M. M. Barbour, L. A. Cernusak, D. Whitehead, K. L. Griffin, M. H. Turnbull et al., Nocturnal stomatal conductance and implications for modelling ?18O of leaf-respired CO2 in temperate tree species, Functional Plant Biology, vol.32, issue.12, p.1107, 2005.

L. M. Billon, C. J. Blackman, H. Cochard, E. Badel, A. Hitmi et al., The DroughtBox: A new tool for phenotyping residual branch conductance and its temperature dependence during drought, Plant, Cell & Environment, vol.43, issue.6, pp.1584-1594, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02625372

T. J. Brodribb, J. Powers, H. Cochard, and B. Choat, Hanging by a thread? Forests and drought, Science, vol.368, issue.6488, pp.261-266, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02779266

S. J. Bucci, G. Goldstein, F. C. Meinzer, A. C. Franco, P. Campanello et al., Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees, Trees, vol.19, issue.3, pp.296-304, 2004.

S. J. Bucci, F. G. Scholz, G. Goldstein, F. C. Meinzer, J. A. Hinojosa et al., Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species, Tree Physiology, vol.24, issue.10, pp.1119-1127, 2004.

M. A. Caird, J. H. Richards, and L. A. Donovan, Nighttime Stomatal Conductance and Transpiration in C3 and C4 Plants, Plant Physiology, vol.143, issue.1, pp.4-10, 2007.

M. A. Caird, J. H. Richards, and T. C. Hsiao, Significant transpirational water loss occurs throughout the night in field-grown tomato, Functional Plant Biology, vol.34, issue.3, p.172, 2007.

J. Cavender-bares, L. Sack, and J. Savage, Atmospheric and soil drought reduce nocturnal conductance in live oaks, Tree Physiology, vol.27, issue.4, pp.611-620, 2007.

D. Cirelli, M. A. Equiza, V. J. Lieffers, and M. T. Tyree, Populusspecies from diverse habitats maintain high night-time conductance under drought, Tree Physiology, vol.36, p.tpv092, 2015.

H. Cochard, F. Pimont, J. Ruffault, and N. Martin-stpaul, SurEau.c : a mechanistic model of plant water relations under extreme drought, 2020.

J. M. Costa, F. Monnet, D. Jannaud, N. Leonhardt, B. Ksas et al., OPEN ALL NIGHT LONG: The Dark Side of Stomatal Control, Plant Physiology, vol.167, issue.2, pp.289-294, 2014.

A. Coupel-ledru, E. Lebon, A. Christophe, A. Gallo, P. Gago et al., Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine, Proceedings of the National Academy of Sciences, vol.113, issue.32, pp.8963-8968, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01350492

I. R. Cowan and G. D. Farquar, Stomatal function in relation to leaf metabolism and environment, Symposium of the Society for Experimental Biology, vol.31, pp.471-505, 1977.

M. J. Daley and N. G. Phillips, Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest, Tree Physiology, vol.26, issue.4, pp.411-419, 2006.

T. E. Dawson, S. S. Burgess, K. P. Tu, R. S. Oliveira, L. S. Santiago et al., Nighttime transpiration in woody plants from contrasting ecosystems, Tree Physiology, vol.27, issue.4, pp.561-575, 2007.

S. Dayer, J. C. Herrera, Z. Dai, R. Burlett, L. J. Lamarque et al., The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance, Journal of Experimental Botany, vol.71, issue.14, pp.4333-4344, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02914772

A. N. Dodd, N. Salathia, A. Hall, E. Kévei, R. Tóth et al., Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage, Science, vol.309, issue.5734, pp.630-633, 2005.

L. Donovan, M. Linton, and J. Richards, Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions, Oecologia, vol.129, issue.3, pp.328-335, 2001.

R. A. Duursma, C. J. Blackman, R. Lopéz, N. K. Martin?stpaul, H. Cochard et al., On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls, New Phytologist, vol.221, issue.2, pp.693-705, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02627387

G. D. Farquhar, A study of the responses of stomata to perturbations of environment. The Australian National University, 1973.

