Z. Basky, Biotypic and pest status differences between Hungarian and South African populations of Russian wheat aphid,Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), Pest Management Science, vol.59, issue.10, pp.1152-1158, 2003.

C. Luo, C. M. Jones, G. Devine, F. Zhang, I. Denholm et al., Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China, Crop Protection, vol.29, issue.5, pp.429-434, 2010.

M. Pawlowski, C. B. Hill, D. J. Voegtlin, and G. L. Hartman, Soybean aphid intrabiotype variability based on colonization of specific soybean genotypes, Insect Science, vol.22, issue.6, pp.785-792, 2014.

A. Forneck and L. Huber, (A)sexual reproduction - a review of life cycles of grape phylloxera,Daktulosphaira vitifoliae, Entomologia Experimentalis et Applicata, vol.131, issue.1, pp.1-10, 2009.

F. Delmotte, D. Papura, C. Rispe, F. Legeai, J. Jaquiéry et al., THE GRAPE PHYLLOXERA GENOME SEQUENCING PROJECT, Acta Horticulturae, issue.1045, pp.15-19, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01208725

C. Favret, R. Blackman, G. Miller, and B. Victor, Catalog of the phylloxerids of the world (Hemiptera, Phylloxeridae), ZooKeys, vol.629, pp.83-101, 2016.

R. Baker, C. Bragard, T. Candresse, G. Gilioli, J. Grégoire et al., Scientific Opinion on the risk to plant health posed by Daktulosphaira vitifoliae (Fitch) in the EU territory, with the identification and evaluation of risk reduction options, EFSA Journal, vol.12, issue.5, 2014.

A. Forneck, S. Kleinmann, R. Blaich, and S. F. Anvari, Histochemistry and anatomy of phylloxera (Daktulosphaira vitifoliae) nodosities on young roots of grapevine (Vitis spp), vol.41, pp.93-98, 2002.

A. V. Kellow, M. Sedgley, and R. Van-heeswijck, Interaction Between Vitis vinifera and Grape Phylloxera: Changes in Root Tissue During Nodosity Formation., Annals of Botany, vol.93, issue.5, pp.581-590, 2004.

P. D. Nabity, M. J. Haus, M. R. Berenbaum, and E. H. Delucia, Leaf-galling phylloxera on grapes reprograms host metabolism and morphology, Proceedings of the National Academy of Sciences, vol.110, issue.41, pp.16663-16668, 2013.

F. J. Ryan, A. D. Omer, L. H. Aung, and J. Granett, Effects of infestation by grape phylloxera on sugars, free amino acids, and starch of grapevine roots, vol.39, pp.175-176, 2000.

M. Porten and L. Huber, An assessment method for the quantification of Daktulosphaira vitifoliae (Fitch) (Hem., Phylloxeridae) populations in the field, Journal of Applied Entomology, vol.127, issue.3, pp.157-162, 2003.

M. Griesser, N. C. Lawo, S. Crespo-martinez, K. Schoedl-hummel, K. Wieczorek et al., Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots, Plant Science, vol.234, pp.38-49, 2015.

L. Blank, T. Wolf, K. Eimert, and M. Schröder, Differential gene expression during hypersensitive response inPhylloxera-resistant rootstock ?Börner? using custom oligonucleotide arrays, Journal of Plant Interactions, vol.4, issue.4, pp.261-269, 2009.

N. C. Lawo, G. J. Weingart, R. Schuhmacher, and A. Forneck, The volatile metabolome of grapevine roots: First insights into the metabolic response upon phylloxera attack, Plant Physiology and Biochemistry, vol.49, issue.9, pp.1059-1063, 2011.

M. W. Eitle, J. Loacker, J. Meng-reiterer, R. Schuhmacher, M. Griesser et al., Polyphenolic profiling of roots (Vitis spp.) under grape phylloxera (D. vitifoliae Fitch) attack, Plant Physiology and Biochemistry, vol.135, pp.174-181, 2019.

