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Abstract: Leaf nitrogen (N) directly correlates to chlorophyll production, affecting crop growth
and yield. Farmers use soil plant analysis development (SPAD) devices to calculate the amount of
chlorophyll present in plants. However, monitoring large-scale crops using SPAD is prohibitively
time-consuming and demanding. This paper presents an unmanned aerial vehicle (UAV) solution
for estimating leaf N content in rice crops, from multispectral imagery. Our contribution is twofold:
(i) a novel trajectory control strategy to reduce the angular wind-induced perturbations that affect
image sampling accuracy during UAV flight, and (ii) machine learning models to estimate the canopy
N via vegetation indices (VIs) obtained from the aerial imagery. This approach integrates an image
processing algorithm using the GrabCut segmentation method with a guided filtering refinement
process, to calculate the VIs according to the plots of interest. Three machine learning methods based
on multivariable linear regressions (MLR), support vector machines (SVM), and neural networks
(NN), were applied and compared through the entire phonological cycle of the crop: vegetative (V),
reproductive (R), and ripening (Ri). Correlations were obtained by comparing our methods against
an assembled ground-truth of SPAD measurements. The higher N correlations were achieved with
NN: 0.98 (V), 0.94 (R), and 0.89 (Ri). We claim that the proposed UAV stabilization control algorithm
significantly improves on the N-to-SPAD correlations by minimizing wind perturbations in real-time
and reducing the need for offline image corrections.

Keywords: UAV; machine learning; plant nitrogen estimation; multispectral imagery; vegetation
index; image segmentation

1. Introduction

Farmers use soil plant analysis development (SPAD) devices as a field diagnostic tool to estimate
nitrogen (N) content in the plant and to predict grain yield [1,2]. For rice crops, N provides critical
insight into plant-growth, crop yield, and biomass accumulation [3]. Furthermore, monitoring N
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allows farmers to properly adapt crop management practices [4,5]. However, using SPAD devices
for crop diagnosis is still time consuming. With the advent of low-cost unmanned aerial vehicles
(UAVs), several authors have reported faster and accurate remote sensing tools and methods [6,7] to
estimate the N canopy from aerial multispectral imagery [8,9]. One of the most common methods used,
relies on sensing the canopy reflectance in both visible (VIS) and near-infrared (NIR) wavelengths,
using hyperspectral sensors [10–13].

Multiple vegetation indices (VI) have been established to associate specific spectral reflectance
wavelengths with the crop variables of interest [14,15]. Although these VIs can be used to estimate
the N contents in rice plants, there is no single standard set of VIs that works across all crop stages,
rice varieties, soils, and atmospheric conditions. Most of the existing body of work associated with the
estimation of N contents in plants, has been conducted using multi-variable regressions [5,16], in which
linear functions are defined by combining and weighting each VI according to the regression model.
This approach is simple, but sometimes inaccurate since the evolution of the crop tends to exhibit
highly nonlinear effects that affect the N content over time. Machine and deep learning methods have
recently gained traction, in solving these issues. Machine learning has the potential to drive significant
breakthroughs in plant phenotyping [17–20].

For canopy N estimation, training machine learning algorithms requires the precise extraction of
VI features from the aerial multispectral imagery. Several authors have applied data fusion methods
from different sensors [21–23] for applying image mosaicing techniques [24–27], computing crop
surface models based on dense image matching (DIM) techniques [28], or applying photogrammetry
methods that are computationally expensive [26,27,29,30]. Other approaches rely on the real-time
segmentation and image registration for the extraction of relevant features associated with the
leaf/canopy N, including edge detection thresholding, color histograms, and clustering (otsu, K-means,
watershed) [31–33].

In this work, we improve on the stabilization control of the UAV for acquiring accurate plot
imagery, instead of relying on mosaicing or photogrammetry methods. Commercial UAV quadrotors
used for the monitoring of the canopy N usually come with a proportional-integral-derivative
(PID) waypoint navigation autopilot. The lack of proper UAV angular stabilization in the
presence of large wind perturbations limits the accuracy of image registration algorithms,
therefore affecting the estimation of canopy N content through image processing. To address
this problem, we demonstrate a nonlinear trajectory-tracking controller that enables precise UAV
positioning through a stabilization/attitude control loop. We call this method backstepping+ desired
angular acceleration function (BS + DAF). This approach incorporates UAV aerodynamics information
within the control law to produce roll and pitch acceleration commands to reduce abrupt angular
acceleration changes caused by external wind disturbances. This added compliance enables the UAV to
hover over the crop plots precisely, which in turn allows for capturing imagery that can be individually
processed in real-time.

Here, we combine an autonomous UAV to acquire multispectral imagery from a crop,
with machine learning methods as a means to high-throughput nitrogen content estimation.
Three major contributions are involved:

(i) The development and validation of a novel UAV attitude control called BS+DAF. The UAV
captures multispectral imagery with relevant above-ground data that must correlate with the
SPAD measurements at the ground-level of the crop. The proposed controller is aimed at
maintaining precise angular stabilization during flight by properly rejecting wind disturbances,
enabling improvements in the estimations of N.

(ii) The application and validation of a segmentation algorithm called GrabCut [34], instead of the
traditional edge detection thresholding methods, color histograms, and clustering techniques
used in agriculture. The GrabCut approach achieves smooth pixel information with richer detail
of the canopy structure, enabling the accurate segmentation of the multispectral imagery and
the proper VI-based feature extraction.
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(iii) The integration of machine learning methods to process nonlinear N dynamics with the
calculations of the VIs during all stages of crop growth. A comprehensive characterization of the
crop by designing a ground-truth dataset with several contrasting rice genotypes and accurate
direct measurements of leaf nitrogen (training model).

2. Materials and Methods

2.1. System

Figure 1 details the proposed approach. Our UAV is a quadrotor called the AscTec Pelican
(manufactured by Intel’s Ascending Technologies (https://robots.ros.org/astec-pelican-and-hummi
ngbird/)). This UAV comes with a C++ software development kit (SDK) that enables onboard code
development with ease. A high-level Atom Intel processor (HLP) offers enough computing power
to run solutions in real-time, whereas a low-level processor (LLP) handles the sensor data fusion
and rotor control with an update rate of 1kHz. As shown in Figure 1, we developed a closed-loop
attitude controller to drive the low-level rotor’s control running in the LLP. This control method
depends on the dynamics of the UAV to properly reject wind disturbances and keep the UAV steady.
During flight, a dataset of multispectral imagery is precisely collected aiming at the above-ground
estimation of nitrogen by using machine learning methods. In previous work [35], our UAV system
was tested during two years of in-field experiments with the aim of estimating above ground biomass
accumulation. Here, we have extended the capabilities of the system in Figure 1 by developing and
integrating novel methods for UAV flight control, multispectral imagery segmentation for VI feature
extraction, and their impact on nitrogen estimation using machine learning algorithms.(εx,-εy)(Px,Py)Soil Planeimage planePz groundcoordinates:Pixel coordinatesx

b
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Figure 1. Unmanned aerial vehicle (UAV)-based robotic system for canopy nitrogen estimation in
rice crops.

The UAV was equipped with the Parrot Sequoia multispectral sensor (https://www.parrot.com
/business-solutions-us/parrot-professional/parrot-sequoia) fabricated with 4 separate bands: green,
red, red-edge, and near-infrared. The camera offers a resolution of 1280× 960 for each independent
spectral sensor, yielding a crop-to-image resolution of 1.33 cm/pixel according to the flying altitude of
20 m. In addition, the multispectral camera comes with a radiometric calibration target that enables
offline reflectance calibration across the spectrum of light captured by the camera, and an onboard
irradiance sensor designed to correct images for illumination differences, all of which enables its
outstanding performance in cloudy conditions, as evaluated in [36]. In our application, this calibration
procedure was executed prior to any flight mission of the UAV. Additional sensors such as an IMU,
magnetometer, and GPS are also embedded within the sunshine sensor. Figure 2a depicts the mounted
camera setup, while Table 1 details the general specifications of our system.

https://robots.ros.org/astec-pelican-and-hummingbird/
https://robots.ros.org/astec-pelican-and-hummingbird/
https://www.parrot.com/business-solutions-us/parrot-professional/parrot-sequoia
https://www.parrot.com/business-solutions-us/parrot-professional/parrot-sequoia
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Table 1. General specifications.

Specification Description

UAV

UAV Processing High-level: Intel R©CoreTM i7|Low-level: Intel
Atom 1.6 GHz

Flight altitude over ground 20 m

Flight linear speed 1.5 ms−1

Autonomy 25 min

NAVIGATION

DGPS Piksi GNSS Module 1 HW version: 00108-10

DGPS Processing dual-core ARM Cortex-A9 at 666 MHz

Real-time kinematic positioning (RTK) 10 Hz: GPS, GLONASS, BeiDou, Galileo

DGPS Position accuracy 35 cm

IMU rate and accuracy 1 KHz|Heading: 0.2◦ , Pitch/Roll: 0.03◦

IMAGERY

Parrot Sequoia multispectral camera

Spectral bands resolution: 1280× 960 pixels.
Green (530–570 nm), Red (640–680 nm),

Red-Edge (730–740 nm),
Near-Infrared (770–810 nm). RGB sensor

resolution: 4608× 3456 pixels.

Imagery resolution at 20 m altitude
(Ground Sampling Distance—GSD) 2

RGB: 0.37 cm/pixel.
Spectral-bands: 1.33 cm/pixel

Onboard irradiance sensor real-time illumination image correction

CROPS

Experiments location
Lat: 4◦1′37.85′′N, Lon: 73◦28′28.65′′W

International Center for Tropical Agriculture
(CIAT), Department of Meta, Colombia 3

Weather conditions 4
Dry season (June-September): Average

temperatures: L: 22◦–H: 31 ◦ C with average
cloudiness of 30%.