M. A. Forster, How significant is nocturnal sap flow?, Tree Physiology, vol.34, issue.7, pp.757-765, 2014.

S. Fuentes, R. De-bei, M. J. Collins, J. M. Escalona, H. Medrano et al., Night-time responses to water supply in grapevines (Vitis vinifera L.) under deficit irrigation and partial root-zone drying, Agricultural Water Management, vol.138, pp.1-9, 2014.

S. Fuentes, M. Mahadevan, M. Bonada, M. A. Skewes, and J. W. Cox, Night-time sap flow is parabolically linked to midday water potential for field-grown almond trees, Irrigation Science, vol.31, issue.6, pp.1265-1276, 2013.

K. L. Kavanagh, R. Pangle, and A. D. Schotzko, Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho, Tree Physiology, vol.27, issue.4, pp.621-629, 2007.

T. Lawson and S. Vialet-chabrand, Speedy stomata, photosynthesis and plant water use efficiency, New Phytologist, vol.221, issue.1, pp.93-98, 2018.

N. Martin-stpaul, S. Delzon, and H. Cochard, Plant resistance to drought depends on timely stomatal closure, Ecology Letters, vol.20, issue.11, pp.1437-1447, 2017.

J. L. Monteith, A reinterpretation of stomatal responses to humidity, Plant, Cell and Environment, vol.18, issue.4, pp.357-364, 1995.

K. Ogle, R. W. Lucas, L. P. Bentley, J. M. Cable, G. A. Barron-gafford et al., Differential daytime and night-time stomatal behavior in plants from North American deserts, New Phytologist, vol.194, issue.2, pp.464-476, 2012.

R. Oren, J. S. Sperry, G. G. Katul, D. E. Pataki, B. E. Ewers et al., Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit, Plant, Cell & Environment, vol.22, issue.12, pp.1515-1526, 1999.

V. Resco-de-dios, F. I. Chowdhury, E. Granda, Y. Yao, and D. T. Tissue, Assessing the potential functions of nocturnal stomatal conductance in C 3 and C 4 plants, New Phytologist, vol.223, issue.4, pp.1696-1706, 2019.

V. Resco-de-dios, R. Díaz-sierra, M. L. Goulden, C. V. Barton, M. M. Boer et al., Woody clockworks: circadian regulation of night-time water use inEucalyptus globulus, New Phytologist, vol.200, issue.3, pp.743-752, 2013.

V. Resco-de-dios, M. E. Loik, R. Smith, M. J. Aspinwall, and D. T. Tissue, Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth, Plant, Cell & Environment, vol.39, issue.1, pp.3-11, 2015.

V. Resco-de-dios, J. Roy, J. P. Ferrio, J. G. Alday, D. Landais et al., Processes driving nocturnal transpiration and implications for estimating land evapotranspiration, Scientific Reports, vol.5, p.10975, 2015.

S. Y. Rogiers and S. J. Clarke, Nocturnal and daytime stomatal conductance respond to root-zone temperature in ?Shiraz? grapevines, Annals of Botany, vol.111, issue.3, pp.433-444, 2013.

S. Y. Rogiers, D. H. Greer, R. J. Hutton, and J. J. Landsberg, Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar?, Journal of Experimental Botany, vol.60, issue.13, pp.3751-3763, 2009.

F. G. Scholz, S. J. Bucci, G. Goldstein, F. C. Meinzer, A. C. Franco et al., Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees, Tree Physiology, vol.27, issue.4, pp.551-559, 2007.

R. Schoppach, E. Claverie, and W. Sadok, Genotype-dependent influence of night-time vapour pressure deficit on night-time transpiration and daytime gas exchange in wheat, Functional Plant Biology, vol.41, issue.9, p.963, 2014.

J. A. Tolk, T. A. Howell, and S. R. Evett, Nighttime Evapotranspiration from Alfalfa and Cotton in a Semiarid Climate, Agronomy Journal, vol.98, issue.3, pp.730-736, 2006.

M. Zeppel, D. Tissue, D. Taylor, C. Macinnis-ng, and D. Eamus, Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies, Tree Physiology, vol.30, issue.8, pp.988-1000, 2010.

J. Zhu, Z. Dai, P. Vivin, G. A. Gambetta, M. Henke et al., A 3-D functional?structural grapevine model that couples the dynamics of water transport with leaf gas exchange, Annals of Botany, vol.121, issue.5, pp.833-848, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02534774