
HAL Id: hal-03014999
https://hal.inrae.fr/hal-03014999

Submitted on 17 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to make a pie: Reproductible research for empirical
economics and econometrics

Valérie Orozco, Christophe Bontemps, Élise Maigné, Virginie Piguet, Annie
Hofstetter, Anne Lacroix, Fabrice Levert, Jean-marc Rousselle

To cite this version:
Valérie Orozco, Christophe Bontemps, Élise Maigné, Virginie Piguet, Annie Hofstetter, et al.. How to
make a pie: Reproductible research for empirical economics and econometrics. Journal of Economic
Surveys, 2020, 34 (5), pp.1134-1169. �10.1111/joes.12389�. �hal-03014999�

https://hal.inrae.fr/hal-03014999
https://hal.archives-ouvertes.fr

How To Make A Pie:
Reproducible Research for Empirical Economics and

Econometrics

V. Orozco∗, C. Bontemps∗, E. Maigné†, V. Piguet‡,
A. Hofstetter§, A. Lacroix¶, F. Levert‖, J.M. Rousselle§

July, 2020

Abstract

Empirical economics and econometrics (EEE) research now relies primarily on the appli-
cation of code to data sets. Handling the workflow that links data sets, programs, results and
finally manuscript(s) is essential if one wishes to reproduce results. Herein, we highlight the
importance of “reproducible research” in EEE and propose three simple principles to follow:
organize your work, code for others and automate as much as you can. The first principle,
“organize your work”, deals with the overall organization of files and the documentation of a
research workflow. “Code for others” emphasizes that we should take care in how we write
code that has to be read by others or later by our future self. Finally, “automate as much as
you can” is a proposal to avoid any manual treatment and to automate most, if not all, of the
steps used in a research process to reduce errors and increase reproducibility. As software is
not always the problem and will never be the solution, we illustrate these principles with good
habits and tools, with a particular focus on their implementation in most popular software
and languages in applied economics.

Keywords. Empirical Economics; Literate Programming; Replication; Reproducibility; Soft-
ware ; Workflow

∗Toulouse School of Economics, INRAE, University of Toulouse Capitole, Toulouse, France
†Observatoire du Développement Rural, INRAE, Toulouse, France
‡CESAER, Agrosup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
§CEE-M, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
¶Université Grenoble Alpes, INRAE, CNRS, Grenoble INP, GAEL, Grenoble, France
‖SMART-LERECO, INRAE, Rennes, France

1

1 Introduction

Economists love to use the metaphor of a pie to illustrate some basic economic concepts. However,

we must acknowledge that very few among us describe our work — from the beginning to final

publication — as clearly as any pie recipe in any cookbook. In the best case, when supplementary

material is available for a published paper, we end up with a detailed list of ingredients, such as

the source of the data, their contents or the data sets themselves and some code.1 However, the

recipe used for a paper is typically not entirely known to the reader (see Chang & Li, 2017). First,

either data or codes (the ingredients) are often unavailable. Second, there is frequently little or no

documentation of some stages of the research process, and the documents available (the recipes)

are insufficient to understand all stages. Third, even when the code is available, it does not always

work, possibly because of errors, incompleteness or inaccuracy of the version provided. One might

think that the cook forgot some crucial elements such as when to do what and in what order.

Fourth, in some cases, the code works but does not yield the same results (perhaps the code pro-

vided is not the final code used by the authors). Even to the cook himself, the cooking process can

be fuzzy and poorly recorded. Thus, the pie may taste different, depending on the cook. Finally, in

other cases, the code works but is too difficult to understand. To cope with these situations, some

readers write to the authors, asking for the code or explanations. However, as with cooks, some

authors simply do not share their recipes. It is therefore quite difficult to replicate a paper, even

when one possesses the main ingredients and follows the model description or empirical strategy

reported in the published paper.2

Like anyone, researchers do make mistakes. Dewald et al. (1988) and McCullough et al. (2006)

suggest that the frequency of inadvertent errors in published articles is not low.3 A few years

ago, the so-called “Reinhart & Rogoff case” shed light on many issues closely related to a lack

of reproducibility in an important research process. The paper was published in one of the most

selective journals, namely, the American Economic Review, and the results have been used to pro-

vide insights for governments from across the globe tempted to pursue debt reduction, at the cost

of an austerity policy (Reinhart & Rogoff, 2010). A controversy emerged when, four years later,

Herndon et al. (2014) revealed that “selective exclusion of available data, coding errors and inap-

propriate weighting of summary statistics lead to serious miscalculations” in the original paper,

which motivated them to refute Reinhart & Rogoff’s main results.

1In this article, we will use the terms program, code and script interchangeably.
2Chang & Li (2017) attempt to replicate 67 papers published in 13 well-regarded economics journals using author-

provided files. They obtain data and code replication files for 29 of 35 papers (83%). They successfully replicate the
key qualitative results of 22 of 67 papers (33%) without contacting the author and replicate 29 of 59 papers (49%)
with assistance from the authors. They conclude that “economics research is usually not replicable”.

3We are not addressing here ethical problems or falsification, even if such issues have become prominent in recent
decades. Martinson et al. (2005) show that 25% of scientists admitted to having fabricated, falsified or modified
data or results at least once, while “the number of retraction notices has shot up 10-fold, even as the literature has
expanded by only 44%” (Van Noorden, 2011).

2

These previously unnoticed weaknesses and errors may have been avoided if the code had been

available for checking by referees, other researchers or students. The lessons of this symptomatic

case, although clearly stated by the scientific community (see, e.g., Höffler & Kneib, 2013), have

not been fully learned, even though some initiatives have recently emerged. First, although few

economic journals have an online archive of data and/or code and/or strict rules for ensuring

replicability, this situation is slowly changing.4 Indeed, Appendix A shows that increasingly more

journals are leading the way toward improving data and code availability online and impose condi-

tions related to such availability prior to final publication. Some journals have a tighter replication

policy and even check the provided material during the editorial process (e.g., American Journal of

Political Science, American Economic Association, see Vilhuber et al., 2020). Other journals have

very recently appointed data editors (e.g., Review of Economic Studies, Economic Journal, Cana-

dian Journal of Economics, and so on) in order to promote and improve articles’ reproducibility.

However, journal’s policies may not ensure reproducibility of the research because either the shared

numerical materials are provided with a low quality (McCullough, 2018) or because of human or

resources constraints. Christensen & Miguel (2018) note that a large share of published papers

has a data exemption, mostly for confidential reasons. Even if this might be an obstacle to the

enforcement of those policies, it shouldn’t refrain good practices.

Second, platforms such as ExecAndShare (Hurlin et al., 2014a,b) and Code Ocean (Staniland,

2018; Stata News, 2018) have recently been created and allow online replication of papers. There is

also a replication wiki in economics (Höffler, 2017).5 ScienceDirect also presents some “executable

papers” (Gorp & Mazanek, 2011), while some journals, such as the Journal of Applied Econo-

metrics, have a replication section (Pesaran, 2003). New journals such as ReScience (Rougier

et al., 2017) or the International Journal for Re-Views in Empirical Economics (IREE), which

was founded in 2017 and is the first journal that intends to publish replication studies based on

microeconomic data, are now devoted to the publication of computational replications. However,

the path toward an academic world in which all published papers in empirical economics and econo-

metrics (EEE) would be replicable is still not well paved, and there are still many voluntary or

involuntary reasons for the nonreproducibility of published papers in EEE (Duvendack et al., 2017).

We argue that the replication of published results, whatever the definition of replication used,

should be recognized as an essential part of the scientific method. We will provide more details

on these definitions in Section 2. We agree with Huschka (2013): “Only results that can be repli-

cated are truly scientific results. If there is no chance to replicate research results, they can be

regarded as no more than personal views in the opinion or review section of a daily newspaper ”.
4According to McCullough (2009) and Vlaeminck & Herrmann (2015), 7 journals had such a policy in 2009, while

29 (out of 141) did in 2012.
5This wiki is a database of replication articles (published or working papers) and promotes reproducible research.

Each replication study is described on a page that reports the availability of raw data, type and degree of replication,
a link to the replication article, and so on.

3

We believe that scientific journals and institutions financing research, such as the National Science

Foundation (USA), and European Research Council (Europe), as well as universities and research

centers, should at least provide clear incentives or, even better, impose minimal mandatory data

and code policies for funded research programs. At the individual level, any researcher, when act-

ing as a referee, should ask for data and code at the early stages of the publication process so that

the article can be evaluated in light of its sources. While firms develop quality management pro-

grams and engage in ISO certification, universities barely promote reproducible practices; provide

examples; and teach those principles, methods and tools in their doctoral programs (Höffler, 2013).

Improving our working habits towards more reproducible research is a long-term endeavor that

will require the commitment of researchers, journals, and research institutions and that will nat-

urally take time and continuous efforts. Opponents to reproducible research argue that these

practices are time consuming, too constraining, and not worth the small benefit, if any (Donoho

et al., 2009). We do not deny the induced cost by a change in working habits, but we briefly

enumerate some of the benefits of applying a reproducible research approach when conducting

research in EEE. The first benefit goes directly to researchers (Desquilbet et al., 2019). Gentzkow

& Shapiro (2014) observe that, in empirical research, we repeat tasks that we have already done

or that others may have already done. Writing reusable and shareable code improves our own effi-

ciency, participates in a global improvement of efficiency for communities using the same practices

(Stodden et al., 2013) and is thus prone to accelerate research (McCullough, 2009). This process

is particularly beneficial for young researchers and students that could access reproducible exam-

ples and programs, eventually improving them in an “iterative refinement” (Baiocchi, 2007) and

treating new questions. It has also been shown that sharing all the materials used in a paper may

increase the impact of the article, the authors’ notoriety and emphasizes the authors’ numerical

and computational skills (Gleditsch & Metelits, 2003). Another invaluable benefit comes from an

increase in the credibility of the research and in the public trust in science (Leek & Peng, 2015).

The objectives of this paper are threefold:

First, we propose three main principles to guide the actions of any researcher in EEE toward

a higher degree of reproducibility of their work. The research process has, in recent decades, been

driven by new data, tools, and methods and by the extensive use of computers and codes (see Butz

& Torrey, 2006).6 Therefore, most, if not every, researcher in EEE is now also a programmer,

albeit probably one who lacks the skills, best practices and methods that are now standard in

other disciplines such as computer science. These principles are general enough to cover the entire
6There has been a significant decrease in the share of theoretical articles in the top-three economics journals

(American Economic Review, Quarterly Journal of Economics, Journal of Political Economy): from 51% in 1963
to 19% in 2011 (Hamermesh, 2013). This decrease was in favor of empirical papers using data and theoretical papers
with simulation.

4

research process. Applying them should help to improve the research processes and can be done

with different levels of effort. Researchers involved in work packages embedded in funded research

projects may identify that some principles are already implicit in their project milestones. These

principles are simple and can cover a great diversity of actions. They are also easy to teach and

to implement for any empirical work, even for inexperienced students. Thus, many smaller-scale

research projects involving only a couple of researchers should also benefit from a more structured

approach in their research.