M. W. Eitle, M. Griesser, R. Vankova, P. Dobrev, S. Aberer et al., Grape phylloxera (D. vitifoliae) manipulates SA/JA concentrations and signalling pathways in root galls of Vitis spp., Plant Physiology and Biochemistry, vol.144, pp.85-91, 2019.
URL : https://hal.archives-ouvertes.fr/hal-03014710

F. Wang, P. Zhao, L. Zhang, H. Zhai, and Y. Du, Functional characterization of WRKY46 in grape and its putative role in the interaction between grape and phylloxera (Daktulosphaira vitifoliae), Horticulture Research, vol.6, issue.1, pp.1-14, 2019.

L. Huber, Schaderrerger im Wurzelraum von Reben (Vitis spp.)-Vorkommen, Wirkung, Interaktionen-und Möglichkeiten zu deren Kontrolle durch Maßnahmen des Integrated Pest Managements (IPM), 2007.

K. S. Powell, P. D. Cooper, and A. Forneck, The Biology, Physiology and Host?Plant Interactions of Grape Phylloxera Daktulosphaira vitifoliae, Advances in Insect Physiology, vol.45, pp.159-218, 2013.

T. Savi, A. García-gonzález, J. C. Herrera, and A. Forneck, Gas exchange, biomass and non-structural carbohydrates dynamics in vines under combined drought and biotic stress, BMC Plant Biology, vol.19, issue.1, 2019.

K. B. Kingston, K. S. Powell, and P. D. Cooper, CHARACTERISING THE ROOT-FEEDING HABITS OF GRAPE PHYLLOXERA USING ELECTRICAL PENETRATION GRAPH, Acta Horticulturae, issue.733, pp.33-46, 2007.

A. Raman, R. Beiderbeck, and W. Herth, Early subcellular responses of susceptible and resistant Vitis taxa to feeding by grape phylloxera Daktulosphaira vitifoliae, Botanica Helvetica, vol.119, issue.1, pp.31-39, 2009.

E. L. Hofmann, Die Histologie der Nodositäten verschiedener Rebensorten bei Reblausbefall, vol.1, pp.125-141, 1957.

S. Riaz, D. Pap, J. Uretsky, V. Laucou, J. Boursiquot et al., Genetic diversity and parentage analysis of grape rootstocks, Theoretical and Applied Genetics, vol.132, issue.6, pp.1847-1860, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02627917

J. Granett, M. A. Walker, L. Kocsis, and A. D. Omer, BIOLOGY ANDMANAGEMENT OFGRAPEPHYLLOXERA, Annual Review of Entomology, vol.46, issue.1, pp.387-412, 2001.

C. Arancibia, S. Riaz, C. Agüero, B. Ramirez-corona, R. Alonso et al., Grape phylloxera (Daktulosphaira vitifoliae Fitch) in Argentina: ecological associations to diversity, population structure and reproductive mode, Australian Journal of Grape and Wine Research, vol.24, issue.3, pp.284-291, 2018.

A. Forneck, R. Mammerler, J. Tello, M. Breuer, J. Müller et al., First European leaf-feeding grape phylloxera (Daktulosphaira vitifoliae Fitch) survey in Swiss and German commercial vineyards, European Journal of Plant Pathology, vol.154, issue.4, pp.1029-1039, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02619942

L. Kocsis, J. Granett, M. A. Walker, H. Lin, and A. D. Omer, Grape phylloxera populations adapted to Vitis berlandieri × V. riparia rootstocks, Am. J. Enol. Vitic, vol.50, pp.101-106, 1999.

J. Granett, P. Timper, and L. A. Lider, Grape Phylloxera (Daktulosphaira vitifoliae) (Homoptera: Phylloxeridae) Biotypes in California, Journal of Economic Entomology, vol.78, issue.6, pp.1463-1467, 1985.

A. Forneck, K. S. Powell, and M. A. Walker, Scientific Opinion: Improving the Definition of Grape Phylloxera Biotypes and Standardizing Biotype Screening Protocols, American Journal of Enology and Viticulture, vol.67, issue.4, pp.371-376, 2016.