1 Differential Global Positioning System (DGPS) Piksi module: https://www.swiftnav.com/piksi-m
ulti. 2 Ground Sampling Distance (GSD) calculator: https://support.pix4d.com/hc/en-us/articles/
202560249-TOOLS-GSD-calculator#gsctab=0. 3 International Center for Tropical Agriculture (CIAT)
website: https://ciat.cgiar.org. 4 Weather information: https://weatherspark.com/y/24273/Avera
ge-Weather-in-Villavicencio-Colombia-Year-Round.

https://www.swiftnav.com/piksi-multi
https://www.swiftnav.com/piksi-multi
https://support.pix4d.com/hc/en-us/articles/202560249-TOOLS-GSD-calculator#gsctab=0
https://support.pix4d.com/hc/en-us/articles/202560249-TOOLS-GSD-calculator#gsctab=0
https://ciat.cgiar.org
https://weatherspark.com/y/24273/Average-Weather-in-Villavicencio-Colombia-Year-Round.
https://weatherspark.com/y/24273/Average-Weather-in-Villavicencio-Colombia-Year-Round.
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Figure 2. Crop field: (a,b) each plot was designed with an area of 5.7 m2 and a rice crop density of
38.4 kgha−1. The UAV is programmed to capture multispectral imagery from the plots of interests by
using a Sequoia camera manufactured by Parrot 7. (c) The results reported in this work were obtained
during three stages of rice growth: vegetative, reproductive, and ripening with an entire phenological
cycle ranging between 86–101 days.

2.2. Rice Crops

The crops were designed with 3 spatial repetitions containing 8 contrasting rice genotypes in
terms of N concentration, biomass accumulation, and flowering: FED50, MG2, ELWEE, NORUNKAN,
IR64, AZUCENA, UPLRI7, and LINE 23. These rice varieties have a phenological cycle ranging
between 86-101 days , as detailed in Figure 3b. The experimental design consisted of six months of
in-field sampling with three different planting crops. For each experiment, the amount of applied
nitrogen and water was modified as follows:

• Experiment 1: 200 kgha−1 of nitrogen and limited crop irrigation.
• Experiment 2: 200 kgha−1 of nitrogen with permanent crop irrigation.
• Experiment 3: 100 kgha−1 of nitrogen with permanent crop irrigation.

Experimental trials were conducted during the dry season. To assess the effects of limited
and permanent irrigation on the crops, leaf temperature (MultispeQ (https://www.photosynq.com)),
and soil humidity (AquaPro (http://aquaprosensors.com)) were constantly monitored. Fertilizers were
applied accordingly in order to maintain the crops through the phenological cycle. Given that, the same
amount of fertilizers were applied for the experiments: 60 kgha−1 of P2O5 (diammonium phosphate)
and 130 kgha−1 of K2O (potassium chloride), as detailed in the experimental protocol available in the
Supplementary Materials section.

Figure 2 details some characteristics of the crop. As shown in plots (a), (b), the length of a plot
was about 2.75 m with a distance between plants of 25 cm and 30 cm between rows. Within each plot,
we defined 6 sampled areas with 1 linear meter in length (containing four plants). A ground-truth
was defined based on the direct measurements of plant chlorophyll using a SPAD 502 Plus meter
(Konica-Minolta) over these sampled areas. Measurements from the crop were obtained during three
stages of rice growth: vegetative, reproductive, and ripening. Figure 3b details the specifications of the
crop experiments reported here.

https://www.photosynq.com
http://aquaprosensors.com
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Figure 3. (a) Correlation between soil plant analysis development (SPAD) readings and leaf N
concentration [37]. (b) Experimental specifications.

Table 2 details how the dataset was collected, in which the SPAD value corresponds to the average
of 24 measurements conducted over each plot, as depicted in Figure 3b. All ground-truth data are
available through the Open Science Framework in the Supplementary Materials section. On the other
hand, Figure 3a shows the linear correlation used to relate the measured SPAD value with the leaf-blade
N concentration [37].

As mentioned, vegetation indices are widely used to quantify both plant and soil variables
by associating certain spectral reflectances that are highly related to variations in canopy chemical
components such as nitrogen. From the extensive list of vegetation indices (VIs) available [38–41],
we selected 7 VIs with sufficient experimental evidence and quantitative trait loci (QTL)-based
characterization regarding their high correlation with rice nitrogen [42]. Table 3 details the selected
VIs. These formulas are applied in different wavelengths for taking into account the changes in canopy
color, since several factors affect the spectral reflectances of the crop: solar radiation, plant morphology
and color, leaf angles, undergrowth, soil characteristics, and water.

In our system, the parrot sequoia camera has a solar radiation sensor that compensates the light
variations in the canopy. The change in the rice canopy color is perhaps the most notable variation
during the phenological cycle. In the vegetative stage, the green color is predominant whereas
in the reproductive stage, panicle formation starts and thus yellow features appear in the images.
In ripening, the maturation of the plants occur while the leaves begin to senesce, turning the yellow
color predominant. These changes can be observed in Figure 2c. Furthermore, different wavelengths
of light have a different level of plant absorption depending on the leaf composition given by several
genetic traits. In particular, the relation between the selected VIs in Table 3 with the photosynthetic
activity and canopy structural properties has allowed the association of certain spectral reflectances
that are highly related to the physico-chemical canopy N variations in plants, especially the green, red,
red-edge, and near infrared bands.
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Table 2. An example of a ground-truth dataset. The crop field was designed with three spatial
repetitions (Rep) containing 8 contrasting rice genotypes.

Plot Genotype Rep SPAD

1 AZUCENA 1 56.55
2 ELWEE 1 47.80
3 LÍNEA 23 1 54.55
4 UPLRI7 1 46.32
5 NORUNKAN 1 43.30
6 IR64 1 32.91
7 FED50 1 47.06
8 MG2 1 43.36
9 AZUCENA 2 49.26
10 IR64 2 42.59
11 LÍNEA 23 2 49.82
12 UPLRI7 2 48.15
13 ELWEE 2 41.29
14 FED50 2 46.29
15 NORUNKAN 2 42.82
16 MG2 2 38.96
17 FED50 3 49.20
18 UPLRI7 3 40.88
19 IR64 3 40.23
20 AZUCENA 3 55.81
21 NORUNKAN 3 43.96
22 ELWEE 3 49.70
23 LÍNEA 23 3 46.45
24 MG2 3 42.67

Table 3. Selected near infrared vegetation indices (extracted features). The ρ f term denotes the
reflectance of the frequency f ).

Name Equation

Normalized Difference
Vegetation Index [38] NDVI = ρ780−ρ670

ρ780+ρ670

Green Normalized
Difference Vegetation

Index [39]
GNDVI = ρ780−ρ500

ρ780+ρ500

Simple Ratio [38] SR =
ρ780
ρ670

Soil-Adjusted Vegetation
Index [39,40] SAVI = (1 + L)

(
ρ800−ρ670

ρ800+ρ670+L

)
with L = 0.5

Modified SAVI [40] MSAVI = 1
2

(
2ρ800 + 1−

√
(2ρ800 + 1)2 − 8(ρ800 − ρ670)

)

Triangular Vegetation
Index [39] TVI = 1

2

(
120(ρ780 − ρ500)− 200(ρ670 − ρ500)

)

Corrected Transformed
Vegetation Index [42] CTVI = NDVI+0.5

|NDVI+0.5|
√
|NDVI + 0.5|

The selected VIs exhibit a strong dependence on the NIR reflectance due to leaf chlorophyll
absorption, providing an accurate approach to determine the health status of the plants and the canopy
N. Most of the existing body of research focused on multispectral-based N estimations [14,21,40,42,43],
combine the information provided by several vegetation indices in order to avoid saturation issues.
For instance, the NDVI, which is one of the most common VIs used, tends to saturate with dense
vegetation. In turn, the NDVI alone is not accurate during the reproductive and ripening stages of rice
growth. Here, we combine several VIs across the crop stages, to ensure data on wavelengths located in
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the red-edge and another spectral reflectances that accurately express the healthy status of the leaves
(higher NIR and green-band readings).

2.3. UAV Stabilization Control

The estimation of the canopy N requires the precise extraction of Vegetative Index features from
the acquired multispectral imagery. Capturing aerial images during UAV hovering that accurately
matches with the GPS positions of the SPAD measurements at ground-level is essential.

As previously detailed in Figure 1, three closed-loop controllers are needed to regulate: (i) the X-Y
position based on GPS feedback, (ii) the Z altitude based on barometric pressure and laser readings
(pointing downwards), and (iii) the φ, θ, ψ attitude based on IMU data. The UAV is constantly subjected
to wind disturbances that cause unsteady angular motions and therefore imprecise trajectory tracking.
Consequently, aerial imagery captured across the crop with the UAV system is affected. To overcome
this issue, we replaced both roll and pitch PID-based controllers by a robust nonlinear backstepping
(BS) control.

The classical BS method has several advantages. It explicitly takes into account the nonlinearities
of the UAV model defined in Equation (A2) (see Appendix A), and most importantly, allows the
incorporation of a virtual control law to regulate angular accelerations. For this, we have derived
a desired acceleration function (DAF) for roll and pitch. This enhanced controller is called
backstepping+DAF (BS+DAF). Our goal is to use the dynamics equations of motion (EoM) defined in
Algorithm A1 within the control law in order to compensate for abrupt angular acceleration changes,
concretely in roll and pitch. The DAF terms improve the responsiveness of the control law to external
perturbative forces. Appendix B details the control law derivation for roll and pitch.

The BS + DAF control supports on the Lyapunov stability concept that guarantee asymptotic
stabilization around the equilibrium points. For our application, we require both roll φ a pitch θ angles
to remain in zero while the UAV is hovering above the crop for capturing multispectral imagery,
i.e., eφ = φd − φ→ 0 and eθ = θd − θ → 0. Otherwise, the set-point references for both roll and pitch
controllers are defined by the X-Y position controller.