Second, we describe simple and practical tools and methods that can help to achieve a better

(and often easier) work organization. Reproducing research results is challenging in our field, where

production is often assembled by manual cutting and pasting of “some results” (tables and graphs)

produced by “some statistical software” using “some data” and “some treatments” generated by

“some code”. Following LeVeque (2009), we argue that “constructing a computer program isn’t so

different from constructing a formal proof ”. Since researchers are unaware of the tools and best

practices for efficiently writing code, learning by doing is a common practice (Gentzkow & Shapiro,

2014; Millman & Pérez, 2014). We acknowledge that the problem is not always a software problem

and that software will never be the solution, but a greater knowledge of the tools developed and

used in other scientific communities could do no harm.

Third, we address the problem of research programs done in collaboration and/or with coau-

thors. The average number of authors per paper published in the top-five economics journals has

increased over time, and research is mostly done within research projects.7 This evolution induces

more interactions between coauthors who need to improve their work organization. More inter-

actions create more complexity and require documentation of each step of the research process.

Similarly, we ask students to collaborate in their end-of-course projects — which can look like

research projects — and we should be able to show them good examples. We should also take into

account the unusual length of the publishing process in EEE compared to other disciplines.8 The

length of the process affects a researcher’s memory of how and where programs, data and results

are located on a hard drive, and the process is prone to forgetfulness and omissions.

The practices and tools reported here are drawn from our own experiences and readings and

thus are not an exhaustive reporting of all methods and tools used in EEE. We will focus on and

illustrate practices using simple tools that are easy to implement using off-the-shelf statistical soft-

ware or languages popular in our community (e.g., Stata, R, SAS, MATLAB, Mathematica, Gams).
7In the early 1970s, three-quarters of articles were single authored, and the average number of authors per paper

was 1.3. By the early 1990s, the fraction of single-authored papers had fallen to 50%, and the average number of
authors reached 1.6. Most recently (2011–2012), more than three-quarters of papers have at least two authors, and
the average number of authors is 2.2 (Card & DellaVigna, 2013).

8According to Björk & Solomon (2013), economics journals have the longest publishing delay: 17.70 months
compared to physics at 1.93, biomedicine at 9.47, mathematics at 13.3, and arts and letters at 14.21.

5

We will also mention less statistically oriented software (Python, Julia). Some papers and books

have described and illustrated reproducible practices using specific software such as R (Meredith

& Racine, 2009; Gandrud, 2015; Xie, 2015; Xie et al., 2018), Stata (Gentzkow & Shapiro, 2014;

Jann, 2016, 2017; Rodriguez, 2017), SAS (Lenth & Højsgaard, 2007; Arnold & Kuhfeld, 2012),

Mathematica (Wolfram Research, Inc., 2008) and Python (Bilina & Lawford, 2012), but to the

best of our knowledge, such a broad presentation of principles leading to better practices using

different software, or no software at all, has not previously been undertaken. We emphasize here

also that many of the practices and methods proposed in this paper can be implemented indepen-

dently of researchers’ usual practices, preferred software or data confidentiality level. It should be

straightforward for EEE students and young researchers, who are not bound to old practices, to

adopt these principles.

The paper is organized as follows. In Section 2, we introduce the various notions of reproducibil-

ity and propose three main principles that lead to reproducible research. Section 3 is dedicated to

the organization of the work, Section 4 addresses coding, Section 5 discusses automation. In each

of Sections 3 to 5, a gradient of solutions is proposed, from simple to more technical. Section 6

concludes the paper.

2 Reproducible Research

The idea of reproducible research was defined by geologist John Claerbout as the possibility of the

“replication [of a paper] by other scientists” (Claerbout, 1990; Fomel & Claerbout, 2009). This no-

tion has since circulated and evolved, primarily in physics and computational sciences, in addition

to global reflections on science and the goals of scientific publication. Building on the definitions

proposed by Hunter (2001), Hamermesh (2007) proposes to distinguish the following two notions:

“pure replication” and “scientific replication”. The idea of “pure replication” refers to the ability

to replicate almost exactly the research at hand, mostly for validation. This notion is essential

in EEE, where the publication process is quite lengthy and therefore the need for researchers to

replicate former results is crucial. The idea of “scientific replication”, however, corresponds to the

ability to reuse the research materials on another data set and can be seen as a robustness test or

as an attempt to extend the initial work (see also Clemens, 2017).

The definition and concept of reproducible research has thus evolved across disciplines, with re-

finements, subtle distinctions or even conflicting terminologies (Stodden et al., 2013; Barba, 2018).

For many, a research project would be classified as reproducible if the authors of the project pro-

vided all the materials for any other researcher to replicate the results without any additional

information from the author. In a strict sense, this means that a replication data set exists and is

available and that managing the entire process, beginning with data preprocessing and ending with

6

the paper, including all steps in the descriptive analysis, modelization and handling of results, can

be repeated. Thus, this definition applies to a research project that is composed of many elements

and not solely to a paper. This notion acknowledges that “a scientific publication is not the schol-

arship itself, (. . .) the actual scholarship is the complete software development environment and

the complete set of instructions which generated the figures” (Buckheit & Donoho, 1995), referring

to “Claerbout’s Principle” (de Leeuw, 2001).

How to achieve reproducibility is also a matter of intense debate. For many, including Claer-

bout (1990), replication is mainly a technical problem that “can be largely overcome by standardized

software generally available that is not hard to use”. For Schwab et al. (2000), the process of repro-

ducing documents includes some technical components and a set of naming conventions. Others,

such as Long (2009), invoke workflow management as a cornerstone for replication. These views

have primarily been expressed in computer science, where code is the central element, but they

can be transposed into EEE at various levels of granularity. Reproducible research can be roughly

achieved without any specific additional software using only some common-sense rules and habits

or, on the contrary, at a very fine level with a detailed description of each piece of each element

involved in the process, including not only the code, of course, but also the software and OS ver-

sion. It all depends on the project and on the expected or intended level of precision or reusability

by other researchers.

At this stage, it is important to distinguish the quality of the management of the research

process from the quality of the research itself. A stream of the economic literature focuses on

the related problem of transparency and selection bias in methods and results in academic jour-

nals (Christensen & Miguel, 2018). These papers focus on the replicability of certain econometric

methods, leading not only to practices such as cherry-picking and publication biases but also to the

failure of replication due to opacity in the research process (Ioannidis, 2005). We will focus here

on the practices used during the production process of a research project leading to publication

and not on the methods used within the research process. Returning to the pie analogy, the goal

here is not the final quality or taste of the pie but the reproducibility of the process leading to the

production of the same pie, whatever its taste. Thus, reproducible research should be used even

for papers with modest publication objectives and not only for top-ranked papers. Note also that

some top-ranked papers are not reproducible (see, e.g., Herndon et al. (2014) concerning Reinhart

& Rogoff (2010)’s paper, McCrary (2002) for Levitt (1997)’s paper and Levitt (2002)’s response,

Foote & Goetz (2008) for Donohue & Levitt (2001)’s paper and Donohue & Levitt (2008)’s reply,

and Rothstein (2007) for Hoxby (2000)’s paper and Hoxby (2007)’s answer).

We are not focusing here on a particular definition; on the contrary, we examine all practical

issues linked to any of these notions. Our goal is to promote reproducibility in all its dimensions

7

by providing advice, methods and tools. Hence, we use the words reproducible, reproducibility,

replication and replicability, in a very broad sense, throughout this paper. All definitions also

include some degree of sharing (either privately or publicly) of the materials used in the complete

process preceding publication.

Previous papers attempted to delimit the notion of reproducible research to a set of precise

rules or principles to apply in specific contexts and software (Sandve et al., 2013; Gentzkow &

Shapiro, 2014; Hinsen, 2015). We propose only three main and simple principles to enhance the

reproducibility of research in a broader sense. These principles are as follows:

• Organize your work

• Code for others

• Automate as much as you can

These three principles should not been seen as separate elements to apply sequentially on the

path toward increasing the reproducibility of research but as interacting within a researcher’s ev-

eryday practices. Note that these principles are already (at least partly) implicitly embedded in

our own usual practices. Most of these principles can be applied gradually such that each practi-

tioner may improve his own practices without investing and at low cost. The checklist provided in

Appendix B may be used to read the paper in a nonlinear way, with each checklist question topic

leading to a section in the paper.

Whether we use “good” or “bad” practices is a personal question and is not central to the

approach. What matters here is the ability to reproduce, explain and share the key elements used

in the process, leading to a result published in a journal. Following the pie analogy, “consumers”

may be interested not only in the result but also in the ingredients, the recipe and all the cooks’

little secrets that made the result enjoyable and meaningful.

3 Organize Your Work

A research project can be a complex process modeled by Long (2009) as a cycle that typically

exhibits the following sequence: plan, organize, compute, document. The cycle breaks down into

multiple iterative phases. At the beginning of the project, plans are rather general and become

more precise as the project progresses. Some phases can be sequentially executed, while others

may overlap. This explains why the organization of a project has consequences throughout its

life. Therefore, it is better to consider and plan the organization at the beginning of the project.

This is particularly true for “big” projects involving a great number of researchers but remains

valid for the most common situation of research done by a single author and leading to an output

8

comprising one research paper.

One mandatory principle for achieving reproducible research is thus to organize the whole

process and, specifically, to organize all the tasks needed and involved in the process leading to

publication. These ingredients need to be properly organized if the pie is to be cooked again. It

should be precisely known at which step in the recipe (phase and task of the project) which ingre-

dients (e.g., data, methods) and which recipes (e.g., codes, documentation) are used and what are

the interactions and relationships between each element to the resulting pie (e.g., project results).

This process involves addressing related topics: task and documentation writing, file organization,

workflow management and file manipulation. Many organizational forms can be considered: some

are relevant for individual research projects, while others are better suited for projects involving

many researchers or a team.

3.1 Organizing Tasks and Documentation

A good way to manage a project consists of knowing all the project’s tasks and their contents,

outcomes, organization and goals. It is useful to know the different people involved and their roles

in the project and task deadlines. Of course, in a research project, tasks will evolve, as hypotheses,

results and choices may change and reshape the project. It is thus necessary to organize the work

and to document the tasks completed, directions abandoned and new directions chosen. For that

matter, documentation is the key element. In the absence of any documentation, no research would

be reproducible.

3.1.1 From Post-Its to Task Management Systems

For many researchers in social sciences, the usual practice is to write some sort of post-its or to-do

lists of things to remember or to write notes in a notebook (always better than loose sheets of

paper). This notebook is in fact a precious record of the research process and contains very use-

ful information. However, from a long-term perspective — that is, from a reproducible research

perspective — electronic documentation should be preferred to paper support for many reasons.

First, digital documentation can easily be transformed into a printed archive of the work as long

as no information is deleted.9 Second, digital notes can easily be structured (and restructured).

Organizing notes in chronological order (as in a paper notebook) is not the only possibility. Notes

can be structured according to tasks or states. Third, it is easier to search in the document, rather

than losing precious time turning a notebook’s pages.10 Finally, unlike a physical notebook, the
9It is useful to include the date and name of the current file at the beginning of the document. This will facilitate

its retrieval when consulting a printed version of the notebook.
10However, to facilitate the search among dozens of files, indexation of all documents is recommended using one

or several keywords enclosed by specific delimiters (e.g., “:RR:” is a possible index for this paper).