P. D. King and G. Rilling, Variations in the galling reaction of grapevines: Evidence of different phylloxera biotypes and clonal reaction to phylloxera, vol.24, pp.32-42, 1985.

M. W. Eitle, J. C. Carolan, M. Griesser, and A. Forneck, The salivary gland proteome of root-galling grape phylloxera (Daktulosphaira vitifoliae Fitch) feeding on Vitis spp., PLOS ONE, vol.14, issue.12, p.e0225881, 2019.

L. Kocsis, J. Granett, and M. A. Walker, Performance of Hungarian phylloxera strains on Vitis riparia rootstocks, Journal of Applied Entomology, vol.126, issue.10, pp.567-571, 2002.

M. W. Eitle, M. Griesser, F. Dobrev, R. Vankova, and A. Forneck, First insights on phytohormones during the compatible grapevine-phylloxera interaction, Acta Horticulturae, vol.1188, issue.1188, pp.255-264, 2017.

Y. Du, Z. Wang, and H. Zhai, Grape root cell features related to phylloxera resistance and changes of anatomy and endogenous hormones during nodosity and tuberosity formation, Australian Journal of Grape and Wine Research, vol.17, issue.3, pp.291-297, 2011.

N. C. Lawo, M. Griesser, and A. Forneck, Expression of putative expansin genes in phylloxera (Daktulosphaira vitifoliae Fitch) induced root galls of Vitis spp., European Journal of Plant Pathology, vol.136, issue.2, pp.383-391, 2013.

J. Tello and A. Forneck, Use of DNA Markers for Grape Phylloxera Population and Evolutionary Genetics: From RAPDs to SSRs and Beyond, Insects, vol.10, issue.10, p.317, 2019.

A. Forneck, U. C. Anhalt, R. Mammerler, and M. Griesser, No evidence of superclones in leaf-feeding forms of austrian grape phylloxera (Daktulosphaira vitifoliae), European Journal of Plant Pathology, vol.142, issue.3, pp.441-448, 2015.

C. Rispe, F. Legeai, D. Papura, A. Bretaudeau, S. Hudaverdian et al., De novo transcriptome assembly of the grapevine phylloxera allows identification of genes differentially expressed between leaf- and root-feeding forms, BMC Genomics, vol.17, issue.1, p.219, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01286528

C. Zhao, C. Rispe, and P. D. Nabity, Secretory RING finger proteins function as effectors in a grapevine galling insect, BMC Genomics, vol.20, issue.1, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02917884

M. W. Eitle, J. C. Carolan, M. Griesser, and A. Forneck, The salivary gland proteome of root-galling grape phylloxera (Daktulosphaira vitifoliae Fitch) feeding on Vitis spp., PLOS ONE, vol.14, issue.12, p.e0225881, 2019.

T. Taylor, High energy physics at UC Riverside, 1997.

C. Rispe, F. Legeai, P. D. Nabity, R. Fernández, A. K. Arora et al., The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest, BMC Biology, vol.18, issue.1, p.90, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02917617

D. A. Downie, Phylogeography in a galling insect, grape phylloxera, Daktulosphaira vitifoliae (Phylloxeridae) in the fragmented habitat of the Southwest USA, Journal of Biogeography, vol.31, issue.11, pp.1759-1768, 2004.

J. Tello, R. Mammerler, M. ?aji?, and A. Forneck, Major Outbreaks in the Nineteenth Century Shaped Grape Phylloxera Contemporary Genetic Structure in Europe, Scientific Reports, vol.9, issue.1, pp.1-11, 2019.

J. Zhao, Y. Zhang, D. Fan, and J. Feng, Identification and Expression Profiling of Odorant-Binding Proteins and Chemosensory Proteins of Daktulosphaira vitifoliae (Hemiptera: Phylloxeridae), Journal of Economic Entomology, vol.110, issue.4, pp.1813-1820, 2017.

J. C. Schultz, P. P. Edger, M. J. Body, and H. M. Appel, A galling insect activates plant reproductive programs during gall development, Scientific Reports, vol.9, issue.1, pp.1-17, 2019.