As previously mentioned, high wind-speed perturbations affect the UAV during hovering.
Nonetheless, our controller law is sensitive to angular acceleration changes caused by external
wind disturbances, thanks to both error dynamics (e2) and the DAF terms (φ̈d) in Equation (A18)
(Appendix B). Given that, we present how to model the effects of the wind over the UAV aerodynamics,
by following the wind effect model (WEM) developed by [44]. Figure 4 details the control architecture
and how the WEM module has been incorporated as an external disturbance acting on the UAV
body frame.

ψ

φ

θ

6D Dynamics

V̇b = I−1
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Figure 4. Attitude (roll and pitch) control architecture. The UAV has a low-level PID-based controller to
drive each rotor. The proposed backstepping+DAF generates the references to the inner loop according
to the dynamics of the system. A wind effect model has been adopted from [44] to add disturbances to
our model.
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The WEM defines the relationship between the oblique airflow acting on a propeller and the
resulting forces and moments applied onto the UAV. In our quadrotor system, the oblique airflow
form and angle of 90o with the propeller azimuth angle. In terms of aerodynamics, the incoming
airflow induces an increase in vertical thrust (Toi), a side force (Fwind), and a pitching moment (Mwind).
The WEM presented by [44] uses blade element momentum theory to determine the aforementioned
effects. Here, we are interested in incorporating the effects caused to the thrust and the pitching
moment (Mwind) as a function of the magnitude of a given wind speed vector Vwind and the rotational
speed ω of each propeller driven by the rotor’s model. In this regard, the WEM is defined as:

Mwind =




cos
(

β + π
2
)

sin
(

β + π
2
)

0
−sin

(
β + π

2
)

cos
(

β + π
2
)

0
0 0 1







Mprop

0
0


+ l

2




C4T4 − C2T2

C1T1 − C3T3

0


 (1)

The angle β determines the direction of the Vwind vector. Depending on the direction of the
applied relative wind, certain propellers will be more affected by this external disturbance. Tran et al.,
in [44,45], propose the use of a weight function that assigns values between 0 to 1, where the maximum
value of 1 means the propeller is directly exposed to the wind. In Equation (1), C corresponds to the
weighting vector that affects the thrust T generated by each propeller. The parameter l is the distance
between non-adjacent propellers and Mprop is:

Mprop =
[
C1 C2 C3 C4

]



τ1

τ2

τ3

τ4


 (2)

Therefore, the scale of the weighting vector C is defined based on the magnitude of the applied
wind speed vector and the corresponding direction (the β angle between the relative wind vector
pointing towards the UAV body frame). In addition, the rotor’s speeds ω are required to calculate
the augmented thrusts T and torques τ (weighted by C). Further details on this model can be found
in [44,45].

Sections 3.1 and 3.3 present the results regarding the impact of precise UAV positioning on the
accurate estimation of the canopy N through the entire phenological cycle.

2.4. Multispectral Image Segmentation

Multispectral imagery is evaluated by using a multispectral image segmentation method called
GrabCut [34]. The original method is widely used for its ease of implementation and for the
excellent results in generating a binary classification; however, it suffers from the drawback of being a
semi-manual algorithm. The original GrabCut method requires a manual input during the algorithm
iteration in order to properly determine both background and foreground pixel values.

This section introduces a modified version of the GrabCut algorithm that is fully automatic,
thanks to an added refinement step using a guided filtering [46] to extract the relevant pixel information
associated with the plant’s canopy. Our approach solves an optimization problem using an energy
function that allows the proper labeling of texture in the multispectral image by using a Gaussian
mixture model. As mentioned, we use a refinement process based on a guided-filter by taking
into account information from all band channels of the multispectral camera: green, red, red-edge,
and near-infrared. The resultant multispectral image-mask includes only relevant pixel information
that accurately represents the canopy for the estimation of N.
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2.4.1. GrabCut Segmentation

The GrabCut method requires an initial model known as a trimap. This model consists of a
partition of the input image into three regions: a foreground TF, a background TB, and a region with
pixels that result from the combination of the foreground and background colors TU .

The image is modeled as an array of values z = (z1, ..., zN), and the output segmentation can
be a channel of values between 0 and 1 or a hard segmentation with a binary assignment (0 or 1).
The segmentation is written as α = (α1, ...αN) with 0 ≤ αn ≤ 1, or αn = {1, 0}.

The GrabCut algorithm also requires a model for the distribution of the foreground/background
colors and gray levels. This distribution can be represented as a histogram directly assembled from TF
and TB, as: θ = {h(z; a), a = 0, 1}. Under this trimap model, the segmentation algorithm determines
the values of α from the image z and the distribution model θ. The α values are calculated from an
energy minimization function, as:

E(α, θ, z) = U(α, θ, z) + V(α, z), (3)

where the sub-function U evaluates the fitness by assigning a low score if the segmentation (α) is
consistent with the image z, defined as follows:

U(α, θ, z) = ∑
n
− ln h(zn; αn) (4)

Instead of using the histogram as the estimator of the probability density function, the algorithm
uses a Gaussian mixture model in order to take into account the information coming from all channels.

V(α, z) = γ ∑
(m,n)∈C

[αn 6= αm]e−β(zm−zn)2
(5)

In Equation (5), the sum set C ∈ 3× 3 refers to the neighbors pixels in a given window, and the
the term β can be calculated according to Equation (6).

β =
1(

2E |〈(zm − zn)2|〉
) (6)

By using the global minimum in 7, the image segmentation is estimated as:

α̂ = arg min
α

E(α, θ, z) (7)

Algorithm 1 details the original GrabCut method. In order to eliminate the third manual step
of the algorithm, a fixed background image TB mask is used during the iteration, and a guided-filter
refinement process is applied to achieve an automatic segmentation, as detailed in Algorithm 2.
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Algorithm 1: Original GrabCut algorithm.
Step 1: Initialization of TB, TF, TU .
Initialize the trimap TF as the foreground
Initialize the trimap TB as the background
All remaining pixels are set as a possible foreground pixels TUF
Step 2: Iterative minimization.
Assign and learn GMM
Minimize energy function
Estimate segmentation image α
IF image α have visible errors GO to Step 3
Step 3: User editing.
Use the segmented image α as the new possible foreground pixels TUF
Input pixel hints for TB and TF
GO to Step 2

Algorithm 2: Modified GrabCut with guided filter calculation. In the algorithm, Er(I) denotes
a function that calculates the image mean over a radius r, the operations .∗ and ./ denotes the
matrix element-wise calculation, and q is the image output.

Step 1: Initialization of TB, TF and TU .
Initialize the trimap TF as the foreground
Initialize the trimap TB as the background
All remaining pixels are set as a possible foreground pixels TUF
Step 2: Iterative minimization.
Assign and learn GMM
Minimize energy function
Estimate segmentation image α
Step 3:Input image p, input guidance I, radius r, and regularization ε.
1: µI ← Er(I), µp ← Er(I), CorrI ← Er(I. ∗ I), CorrIp ← Er(I. ∗ p).
2: σ2

I ← CorrI − µI .*µI , σ2
Ip ← CorrIp − µI .*µp

3: a← σ2
Ip./(σ2

I + ε), b← µp − a. ∗ µI
4: µa ← Er(a), µb ← Er(b)
5: q = µa.*I + µb

2.4.2. Guided Filter Refinement

The guided filter (GF) [46] can be defined as a convolutional Bilateral Filter with a faster response
due to its O(N) computational complexity. In this regard, the output of each pixel denoted as q can be
expressed as a weighted average over the convolutional window W (i, j denote the pixel coordinates):

qi = ∑
j

Wij pj (8)

The GF implies that an image can be filtered using the radiance of another image as guidance.
We exploited this concept to filter our segmented plot mask created with the GrabCut algorithm,
with the aim of refining the segmented image with the original image as guidance. In this regard,
the weight used by the GF is given by:

WGF
ij (I) =

1
|ω|2 ∑

k;(i,j)∈ωk

(
1 +

(Ii − µk)(Ij − µk)

σ2
k + ε

)
, (9)

where WGF
ij depends entirely of the guidance image I. The parameters µk and σ2

k are the mean and
variance of the guidance image I estimated over a window wk, ε denotes a regularization parameter
and |ω| is the number of pixels in the window wk.
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Section 3.2 presents the results of applying the proposed modified version of GrabCut,
by comparing the method against traditional segmentation techniques such as thresholding, K-means,
meanshift, but also against the original semi-manual GrabCut method.

2.5. Machine Learning for N Estimations

As detailed in Table 2, the ground-truth for training machine learning (ML) algorithms was defined
based on the direct measurements of plant chlorophyll using a SPAD 502 Plus meter (Konica-Minolta)
over these sampled areas, as depicted in Figure 1. Datasets contain the measured SPAD value that
directly correlates with the leaf-blade N concentrations by following the linear correlation [37] defined
in Figure 3a. In this regard, measurements from the crop were obtained during three stages of rice
growth: vegetative, reproductive, and ripening, in which 3 trials were conducted per crop stage.
These datasets are the result of 10 flights per trial, capturing around 500 images, and yielding a
database of 1500 images per stage. Since 3 trials were conducted per crop stage, around 13, 500 images
were processed in this work. Figure 3b details the experimental specifications.

The ML methods were trained with a set of images accounting for the 60% of the entire database.
For the final estimations of leaf nitrogen, we used the remaining 40% of the database (testing phase of
the ML methods). The entire imagery dataset and the ground-truth available in the Supplementary
Materials section. Here, we report on the use of classical ML methods based on multi-variable
linear regressions (MLR), support vector machines (SVM), and artificial neural networks (NN) for the
estimation of the canopy N.