9

document, if stored on a network drive, may be accessible even when out of the office.

There exist a wide range of technologies, from basic to more complex systems, that can be im-

plemented to handle these electronic documents. Text files (such as Readme files) can be a simple

and efficient way of documenting any element used in a task and even the task itself (Baiocchi,

2007; Dupas & Robinson, 2013). Other simple tools involve lists and spreadsheets to keep track

of ideas and record notes and information about tasks. However, in team projects, interactions

between collaborators are common, and these simple tools cannot be used to record interactions

and each individual’s notes.

Electronic laboratory notebooks (ELNs) are a more convenient way to organize and manage

notes. These applications make it possible to synchronize individual notes across platforms (com-

puter, tablet, phone). When working in a team, to facilitate communication between collaborators,

ELNs are now often accompanied by a tool that allows users to share files and write in real time.

Specialized ELNs initially developed for the transcription of experiments now have extended fea-

tures for usability, security (password protection, access rights), compatibility and backup. eLabFT

is one example of a specialized open-source ELN (LabsExplorer, 2019), while Evernote, OneNote

and Etherpad are the most common general-purpose ELNs used today.

Finally, task management systems (TMSs) offer features for a more general collaborative and

centralized task organization. The usual way to share information with coauthors is to exchange

emails where hypotheses, programs and data are shared and discussed through long sequences of

carefully stored messages. This is far from a clean documentation strategy, as it generates numerous

messages that mix different topics and may lead to ambiguous decisions (see the explicit example

in Gentzkow & Shapiro, 2014). Such written elements are difficult to maintain in the long run,

and searching for some piece of information (such as a sequence of decisions), in numerous emails

with possibly the same title can be very complicated. On the contrary, TMSs are designed to help

people “collaborate and share knowledge for the accomplishment of collective goals” (Wikipedia). In

the design of TMSs, each task is represented as a card that can contain a description and attached

exchanges with collaborators. Each task can be assigned to a collaborator and can be moved into a

“To do”, “In progress” or “Done” category on a dashboard as soon as the state of the task changes.

A due date can be added. Each dashboard is filled with vertical “lists” that constitute the task

prioritization system, a functionality that is not included in ELNs.11 Several TMSs exist and are

available on the web, e.g., Trello, Asana, MS Project and Wrike.
11TMSs have many more functionalities, such as the possibility to keep track of all tasks, even completed ones,

either on the web service itself or by exporting it in a numerical format (such as JSON, csv); the possibility
to measure the time spent per task; the ability to draw Gantt diagrams (allowing users to visualize the project
schedule with bar charts that illustrate the start and completion dates of different tasks); calendar sharing; file
versioning (including the ability to link to GitHub); and the configuration of email notifications depending on due
dates. Another interesting feature of TMSs such as Trello is that they can be linked with ELNs (OneNote, Evernote).

10

3.1.2 From Comments to Task Documentation

Documenting a research project is often regarded as a painful and time-consuming activity. How-

ever, many dimensions of documentation are easy, helpful and time efficient. The documentation

of tasks and their purpose is often implicit (names, habits) and should be explicitly stated to

ensure some reproducibility and traceability. This is not merely a matter of writing additional

comments or documents “on” or “in” the code or “in” the working paper. Documenting tasks is

an important aspect of documentation and should be considered one of the first steps. During

a project, regular updates should be planned and implemented to avoid any loss of implicit and

unwritten information.

Schematically, task documentation is composed of a brief description of things to do, the people

involved, the scheduled tasks and their states (to do, in progress or done). Information that cannot

be explained within the task (documents relating to a specific ingredient such as the code) should

also be documented at the task level: general choices about the project (hypotheses and decisions

such as the type of modelization, the population under study, and abandoned tested directions) and

technical specifications that can have an impact on the results. For example, inclusion/exclusion

criteria for observations, the randomization method and random seeds, initial values and parame-

ters chosen for optimization, robustness checks, or the algorithm used to display the results (e.g.,

interpolating, smoothing) have to be clearly documented.

At the task level, all tasks involve different ingredients, and each of these ingredients should be

accompanied by a piece of information with relevant data on the ingredient itself. This practice is

well known by practitioners that use, e.g., a data dictionary or comments in code. However, this

is far from sufficient.

Data dictionaries attached to a data set describe the variables and their definitions and are

familiar objects. However, a more global description of the data such as data sources, name, pro-

ducer, number of files, format, date of reception, covered period of time, file keys, sample method,

and the weighting method is needed to precisely characterize the data set, its origin and its evolu-

tion over time. For confidential data, the whole process for data accessibility and the data terms

of use have to be mentioned. The information can be recorded using standard metadata (Dublin

Core, or Data Documentation Initiative — DDI — for social sciences), which provide more precise

information on the data set itself. Journals and funding agencies are giving increasingly more

care to data integrity and data dissemination by providing metadata guidance (e.g., American

Economic Association, Social Science Data Editors) or by requiring the implementation of data

management plans. Citing data with DOI identification from open trusted repositories can also

facilitate the reusability of data sets (Stodden et al., 2016; Lagoze & Vilhuber, 2017). As DOI

identification does not impose the availability of data, it could be provided by the data producer

11

even for confidential data. Furthermore, security and access conditions can be described by the

datatags system proposed by Sweeney et al. (2015).

Programs also need to be documented, and it is true that the documentation of most programs

can be embedded in the code (see Section 4.1). However, the technology is evolving rapidly, and

code execution may change if the computer environment changes. Furthermore, documenting a

research program is not limited to documentation of programs but must ensure that the overall

work sequence (the workflow) is explained in great detail. It may be seen as a picture of the

environment, as well as all the states of elements used, in an easy-to-read way. We will present all

these elements in this paper. We also suggest, as a good practice, the inclusion of a specific section

in the final publication describing the computing environment (Koenker & Zeileis, 2009).

3.2 Organizing Workspace

Most, if not all, of the documents produced by researchers essentially consist of files organized in

very different and personal ways. This makes it very difficult for researchers to work together when

they are all using different practices to organize information. Undoubtedly, there is no perfect or-

ganization, but there are some elements to consider when organizing a research project, just as

there are some tricks for organizing a library or kitchen. We focus here on two major aspects of

file organization: directory structure and naming convention.

The directory structure of a project is intended to facilitate finding the elements (code, data,

output) one needs. This is particularly important in projects with long time horizons and inactive

periods that can last from a few days to a few months. To avoid confusion and to facilitate mem-

orization, it can be helpful to maintain a consistent structure across projects and to always define

the same directory organization for each project.

When constructing a project directory structure, two guiding ideas can be used:

• a folder should contain homogeneous elements of the same type (data, programs, text, doc-

umentation);

• a clear distinction should be made between inputs to the project and outputs from the project.

The aim of the latter point is to prevent unintentional deletion of pieces of the project, as it seems

obvious that files located in input directories must never be updated or deleted. We propose in

Figure 1 a simple directory structure very similar to that of Gentzkow & Shapiro (2014). This

architecture is an illustration following the guiding ideas defined above and can be modified or

completed to fit personal preferences, habits and project type. Depending on the complexity of

the sources, the “Inputs” folder may also contain subfolders to distinguish “raw” or “original” data

12

sets from “treated” or “refined” ones as well as other inputs in a broad sense. The same applies

to the “Outputs” folder depending on the nature of the outputs (figures, tables, estimations, . . .).

Some practitioners also add a temporary folder (sandbox) for saving temporary versions of code

or documents for a short period of time. However, there is a trade-off between the complexity and

efficiency of the architecture, as complexifying the tree structure increases browsing time when

searching for files (Santaguida, 2010).

Figure 1: Example of a Well-Organized Directory Structure.

In the computer science community, file organization also uses simple ingredients such as file-

naming conventions. We suggest using these ideas; that is, every file created for a project should

follow a naming convention. Typically, a naming convention is implicit and personal to each re-

searcher. A good practice is to explicitly select a naming convention, maintain it and share it with

coauthors, if any.

Before naming programs, one should have a clear idea of the goal of the programs. Whether it

is a stand-alone program or a piece of a more general programming framework should be explicit in

the name of the program. Furthermore, it is recommended to use separate programs for construct-

ing a “clean” data set and for the statistical analyses based on that data set (Nagler, 1995). This

practice allows new analyses to be run without regenerating the data set from scratch. The name

of the program should therefore reflect its purpose. For example, we know immediately, without

opening it, that the file named stats_desc.R is an R program whose purpose is a descriptive

analysis.

The same naming convention can be used not only for programs but also for every file.12 An out-

put can be named according to the name of the program that generated it and followed by a suffix.

This simple rule allows locating the file in the workflow. For example, the program stats_desc.R

generates the output stats_desc_out.tex containing the results, probably in LATEX, of the de-

scriptive analysis.

However, an explicit — and possibly long — name is insufficient, and names should be kept

simple, as short as possible, and portable across systems and software. Following Long (2009),
12Electronic versions of papers (bibliography) should also follow naming conventions to facilitate finding them.

For example, for a single author A that wrote in year Y, we could name their paper A_Y.pdf.

13

we recommend limiting the characters used in file or folder names to a-z, A-Z, 0-9, and the un-

derscore. Additional information about naming conventions will be provided later from a coding

perspective (see Section 4.1.2).

Using a naming convention for files can also aid manual management of file versions. It is

standard practice to use date suffixes (declared as yyyy_mm_dd to keep the automatic ordering

consistent with the order of the files) for the names of programs or to use version suffixes (v1,

v2, v3) specifying the current version of the file.13 This organization is still quite basic as it does

not really help in following the research process, generates many similar files, and may still lead

to confusion. We will see in Section 3.4.2 that more powerful tools exist that can automatically

manage file versions.

When working with others, explicit conventions for directory structure and naming files have

proven to be very helpful and allow coauthors to understand and find what has been done by whom

and to contribute as soon as files are shared.

3.3 Keeping Track of the Workflow

EEE projects, even simple ones limited to the writing of a single paper, are usually quite long,

longer than projects in many disciplines (Björk & Solomon, 2013), and keeping track of the work-

flow is another substantial issue. There are many ways to represent the workflow (such as different

scales and different conventions), just as there are many ways to conduct research, but there is

a common global structure to any project in EEE, and it follows the sequential creation of files

displayed on the left hand-side of Figure 2. One cannot avoid following a workflow that goes from

raw data to a working (clean) data file (or files) leading to the creation of some intermediate files

that will in turn be used in a working paper and/or in the final publication. This is a common

basic workflow, not only in EEE. How one should move from one file to another is probably less

standard and depends upon each project or researcher even if, at a broad level, there should be

programs that link all the files and follow a precise path and order.

This broadly universal representation of a project can help to outline any research project’s

workflow by simply illustrating the links (programs, actions) to and from elementary blocks. To

make an entire research project reproducible, all files, all links, and the whole workflow should be

as clear as possible and explicit. This process is key to understanding how programs (the circles

in Figure 2) and data (rectangles) are related, how programs are related to one another, and the

running order of programs.

