G. Annison, The role of wheat non-starch polysaccharides in broiler nutrition, Australian Journal of Agricultural Research, vol.44, issue.3, p.405, 1993.

R. Jha, B. Rossnagel, R. Pieper, A. Van-kessel, and P. Leterme, Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets, animal, vol.4, issue.5, pp.724-731, 2009.

R. Jha and P. Leterme, Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs, Animal, vol.6, issue.4, pp.603-611, 2011.

R. Jha and J. D. Berrocoso, Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine, Animal, vol.9, issue.9, pp.1441-1452, 2015.

M. Saqui-salces, Z. Huang, M. F. Vila, J. Li, J. A. Mielke et al., Modulation of intestinal cell differentiation in growing pigs is dependent on the fiber source in the diet1, Journal of Animal Science, vol.95, issue.3, pp.1179-1190, 2017.

F. Molist, A. Gómez-de-segura, J. F. Pérez, S. K. Bhandari, D. O. Krause et al., Effect of wheat bran on the health and performance of weaned pigs challenged with Escherichia coli K88+, Livestock Science, vol.133, issue.1-3, pp.214-217, 2010.

H. Chen, X. Mao, J. He, B. Yu, Z. Huang et al., Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets, British Journal of Nutrition, vol.110, issue.10, pp.1837-1848, 2013.

H. Chen, D. Chen, W. Qin, Y. Liu, L. Che et al., Wheat bran components modulate intestinal bacteria and gene expression of barrier function relevant proteins in a piglet model, International Journal of Food Sciences and Nutrition, vol.68, issue.1, pp.65-72, 2016.

V. Van-craeyveld, K. Swennen, E. Dornez, T. Van-de-wiele, M. Marzorati et al., Structurally Different Wheat-Derived Arabinoxylooligosaccharides Have Different Prebiotic and Fermentation Properties in Rats, The Journal of Nutrition, vol.138, issue.12, pp.2348-2355, 2008.

B. Koo, M. M. Hossain, and C. M. Nyachoti, Effect of dietary wheat bran inclusion on nutrient and energy digestibility and microbial metabolites in weaned pigs, Livestock Science, vol.203, pp.110-113, 2017.

J. Zhao, P. Liu, Y. Wu, P. Guo, L. Liu et al., Dietary Fiber Increases Butyrate-Producing Bacteria and Improves the Growth Performance of Weaned Piglets, Journal of Agricultural and Food Chemistry, vol.66, issue.30, pp.7995-8004, 2018.

A. M. Neyrinck, V. F. Van-hée, N. Piront, F. De-backer, O. Toussaint et al., Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice, Nutrition & Diabetes, vol.2, issue.1, pp.e28-e28, 2012.

S. Jarrett and C. J. Ashworth, The role of dietary fibre in pig production, with a particular emphasis on reproduction, Journal of Animal Science and Biotechnology, vol.9, issue.1, p.59, 2018.

L. Jiang, C. Feng, S. Tao, N. Li, B. Zuo et al., Maternal imprinting of the neonatal microbiota colonization in intrauterine growth restricted piglets: a review, Journal of Animal Science and Biotechnology, vol.10, issue.1, 2019.

J. Leblois, S. Massart, B. Li, J. Wavreille, J. Bindelle et al., Modulation of piglets? microbiota: differential effects by a high wheat bran maternal diet during gestation and lactation, Scientific Reports, vol.7, issue.1, p.7426, 2017.

D. Schokker, J. Zhang, L. Zhang, S. A. Vastenhouw, H. G. Heilig et al., Early-Life Environmental Variation Affects Intestinal Microbiota and Immune Development in New-Born Piglets, PLoS ONE, vol.9, issue.6, p.e100040, 2014.

N. Everaert, S. Van-cruchten, B. Weström, M. Bailey, C. Van-ginneken et al., A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis, Animal Feed Science and Technology, vol.233, pp.89-103, 2017.

