in dry but also fresh leaf samples in this study. Therefore, the PROSPECT-PRO protein and CBC estimation errors do not originate from the model physical and spectral limitations but from the design of the inversion procedure and from associated criterions of the minimization functions.

d. Complementarity of chlorophyll and protein estimates as proxies for nitrogen content Despite the known limitations of using chlorophyll a+b content as a proxy of N in remote sensing monitoring applications, it has proved to be relatively successful in a certain number of cases [START_REF] Baret | Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management[END_REF]. The main advantage of estimating chlorophyll over protein content is its strong optical signal in the VNIR (especially red-edge) domain, allowing for its accurate RS estimates even at the canopy level (e.g., Malenovský et al., 2013). In contrast, the SWIR domain, which is required to estimate protein content, but is characterized by lower solar energy flux and lower SNR [START_REF] Guanter | The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation[END_REF]. Therefore, even if being physiologically more robust over a broader range of conditions and vegetation types, the estimation of N from protein content may be associated with a significantly higher uncertainty originating from a weaker SNR of the spectroscopic measurements. [START_REF] Jacquemoud | Estimating leaf biochemistry using the PROSPECT leaf optical properties model[END_REF] or suggested a limited accuracy of LMA predictions [START_REF] Wang | Applicability of the PROSPECT model for estimating protein and cellulose+lignin in fresh leaves[END_REF], the indirect estimation of LMA with PROSPECT-PRO (i.e., the sum of protein and CBC contents) was found to be fully comparable with the direct estimation of LMA using PROSPECT-D. The performances in forward simulations of leaf optical properties were also very similar for both model versions. Similar to [START_REF] Féret | Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[END_REF], an accurate estimation of LMA and its two components required selection of the appropriate spectral domains. The relatively narrow spectral domain identified as optimal for the retrieval of proteins (2100-2139 and 2160-2179 nm) must be considered in the future operational applications for nitrogen or LMA monitoring using field and air-/space-borne imaging spectroscopy. This may be incorporated by applying appropriate weights for the different spectral domains that optimize the sensitivity of retrieval algorithms to the constituents of interest. The unsuitable spectral wavelengths can be identified and removed by hybrid band selection methods, feature extraction or band weighting procedures [START_REF] Fassnacht | Comparison of Feature Reduction Algorithms for Classifying Tree Species With Hyperspectral Data on Three Central European Test Sites[END_REF][START_REF] Feilhauer | Multi-method ensemble selection of spectral bands related to leaf biochemistry[END_REF][START_REF] Verrelst | Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties -A review[END_REF].

Results of this study offer a new opportunity for operational RS monitoring and consequent management of nitrogen in agricultural and natural ecosystems. However, applicability of PROSPECT-PRO for such a monitoring system is strongly dependent on scalability of the simulated leaf SWIR spectral signatures up to spatially and spectrally heterogeneous canopies. The potential of transferring a PROSPECT-PRO-based N estimating method into an operational application in the field is yet to be investigated. Although proximal remote sensing of small homogeneous canopies, based for instance on the PROCOSINE model [START_REF] Jay | A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy[END_REF][START_REF] Morel | Exploring the potential of PROCOSINE and close-range hyperspectral imaging to study the effects of fungal diseases on leaf physiology[END_REF], could be considered as an intermediate step, a certain number of challenges must be addressed first. These include the capacity to perform sufficiently accurate outdoor canopy measurements, a suppression of the vegetation canopy reflectance angular anisotropy (including spectral effects of background surfaces and leaf orientation), and an ability to achieve a sufficiently high signal-to-noise ratio in the SWIR domain. More generally, analyzing canopy reflectance requires accounting for multiple confounding factors, such as the structural properties of the canopy (i.e., leaf area index, leaf angle distribution and foliage clumping), spectral properties of soil, understory and atmosphere, and the sun-object-observer geometry at the time of data acquisition.