13However, note that even if this habit can be improved using other tools, it is less dangerous than having the
same named file with different contents in two different locations!

14

Figure 2: A Simple Example of a Workflow Generated with GraphViz (see Code in Appendix C)

There are various ways to manage a workflow. One solution is to document the entire work-

flow and generate a graph, as in Figure 2. Different tools exist to create, manage and graphically

visualize a workflow. Some illustration tools can be used to draw workflows; these tools require

that one either manually draw the workflow (e.g., Dia) or code the elements of the workflow (boxes

and links) to automatically generate the figure (e.g., GraphViz, RGraphViz). Finally, some tools

such as SAS Enterprise Miner allow interactively generating an image of the workflow, while others

(e.g., Snakemake) generate a graph directly from the analysis of the links between code and data

in the workflow.

Another complementary idea is to use a naming convention. For example, Chuang et al. (2015)

propose placing a number indicating the order of execution before the name of the program, as

in Figure 3. This is what Long (2009) calls “the run order rule”. Running the programs in that

specific order will allow a researcher to reproduce the entire workflow.

01_preparing_data.sas
02_stat_desc.sas
03_model1.sas
03_model2.sas

This naming convention indicates that the program that prepares the data has
to be run first, followed by the descriptive statistics program, but for the model
part, there is no order. 03_model1.sas and 03_model2.sas can be executed
independently as soon as 02_stat_desc.sas has been executed. This can be
useful for someone that does not use any integrated approach.

Figure 3: Naming Tricks for Workflow Management.

Note that this solution, although straightforward to implement, is not flexible in the case of

modification of the order or when using scripts in other modules. A more flexible solution will be

15

presented in Section 5.3 and consists of managing the workflow directly and automatically using a

dedicated software.

3.4 Handling Files

Undoubtedly, good file organization is always good for reproducibility and can improve productiv-

ity. However, the need for very clear organization becomes crucial when working alone with several

computers or when working with others. Sharing a structure among members of a project (direc-

tory structure and naming convention) and committing to the same relational scheme (workflow)

can greatly enhance the efficiency of a project. However, as a project increases in size as well as in

coauthors and time, meaningful growth in the file-handling strategy is needed to overcome three

main problems: How should files be shared? How should files be compared and versions managed?

How should researchers collaborate when writing a joint paper?

3.4.1 Sharing Files

A common way to share a project and its structure is to compress all the files and their tree

structure in a .zip or .tar file to ensure the consistency of programs and that the files are correctly

linked. Then, the compressed file is sent via email with or without some accompanying text. This

common practice can rapidly become dangerous, as decompressing an archive may erase recent

work done locally. Moreover, if updates are frequent or if there are many people working on the

project, the process can become intractable.

For projects involving many files and directories, files can be copied onto a USB key or a

portable hard drive. In Table 1, we present a nonexhaustive list of tools and practices from the

simplest one, which is not very tractable, to more efficient ones. One approach is to place the

files on a secure external server devoted to sending heavy files, such as FileSender available from

RENATER14 or WeTransfer. More common practices now include using tools such as Dropbox,

Google Drive, and OneDrive that provide a free working directory with a capacity of approximately

15 GB where one can share files with anyone by controlling access and writing authorizations. Un-

fortunately, these most popular solutions come with some security concerns. The problem here is

that the files are uploaded onto private servers, and there is no guarantee that they will not be

used for other purposes. Obviously the above mentioned practices should respect the data terms

of use. In particular, the code may be shared even with confidential data.

We believe that the best way is to directly share a workspace and, if possible, have precise

control of who is able to access what (such as reading, writing, and erasing). Free tools exist to
14RENATER (National telecommunications network for Technology, Education and Research) is the French public

broadband provider.

16

Tool Advantages Disadvantages

Temporary exchange

WeTransfer Easy Registration mandatory, 2 GB max,
security concern (U.S.- based servers)

JustBeamIt Easy (drag and drop), peer to peer 2 GB max

FileSender
(RENATER)

Easy, up to 20 GB, secured and free for
registered institutions, cloud based in
France

Upload reserved to French institutions

Shared working spaces

Dropbox
Synchronization of files on the computer,
integration with MS Office, backup,
offline availability

Security concern (U.S.-based servers),
synchronization after offline changes risky

Google Drive
Online editor (docs, sheets, slides),
browser access, easy sharing, comments in
document, cloud-based storage

Security and privacy concern, Google
account mandatory, no editing offline

Joomla
Web-based access, total control of user
rights (private, public), unconstrained
space

Content Management System (CMS) to
be installed on a server, no offline editing

Agora Web-based access, easy control of user
rights, unconstrained space

CMS that needs to be installed on a
server and administrated, no offline
editing

SharePoint Easy integration with MS Office software
Needs to be installed on a server,
transparent use on an intranet, offline
editing risky

PARTAGE
(RENATER)

Webmail, shared task manager and
calendar, messenger Restricted to French institutions

Table 1: Tools for Sharing Files.

transform any computer into a server using FTP protocol (for example, FileZilla). This function-

ality makes it possible to share a directory on a computer and to give access to collaborators for

downloading files. Other tools such as Joomla, Agora, and SharePoint are designed to build and

update websites, thereby allowing authorized people to share and work on the same files. These

are professional solutions that are costly to construct but might be available at some researchers’

institutions.

3.4.2 Version Control

In any research process, many file changes are made over time: corrections, improvements, addi-

tions, comments, and new ideas are part of a researcher’s day-to-day life. This leads to a general

problem of having different versions of the same file, possibly differentiated by adding a suffix

(number, date) to the file name. This manual control of the different versions of a file requires the

application of very strict rules for file naming and file management to work properly. Visualizing

the differences between two versions of a file and understanding or undoing changes are not easy

and require specific tools. Software such as Notepad, Baloo, Total Commander, WinMerge or

muCommander is quite effective for text or Ascii files and allows the researcher to identify the

differences within each block of the document or code. However, this requires some effort and,

once again, some file manipulation by the researcher.

17

To avoid the manual control of files, version management tools offer attractive alternatives.

These programs facilitate file comparison, record the history of changes, allow for the restoration

of an old version of the document, allow for comments on the differences across versions, and pro-

vide a way to work with coauthors on the same files, eliminating any risk of overwriting changes

(Koenker & Zeileis, 2009). Appendix D details the main concepts of version control systems, which

can be centralized or distributed. Distributed version control software (Git, Mercurial, Bazaar) al-

low working locally and offline, and they are thus more convenient than centralized version control

tools (Subversion, CVS).

Every version management tool is associated with a server that hosts all versions of the project.

This server can either be on one’s personal computer, on a local server, or on an external server.

At present, the most popular hosting services are GitHub, GitLab, SourceForge, BitBucket, and

CloudForge (Wilson et al., 2014). As for file sharing, the choice of the versioning tool should satisfy

the data terms of use.

3.4.3 Collaborative Writing

Versioning is well suited to the sharing of code but is more difficult to implement when writing

a research paper. Technical difficulties are usually encountered and are time-consuming: a few

examples are differences in work habits (such as using Microsoft Word, OpenOffice, or LATEX),

software versions, and bibliography management.

Two common “schools” still coexist: those working with MS Word, OpenOffice or Google docs

on a WYSIWYG (What You See Is What You Get) basis and those working with LATEX. People

who use Word like its simplicity and its embedded revision feature. The revision mode makes it

possible to change and comment on the document, and it is easy to see different versions of the

document with or without changes made by others. However, even with that feature, it is still

difficult to cope with multiple changes made by multiple coauthors over time.

Proponents of LATEX appreciate its nice and customizable publishing style, its interoperability

with different software (R, Sweave, BibTeX) and the substantial number of possible extensions.

Some people are deterred because it is disturbing not to see the written result of what is typed

directly on screen, for which a compilation step is usually necessary. Some tools are worth men-

tioning in this regard, such as Overleaf, that allow users, even those unfamiliar with LATEX, to work

(simultaneously) with LATEX files on a single online document.15 The file is accessible through a
15This paper was written using LATEX. The document was shared between the authors and edited online using

Overleaf, where all the versions and the bibliography files (Bibtex) were stored. We shared the literature using
the Agora platform. Codes used in this paper can be found at https://github.com/HowToMakeAPieTheCodes/

18

https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie

browser on the web and allows one to see, on two separate panes, the typed text and, almost

simultaneously, the published results. Several users can collaborate on the same document, and

new users can learn from experienced ones.16

Basic recommendations can be provided: the use of a stable (over time), portable and unique

file format (text, LATEX) allows easy file sharing between coauthors and avoids software version

problems encountered in WYSIWYG environments such as MSWord (see Koenker & Zeileis, 2009).

Another recommendation is to keep track of changes in the shared document and let others add

new elements (comments, references). Reference manager software, such as Zotero or Endnote,

provides easy-to-use collaborative features, thereby allowing researchers to share references and

bibliographical files.

4 Code for Others (Including Your Future Self)

For many, an important feature of any piece of code is being understood by the computer, which

has to execute the code and thus compute unambiguous and correct instructions that reflect the

intentions of the author (Gentzkow & Shapiro, 2014). However, code need not only run correctly

but also be written in a clear way such that it is understandable by humans, including the future

self, coauthors, programmers, collaborators, or students. This idea is not new; Knuth (1984) wrote

“ let us concentrate rather on explaining to humans what we want the computer to do”. Wilson

et al. (2014) recommend that one should “write programs for people, not computers”. Donoho

et al. (2009) and Koenker & Zeileis (2009) recommend working as if a “stranger ” (anyone not in

possession of our current short-term memory and experiences) has to use the code and thus has

to understand it. These ideas are echoed in many dimensions of the replication process and in the

code-writing activity that is generally called “style”.

4.1 Programming with Style

Each person programming has a style based on experience, influences and readings. However, some

general rules, practices and tricks exist to facilitate the reading of any program. We provide here

some advice that should be used in conjunction with parsimony and common sense. For Kernighan

& Pike (1999), good programming relies on three basic rules: simplicity, “which keeps programs

short and manageable”, clarity, “which makes sure they are easy to understand, for people as well

as machines”, and generality, “which means they work well in a broad range of situations and adapt

well as new situations arise”. These rules apply whatever the level of programming involved (single

HowToMakeAPie.
16A paid version of Overleaf has a history function that makes it possible to go back to previous saved versions

and compare the actual version with older ones.

19

https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie
https://github.com/HowToMakeAPieTheCodes/HowToMakeAPie

program, complete application) and regardless of the language used.17 Note that a well-written

program is also easier to debug and to maintain.

To have a consistent programming style, one may follow a style guide based on these three

rules, leading to conventions on layout and naming and on the writing of generic code. We provide

here some programming style conventions along these three dimensions. It is important to note

that there is a trade-off between writing perfectly legible code and the time spent writing it. Pair

programming, where two researchers sit together while writing code, is recognized as a good way

to improve writing style (Wilson et al., 2014). This method can be particularly helpful in the early

stages of coding for defining conventions among several programmers. It is also a valuable option

when debugging code. When researchers work in different places, using a screen-sharing platform

(e.g., Skype, TeamViewer, Zoom) can also improve the writing style.