For MLR models, the VIs from Table 3 were combined by following the formula:

N = β0 +
7

∑
k=1

βk(VI)k, where the parameter βk changes accordingly to the growth stage of the

plant, by weighting each VI independently. In this regard, each crop stage will have an independent
MLR model that linearly fits the N content.

With the aim of improving the adaptability of the estimation models by considering several
nonlinear effects (dense vegetation, optical properties of the soil, and changes in canopy color),
this section presents the estimation results using support vector machines (SVM) and artificial neural
networks (NN). SVM models were used with different kernel functions with the aim of determining
the proper mathematical function for mapping the input data. Six different kernels based on linear,
quadratic, cubic, and Gaussian models will be tested for each crop stage independently.

Contrarily to the MLR and SVM methods, in which N estimation models are determined for
each crop stage independently, neural networks enable the combination of the entire dataset (SPAD
values and VI extracted features) into a single model that fits for the entire crop phenological stages.
Several non-linear training functions are tested with different hidden layers. In addition, we discarded
the use of deep-learning methods such as convolutional neural networks (CNN), due to the high
computational costs associated to the pooling through lots of hidden layers in order to detect data
features. For this application, we use well-known vegetative index features (reported in Table 3)
that have been widely used and validated in the specialized literature [14,40,42]. Other image-based
features such as color, structure, and morphology do not work well with multispectral imagery of 1.2
mega-pixel in resolution, compared to the 16 mega-pixel in the RGB image. In fact, the main advantage
of using VIs (as features for training), relies on having information at different wavelengths, providing
key information of the plant health status related to N.

In Section 3.3, we report a comprehensive comparison among multi-variable linear regressions
(MLR), support vector machines (SVM), and artificial neural networks (NN) for the estimation of
the canopy N. We used three metrics based on the root mean square error (RMSE), Pearson’s linear
correlation (r), and coefficient of determination (R2), detailed as follows:
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RMSE =
√

1
n ∑n

i=1(N̂i − Ni)2

r = ∑n
i=1(Ni−N)√

∑n
i=1(Ni−N)2

R2 = ∑n
i=1(Ni−N̂i)

2

∑n
i=1(Ni−N)2

(10)

where n is the total number of samples, N is the measured value (SPAD scale cf. Figure 3a), N̂ is
the estimated nitrogen, and N is the mean of the N values. In this application, the Pearson’s metric
indicates the linear relationship between the estimated value of N VS the measured one (ground-truth).
On the other hand, the R2 metric is useful since it penalizes the variance of the estimated value from
the measured one.

As mentioned, the ML models require the calculation of the VI formulas presented in Table 3,
in order to determine the input feature vector. Every image captured by the UAV is geo-referenced
with the DGPS system with a position accuracy of 35 [cm] (see Table 1). Given that, aerial imagery is
registered by matching consecutive frames according to a homography computed with the oriented
features from accelerated segment test (FAST) and rotated binary robust independent elementary
feature (BRIEF) computer vision techniques [47]. The UAV path is planned by ensuring an image
overlapping of 60%, which allows for the precise matching with the GPS coordinates of the ground-level
markers to ensure a proper comparison between the aerial-estimations and ground-measurements
of plant N. Part of this procedure is described in previous work reported in [48]. In turn, the metrics
described in Equation (10) report on the performance of the ML models based on the aerial-ground
data matching of canopy N. The aforementioned geo-referencing process is conducted by using the
affine transformation, a 1st order polynomial function that relates the GPS latitude and longitude
values with the pixel coordinates within the image. This procedure is also detailed in previous work
reported in [48].

Figure 5 details the procedure required by the machine-learning models. After registration,
images are segmented by using the proposed GrabCut method. Although all pixels in the image are
evaluated in Algorithm 2, we use pixel clusters of 10× 10 to calculate the VI formulas, as shown
in Figure 5a. After segmentation, pixels representing the rice canopy are separated from the
background, as shown in Figure 5b. All vegetation indices are calculated as the average within
each image sub-region.

At canopy-level, several factors affect the spectral reflectances of the crop: solar radiation and
weather conditions, plant morphology and color, leaf angles, undergrowth, soil characteristics, and
ground water layers. As mentioned in Section 2.1, the multispectral camera comes with an integrated
sunshine sensor to compensate light variations in the resultant image. In addition, the GrabCut
segmentation method deals with the filtering of undergrowth and other soil noises. Despite that, it
remains crucial to validate the accuracy of the selected VIs, since the estimation of N depends on
the accuracy and reliability of the extracted features. In this regard, Figure 5c presents several VI
calculations in order to analyze the variance of the VI features through the entire phenological cycle of
the crop. For this test, we calculated the VI formulas from 360◦ random images per crop stage under
different environmental conditions. We show the most representative VIs to nitrogen variations: simple
ratio (SR), normalized difference vegetation index (NDVI), green normalized difference vegetation
index (GNDVI), and soil-adjusted vegetation index (MSAVI). As observed, the low variance exhibited
through the entire phenological cycle allows us to use the VI features as inputs to the ML models
detailed in Figure 5d.
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Figure 5. Procedure required by the machine-learning models: (a) single images are processed by
using the proposed GrabCut segmentation method. Image subregions of 10× 10 pixels were analyzed.
(b) Pixel clustering in the Red+Green+Near-infrared (RGN) space. (c) Vegetative index calculation for
the foreground cluster. Low index variability was observed at each crop stage. (d) Machine-learning
methods applied for the estimation of the N canopy.

3. Results

The experiments reported in this paper were carried out during 2018 in the rice farms of the Center
of International Agriculture (CIAT). Trials were conducted during the dry season (June-September),
as detailed in Table 1. We conducted 3 trials per crop stage (vegetative, reproductive, and ripening).

3.1. UAV Control Results

Figure 6 shows simulation results to evaluate the performance of the proposed controller in terms
of wind-disturbance rejection. In plot (a), the desired trajectory (red line) was defined for the UAV to
cover the crop while following the trapezoidal velocity profile shown in plot (b). This trajectory profile
enables the UAV to hover at certain points (black dots) to capture aerial images. The maximum UAV
velocity was set to 1.5 ms−1.

In plot (a), a wind disturbance (Vwing = 9 ms−1) was added at the starting point of the trajectory,
causing the UAV to mismatch the desired path (the Vwing vector was applied onto the y + direction).
The response of the UAV driven by the BS-DAF attitude controller corresponds to the black line,
whereas the PID controller is the green line. As observed, the BS + DAF immediately counteracted
the disturbance by generating the corresponding roll command φ depicted in plot (d). This response
allowed the UAV to follow the path precisely, maintaining the position error along the y axis near to
zero, as shown in plot (c). Under this scenario, our system obtained a maximum tracking error of 2%.

A second wind disturbance was added when the UAV reached 10 m in altitude. In this case,
Vwing was applied onto the z-direction (z points downwards). As observed, an augmented thrust caused
a large altitude tracking error that affected the UAV for both control schemes similarly. Unlike for roll
and pitch, the BS+DAF control does not drive the altitude loop. In general, the UAV was able to position
in the hovering knot-points accurately (black dots in plot a), maintaining a minimum error with the
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GPS waypoints. For the rest of the trajectory, the results demonstrate that the backstepping + DAF is
accurate and reliable to reject external wind disturbances.
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Figure 6. (Simulation) Closed-loop trajectory tracking comparison between the proposed backstepping
(BS)-desired acceleration function (DAF) (black lines) and the classical PID control (green lines): (a) 3D
navigation results. Wind disturbances were added at five instances during the trajectory (black arrows).
The black dots indicate the UAV must stop to capture multispectral data. (b) Trapezoidal velocity
profile for the desired path. (c) Position errors. (d) Roll and pitch profiles.

3.2. Image Segmentation Results

Algorithms 1 and 2 are applied for each input image in an iterative manner. In Figure 7a,
two markers placed as geo-referenced guiding points appear in the RGB image (red dots in the
top-right corner). The algorithm provides to the user with the option to manually select these points
in order to remove them from the segmentation process. An example of semi-manual GrabCut
segmentation with minimal user interaction is shown in Figure 7d. If those points are not manually
removed, the corresponding pixels will be classified either in the background of foreground cluster
automatically. Subsequently, plots (b) and (c) show how the initial foreground and background are
defined. Plot (d) shows an example of applying Algorithm 1 to the input image from (a), whereas plot
(e) shows the results when combining the GrabCut with the guided-filter (GF) approach, yielding an
automatic segmentation process, as detailed in Algorithm 2. As shown in plot (e), the GF refinement
achieves richer detail in the final segmentation. This result can be compared against a traditional
Otsu’s threshold method shown in plot (f). Although the results from Figure 7e are promising,
we implemented a final refinement process based on the so-called GF feathering filtering, in which
Algorithm 2 is used with a carefully selected radius r and regularization parameter ε. The GF feathering
filtering enables a faster implementation of Algorithm 2 by avoiding the O(N2) computational
restriction of the convolution.

The quality of the proposed segmentation method was tested and compared against the binary
mask segmentation of three well-known methods: (i) k-means [49], (ii) mean-shift [50], and (iii) manual
threshold over the HSV color representation [51]. The acronyms used in the comparison results are
listed in Table 4. By applying the fully automatic segmentation method described in Algorithm 2, we
used the precision, recall, and the F1-score to measure the performance of the proposed segmentation
listed as GCFauto in Table 4. Figure 8 and Table 5 show the results.

For image pre-processing, the automatic GrabCut method in Algorithm 2 with the guided-filter
refinement enabled precise plot segmentation of multispectral imagery with richer detail of the canopy
structure and proper elimination of the background cluster. In this regard, Figure 9 shows the final
segmentation results. In plot (a), the segmented image is achieved by combining the multispectral
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image shown in plot (b) and the RGB images from plot (c). In plot (d), the values for the radius and ε

depend on the image size. For this application, those values were experimentally determined as r = 60
and ε = 0.0012. Without this segmentation method, significant image corrections would be needed.