S. G. Leonard, T. Sweeney, B. Bahar, and J. V. O'doherty, Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge1, Journal of Animal Science, vol.90, issue.2, pp.505-514, 2012.

Q. Shang, H. Liu, S. Liu, T. He, and X. Piao, Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets1, Journal of Animal Science, vol.97, issue.12, pp.4922-4933, 2019.

J. Leblois, S. Massart, H. Soyeurt, C. Grelet, F. Dehareng et al., Feeding sows resistant starch during gestation and lactation impacts their faecal microbiota and milk composition but shows limited effects on their progeny, PLOS ONE, vol.13, issue.7, p.e0199568, 2018.

J. Uerlings, M. Schroyen, A. Bautil, C. Courtin, A. Richel et al., In vitro prebiotic potential of agricultural by-products on intestinal fermentation, gut barrier and inflammatory status of piglets, British Journal of Nutrition, vol.123, issue.3, pp.293-307, 2019.

F. Loisel, C. Farmer, P. Ramaekers, and H. Quesnel, Effects of high fiber intake during late pregnancy on sow physiology, colostrum production, and piglet performance1, Journal of Animal Science, vol.91, issue.11, pp.5269-5279, 2013.

R. Guillemet, A. Hamard, H. Quesnel, M. C. Père, M. Etienne et al., Dietary fibre for gestating sows: Effects on parturition progress, behaviour, litter and sow performance, Animal, vol.1, pp.872-880, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02663621

J. P. Holt, L. J. Johnston, S. K. Baidoo, and G. C. Shurson, Effects of a high-fiber diet and frequent feeding on behavior, reproductive performance, and nutrient digestibility in gestating sows1,2, Journal of Animal Science, vol.84, issue.4, pp.946-955, 2006.

M. S. Hedemann, M. Eskildsen, H. N. Lærke, C. Pedersen, J. E. Lindberg et al., Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties1, Journal of Animal Science, vol.84, issue.6, pp.1375-1386, 2006.

. Li, . Zhang, . Liu, . Yang, . He et al., Effects of the Ratio of Insoluble Fiber to Soluble Fiber in Gestation Diets on Sow Performance and Offspring Intestinal Development, Animals, vol.9, issue.7, p.422, 2019.

Y. Belkaid and S. Naik, Compartmentalized and systemic control of tissue immunity by commensals, Nat. Immunol, vol.14, pp.646-653, 2013.

H. Xu, M. B. Hu, P. D. Bai, W. H. Zhu, S. H. Liu et al., Pro-inflammatory cytokines in prostate cancer development and progression promoted by high-fat diet, BioMed. Res. Int, 2015.

R. Al-sadi, M. Boivin, and T. Ma, Mechanism of cytokine modulation of epithelial tight junction barrier, Front. Biosci, vol.14, pp.2765-2778, 2009.

O. O. Onipe, A. I. Jideani, and D. Beswa, Composition and functionality of wheat bran and its application in some cereal food products, Int. J. Food Sci. Tech, vol.50, pp.2509-2518, 2015.

C. Jiang, A. T. Ting, and B. Seed, PPAR-? agonists inhibit production of monocyte inflammatory cytokines, Nature, vol.391, pp.82-86, 1998.

S. M. Opal and V. A. Depalo, Anti-inflammatory cytokines, Chest, vol.117, pp.1162-1172, 2000.

J. Scheller, A. Chalaris, D. Schmidt-arras, and S. Rose-john, The pro-and anti-inflammatory properties of the cytokine interleukin-6, Biochim. Biophys. Acta, vol.1813, pp.878-888, 2011.

X. Xue and D. M. Falcon, The Role of Immune Cells and Cytokines in Intestinal Wound Healing, Int. J. Mol. Sci, vol.20, 2019.

S. M. Dann, M. E. Spehlmann, D. C. Hammond, M. Iimura, K. Hase et al., IL-6-dependent mucosal protection prevents establishment of a microbial niche for attaching/effacing lesion-forming enteric bacterial pathogens, J. Immunol, vol.180, pp.6816-6826, 2008.