4.1.1 Conventions on Layout

The number of characters per line should be limited: van Rossum et al. (2001) suggests using a

maximum of 80 characters; Miara et al. (1983) suggest that the indentation level and the number

of indentations should be limited. Some guides also recommend placing spaces around all mathe-

matical operators (=, +, -, *, /).

Then, the code should be structured and follow a standard sequence to be analyzed and under-

stood faster by others (Levin, 2006). All definitions should be placed at the top of the code, followed

by function definitions and finally by executed statements. For the sake of readability, and to take

into account the limited human working memory (Wilson et al., 2014), Boswell & Foucher (2011)

also recommend defragmenting programs such that each piece of code does only one task at a time.

Some programs such as R and Python have developed tools to control and/or correct the code

following predefined conventions: “pylint” in Python, the “check ” function for writing R packages

and “formatR” to adapt the code to the standard R layout.

4.1.2 Conventions on Naming

As for files, variable names must be chosen to facilitate the reader’s understanding without contra-

dicting their content. The rule “Make names consistent, distinctive and meaningful ” from Wilson

et al. (2014) identifies several points to address when naming objects, variables and functions in

a program. Boswell & Foucher (2011) provide the example of a variable named “size” that is

too general and can be replaced with more informative names such as “height”, “NumNode”, or
17Each programming community often provides its own principles (e.g., the “zen of Python”, Peters, 2004).

20

“MemoryByte”. Nagler (1995) uses the example of the gender variable often encountered in social

sciences. In the files provided by the French National Institute of Statistics and Economic Studies

(INSEE), this variable is coded 1 for men and 2 for women. A more purposeful and less ambiguous

variable would be a dummy variable called women that takes a value of 0 for men and 1 for women.

There is no general rule on the length of variable names. The important point is to build mean-

ingful names by combining uppercase and lowercase letters, underscores and digits using what

Wilson et al. (2014) call CamelCaseNaming or pothole_case_naming.

Conventions can also help to label variables (Nagler, 1995): uppercase names for constants

(MY_CONSTANT) and lowercase names for variables or functions and methods (my_function). Us-

ing uppercase can also help to distinguish created variables from the original ones provided

in the source. Others suggest identifying dummy variables with an “I_” or “i_” prefix (e.g.,

i_strawberry).18 Moreover, the use of descriptive names for global variables and short names for

local variables (Kernighan & Pike, 1999) will aid comprehension. Variables named i or j are usu-

ally used for loop counters. van Rossum et al. (2001) further recommend not using the lowercase

letter l or the uppercase letter O because they can be easily confused with the digits one and zero.

4.1.3 Writing Generic Code

Wilson et al. (2014) explain that the DRY (Don’t Repeat Yourself) principle increases the read-

ability and maintainability of code, leading to greater reusability of the code, which is necessary

for any potential replication.

A first easy-to-implement habit is to use relative paths in programs when calling a function,

another program, or a data set. In Figure 4, we provide four examples (in Stata, R, GAMS and

SAS) that clearly demonstrate the application of the DRY principle. Specific (to a researcher’s

computer) directory paths are stored in either local or global variables that are used as the refer-

ence directory. In the rest of the program, all references to any path are relative (hence the use of

dos-like commands with ../ and cd). Once coauthors begin to follow the same directory structure,

this practice will enhance the compatibility and portability of the whole code on another machine.

The importance of keeping code as generic as possible is illustrated by the counterexample in

Figure 5. In this figure, the code does not follow the advice of “Never type anything that you can

obtain from a saved result” (Drukker’s dictum), which means that it is important to use infor-

mation (mean, estimated coefficient, matrix) that the software can provide as a part of the code
18Some authors consider that the letter capital “I” should never be used to avoid confusion with the numeral

“1” (van Rossum et al., 2001). However, conventions must be selected depending on use. Stata, for example,
automatically creates variables with the prefix “_I” when specifying dummies for regressions.

21

/**** Stata EXAMPLE ****/
/**** Definition of the useful path ****/
local CodeFolder "c:/ApplePie/Progs"

/**** Positioning ****/
cd "‘CodeFolder’"

/**** Using data that is in another folder ****/
use ../Raw_Data/Sugar.dta, replace
append using ../Raw_Data/Apple.dta

save ../Final_Data/ApplePie.dta, replace
qui log close

R EXAMPLE
Definition of the useful path
CodeFolder <- "c:/ApplePie/Progs"
GraphFolder <- "../Graphs/"

Positioning
setwd(CodeFolder)

Saving the graph to another folder
file <- paste(GraphFolder, "MySuperPie.png", sep="")
png(filename = file)
pie(rep(1,8), col=1:8)
dev.off()

*### GAMS EXAMPLE ####
* Select "Apple" or "Banana"
$setglobal Fruit Apple

* Using data-loading programs to another folder
$ifi %Fruit% == Apple $include Raw_Data\AppleData.gms
$ifi %Fruit% == Banana $include Raw_Data\BananaData.gms

* Solving the model in the current folder
$include Recipe.gms

* Exporting results to another folder
execute_unload ’Final_Data\%Fruit%Pie.gdx’

* SAS example ;

* Directory root of the project ;
%let rep=c:\ApplePie;

* Definition of input and output directories ;
libname ini "&rep.\Raw_Data";
libname fin "&rep.\Final_Data";

* Output data set derived from input data sets ;
data fin.ApplePie;

set ini.sugar ini.apple;
run;

Figure 4: Implementation and Use of Relative Paths in Different Software.

(Long, 2009). The R code in Figure 6 provides a better solution.

coeff_variation_Sugar_Qty <- 2.1201803 # sd / mean = 4234 / 1997
coeff_variation_Chocolate_Qty <- 4 # sd / mean = 4/1

Figure 5: Example of an R Program without Genericity (Some Values are Fixed by the User).

standard_deviation_Sugar_Qty <- sd(Sugar_Qty)
mean_Sugar_Qty <- mean(Sugar_Qty)
coeff_variation_Sugar_Qty <- standard_deviation_Sugar_Qty/mean_Sugar_Qty

Figure 6: Example of an R Program with Genericity (the Values are Computed from the Data
Set).

Following the DRY principle should also induce greater modularity. A modular program, com-

posed of reusable blocks of code (functions, packages), is easier to read and to understand. An-

ticipating or determining what to put in a function is not always easy. When it appears that

duplicate lines are necessary, it is helpful to write a function and to refactor the program. Refac-

toring methods include all modifications that are made without changing any of the functionalities

while improving the internal structure of the code (Fowler et al., 1999). The initial code will be

replaced by the call to the function, and additional calls to the function can easily be introduced

22

while limiting the risk of errors. It is also possible to use the function in other projects.19 For

example, the R code in Figure 7 is a modular version of that in Figure 6.

fct_coef_variation <- function(numvector)
{

if(is.numeric(numvector) == F | is.vector(numvector) == F)
{

stop("The data should be a numeric vector")
}
standard_deviation_data <- sd(numvector)
mean_data <- mean(numvector)
coef_variation_data <- standard_deviation_data / mean_data
return(coef_variation_data)

}
Call the function for Sugar
fct_coef_variation(Sugar_Qty)
Call for Chocolate
fct_coef_variation(Chocolate_Qty)

Figure 7: Example of an R Modular Program Based on the Generic Elements of Figure 6.

4.2 Documenting the Code

Figure 5 also illustrates the poor use of comments in code. Comments should be sparse and well

considered, not “post-its” used to justify a lazy coding structure. Excessive comments can hamper

the readability of a program. In many cases, unnecessary comments can be avoided (for example,

by cleverly naming variables, parameters, and functions). Following Nagler (1995), we recommend

including comments before each block of code that explain the purpose of the block or provide a

helpful reference to consider. End-of-line comments should be infrequent. Using a good naming

convention for variables and a logical code structure that “self-documents” the code should greatly

reduce the need for comments and enhance the code’s readability (see Gentzkow & Shapiro, 2014;

Millman & Pérez, 2014). To quote Koenker & Zeileis (2009), “Source code is itself the ultimate

form of documentation for computational science”.

In addition to well-written code and effective use of comments, it is useful to indicate, at the

top of any program, the information needed to understand it, for example, the date, description,

goal of the code, version and changes from previous versions, input (and output) data files, input

parameters, the version of the software at the date of writing, packages used (and their version),

and the name of the creator. An example is provided in Figure 8.

It is also important to ensure the reproducibility of computation. Many components are in-

volved in such computations, and each should be checked. Statistical software is updated regularly,
19Wilson et al. (2014) extend this principle to others (Don’t Repeat Others) and call for the use of prior code

from reliable sources instead of creating completely new code.

23

Program for pie cooking technology

Goal: Generate the Chocolate Foam estimations
Date: 2017/01/05
Author: Top Chief
Running under R version 3.2.2 (2015-08-14)
Platform: x86_64-w64-mingw32/x64 (64-bit)

Input files: chocolate.csv, eggs.txt
Output: ChocolateFoam.R, ChocolateFoam.tex

Version 4 of the program: + function fct_coef_variation

Figure 8: Example Documentation of the Computing Environment and Code.

meaning that the inner code of some commands is revised. These improvements may cause failures

in efforts to reproduce the computation. However, keeping track of the software (and its version),

the packages used (and their version), and the computer used (CPU, operating system) helps to

avoid such disagreements.20 This should be documented within programs (see Figure 8).

A nice way of sharing code documentation is to use a documentation generator that parses

and extracts all comments from the code and automatically creates well-formatted documents

(Millman & Pérez, 2014). Several programs include this feature (e.g., MATLAB, GAMS, Python,

R). A Python example is given in Figure 9.21 The Python docstring comments are composed of

two triple quotes and can be extracted using a specific tool such as pydoc. The generator is also

able to extract the set of variables defined in the code (see “Data” in the right panel of Figure

9). Embedded documentation is intended to limit inconsistency within the code by facilitating

documentation updates when modifying code (Wilson et al., 2014).

5 Automate As much As You Can

If any research workflow, such as the standard one presented in Figure 2 (Section 3.3), is conceived

such that all elements (programs, data, files) are clearly linked within programs, then it will be

easy to automate the entire process. In terms of reproducibility, it will greatly help any end user to

use and reproduce, even partially, the research output. Unfortunately, this ideal vision of research

organization is far from reality. Hopefully, as with any practice, automation can be achieved at

different levels, with simple or sophisticated tools, demanding various levels of effort and time. The
20Some software programs have commands or packages that address this issue by allowing the user to automatically

save and load the computing environment. See, in this respect, the “checkpoint” R package (Racine, 2019) and
“packrat” (Ushey et al., 2016). For Stata, the “version” command indicates which Stata version is needed to run the
code.

21For MATLAB, Publish (from the editor) does this. For GAMS, the model2tex tool is intended to document
the modeling parts of GAMS programs as LATEX documents. In R, the Roxygen2 package allows users to generate
automatic documentation of a package.