(a)

(b)

(c)

(d) (e) (f)

Figure 7. Segmentation results: (a) Original image, (b) initial TF, (c) initial TB, (d) GrabCut segmentation
with manual hints, (e) Proposed GrabCut + guided filter (GF) refinement , (f) Otsu’s threshold + GF
refinement. Insets in plots d-f show closeups for each segmentation output.

Figure 8. F1 metric of all tested algorithms in Table 4.
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(a)

(b)

(c)

(d)

Figure 9. Final GF feathering filtering results for segmentation. (a) Example for an output image.
(b) α image from GrabCut using the complete Algorithm 2, (c) original RGB image used as guidance,
(d) refinement of image in plot (a) using the guidance from plot (b), r = 60, and ε = 0.0012.

Table 4. Acronyms for the segmentation methods tested.

Type Segmentation Algorithm Acronym

manual HSV threshold MCS
manual Manual GC No refinement GC

auto kmeans (K = 2) KM2
auto meanshift (BW = 2) MS2
auto meanshift (BW = 4) MS4
auto meanshift (BW = 8) MS8
auto meanshift (BW = 16) MS16
auto GrabCut +Fixed T_B + GF GCFauto

Table 5. Mean Results for precision, recall, and F1-score for 10 images.

Mean MCS GC KM2 MS2 MS4 MS8 MS16 GCFauto

precision 0.959 0.980 0.774 0.802 0.803 0.826 0.773 0.965
Recall 0.964 0.978 0.743 0.811 0.809 0.852 0.777 0.983

F1-Score 0.967 0.981 0.768 0.791 0.791 0.838 0.791 0.978

3.3. Nitrogen Estimations

In the following, we present a comprehensive comparison among multi-variable linear regressions
(MLR), support vector machines (SVM), and artificial neural networks (NN) for the estimation of
the canopy N. All these models were trained using the ground-truth (cf. Table 2) containing the
direct measurements of leaf chlorophyll based on SPAD readings. In this regard, the estimation
results are all given in SPAD scale, in which the linear relationship with nitrogen is defined as:
N = 0.079(SPAD)− 0.154, according to the work reported in [37].

3.3.1. MLR Models

Figure 10 shows the estimation results using the MLR. The samples-axis corresponds to the
aerial imagery used for the estimation of nitrogen thought the phenological cycle. As previously
mentioned, direct SPAD measurements were conducted for selected crop plots in order to assemble
the ground-truth dataset. Given that, our system selects those aerial samples matching with the GPS
coordinates of the ground measurements. Overall, the MLR achieved an average N correlations of
0.93 (V), 0.89 (V), and 0.82 (Ri). The data was filtered using a Moving Average Filter to reduce signal
fluctuations and smooth the estimation result. Table 6 details the numerical data. Since the coefficients
for the linear regressions were found and calibrated for each stage independently, we found strong
linear relationships in the vegetative stage between the VIs and the N accumulation. Through the
ripening stage, the yellow color becomes predominant and parcels cannot be distinguished with ease
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(as shown in Figure 2c). This changes in the canopy color and dense biomass accumulation tend to
saturate the linear relationships between the VIs and the canopy reflectances.         Figura 28. Evaluación Regresiones Lineales Etapa Vegetativa           Figura 30. Evaluación Regresiones Lineales Etapa Cosecha SP
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Figure 10. Multi-variable linear regressions (MLR). Numerical data reported in Table 6.

Table 6. Numerical data obtained from the multi-variable linear regressions (MLR).

Crop Stage Correlation RMSE

Vegetative 0.929 3.914
Reproductive 0.890 4.356

Ripening 0.822 2.318

3.3.2. SVM Models

We first tried to find a single SVM model for the entire crop phenological cycle; however,
the canopy reflectances and the VIs changed drastically from vegetative through ripening. In this
regard, an SVM model was defined for each crop stage independently, as shown in Table 7. In addition,
Figure 11 details the estimation results for the N dynamics. Based on these results, the following SVM
configurations are selected for our estimation system:

• Vegetative: Quadratic, correlation = 0.96, RMSE = 2.34, R2 = 0.927, ε = 2.
• Reproductive: Quadratic, correlation = 0.94, RMSE = 2.33, R2 = 0.892, ε = 2.
• Ripening: Quadratic, correlation = 0.87, RMSE = 2.04, R2 = 0.77, ε = 0.5.

3.3.3. NN Models

Neural networks (NN) with several hidden layers and optimization algorithms were tested. We
highlight the results with two and five hidden layers. In Figure 12, the NN with two layers achieved
a correlation = 0.964, RSME = 3.315, and R2 = 0.94. Increasing up to five layers, the NN achieved a
correlation = 0.986, RSME = 1.703, and R2 = 0.97. Several training functions were tested for each crop
stage, where the BFGS Quasi-Newton functions achieved accurate results for most of the vegetative
stages, whereas the Levenberg–Marquardt function for both reproductive and ripening. The numerical
data are reported in Table 8. Based on the results, the following NN configurations are selected for our
estimation system:

• Vegetative: BFGS Quasi-Newton, correlation = 0.986, RMSE = 1.643, R2 = 0.972.
• Reproductive: Levenberg-Marquardt, correlation = 0.944, RMSE = 3, R2 = 0.891.
• Ripening: Levenberg-Marquardt, correlation = 0.890, RMSE = 1.835, R2 = 0.792.
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Table 7. Numerical data obtained from support vector machine (SVM) with several kernels.

Kernel Crop Stage RMSE Correlation R2

Vegetative 2.34 0.96 0.927
Quadratic Reproductive 2.33 0.94 0.892

Ripening 2.04 0.87 0.770

Vegetative 3.75 0.90 0.827
Cubic Reproductive 12.28 0.34 0.119

Ripening 4.39 0.57 0.326

Vegetative 4.80 0.86 0.744
Linear Reproductive 5.88 0.81 0.656

Ripening 2.38 0.83 0.689

Vegetative 5.42 0.84 0.708
Medium Gaussian Reproductive 3.03 0.92 0.887

Ripening 2.35 0.84 0.713

Vegetative 5.87 0.79 0.634
Coarse Gaussian Reproductive 4.60 0.87 0.726

Ripening 2.97 0.81 0.660

Vegetative 6.07 0.76 0.579
Fine Gaussian Reproductive 4.02 0.91 0.882

Ripening 2.16 0.87 0.761
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5.2. Máquinas de Soporte Vectorial 
 

En esta etapa del documento se mostrarán las pruebas realizadas a las diferentes SVMs planteadas en 
el capítulo anterior. 

Dado que la distribución de datos para cada etapa (vegetativa, reproducción, cosecha) presenta una 
tendencia diferente, se realizarán pruebas separadas para cada fase de cultivo, tal como en el entrenamiento 
de las SVMs. Las máquinas fueron entrenadas con los conjuntos de datos previamente seleccionados, este 
proceso se reiteró para cada uno de los sets de datos correspondientes a cada etapa. Para las 3 fases se realizó 
el entrenamiento y predicción utilizando los 6 Kernel mencionados en capítulos anteriores. 

Se realizará así mismo una prueba en el cuál sea involucrado el parámetro 𝜖, esta prueba se llevará a 
cabo una vez se tengan los resultado de correlación y se concluya ¿Cuál fue la máquina que por etapa, 
presentó una mayor correlación?¿Cuál Kernel fue el utilizado en dicha máquina? Esto con el fin de analizar 
el comportamiento de la correlación frente a alteraciones en el valor del parámetro 𝜖 

Se presentan en las figuras, los resultados de las predicciones generadas por parte de cada una de las 6 
diferentes máquinas entrenadas con un Kernel en particular para todas las etapas. Los resultados por etapa 
se presentan en 3 gráficas separadas para una mejor visualización de la tendencia de los datos. En cada 
gráfica está presente el valor de groundtruth como referencia, esto con el fin de contrastar la distribución de 
datos predicha por las máquinas de soporte vectorial contra los datos reales. 

Las pruebas se harán con los siguientes Kernel: 
- Kernel lineal 
- Kernel polinomial cuadrático  
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Figura 33. Comparación Etapa Vegetativa (3) - SVR 
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Figura 39. Comparación Etapa Cosecha (3) - SVR 

Una vez se obtienen las máquinas que manifiestan una mayor correlación y sus correspondientes Kernel 
con base a las tablas, se procede a modificar el parámetro, con el fin de analizar el comportamiento de la 
máquina con diferentes valores de 𝜖. Se presentarán los resultados por etapa variando el parámetro 𝜖 en la 
sección de análisis de resultados. 
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Figure 11. Support vector machine (SVM). On the left, we have several kernels used for the vegetative
stage of the crop. Likewise, middle and right plots show the results for reproductive and ripening,
respectively. These results were achieved with a margin of tolerance ε = 2 for both vegetative and
reproductive and ε = 0.5 for ripening. Table 7 reports the numerical data.
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Figure 12. Artificial neural networks (NN). A 9:1 configuration was used for the two layer NN,
whereas a 17:12:9:6:1 configuration for the five layer. In addition, several training functions were tested.
Table 8 reports the numerical data.

Table 8. Numerical data obtained from the 5-layer NN with several training functions.