J. A. De-benedictis and J. Granett, Variability of Responses of Grape Phylloxera (Homoptera: Phylloxeridae) to Bioassays That Discriminate Between California Biotypes, Journal of Economic Entomology, vol.85, issue.4, pp.1527-1534, 1992.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, issue.15, pp.2114-2120, 2014.

D. Kim, B. Langmead, and S. L. Salzberg, HISAT: a fast spliced aligner with low memory requirements, Nature Methods, vol.12, issue.4, pp.357-360, 2015.

S. Anders, P. T. Pyl, and W. Huber, HTSeq--a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, issue.2, pp.166-169, 2014.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, vol.15, issue.12, 2014.

S. Maere, K. Heymans, and M. Kuiper, BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks, Bioinformatics, vol.21, issue.16, pp.3448-3449, 2005.

A. Krogh, B. Larsson, G. Von-heijne, and E. L. Sonnhammer, Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen, Journal of Molecular Biology, vol.305, issue.3, pp.567-580, 2001.

A. Pierleoni, P. L. Martelli, and R. Casadio, PredGPI: a GPI-anchor predictor, BMC Bioinformatics, vol.9, issue.1, p.392, 2008.

J. D. Bendtsen, H. Nielsen, G. Von-heijne, and S. Brunak, Improved prediction of signal peptides: SignalP 3.0, J. Mol. Biol, vol.340, pp.783-795, 2004.

J. D. Bendtsen, L. J. Jensen, N. Blom, G. Von-heijne, and S. Brunak, Feature-based prediction of non-classical and leaderless protein secretion, Protein Engineering Design and Selection, vol.17, issue.4, pp.349-356, 2004.

P. Horton, K. Park, T. Obayashi, N. Fujita, H. Harada et al., WoLF PSORT: protein localization predictor, Nucleic Acids Research, vol.35, issue.Web Server, pp.W585-W587, 2007.

R. D. Finn, P. Coggill, R. Y. Eberhardt, S. R. Eddy, J. Mistry et al., The Pfam protein families database: towards a more sustainable future, Nucleic Acids Research, vol.44, issue.D1, pp.D279-D285, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01294685

J. C. Carolan, D. Caragea, K. T. Reardon, N. S. Mutti, N. Dittmer et al., Predicted Effector Molecules in the Salivary Secretome of the Pea Aphid (Acyrthosiphon pisum): A Dual Transcriptomic/Proteomic Approach, Journal of Proteome Research, vol.10, issue.4, pp.1505-1518, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02646917

H. Boulain, F. Legeai, E. Guy, S. Morlière, N. E. Douglas et al., Fast Evolution and Lineage-Specific Gene Family Expansions of Aphid Salivary Effectors Driven by Interactions with Host-Plants, Genome Biology and Evolution, vol.10, issue.6, pp.1554-1572, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01891942

P. Thorpe, P. J. Cock, and J. Bos, Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets, BMC Genomics, vol.17, issue.1, 2016.

Y. Zhang, J. Fan, J. Sun, F. Francis, and J. Chen, Transcriptome analysis of the salivary glands of the grain aphid, Sitobion avenae, Scientific Reports, vol.7, issue.1, pp.1-14, 2017.

S. A. Hogenhout, R. A. Van-der-hoorn, R. Terauchi, and S. Kamoun, Emerging Concepts in Effector Biology of Plant-Associated Organisms, Molecular Plant-Microbe Interactions®, vol.22, issue.2, pp.115-122, 2009.

J. Fleischer, P. Pregitzer, H. Breer, and J. Krieger, Access to the odor world: olfactory receptors and their role for signal transduction in insects, Cellular and Molecular Life Sciences, vol.75, issue.3, pp.485-508, 2017.

A. Sánchez-gracia, F. G. Vieira, and J. Rozas, Molecular evolution of the major chemosensory gene families in insects, Heredity, vol.103, issue.3, pp.208-216, 2009.

N. Montagné, A. De-fouchier, R. D. Newcomb, and E. Jacquin-joly, Advances in the Identification and Characterization of Olfactory Receptors in Insects, Progress in Molecular Biology and Translational Science, vol.130, pp.55-80, 2015.