24

Figure 9: Example of Automatic Documentation Generation (using Docstring in Python).

required conditions are straightforward: code must exist at every stage, and all the code for all the

stages should provide access to all the results. Under those simple conditions, automation, either

by using a script file or within software or notebooks, is merely a matter of personal organization

and preferences.

5.1 Coding Everything

Point-and-click software, such as MS Excel, is widely used in EEE (Barreto & Howland, 2005),

even for complex computations that can still be done without typing a single line of code. Tedious

searches for syntax errors and command names are then avoided by using drag-and-drop menus

and copy-pasting elements from one cell to another. In MS Excel, the code is fully embedded in

the spreadsheet for the data set. On the one hand, as the code and data are in the same file, it

is easy to manage the workflow since everything is in that data set. On the other hand, the code

cannot be easily examined, printed or shared outside the self-contained MS Excel file. Automating

tasks is thus difficult, albeit feasible using the Visual Basic for Applications (VBA) language, but

its use is quite limited and complex. Therefore, copy-pasting cells and direct programming within

a cell are common practices. Moreover, the output (tables and graphs) is also attached to the MS

Excel file. For the final article, the tables and graphs are copied and pasted, often without any

reference or tangible link to the code and the MS Excel file.22 The Reinhart & Rogoff (2010) case
22It is possible to link a graph or a table between MS Excel and Word, but links are broken when files are renamed

or moved. Moreover, broken links are not always indicated to the user. This process is also highly vulnerable to

25

showed how results produced with this technology are fragile and not suited to a proper review

prior to publishing. MS Excel itself is not the cause of the lack of reproducibility and readability,

but its use facilitates unrecommended practices such as drag-and-drop and copy-paste.

When analyzing time series, Microfit is a popular point-and-click tool (Pesaran & Pesaran,

2010). Unfortunately, this software does not provide any possibility to read, save, or recover any

line of the underlying and invisible code assembled after a series of menu-driven mouse manipula-

tions. This software makes it difficult to save, reproduce and share work. Thus, despite its great

econometric features, a reproducible research approach is not feasible using Microfit.

Other programs, such as Stata or Eviews, also offer a point-and-click approach to facilitate the

discovery of commands and to shorten the coding time needed for some lengthy commands (such as

for graphics). However, each drag-and-drop action is displayed in the console and recorded so that

it can be learned, saved and reused. Automating actions, recording code, and saving logs, tables

and results are then easy tasks, and these features greatly enhance the likelihood of producing

reproducible research. Although it is difficult to imagine that a fully reproducible approach could

be applied to research done with MS Excel, it is not necessarily true that using Stata, MATLAB

or R provides simple solutions without best practices. The point is that the software is not always

the problem, and it will never be the solution. Practices have to be adapted to software use and

possibilities. Nevertheless, some software makes it easier for researchers to automate, record, re-

cover and share their work.

Since working on a research program consists primarily of writing code at each stage of the

process, code represents the most valuable component of the research. Therefore, at each stage,

code should explicitly mention the input (data used) and output (results) following the advice cited

in Section 4, and it should be possible to properly save any piece of code in a way that is readable,

understandable and reusable. Note that coding is not limited to statistically based work on a given

piece of software, as an important part of any research is done either before (data preparation,

sampling) or after (results handling, tests, refinements) such efforts.

5.2 Exporting the Results

In a research paper, tables and graphics are the visible and final aspects of the research project.

The common practice for generating tables of results (see, for example, Table 2) consists of report-

ing the results cell by cell or by manually rearranging raw output copied from a software output

console and pasted somewhere else. The automatic generation of all of the estimations, numbers,

graphics and tables produced for an article is a minimal requirement for ensuring the traceability

of any results from the raw data set to the final paper. Even when carefully done, copy-paste

potential compatibility issues across different versions of MS Excel.

26

practices do not guarantee that the results printed in a paper could be obtained again.

OLS 2SLS

Price −0.001∗∗∗ (0.000) −0.001 (0.001)

Cooker level 0.161∗∗∗ (0.006) 0.161∗∗∗ (0.006)

Number of different ingredients 0.030∗∗∗ (0.007) 0.040 (0.036)

Number of servers −0.042 (0.038) −0.044 (0.039)

French recipe dummy 0.016∗ (0.009) 0.016∗ (0.009)

Michelin rating rank 0.050∗∗∗ (0.008) 0.049∗∗∗ (0.009)

Constant −0.051 (0.113) −0.098 (0.201)

Observations 428 428

R2 0.736 0.734

Sargan statistic 0.923

Sargan p 0.630

Standard errors are in parentheses.
IV are input prices: sugar, flour and egg prices.
The Sargan test is an overidentification test of all instruments.
This is a fictive example (no real interpretation).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 2: Regression Table Created Using the Stata esttab Command.

Many programs have included features (commands, packages) to export different types of out-

put in a portable format (txt, rtf, LATEX, and html, or PNG, JPEG and WMF for graphics; see

Table 3). Most programs also provide log files that report the executed code and the output, albeit

without incorporating them. Table 2 was created automatically in the software using a dedicated

line of code and exported (saved) to an external file. Here, we used a Stata function (the esttab

command; see the corresponding code in Appendix E) to create RegressionTable.tex .

Once properly labelled and named according to their source, these external files can simply

be incorporated into the research article with an explicit mention of their origin. In our example

(Table 2), the following line would be introduced into our current LATEX document:

% file created by RegressionPie.do

\include{RegressionTable.tex}

5.3 Linking Everything

Writing programs and using software that allows the easy export of output is a good start on

the path toward more reproducible research, but, as mentioned in Section 3.3, the workflow needs

special attention since several programs can export different outputs used later by other programs,

among other concerns. To manage the workflow, a good practice is to use a “master” or “global

program” that embeds all aspects of programs in a clear and logical way (Gentzkow & Shapiro,

27

Analysis output Graph
(descriptive statistics, estimation results)

R xtable, texreg (.tex, .html, .doc), stargazer,
tables

png(), jpeg(), pdf(), tiff() (.png, .jpg,
.pdf, .tiff)

Stata esttab (.tex, .rtf), sutex (.tex), latabstat
(.tex), putexcel (.xlsx), outtable (.tex)

graph export (.eps, .pdf, .wmf, .png)

SAS ods rtf (.doc), ods html (.html, .xls), ods pdf
(.pdf), ods tagsets.latex (.tex)

ods graphics (.png, .tiff, .jpg, .ps)

MATLAB writetable (.xls, .csv), xlswrite (.xls) saveas (.png, .eps, .pdf)
Gams gams2tbl (.txt, .tex, .prn, .html), gdxxrw, xl-

export, xldump (.csv, .xls)
gnuplot, gnuplotxyz (.png)

Mathematica Export[] (.xls), CloudExport[, "pdf"] (.pdf) Export[] (.gif, .jpg)

Table 3: Useful Tools for Reproducible Output (Output Formats in Italics).

2014). Such a master program can be written within a specific software (R, Stata, Gams, . . .).

In example 1 of Figure 10, we show an example of a Stata program that makes successive calls

to different Stata scripts. An alternative is to write a shell script or a batch file in the Windows

operating system, as in example 2 of Figure 10.23 One great advantage is that batch files can

successively call various programs as in example 2 of Figure 10, where R and Stata scripts are

called by the global.bat file.

EXAMPLE 1 (Stata code): global.do

// Definition of the project’s directory
local CodeFolder "c:/ApplePie/Progs"
cd "‘CodeFolder’"

// Preparation of the data
do DataPreparation.do

// Some analysis code
do AnalysisCode.do

// Production of figures
do OutputCode.do

// Production of the paper
do MakingPaper.do

EXAMPLE 2 (Batch file): global.bat

REM Definition of the project’s directory
set CodeFolder="C:\ApplePie\Progs"
cd %CodeFolder%

REM Preparation of the data
R CMD BATCH DataPreparation.R

REM Some analysis code
stata-se /e do AnalysisCode.do

REM Production of figures
stata-se /e do OutputCode.do

REM Production of the paper
R CMD BATCH MakingPaper.R

Figure 10: Examples of “master” Programs in Stata (Left Panel) or in Batch (Right Panel).

Makefile is a more powerful alternative to a batch file. Makefile is very popular in many disci-

plines and, as mentioned by Wilson et al. (2014) and Millman & Pérez (2014), provides researchers
23Batch files can call any software. Note further that in some statistical software, special commands exist to

call external programs. For example, R has the RPython package to call Python programs. Python has the RPy2
extension to call R code. SAS has the %sysexec command for running other software, and Stata has the rsource
to call R code. IPython can also be used as a system shell (Pérez & Granger, 2007).

28

with two major benefits. First, the dependencies between inputs, outputs and programs are ex-

plicit. Second, for each execution, the Makefile system records which files have been modified and

checks their dependencies. Thus, when re-executed, only the parts that need to be modified are

called and rerun.

In the Makefile example in Figure 11, the first line of each step defines the dependencies, whereas

the second line indicates the command to execute. In part 1, the data set WorkingDataset.dta

is generated from the text file RawData.csv and the Stata program DataPreparation.do. Then,

only if OutputCode.R has been modified since the last compilation will the Makefile re-execute

parts 3, 4 and 5 and use the existing elements computed in parts 1 and 2. This parsimonious

feature will be greatly appreciated when a program’s runtime becomes long.24 In the same spirit

as Makefile, new tools have recently emerged with additional features; for example, Snakemake (in

Python) can automatically create a graphical image of the workflow (Köster & Rahmann, 2012).

1. Preparation of the data:
WorkingDataset.dta: RawData.csv DataPreparation.do

stata-se -b do "DataPreparation.do"

2. Some analysis code:
StatisticalTable.tex: WorkingDataset.dta AnalysisCode.do

stata-se -b do "AnalysisCode.do"

3. Production of two figures. The ’%’ character can be used as a shortcut:
Figure%.pdf: WorkingDataset.dta OutputCode.R

Rscript "OutputCode.R"

4. Production of the paper (from figures, table and bibliography):
Paper.pdf: Paper.tex biblio.bib Figure1.pdf Figure2.pdf StatisticalTable.tex

pdflatex "Paper.tex"

5. Production of a zip file
zip MyZipFile.zip Paper.pdf Paper.tex RawData.csv /
DataPreparation.do AnalysisCode.do OutputCode.R

Figure 11: Implementation of the Workflow in Makefile.

5.4 Creating Reproducible Documents

Automating the entire production process, including the generation of external files (data sets,

results), even if mandatory for achieving a reproducible document, can be a tedious exercise, even

if simplified by the use of global programs such as those described previously.

24A Makefile has no extension. The Unix program Make or Make for Windows (GnuWin), or Cygwin is needed
to compile this file (see also “cake”, an early attempt to improve “make” for reproducible research in Claerbout &
Nichols, 1989).

29

Another option is to directly write reproducible research documents following the idea of literate

programming introduced by Knuth (1984, 1992). Reproducible research documents were primarily

conceived for improving the readability of programs and making code and text that is glued and

linked together. This notion is extended and revisited by Gentleman & Temple Lang (2007), who

propose the concept of a compendium, i.e., a dynamic document (or package) embedding a mixture

of code and text, that combines the power of a programming language with the readability of a

documentation language. This idea has been recently implemented in the R package rrtools.