Our results indicate the importance of narrow SWIR domains, which will remain to be important also at the canopy level. Current multispectral spaceborne data (e.g., Landsat 8/9 and Sentinel-2 images) do not comply with the narrowband SWIR spectral requirements that we identified, and further investigations are necessary to conclude on feasibility and limitations of its potential use for N mapping using PROSPECT-

PRO. An increasing number of available space-borne imaging spectroscopy data (Berger et al., 2020b) is bringing new opportunities in this field. Several satellite platforms are already operational or close to launch, e.g. PRISMA [START_REF] Loizzo | Prisma Mission Status and Perspective[END_REF], Gaofen-5 [START_REF] Liu | The Advanced Hyperspectral Imager: Aboard China's GaoFen-5 Satellite[END_REF], or EnMap [START_REF] Guanter | The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation[END_REF], and few more candidate missions are in preparation, such as the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) [START_REF] Nieke | Towards the Copernicus Hyperspectral Imaging Mission For The Environment (CHIME)[END_REF] or NASA's EMIT [START_REF] Green | The Earth Surface Mineral Dust Source Investigation Planned for the International Space Station[END_REF] and Surface Biology and Geology (SBG) missions (Committee on the Decadal Survey for Earth Science and Applications from Space et al., 2018;[START_REF] Hochberg | Special issue on the Hyperspectral Infrared Imager (HyspIRI): Emerging science in terrestrial and aquatic ecology, radiation balance and hazards[END_REF]. Data provided by these instruments holds a strong prospect for N monitoring. Yet, preparatory studies will be necessary to analyze the potential of PROSPECT-PRO in simulating sufficiently accurate imaging spectroscopy data of canopies when being coupled with canopy RT models, for instance with SAIL [START_REF] Berger | Evaluation of the PROSAIL Model Capabilities for Future Hyperspectral Model Environments: A Review Study[END_REF][START_REF] Jacquemoud | PROSPECT+ SAIL models: A review of use for vegetation characterization[END_REF][START_REF] Verhoef | Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies[END_REF], SCOPE [START_REF] Van Der Tol | An integrated model of soilcanopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance[END_REF] , INFORM [START_REF] Schlerf | Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data[END_REF] or DART [START_REF] Gastellu-Etchegorry | DART: Recent Advances in Remote Sensing Data Modeling With Atmosphere, Polarization, and Chlorophyll Fluorescence[END_REF], 2015). Berger et al. (2020a) studied the potential of PROSPECT-PRO coupled with SAIL for the estimation of crop nitrogen based on airborne imaging spectroscopy. They performed a sensitivity analysis identifying the most relevant spectral bands for this task and concluded on the importance of SWIR bands at 2124 and 2234 nm. Their most optimal spectral bands selected in the NIR and the first part of the SWIR spectra suggest that conclusions of this leaf scale study may differ from conclusions at the canopy scale. Accounting for the canopy reflectance confounding factors may need an additional spectral information, coming from different spectral domains than those required at the leaf scale.

CONCLUSIONS

This study introduces PROSPECT-PRO, a new version of the PROSPECT leaf RT model, capable of differentiating proteins from other carbon-based constituents as two independent components of LMA.

The calibration of PROSPECT-PRO was based on the assumption that proteins and CBC are the two main spectrally active constituents of the leaf dry matter. We demonstrated that PROSPECT-PRO performs similarly in estimating protein and CBC content of both fresh and dry leaves, a marked improvement over previous attempts. Errors computed between measured and simulated leaf optical properties were relatively low for both types of leaves.

Our results, based on leaf optical properties with the 1 nm spectral sampling, revealed that the optimal estimation of leaf protein content at the leaf scale is obtained when using two narrow spectral domains between 2100 and 2139 nm, and between 2160 and 2179 nm. The estimation of protein content, assessed by NRMSE, was found to be slightly less accurate than the estimation of CBC content or total LMA.

Additionally, the C:N ratio was successfully estimated from the CBC:Proteins ratio retrieved by PROSPECT-PRO inversion. Despite these achievements, further investigations, that would be conducted on independent leaf-scale measurements of leaf optical properties, proteins, nitrogen and LMA, are still needed. Canopy-scale studies are also required to test the potential of this new model for operational airborne and space-borne applications. The capability of current satellite multispectral instruments (e.g., Sentinel-2 and Landsat-8/9) to estimate vegetation protein and CBC contents needs to be investigated in light of our findings. However, such estimations may remain extremely challenging, considering the coarse resolution and limited number of spectral bands of these instruments in the SWIR region. Spaceborne imaging spectroscopy missions with a higher SWIR spectral sampling may be of the critical importance for a future operational nitrogen-containing protein monitoring of agricultural and natural environments. 