T. Zhang, W. Wang, Z. Zhang, Y. Zhang, and Y. Guo, Functional Characteristics of a Novel Chemosensory Protein in the Cotton Bollworm Helicoverpa armigera (Hübner), Journal of Integrative Agriculture, vol.12, issue.5, pp.853-861, 2013.

S. Ali, M. Z. Ahmed, N. Li, S. A. Ali, and M. Wang, Functional characteristics of chemosensory proteins in the sawyer beetle Monochamus alternatus Hope, Bulletin of Entomological Research, vol.109, issue.1, pp.34-42, 2018.

R. Ji, H. Yu, Q. Fu, H. Chen, W. Ye et al., Comparative Transcriptome Analysis of Salivary Glands of Two Populations of Rice Brown Planthopper, Nilaparvata lugens, That Differ in Virulence, PLoS ONE, vol.8, issue.11, p.e79612, 2013.

H. Boulain, F. Legeai, J. Jaquiéry, E. Guy, S. Morlière et al., Differential Expression of Candidate Salivary Effector Genes in Pea Aphid Biotypes With Distinct Host Plant Specificity, Frontiers in Plant Science, vol.10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02378266

S. J. Nicholson, S. D. Hartson, and G. J. Puterka, Proteomic analysis of secreted saliva from Russian Wheat Aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat, Journal of Proteomics, vol.75, issue.7, pp.2252-2268, 2012.

S. J. Nicholson and G. J. Puterka, Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes, Journal of Proteomics, vol.105, pp.186-203, 2014.

S. Al-khodor, C. T. Price, A. Kalia, and Y. Abu-kwaik, Functional diversity of ankyrin repeats in microbial proteins, Trends in Microbiology, vol.18, issue.3, pp.132-139, 2010.

T. Kawasaki, J. Nam, D. C. Boyes, B. F. Holt, D. A. Hubert et al., A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response, The Plant Journal, vol.44, issue.2, pp.258-270, 2005.

R. B. Abramovitch, R. Janjusevic, C. E. Stebbins, and G. B. Martin, Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity, Proceedings of the National Academy of Sciences, vol.103, issue.8, pp.2851-2856, 2006.

P. D. Nabity, Insect-induced plant phenotypes: Revealing mechanisms through comparative genomics of galling insects and their hosts, American Journal of Botany, vol.103, issue.6, pp.979-981, 2016.

D. Giron, E. Huguet, G. N. Stone, and M. Body, Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant, Journal of Insect Physiology, vol.84, pp.70-89, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02874659

T. Will, Function of Aphid Saliva in Aphid-Plant Interaction, Biology and Ecology of Aphids, vol.109, pp.221-237, 2016.

M. Knoblauch, D. R. Froelich, W. F. Pickard, and W. S. Peters, SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion, Journal of Experimental Botany, vol.65, issue.7, pp.1879-1893, 2014.

A. Guiguet, G. Dubreuil, M. O. Harris, H. M. Appel, J. C. Schultz et al., Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts, Journal of Insect Physiology, vol.84, pp.4-21, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01312969

S. Hassan, C. A. Behm, and U. Mathesius, Effectors of plant parasitic nematodes that re-program root cell development, Functional Plant Biology, vol.37, issue.10, p.933, 2010.

M. Jaouannet, M. Magliano, M. J. Arguel, M. Gourgues, E. Evangelisti et al., The Root-Knot Nematode Calreticulin Mi-CRT Is a Key Effector in Plant Defense Suppression, Molecular Plant-Microbe Interactions®, vol.26, issue.1, pp.97-105, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01267849

Z. Yang, F. Zhang, Q. He, and G. He, Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants, Archives of Insect Biochemistry and Physiology, vol.59, issue.2, pp.59-66, 2005.

A. Urbanska, W. F. Tjallingii, A. F. Dixon, and B. Leszczynski, Phenol oxidising enzymes in the grain aphid's saliva, Entomologia Experimentalis et Applicata, vol.86, issue.2, pp.197-203, 1998.