The basic structure of a reproducible research document (see the left panel of Figure 12) follows

a logic of sequences of commands in some programming language (“code chunks”) embedded in the

text (or “text chunks” embedded in the code). Note that the text parts will be written in a specific

narrative language (“markup language”) that is not the programming language of the statistical

software. In the same way that a piece of code has to be executed to obtain results, the document

itself is compiled to obtain both results and formatted text as output. Thus, the output docu-

ment will be identically structured, with code replaced by results (see the right panel of Figure 12).

Figure 12: Example of a Reproducible Research Document (Left), and Its Resulting Report (Right).

30

For those using LATEX and R, it is straightforward to perform literate programming using Sweave

(Meredith & Racine, 2009), a package embedded as a native package in R. For those less familiar

with LATEX or willing to produce documents in various output formats (e.g., tex, html, doc, pdf),

there is a more recent tool that uses a simplified markup language called R Markdown. It uses

Markdown as a narrative language, knitr for compilation (Xie, 2015) and pandoc for output format

conversion (MacFarlane, 2016).25 By using Sweave or R Markdown, one can create a document

written in LATEX or Markdown that includes the statistical analysis within R chunks.

Other popular statistical software have included, more or less recently, the same type of liter-

ate programming tools. At last, Stata 15 (launched in June 2017) offers new native commands

(dyndoc, putdocx, putpdf) that allow one to create html, Word or pdf documents (respectively)

with text, code and embedded results from usual do files.26 Recently Rodriguez (2017) released

markstat, a new Stata command written in the R Markdown spirit, which seems to be very handy

since a single input file can produce html, tex and pdf formats.27 Writing the narrative parts in

a very simple and light style using the Markdown language (rather than in LATEX or html) is the

new step in literate programming.

A selection of the main literate programming tools is presented in Table 4, and additional in-

formation can be found in Appendix F. Most of these tools are embedded in statistical software

(as is R Markdown). Others can be both external and specific to one software environment (such

as StatRep for SAS) and require several manipulations to obtain the final report. However, other

external software options such as StatWeave allow the compilation of the entire document using

different programming languages (e.g., R, SAS, Stata). Covering the largest set of output formats

and markup languages is the current challenge in developing literate programming tools.28

Due to the flexibility of the concept, not only will the chunk of output adjust to any change in

the code but the text itself can also be made dynamic using special commands. For example, if

one wants to write a description of a data set with quantitative information (“inline code” as part

of a narrative text), one can automatically use the average of a variable or a count of something

using these commands. The logic is the same with different syntaxes depending on the software:

\Sexpr{} for Sweave (R) ; ‘r expression‘ for R Markdown (R); \Stataexpr{} for StatWeave

(Stata, R, SAS, . . .) ; and ‘s expression‘ for markstat (Stata). Leisch (2006) and Gentleman
25Markdown has a plain text appearance with simple visual markup (Millman & Pérez, 2014). Pandoc converts

files from one markup format to another (e.g., Markdown, LATEX, html, Microsoft Word docx, LibreOffice odt).
26To fill the gap, several user-developed initiatives were developed with tools made available on the web, but their

syntax was not straightforward, and some functionalities were limited. We can cite the webdoc and texdoc commands
that allow the compilation of html, Markdown and LATEX documents (Jann, 2016, 2017) and the MarkDoc command
(Haghish, 2016a,b).

27On his website, Rodriguez provides examples written both with dyndoc (putpdf) and markstat to compare their
syntax, demonstrating the simplicity of his command.

28For example, R Markdown is more complete than the initial Sweave tool, allowing users to use more markup
languages and allowing for the generation of tex, html, Beamer and Microsoft Word outputs from a single code.

31

Language used for:
Tool name Output format References

Code Text

Sweave-like tools

R LaTeX Sweave TeX, Beamer,
PDF

Leisch (2002),
Meredith & Racine (2009)

R, Python,
SAS, SQL,
. . .

Markdown R Markdown
HTML, PDF,
MS Word,
Beamer, . . .

Xie (2015),
Gandrud (2015),
Xie et al. (2018)

R, SAS
LaTeX,

SASWeave TeX, PDF Lenth & Højsgaard (2007),
Morrisson & Karafa (2012)noweb

R, SAS,
MATLAB,
Stata, . . .

LaTeX,
OpenOffice StatWeave∗ TeX, ODT Lenth & Højsgaard (2011),

Lenth (2012)

Stata Markdown Markstat TeX, PDF,
HTML Rodriguez (2017)

SAS LaTeX StatRep TeX, PDF Arnold & Kuhfeld (2012, 2015),
Morrisson & Karafa (2012)

MATLAB plain text
markup Publish TeX, MS Word,

HTML, PDF
Hunt et al. (2014)
McCarthy (2018)

R, Stata,
MATLAB,
Python, . . .

plain text
markup Org-mode TeX, PDF,

HTML, ODT, . . .

Schulte & Davison (2011),
Schulte et al. (2012),
Dominik (2019)

Notebooks
Python,

Markdown Jupyter
Notebook

HTML, rST,
PDF

LeVeque (2009),
Kluyver et al. (2016),
de Kok (2016)

R, SAS,
Stata∗∗,
MATLAB,
Julia, . . .

Mathematica Wolfram
language

Mathematica
Notebook

HTML, PDF,
TeX, . . . Wolfram Research, Inc. (2008)

R, Python,
SAS, SQL,
. . .

Markdown R Notebook
HTML, PDF,
MS Word,
Beamer, . . .

Gandrud (2015)

MATLAB Formatted
text Live Scripts HTML, PDF Hunt et al. (2014)

McCarthy (2018)
∗: Statweave, a software independent from Stata is no longer maintained.
∗∗: IPyStata enables the use of Stata together with Python via the Jupyter notebook (de Kok, 2016).

Table 4: Literate Programming Tools.

& Temple Lang (2007) provide detailed introductory examples.

Interesting options exist to hide code if we do not want it in the final document, if we want to

display the code without evaluating it, or if we want to hide the output if it is not needed in the

document. Most of the commands presented in Table 4 allow this. Their syntax is software specific.

Another interesting option (available in R Markdown) is the “cache=TRUE” option, which makes

it possible to not run a code chunk that is time consuming and has already been run once.

Thanks to these tools, one can do literate programming and produce documents that are fully re-

producible and contain all the required materials (narrative, code, outputs). Literate programming

is now extended to “notebooks” (see Table 4), inspired by the Mathematica notebooks initiative,

32

which are growing in popularity. This concept follows the same logic and the same goals, namely,

to produce easily reproducible and exportable documents with a single file embedding text and

code in “cells”. With notebooks, documents are now interactive, meaning that the code is auto-

matically executed in each cell. While Sweave and R Markdown documents have to be compiled

to obtain the output document, notebooks allow the user to execute chunks (or not) and see the

results interactively on the fly in the source document.

The Jupyter Notebook, previously known as the IPython notebook system (Pérez & Granger,

2007), a project initially designed for Julia, Python and R (Ju-Pyt-e-R) users, offers an interactive

data science framework for scientific computing across all programming languages (Toomey, 2016).

In Jupyter, many other languages are supported and may even coexist in different cells in the same

notebook document. Each cell returns the output of the desired language to the notebook interface.

Our experience shows that notebooks are great tools for interactively playing with hypotheses,

subsamples or estimators or for testing small chunks of code on the fly. Notebooks are also a good

way to share programs and results with coauthors, even if Sweave-like tools are better suited for

final printing or for writing a companion paper. However, organizing all the steps of the workflow

within a single literate programming document can be difficult, and it may be more convenient to

use several literate documents, each devoted to a specific question or task.

6 Conclusion

In this paper, we propose three main principles and illustrate their implementation to improve re-

producibility in EEE research projects and papers. The first principle, “organize your work”, deals

with the overall organization of files and the documentation of a research workflow. We provide

elements and tools that may help researchers move from post-its to a more structured organization

using notebooks or task documentation. We illustrate easy-to-follow guiding ideas to organize files

and keep track of the workflow and demystify the use of tools used by other disciplines, such as ver-

sion control and sharing platforms. Then, “code for others” recalls that, since code is everywhere,

we should take care in how we write code that has to be read by others or later by our future self.

We emphasize through simple examples the benefits of adopting layouts and naming conventions

and show that modularizing the code to make it clear, simple, readable, and reusable is crucial. Fi-

nally, “automate as much as you can” is a proposal to avoid any manual treatment and to automate

most, if not all, of the steps used in a research process to reduce errors and increase reproducibility.

Despite all the tools available and illustrated here, reproducible research remains a challenge

for the scientific community. Many papers have emphasized the lack of reproducibility in EEE and

have sent alerts to the community (Dewald et al., 1988; McCullough & Vinod, 2003; Koenker &

33

Zeileis, 2009). Nevertheless, nonreproducible papers are still published (Hamermesh, 2013; Höffler,

2017), and some are cited as seminal references. So, how do we move on from the current state

and convince our colleagues to change their habits? More importantly, who should we convince in

the first place? There may be different paths, involving different actors, not to mention our own

willingness to act.

Researchers continue to regard controlling, mastering or sometimes automating the overall pro-

cess leading to a publication as a time-consuming constraint. It is true that even the most convinced

of our readers may face some obstacles on the path towards more reproducible practices. A key

element is that adopting, even partially, more reproducible practices is always better than carrying

on with nonreproducible ones. Reproducible research should be seen as a process of progressive

improvements. Simple day-to-day practices and solutions, mostly based on common sense, can

easily be implemented in any research project, small or large. Moreover, many statistical software

packages are improving their coding interfaces, and some are implementing notebooks (R, Python)

or are compatible with Jupyter (Julia, Python, R, Stata, SAS). Thus, reproducible research is

no longer a technical issue, and on-the-shelf tools are available for greatly improving EEE’s usual

cooking practices.

Teachers also have a role to play in promoting reproducible research and establishing new

norms for any publication. We increasingly ask groups of students to work together on empirical

toy models or to replicate some empirical papers. Then, our evaluation is based on end-of-course

projects that resemble research projects. We should be able not only to show examples of our

organizational skills and tools but also to teach students how to organize themselves and evaluate

the overall reproducibility of their work. Some universities have started to promote reproducible

practices, provide examples and teach principles, methods and tools in their doctoral programs

(Höffler, 2013), and many initiatives have emerged to improve common practices (see, e.g., Stod-

den, 2014; Duvendack et al., 2017). There are several Massive Open Online Courses (MOOCs)

devoted to reproducible research on platforms such as Coursera or on the French platform FUN.

Efforts towards a better numerical literacy of our students and colleagues should also be fostered

by any means, including online teaching initiatives such as the Data and Software Carpentry, Dat-

aCamp or the TIER project.