  established a linear model to estimate the C:N ratio based on the CBC:Proteins ratio as measured in the fresh samples of the CALIBRATION dataset. We then applied this linear relationship on CBC:Proteins ratio retrieved from leaf optical properties through PROSPECT-PRO inversion to estimate the C:N ratio for all samples in both CALIBRATION and VALIDATION datasets.5. RESULTSa. Correlations among biochemical constituents of fresh leaves in LOPEX-CALVAL dataSince descriptive statistics computed for leaf constituents of fresh samples in the LOPEX-CALVAL dataset revealed that a majority of them does not follow the Gaussian distribution, they were log-transformed by applying the natural logarithm. The subsequent correlation analysis performed on log-transformed data indicated potential relationships between individual biochemical compounds. Figure1shows the Pearson correlation coefficients (r) for tested constituents, including the C:N ratio. Proteins are not included, as they were derived directly from N measurements. The coefficients highlight strong and statistically significant relationships between carbon (C), hydrogen (H), oxygen (O), lignin, cellulose and LMA. Nitrogen (N) content is moderately correlated to chlorophyll a+b content (CHL), C, H, O, LMA and EWT. The moderate correlation between CHL and N (r = 0.51) indicates a modest capacity of CHL to estimate N across species in the LOPEX dataset. Finally, the C:N ratio was found to be moderately positively correlated with LMA, C, H, O and individual CBC except starch, and poorly negatively correlated with the N content (r = -0.36).
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Table 1 .

 1 Statistical summary, mean values and ranges, of dry matter and protein contents and concentration for fresh and dry samples included in the CALIBRATION and VALIDATION datasets.

		No. of			Protein concentration
	Name		LMA (mg.cm -2 )	Proteins (mg.cm -2 )	
		samples			(%DW)
			CALIBRATION	
	Dry	23	5.84 (2.35-9.07)	0.78 (0.38-1.35)	14.32 (7.31-25.22)
	Fresh	33	5.29 (2.58-13.69)	0.66 (0.17-1.23)	13.66 (5.02-26.06)
			VALIDATION	
	Dry	26	5.89 (2.55-16.58)	0.77 (0.15-1.37)	13.98 (5.02-26.06)
	Fresh	33	5.18 (1.88-10.88)	0.69 (0.29-1.22)	14.64 (6.97-28.94)

b. Data for estimation of LMA from PROSPECT-PRO inversion Second dataset was assembled to test the capability of PROSPECT-PRO to estimate LMA as the combination of leaf proteins plus CBC contents in comparison to the previous PROSPECT-D version

(Féret 

Table 2 .

 2 Statistical summary, mean values and ranges, of water and dry matter contents for experimental datasets used to validate LMA estimations from the PROSPECT-PRO inversion.

		No. of		
	Name		EWT (mg.cm -2 )	LMA (mg.cm -2 )
		samples		
	ANGERS	308	11.47 (4.40 -34.00)	5.12 (1.66 -33.1)
	HYYTIALA	96	9.16 (3.68 -23.73)	6.27 (2.76 -15.77)
	ITATINGA	415	14.44 (2.20 -20.20)	10.24 (6.90 -14.70)
	LOPEX-Full	330	11.13 (0.29 -52.49)	5.30 (1.71 -15.73)
	NOURAGUES	262	11.73 (3.20 -38.10)	10.81 (3.10 -21.10)
	PARACOU	272	N/A (N/A -N/A)	12.32 (5.28 -25.56)
	4. METHODS			

  The enhanced capacity of PROSPECT-PRO to monitor vegetation C:N ratio and its seasonal changes through the separation of protein and CBC contents may prove useful, if systematically and rationally complemented by a RS chlorophyll monitoring.

e. Potential application for a canopy scale ecosystem nitrogen mapping Physical RT modeling is a key component in revealing the underlying relations between quantitative vegetation properties and information encoded in RS optical data. In this study, we successfully calibrated and validated a new PROSPECT-PRO model that separates nitrogen-based protein constituents from other carbon-based constituents, i.e. cellulose, lignin, hemicellulose, sugars and starch. Unlike previous attempts, which either resulted in a poor protein content estimation performance

leaf. The estimation of LMA based on the inversion of PROSPECT-D using the spectral domain between 1700 and 2400 nm produced results similar to those obtained with PROSPECT-PRO (NRMSE = 14.2% for dry leaves and NRMSE = 34.3% for fresh leaves).