P. Giordanengo, L. Brunissen, C. Rusterucci, C. Vincent, A. Van-bel et al., Compatible plant-aphid interactions: How aphids manipulate plant responses, Comptes Rendus Biologies, vol.333, issue.6-7, pp.516-523, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00492611

B. V. Burger, C. A. De-klerk, M. Morr, and W. J. Burger, Identification, Synthesis, and Field Tests of the Sex Pheromone of Margarodes prieskaensis (Jakubski), Journal of Chemical Ecology, vol.43, issue.1, pp.94-105, 2016.

Y. Du, E. Jiang, F. Wang, S. Zhang, and H. Zhai, Gene expression profiling of rootstock ?140Ru? and Vitis vinifera L. cv. ?Crimson Seedless? grape roots infected with grape phylloxera, Plant Growth Regulation, vol.73, issue.1, pp.1-8, 2013.

M. L. Macedo, E. B. Diz-filho, M. G. Freire, M. L. Oliva, J. T. Sumikawa et al., A Trypsin Inhibitor from Sapindus saponaria L. Seeds: Purification, Characterization, and Activity Towards Pest Insect Digestive Enzyme, The Protein Journal, vol.30, issue.1, pp.9-19, 2010.

M. A.-jongsma and J. Beekwilder, Co-Evolution of Insect Proteases and Plant Protease Inhibitors, Current Protein & Peptide Science, vol.12, issue.5, pp.437-447, 2011.

M. Hartl, A. P. Giri, H. Kaur, and I. T. Baldwin, The multiple functions of plant serine protease inhibitors, Plant Signaling & Behavior, vol.6, issue.7, pp.1009-1011, 2011.

A. Bayés, M. R. De-la-vega, J. Vendrell, F. X. Aviles, M. A. Jongsma et al., Response of the digestive system of Helicoverpa zea to ingestion of potato carboxypeptidase inhibitor and characterization of an uninhibited carboxypeptidase B, Insect Biochemistry and Molecular Biology, vol.36, issue.8, pp.654-664, 2006.

A. Srinivasan, A. P. Giri, and V. S. Gupta, Structural and functional diversities in lepidopteran serine proteases, Cellular and Molecular Biology Letters, vol.11, issue.1, pp.132-154, 2006.

A. Kumar, A. Sharma, R. Sharma, and S. K. Gakhar, Identification, characterization and analysis of expression of gene encoding carboxypeptidase A in Anopheles culicifacies A (Diptera: culicidae), Acta Tropica, vol.139, pp.123-130, 2014.

J. C. Schultz, H. M. Appel, A. P. Ferrieri, and T. M. Arnold, Flexible resource allocation during plant defense responses, Frontiers in Plant Science, vol.4, 2013.

F. Divol, F. Vilaine, S. Thibivilliers, J. Amselem, J. Palauqui et al., Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens, Plant Molecular Biology, vol.57, issue.4, pp.517-540, 2005.

P. Andreas, A. Kisiala, R. J. Emery, R. De-clerck-floate, J. F. Tooker et al., Cytokinins Are Abundant and Widespread among Insect Species, Plants, vol.9, issue.2, p.208, 2020.

M. Chen and E. F. Connor, Cytokinins are abundant and widespread among insect species, Plants, vol.2020, p.208

J. De-meutter, T. Tytgat, E. Witters, G. Gheysen, H. Van-onckelen et al., Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita, Molecular Plant Pathology, vol.4, issue.4, pp.271-277, 2003.

H. D. Loxdale and A. Balog, Aphid specialism as an example of ecological-evolutionary divergence, Biological Reviews, vol.93, issue.1, pp.642-657, 2017.

S. Vorwerk, D. Martinez-torres, and A. Forneck, Pantoea agglomerans-associated bacteria in grape phylloxera (Daktulosphaira vitifoliae, Fitch), Agricultural and Forest Entomology, vol.9, issue.1, pp.57-64, 2007.

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2020 by the authors. Licensee MDPI