NN Training Function Crop Stage Correlation RMSE R2

Vegetative 0.979 1.986 0.959
Bayesian regression Reproductive 0.921 3.779 0.848

Ripening 0.67 4.405 0.462

Vegetative 0.985 1.687 0.971
BFGS Quasi-Newton Reproductive 0.938 3.203 0.880

Ripening 0.851 2.149 0.724

Vegetative 0.983 1.855 0.966
Levenberg-Marquardt Reproductive 0.9442 3.007 0.891

Ripening 0.890 1.835 0.792

Vegetative 0.952 2.952 0.907
Scaled Conjugate Gradient Reproductive 0.925 3.446 0.856

Ripening 0.862 2.115 0.742

3.3.4. Machine-Learning Comparative Results

Figure 13 shows overall N estimation results obtained for each machine learning model. In general,
we demonstrated strong correlations between the canopy N and the corresponding vegetative indices.
In the case of MLR models, the coefficients for the regressions were determined and independently
calibrated for each crop stage. We encountered that the N dynamics have strong linear dependencies
with MSAVI, GNDVI, and NDVI; concretely, during vegetative and reproductive stages. Table 9 reports
the overall numerical data.

From the ROC curve reported in Figure 13d, the accuracy (ACC) was calculated for each ML
model. Neural networks achieved an average ACC = 0.85, improving the estimations of canopy N
over the other ML models. In fact, by comparing the N-to-SPAD correlations reported on Table 9,
the correlation metric was improved over each crop stage. Table 9 compares the mean N estimations
achieved by each ML method against the mean SPAD-based N readings measured at ground level.
Mean results are presented for each crop stage: vegetative (V), reproductive (R), and ripening (Ri).
The last columns in Table 9 report the mean linear correlations between estimations and measurements.
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𝝐 RMSE CORRELACIÓN R2 
10 4,030 0.0000 0 
7,5 3,073 0.7615 0,5798482 
5 2,324 0.8306 0,6898657 

2,5 2,401 0.8198 0,6720121 
2 2,478 0.8184 0,6697144 
1 2,284 0.8540 0,7292768 

0,75 2,110 0.8699 0,7567429 
0,5 2,060 0.8770 0,7691721 

Tabla 10. Análisis Variación ϵ – Etapa Cosecha 

Partiendo del hecho que la región tubular que comprende los datos está en función del parámetro 𝜖, el 
híper-plano generado debe aproximarse más a los vectores soporte generando una función más aproximada 
a la tendencia de datos groundtruth. 

Las figuras 57 y 58 muestran la diferencia en cuanto a tendencia de datos con 2 valores diferentes del 
parámetro 𝜖 . 
 

   
Figura 57. Análisis ϵ=2 Figura 58. Análisis ϵ=0.5 

La figura 58 presenta un modelado más acertado si es contrastado contra el modelado de la figura 57, 
dado que, al tener el parámetro épsilon menor, el híper-plano debe tener una distancia menor a los datos a 
estudiar, siguiendo la tendencia de una manera más aproximada. 

Las siguientes gráficas muestran la unión de todos los datos diferenciando la forma de entrenamiento. 
La figura 59 muestra el resultado de la estimación con los datos entrenados por separado con las máquinas 
que mejor correlación y 𝑅2 presentaron, mientras que la figura 60 muestra el resultado de la unión de todos 
los datos y un solo entrenamiento para todos. Dado el resultado encontrado en esta sección, este set de datos 
fue entrenado con Kernel cuadrático con un valor 𝜖 = 2, parámetros que mostraron el mejor desempeño en 
el entrenamiento por separado. 

               
Figura 59. Estimación Total - SVR  Figura 60. Estimación Total Entrenamiento Único - SVR 
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ETAPA DE CULTIVO RED NEURONAL CORRELACIÓN RMSE R2 
VEGETATIVA BFGS Quasi-Newton  (BFG) – 15 N 0.986 1.643 0.972 

REPRODUCTIVA Levenberg-Marquardt (LM) – 6 N 0.9442 3.007 0.891 
COSECHA Levenberg-Marquardt (LM) – 6 N 0.890 1.835 0.792 

TOTAL - 0.973 2.170 0.948 
Tabla 20. Comparación Estimación Total – Redes Neuronales 

En la figura 62 se muestra el comportamiento total de las redes neuronales definidas previamente. A 
su vez en la figura 61 se observan los resultados obtenidos si en vez de realizar una red neuronal por etapa 
se implementa solo una red para el conjunto de datos total. Esta red neuronal tiene seis neuronas en su capa 
oculta y su función de aprendizaje es el algoritmo Levenberg-Marquardt, ya que esta fue la red que 
predominó en el mayor desempeño entre las demás redes implementadas. 

En la tabla 21 se logra observar la comparación cuantitativa entre las dos implementaciones de redes 
neuronales. 

   
    Figura 61. Estimación Total – Entrenamiento Único                Figura 62. Estimación Total – Entrenamiento Múltiple 

 
RED IMPLEMENTADA CORRELACIÓN RMSE R2 

Múltiple Entrenamiento 0.973 2.170 0.948 
Entrenamiento Único 0.85 4.85 0.706 

Tabla 21. Comparación entre implementaciones de redes neuronales 

La tabla 22 que se presenta a continuación, se realiza la comparación general de las máquinas con 
mejor desempeño en cuanto a su correlación en las diferentes etapas de cultivo, comparando los valores 
promedio de los datos estimados contra los datos groundtruth, y finalmente su correlación. 

 

Método 
Valor Nitrógeno Promedio Estimado Valor Nitrógeno Promedio Real Correlación 

Fases de cultivo Fases de cultivo Fases de cultivo 
Vegetativa Reproductiva Cosecha Vegetativa Reproductiva Cosecha Vegetativa Reproductiva Cosecha 

RL 36.923 30.766 42.669 
35.7906 29.6338 42.4207 

0.935 0.890 0.82 
SVR 35.7472 29.2902 42.5226 0,9699 0,9467 0,8770 
ANN 36.173 30.495 432.648 0.986 0.9442 0.890 

Tabla 22. Tabla Resultante Total 

 
6.2. Análisis ROC 
 

Una vez conocidas cada una de las máquinas que mayor acercamiento tienen a la realidad para cada 
una de las técnicas de Aprendizaje de Máquina, se procede a valorar el desempeño de clasificación de las 
distintas máquinas respecto a las etapas de cultivo. Para esto, se evalúa la capacidad que tiene cada una de 
las máquinas para discriminar los niveles de nitrógeno estimados según la etapa de cultivo a la que 
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corresponden, ya sea etapa de reproducción o de cosecha. En la figura 63 se puede observar las curvas de 
desempeño ROC entregadas por cada una de las máquinas. 

Cabe destacar que esta evaluación se hace únicamente entre las etapas de cultivo de reproducción y 
cosecha debido a que es en estas fases donde es más relevante conocer los niveles de concentración de 
nitrógeno para usos agrícolas. 
 
 

 
Figura 63. Curva ROC 

Además, en la tabla 23 se observa la tabla de Accuracy, que entrega el porcentaje de exactitud de cada una 
de las máquinas, indicando cuál de todas posee una mayor probabilidad de clasificar los datos correctamente. 
La máquina con un mayor nivel de exactitud según esta medición son las redes neuronales. 

 
 Exactitud 

Regresiones Lineales 0.82 
Máquinas de Soporte Vectorial 0.78 

Redes Neuronales 0.85 
Tabla 23. Accuracy 

 
 
 
 
 
 
 
 
 
 
 
 
 

SVM NN
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6. ANÁLISIS DE RESULTADOS 
 
6.1. Implementación de Técnicas de Aprendizaje de Máquina 
 
6.1.1. Regresiones Lineales Multivariable 
 

Se mostrarán los indicadores numéricos correspondientes al método de regresiones lineales en la tabla 
a continuación (3): 

 
REGRESIONES 

LINEALES 
Estimación sin filtrar Estimación filtrada 

CORRELACIÓN RMSE CORRELACIÓN RMSE 
Vegetativa (VEG) 0.935 3.688 0.929 3.914 

Reproducción (REP) 0.851 4.80 0.890 4.356 
Cosecha (RIP) 0.819 2.355 0.822 2.318 

Tabla 3. Comparación Regresiones Lineales 

Realizando una comparación entre los datos numéricos y las gráficas (28, 29, 30), se analiza que; 
aunque los datos filtrados suavizan como tal la tendencia de los datos, no siguen la referencia de cambios 
bruscos de los datos groundtruth. Si se fija la atención en la primera pendiente de subida de la figura 28, 
cabe notar que la estimación sin filtrar sigue esta recta de forma más aproximada que la función filtrada. 
Esto se remite al hecho de evitar vértices muy marcados por parte del filtro.  Sin embargo, si se realiza una 
estimación poco acertada, el filtro minimizará este error, caso de los sets de datos correspondientes a las 
etapas de reproducción y cosecha (Figuras 29 y 30). 

    
       Figura 55. Resultados Estimación total Regresiones Lineales  Figura 56. Resultados Entrenamiento Único Regresiones Lineales 

 RMSE CORRELACIÓN R2 
Regresiones ± Múltiples Entrenamientos 3.660 0.921 0.849 

Regresiones ± Único Entrenamiento 7.974 0.467 0.218 
Tabla 4. Comparación Regresiones Lineales ± Tipo de Implementación 

La figura 56 muestra las tendencias de datos superpuestas, tanto la estimada como los datos 
groundtruth. Esta gráfica muestra la unión de los datos estimados a partir de entrenamientos separados. A 
partir de esta gráfica se muestra una linealidad en los datos de entrada que pueden ser representados a través 
del método de regresiones lineales. 

En la figura 55 se muestra la unión de los datos, buscando los coeficientes de modelamiento todos a la 
misma vez, por lo que al intentar modelar una función más compleja éstos no presentan una buena 
correlación, la linealidad entre todo el conjunto de datos no se encuentra tan presente y los datos estimados 
se presentan muy distantes de los datos de referencia groundtruth, tal como se ve en la tabla 4.  
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Figure 13. Overall N estimation results. (a–c) show average data for the estimated N dynamics from
vegetative to ripening stages (between 86–101 days of phenological cycle). We compared the results
obtained from MLR (linear regressions), support vector machines (SVM), and neural networks (NN).
(d) ROC curve obtained for the three ML methods evaluated: ACC = 0.82 for MLR, ACC = 0.78 for
SVM, and ACC = 0.85 for NN. (e) Histogram of N correlations during crop growth from the initial
vegetative stage until ripening. Table 9 reports the numerical data.

Table 9. Overall numerical results for canopy N estimations.

N Estimations N SPAD Measurements Correlation

Methods V R Ri V R Ri V R Ri

MLR 36.923 30.766 42.669 0.935 0.890 0.82
SVM 35.7472 29.2902 42.5226 35.7906 29.6338 42.4207 0.9699 0.9467 0.8770
NN 36.173 30.495 43.2648 0.986 0.9442 0.890

By comparing the neural networks (NN) against the multi-variable linear regressions (MLR)
and support vector machines (SVM), the former estimator achieves higher correlations partly due to
the reliability and size of the assembled ground-truth database for training, i.e., reliable N datasets
(direct N-leaf measurements) with sufficient variations of the crops during the growth stage (see the
experimental protocol in Section 2). In addition, some VIs, such as the simple ratio (SR), tend to
saturate as long the the crop grows, but other vegetative indices that behave better with higher biomass
and N concentration compensate the effect of the saturated ones. The nonlinear combinations of these
VIs enable the NN to achieve accurate estimations.

Furthermore, we tested the effects of the UAV control architecture proposed in Section 2.3,
for improving the N estimations by means of precise position tracking during flight. Figure 14 presents
the results. Plot (b) shows the X-Y tracking trajectory for each flight control scenario. The UAV was
flying at a constant altitude reference of 20 m over the crop at a maximum speed of 1.5 m/s. The black
boxes represent the crop plots with ground-level markers where direct N measurements were taken
via SPAD. The green dotted circles show the points where the UAV stops and hovers during 4 s to
capture canopy imagery.
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Figure 14. (Experimental) Effects of UAV navigation on N estimations. (a) UAV over the crop
fields. The white markers placed at ground-level indicate the points for SPAD N measurements.
(b) UAV X-Y trajectory tracking. Comparison between the proposed BS+DAF attitude controller and
PID-based autopilot. The desired path was configured with hovering waypoints to capture canopy
imagery. The star-like markers correspond to GPS data of the taken images. (c) N estimation results.
(d) Histograms of N-to-SPAD correlations.

The paths followed by the UAV are shown for both controllers; one driven by the PID that comes
standard with the UAV autopilot, and the other driven by the proposed BS+DAF. Likewise, the star
markers represent the GPS points of the images taken while hovering (black color for the PID and
red for the BS + DAF). As observed, the attitude stabilization of the UAV seems to be more affected
with the PID, since the aerial samples within each hovering area (black star markers) are spread over
different positions. Instead, the aerial samples obtained with the BS + DAF (red star markers) tend to
be more concentrated within the crop plot of interest. The goal is actually capturing most images in the
GPS coordinates that accurately matches with the GPS position of the white markers at ground-level,
as depicted in Figure 14a.

Finally, Figure 14c presents the N estimation results achieved under both control flight scenarios.
Larger fluctuations, noise, and estimation errors are presented when the ML methods are trained and
tested with the imagery dataset captured by the PID-driven UAV. This is mainly due to the imprecise
X-Y positioning of the aerial vehicle during hovering (caused by improper attitude stabilization),
in which several images capture crop areas that do not necessarily match with the ground-level
markers, as detailed in Figure 14b. On the other hand, the proposed BS+DAF controller demonstrated
being suitable for the proper regulation of the angular motions of the UAV by compensating external
disturbances faster and achieving accurate X-Y positioning. As a result, The N estimations correlate
higher with the ground-truth. As shown in the histograms in Figure 14d, the N-to-SPAD correlations
grouped higher for the experiments driven by the proposed BS+DAF controller.
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4. Discussion

The results presented in this work demonstrate a significant improvement in leaf nitrogen
prediction in rice crops from images obtained via UAVs, validated with high SPAD correlations.
These results are thanks to a combination of technological contributions, namely: (i) a novel UAV
stabilization control scheme named BS+DAF that enables precise multispectral aerial image acquisition
and registration with ground-truth fiducials, even in the presence of strong wind perturbations, (ii) an
automated GrabCut image segmentation method, which leads to finer detail of the plant’s canopy in
the RGN space, as detailed in Figures 5b and 9d, and (iii) the successful application of machine learning
methods trained with the vegetation indices (VI) extracted from the segmented multispectral imagery.
Figure 5c confirms the increased reliability and accuracy per VI by calculating the data variance at
each crop stage.

In a similar manner, Table 9 summarizes the higher nitrogen-to-SPAD correlations achieved with
the implemented neural networks, and confirms the significant nonlinear relationships between leaf
spectral reflectances (VI) and chlorophyll-based estimated N concentrations. These N estimation
results are comparable to other state-of-the-art results presented in the scientific literature. In [52],
Figure 7b shows N estimations in rice using linear regression models, for which the authors report:
RMSE = 0.212, correlation r = 0.89, and R2 = 0.803. Our results (tabulated in Tables 8 and 9)
reach mean correlations for the vegetative stage (r = 0.986), reproductive (r = 0.9442), and ripening
stage (r = 0.89). In [53], Table 6 and Figure 5 present N-status estimations in rice using vegetation
indices calculated with aerial UAV imagery. Authors compared several regression models, with a
highest R2 of 0.74 using the LDM method. In our case, Table 8 lists higher R2 values from the
Levenberg–Marquardt method.

Our approach contributes novel solutions to commercial UAV-based phenotyping technologies,
particularly to image-based remote sensing applications that adopt photogrammetric geometric image
post-processing methods for image correction, and enables crop/plot analysis in real-time.

One important drawback of our solution was the estimation of canopy N for crops with higher
biomass. Counter to the expectation of finding a higher N correlation as a function of crop growth,
the correlation results decreased in the ripening stage, as depicted in Figure 13e and from the numerical
data presented in Table 9. We attribute this to the disproportionately high number of senescent leaves
(yellow color with a bandwidth of 570–590 nm) that do not properly match with the VI dominant
wavelengths (see Table 3). Consequently, we suggest introducing plant senescence reflectance as an
added variable for the discovery of novel vegetative indices to enhance our system.

5. Conclusions

This paper presents an integrated UAV system with non-invasive image-based methods for
the estimation and monitoring of the N dynamics in rice crops. Several challenges were addressed,
associated with image segmentation and UAV navigation control, to achieve reliable machine learning
training and highly correlated results to SPAD. The proposed BS+DAF attitude controller led to precise
UAV way-point tracking, with position errors below 2%. This was key to capture aerial multispectral
imagery during hovering that accurately matched with the GPS positions of the SPAD measurements
at ground-level. This reduces the need for computationally expensive photogrammetry methods.

Higher N correlations were achieved with neural networks: 0.98 in the vegetative stage, 0.94 in
reproductive, and 0.89 in ripening, with an ROC accuracy of 0.85. This is a promising result towards
the autonomous estimation of rice canopy nitrogen in real-time. With the advent of small AI-dedicated
systems on chip (SoC) and the powerful computing capabilities of our UAV system, we expect
upcoming work to achieve real-time computation of the machine learning methods presented in
this work.

Several challenges still remain for improving the N estimations, especially when the crop biomass
is high. Rice crops commonly have several mixed varieties per small plot areas. Therefore, besides the
assessment of the N dynamics as a function of the crop stages, it is also crucial to identify and
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classify the plants according to their genotype, given that nitrogen is highly sensitive to plant oxygen
consumption, root growth, among other variables. To this purpose, the aerial identification of different
plant varieties requires sensing spatial resolutions below 30 cm. In addition, high-dimensional data
clustering is needed for the extraction of relevant features according to the plant variety.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/20/3
396/s1, FILE S1: RAW data supporting image segmentation metrics, multispectral imagery imagery used
for machine learning testing, and nitrogen estimation results are available at the Open Science Framework:
https://osf.io/cde6h/?view_only=1c4e5e03b9a34d3b96736ad8ab1b2774. FILE S2: Experimental protocol for crop
monitoring available at https://www.protocols.io/view/protocol-bjxskpne. VIDEO S3: The video is available in
the online version of this article. The video accompanying this paper illustrates the steps performed during the
experiments.
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Appendix A. UAV Equations of Motion

Equations of motion (EoM) that describe the inertial and aerodynamics effects are introduced,
including a six-dimensional operator describing the spatial accelerations of the body frame as a
function of the UAV inertias, moments, and aerodynamics. Second, we introduce a nonlinear
MPC-based controller to regulate the stabilization of the UAV, specifically both pitch θ and roll
φ angles, under external force perturbations.

Our UAV is a Vertical Takeoff and Landing (VTOL) four-rotor drone. As shown in Figure A1a,
the body frame {b} is a six degree of freedom rigid body. Rotations about the body-frame axes are
designated by the Euler angles: roll (φ), pitch (θ), and yaw (ψ) following standard aerodynamic
conventions. In this sense, the 6D spatial acceleration V̇b ∈ <6x1 of the body frame can be written as:

V̇b =

[
ω̇b
υ̇b

]
=




φ̈

θ̈

ψ̈

ẍb
ÿb
z̈b




(A1)
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http://www.mdpi.com/2072-4292/12/20/3396/s1
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Figure A1. Physical parameters used for UAV modeling and control. (a) Equations of motion are
derived using three frames of reference: the inertial frame {i}, the body frame {b} located at the center
of mass, and the rotors frame {oi}, ∀oi : 1...4. Each rotor generates a vertical thrust (Toi) that depends on
the rotor angular speed (ωoi) and the geometrical properties of the propeller blades. (b) Blade properties
for deriving aerodynamics equations. We used Blade-Element-Theory computation to calculate both
lift and drag coefficients using the FoilSim III simulator provided by NASA [54]. Our UAV has a lift
coefficient of CL = 1.6 and a drag coefficient of CD = 0.042, since l/r = 0.7.

Both rotational ω̇ and translational υ̇ accelerations could be derived from the Newton–Euler
formulation, as:

V̇b = I−1
b [Fb − İbVb], (A2)

being Ib ∈ <6x6 the spatial inertia operator calculated at the Center of Mass (CM) of the body
frame {b}. It can be expressed as:

Ib =

[
Jb 0
0 mU

]
=




Ixx −Ixy −Ixz 0 0 0
−Ixy Iyy −Iyz 0 0 0
−Ixz −Iyz Izz 0 0 0

0 0 0 m 0 0
0 0 0 0 m 0
0 0 0 0 0 m




, (A3)

where Jb ∈ <3x3 is the inertial tensor with diag(Ixx, Iyy, Izz) being the moments of inertia, m is the
mass of the UAV, and U is a 3× 3 identity operator. Likewise, the term Fb ∈ <6x1 in Equation (A2) is
the 6D spatial force acting on the CM of {b}. Fb contains the effects caused by both inertial (Nb) and
aerodynamics (Tb) forces acting on the body frame:

Fb =

[
Nb
fb

]
=




(Nb,x) + (τφ)

(Nb,y) + (τθ)

(Nb,z) + (τψ)

fb,x
fb,y
fb,z



=




(θ̇ψ̇
[
Iyy − Izz

]
) + soi,b ĵ(T4 − T3)

(φ̇ψ̇ [Izz − Ixx]) + soi,b î(T1 − T2)

(θ̇φ̇
[
Ixx − Iyy

]
) + (T3 + T4 − T1 − T2)

(sψsφ + cψsθcφ) Tb
(−cψsφ + sψsθcφ) Tb

mg− (cψcφ)Tb




(A4)



Remote Sens. 2020, 12, 3396 26 of 31

In Equation (A4), we have determined an expression that incorporates the thrust produced by
each independent rotor (Toi) ∀oi : 1...4. These aerodynamic terms govern the generation of rolling
(τφ), pitching (τθ) and yawing (τψ) torques at the CM of the UAV, where the term soi,b = 0.18m is the
distance between each rotor to the body frame (see Figure A1a). In addition, Toi depends on the lift (L)
and drag (D) forces acting on each propeller, as shown in Figure A1b. It can be written as:

Toi = L + D
= 1

2 ρairω2
oi Aprop (CL + CD) ,

(A5)

where ρair = 1.20 Kgm3 is the density of air, ωoi, ∀oi : 1...4 is the rotor speed, Aprop = 0.013 m2 is
the propeller transversal area, CL is the lift coefficient, and CD is the drag coefficient. As shown in
Figure A1b, we have estimated both values as CL = 1.6 and CD = 0.042, respectively. In this sense,
the net vertical thrust (Tb) generated at the CM of the UAV can be calculated as:

Tb =
4

∑
oi=1

Toi (A6)

As observed in Equation (A4), Tb governs the generation of the linear forces. The expressions sψ,
cψ denote sin(ψ) and cos(ψ), respectively. Finally, the term m = 0.43 Kg is the mass of the UAV and
g = 9.81 ms−2 is the gravitational acceleration. In the forthcoming section, we will derive the control
strategy to regulate the angular motions precisely. Since our control approach will depend on the UAV
model, we introduce the computational steps to calculate the EoM in Algorithm A1.

Algorithm A1: EoM Computation.
Step 1: Aerodynamic forces
Read the rotors speed from encoders: ωoi, ∀oi : 1...4
Calculate both lift and drag forces acting on each propeller:
L← 1

2 CLρairω2
oi Aprop,

D ← 1
2 CDρairω2

oi Aprop
Calculate the thrust produced by each rotor: Toi = L + D ∀oi : 1...4
Calculate net thrust produced at CM: Tb =

4
∑

oi=1
Toi

Rotational forces (rolling, pitching, and yawing) torques onto the body frame:
τφ ← soi,cm ĵ (T4 − T3)
τθ ← soi,cm î (T1 − T2)
τψ ← τ3 + τ4 − τ1 − τ2
Linear forces acting onto the body frame:
fb,x ← (sψsφ + cψsθcφ) Tb
fb,y ← (−cψsφ + sψsθcφ) Tb
fb,z ← (−cψcφ)Tb
6D Aerodynamic Forces: [τφ τθ τψ fb,x fb,y fb,z]

T

Step 2: Inertial forces

Calculate 6D inertial operator: Ib =


 Jb 0

0 mU




Calculate inertial terms:
Nb,x ← θ̇ψ̇

[
Iyy − Izz

]

Nb,y ← φ̇ψ̇ [Izz − Ixx]
Nb,z ← θ̇φ̇

[
Ixx − Iyy

]

fb,z ← mg− cos(ψ)cos(φ)Tb
Calculate 6D Forces: Fb ← [Nb,x + τφ Nb,y + τθ Nb,z + τψ fb,x fb,y fb,z]

T

Step 3: 6D Equations of Motion (EoM)
V̇b ← I−1

b [Fb − İbVb]
Return V̇b
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Appendix B. Backstepping + DAF Control Derivation

The proposed control law has to be sensitive to small changes in both angular motions, therefore,
an error dynamics could be defined as a function of the angular rates, as:

ėφ = φ̇d −ωx,
ėθ = θ̇d −ωy

(A7)

In Equation (A7), both ωx and ωy are measured by the IMU sensor onboard the UAV. The goal is
to obtain a desired angular acceleration terms within the control law to account for small angular rate
changes. These terms are called desired acceleration function (DAF):

φ̈d = f (φ, φ̇, Fb)

=
[

1 0 0 0 0 0
]

V̇b,

θ̈d = f (θ, θ̇, Fb)

=
[

0 1 0 0 0 0
]

V̇b

(A8)

Both DAF terms φ̈d and θ̈d are extracted from the spatial acceleration V̇b ∈ <6x1 computed in
Algorithm A1. To make explicit the DAF terms from Equation (A8) within the backstepping, in the
following we focus on deriving the control law for roll (uφ).

From Equation (A6), we introduce a virtual control law that governs the error dynamics, yielding a
second tracking error e2 = ωd

x −ωx where φ̇d → ωd
x. In this sense, a proportional-derivative-integral

structure is defined for the virtual control law ωd
x, as:

ωd
x = kpeφ + φ̇d + ki

∫
eφ(t)dt , (A9)

where Kp and Ki must be positive constants, since the BS requires a positive definite Lyapunov function

(L) for stabilizing the tracking error: L
(
eφ

)
=

e2
φ

2 . Now, replacing Equation (A9) into the virtual control
error e2 yields:

e2 = ωd
x −ωx = kpeφ + φ̇d + ki

∫
eφ(t)dt−ωx (A10)

By following the same approach from Equation (A7), the error dynamics for ė2 is determined as:

ė2 = kp ėφ + φ̈d + kieφ − ω̇x (A11)

In Equation (A11), we have derived φ̈d corresponding to the DAF term for roll (see Equation (A8)).
In this regard, the computation of Algorithm A1 is required to close the attitude loop. Now, the control
action uφ is determined as:

uφ → τφ = Ixxφ̈,
φ̈→ ω̇x = I−1

xx τφ
(A12)

Replacing ω̇x from Equation (A12) in (A11) and isolating the control action, yields:

uφ = Ixx[kp ėφ + φ̈d + kieφ − ė2] (A13)

Since the calculation of ėφ and ė2 for the real system would introduce accumulative numerical
errors, we need to rewrite the control law to be dependent of the tracking errors: eφ and e2. By isolating
ωx = ωd

x − e2 from Equation (A10) and replacing it into Equation (A7):

ėφ = φ̇d − (ωd
x − e2) (A14)
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Replacing Equation (A14) into (A13):

uφ = Ixx[kp(φ̇d −ωd
x + e2) + φ̈d + kieφ − ė2], (A15)

and replacing ωd
x from Equation (A9):

uφ = Ixx[kp(φ̇d − (kpeφ + φ̇d + ki
∫

eφ) + e2) + φ̈d + kieφ − ė2]

= Ixx[kp(e2 − kpeφ − ki
∫

eφ) + φ̈d + kieφ − ė2]
(A16)

Finally, the expression for ė2 can be rewritten to follow the same form of ėφ in Equation (A14).
Likewise, ωd

x is also replaced by Equation (A9):

ė2 = φ̇d −ωd
x + e2

= φ̇d − (kpeφ + φ̇d + ki
∫

eφ) + e2

= e2 − kpeφ −��
��*

0
ki
∫

eφ

(A17)

In Equation (A17), the integration of the error can be eliminated since the control law
in Equation (A16) already ensures zero steady-state error for eφ. Replacing ė2 = e2 − kpeφ

in Equation (A16):

uφ = Ixx[kp(e2 − kpeφ − ki
∫

eφ) + φ̈d + kieφ − e2 + kpeφ]

= Ixx[eφ(kp − ki − k2
p) + e2(kp − 1)− kpki

∫
eφ + φ̈d]

(A18)

Equation (A18) presents the control law to regulate φ. This controller allows zero steady-state
error for roll via

∫
eφ, it is sensitive to small variations in roll rate via e2, and it directly depends on the

UAV model via the DAF term φ̈d (Algorithm A1). By following the same structure in Equation (A18),
the control law to regulate the pitch angular motion (θ) is:

uθ = Iyy[eθ(kp,2 − ki,2 − k2
p,2) + e2(kp,2 − 1)− kp,2ki,2

∫
eθ + θ̈d] (A19)
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