Journals can play a major role in the quest for more reproducible research in EEE. Following

Galiani et al. (2017) and Chang & Li (2017), we believe that more journals should provide clear

incentives at the early stages of the publication process, should ask that original data and code be

evaluated together with the article during or even before the traditional review process. Journals

should also establish a procedure for data and code sharing, either privately or publicly, and pro-

vide resources (online repositories) in accordance. Such mandatory prepublication policies would

34

clearly signal the minimum replication standards for publication. The Data and Code Availability

Policy, edited by the American Economic Association (AEA) and implemented by several EEE

journals (see Appendix A), is a first move towards imposing strict necessary conditions on a paper’s

data and code before final acceptance. It follows some of the Transparency and Openness Promo-

tion guidelines (Nosek et al., 2015) implemented by more than 1000 journals in other disciplines.

One further step would be to impose these conditions even before starting the traditional review

process. If implemented, such a policy would not only emphasize the importance of replication in

the paper evaluation but would also disseminate a clear message on what should be the minimal

elements embedded within a publication. Some journals have already taken this step (e.g. the

AEA) and have invested in partnerships and in infrastructures to perform prepublication verifica-

tion.

Journals editors could be the frontline of an improved peer review process involving a strict

evaluation of submitted material. Today, editors select referees for their ability to detect mathe-

matical errors and mistakes in submitted documents and share with the authors the responsibility

of the validity of the results. Similarly, editors in charge of empirical papers should choose at least

one referee with some abilities to read, check and reproduce codes (Heroux, 2015) or rely on an

associated technical editor or a trusted third-party to achieve this crucial validation task. One

example is the American Journal of Political Science that collaborates with the Odum Institute

Data Archive to verify replicability before acceptance for final publication (Christian et al., 2018).

In the case of confidential data, often mentioned as an obstacle to reproducibility, the editor could

either set up a short-term contract between the journal referees and the confidential-data producers

or use third-party platforms to ensure the integrity and the nondissemination of confidential data

during the evaluation of the reproducibility of the results.

Research institutions’ help could be twofold. First, we may expect these institutions to finance

projects proposing technical solutions for enhancing data and code sharing or proposing tools im-

proving, automating or even certifying the reproducibility of papers. We can already mention a few

examples, such as the NSF funded Privacy Tools Project for sharing sensitive research data initi-

ated by Harvard University. This project aims at developing secure repositories, together with legal

instruments, enabling broader access to privacy-sensitive data sets. Other ideas include curators

models allowing online data analysis with strict, human or automatic control of outputs (Crosas

et al., 2015).29 It is worth mentioning also the new French Certification Agency for Scientific Code

And Data (Pérignon et al., 2019), which develops partnerships with other restricted data access

centers and journals (e.g. AER) and proposes a certification attesting that the results in a given
29See the Inter-university Consortium for Political and Social Research (ICPSR) or the Harvard University Privacy

tools project (Private Data Sharing Interface).

35

scientific article can be reproduced using the code and data provided by the author, even when the

data are confidential. These initiatives provide technical help for both researchers and journals to

enrich and facilitate the peer review process. Second, research institutions could condition their

research grants on mandatory policies, requiring the reproducibility of results obtained in financed

research projects. In the same spirit, the evaluation of researchers and researchers’ publications

could include some evaluation of the reproducibility or the reusability of their work for others.

Users and firms are also active in developing new technical alternatives for many of the tasks

encountered in a research project. Recently created online platforms that provide secure solutions

for archiving code and data on permanent repository platforms such as Dataverse, figshare, Zenodo

or RunMyCode should be supported and promoted. Other platforms, such as Code Ocean (Stani-

land, 2018; Stata News, 2018), ExecAndShare (Hurlin et al., 2014a,b) or Binder, that allow the

direct execution of code are also promising solutions. Finally, other quite recent tools provide a

whole ecosystem of technical solutions (e.g., Docker, mlflow).

Today, our community is facing difficulties in addressing methodological problems such as “p-

hacking” (Benjamin et al., 2018) or “HARking” (Hypothesizing After the Results are Known, see

Kerr, 1998), and some doubt has been cast on science, either due to errors (Levitt, 1997; Hoxby,

2000; Donohue & Levitt, 2001; Reinhart & Rogoff, 2010), fraud (Duvendack et al., 2017) or re-

traction. As a response, we need more rigorous, more transparent and more reproducible scientific

processes to assess our results. We do not focus here on the related Open Science debate, which

focuses on achieving the FAIR (Findable Accessible Interoperable Reusable) principle even if repro-

ducible research principles, as exposed here, fit into this general trend. More reproducible research

may even be the key element to tackle all these challenges and improve the way we create, com-

ment and share our work. As the cherry on the cake, this process may also improve our productivity.

Acknowledgments

The authors wish to thank Christophe Bisière, Christine Boizot-Szantai, Philippe Bontems, Syl-

vain Chabé-Ferret, Fabrice Etilé, Pascal Lavergne, Steve Lawford, Chantal Le Mouël, Olivier de

Mouzon, and Tim Richards for their helpful comments and suggestions, as well as all participants of

the JRSS INRA-SFER-CIRAD conferences in Rennes (2010) and Lyon (2017), the food economics

seminar at the Toulouse School of Economics (2016) and the Reproducible Research Workshop

in Porto (2019). We also are grateful to Lise Frappier and Alexandra Coppolino for their help

collecting journal publication data, and to Sandrine Guillaume for producing some figures. We

wish to sincerely thank the two anonymous referees for their suggestions and useful comments.

36

References
Arnold, Tim, & Kuhfeld, Warren. 2012. Using SAS and LaTeX to Create Documents with Repro-
ducible Results. https://support.sas.com/resources/papers/proceedings12/324-2012.
pdf, 16 p.

Arnold, Tim, & Kuhfeld, Warren. 2015. The StatRep System for Reproducible Research. http:
//support.sas.com/rnd/app/papers/statrep/statrepmanual.pdf, 69 p.

Baiocchi, Giovanni. 2007. Reproducible research in computational economics: guidelines, inte-
grated approaches, and open source software. Computational Economics, 30(1), 19–40.

Barba, L. A. 2018. Terminologies for Reproducible Research. https://arxiv.org/abs/1802.
03311.

Barreto, Humberto, & Howland, Frank. 2005. Introductory Econometrics: using Monte Carlo
simulation with Microsoft Excel. Cambridge University Press.

Benjamin, Daniel J, Berger, James O, Johannesson, Magnus, Nosek, Brian A, Wagenmakers, E-J,
Berk, Richard, Bollen, Kenneth A, Brembs, Björn, Brown, Lawrence, Camerer, Colin, Cesarini,
David, Chambers, Christopher D., Clyde, Merlise, Cook, Thomas D., De Boeck, Paul, Dienes,
Zoltan, Dreber, Anna, Easwaran, Kenny, Efferson, Charles, Fehr, Ernst, Fidler, Fiona, Field,
Andy P., Forster, Malcolm, George, Edward I., Gonzalez, Richard, Goodman, Steven, Green,
Edwin, Green, Donald P., Greenwald, Anthony G., Hadfield, Jarrod D., Hedges, Larry V., Held,
Leonhard, Hua Ho, Teck, Hoijtink, Herbert, Hruschka, Daniel J., Imai, Kosuke, Imbens, Guido,
Ioannidis, John P. A., Jeon, Minjeong, Jones, James Holland, Kirchler, Michael, Laibson, David,
List, John, Little, Roderick, Lupia, Arthur, Machery, Edouard, Maxwell, Scott E., McCarthy,
Michael, Moore, Don A., Morgan, Stephen L., Munafó, Marcus, Nakagawa, Shinichi, Nyhan,
Brendan, Parker, Timothy H., Pericchi, Luis, Perugini, Marco, Rouder, Jeff, Rousseau, Ju-
dith, Savalei, Victoria, Schönbrodt, Felix D., Sellke, Thomas, Sinclair, Betsy, Tingley, Dustin,
Van Zandt, Trisha, Vazire, Simine, Watts, Duncan J., Winship, Christopher, Wolpert, Robert L.,
Xie, Yu, Young, Cristobal, Zinman, Jonathan, & Johnson, Valen E. 2018. Redefine statistical
significance. Nature Human Behaviour, 2, 6–10.

Bilina, Roseline, & Lawford, Steve. 2012. Python for Unified Research in Econometrics and Statis-
tics. Econometric Reviews, 31(5), 558–591.

Björk, Bo-Christer, & Solomon, David. 2013. The publishing delay in scholarly peer-reviewed
journals. Journal of Informetrics, 7(4), 914–923.

Boswell, Dustin, & Foucher, Trevor. 2011. The Art of Readable Code : Simple and Practical
Techniques for Writing Better Code. O’Reilly.

Buckheit, Jonathan B., & Donoho, David L. 1995. WaveLab and Reproducible Research. Lecture
Notes in Statistics, vol. 103. Springer New York.

Butz, William P, & Torrey, Barbara Boyle. 2006. Some frontiers in social science. Science,
312(5782), 1898–1900.

Card, David, & DellaVigna, Stefano. 2013. Nine Facts about Top Journals in Economics. Journal
of Economic Literature, 51(1), 144–161.

Chang, Andrew C, & Li, Phillip. 2017. A Preanalysis Plan to Replicate Sixty Economics Research
Papers That Worked Half of the Time. American Economic Review, 107(5), 60–64.

Christensen, Garret, & Miguel, Edward. 2018. Transparency, Reproducibility, and the Credibility
of Economics Research. Journal of Economic Literature, 56(3), 920–80.

Christian, Thu-Mai, Lafferty-Hess, Sophia, Jacoby, William, & Carsey, Thomas. 2018. Operational-
izing the Replication Standard: A Case Study of the Data Curation and Verification Workflow
for Scholarly Journals. International Journal of Digital Curation, 13(1), 114–124.

37

https://support.sas.com/resources/papers/proceedings12/324-2012.pdf
https://support.sas.com/resources/papers/proceedings12/324-2012.pdf
http://support.sas.com/rnd/app/papers/statrep/statrepmanual.pdf
http://support.sas.com/rnd/app/papers/statrep/statrepmanual.pdf
https://arxiv.org/abs/1802.03311
https://arxiv.org/abs/1802.03311

Chuang, Erica, Pollock, Harrison Diamond, & Wykstra, Stephanie. 2015. Reproducible Research:
Best Practices for Data and Code Management. IPA : Innovations for Poverty Action.

Claerbout, Jon. 1990. Active documents and reproducible results. SEP, 67, 139–144.

Claerbout, Jon, & Nichols, Dave. 1989. Why active documents need cake. SEP, 61, 341–344.

Clemens, Michael A. 2017. The meaning of failed replications: A review and proposal. Journal of
Economic Surveys, 31(1), 326–342.

Crosas, Merce, King, Gary, Honaker, James, & Sweeney, Latanya. 2015. Automating Open Science
for Big Data. ANNALS of the American Academy of Political and Social Science, 659(1), 260–
273.

de Kok, Ties. 2016. Combine Stata with Python using the Jupyter Notebook. Stata Conference,
Chicago 2016.

de Leeuw, Jan. 2001. Reproducible Research. The Bottom Line. http://www.escholarship.org/
uc/item/9050x4r4.

Desquilbet, Loic, Granger, Sabrina, Hejblum, Boris, Legrand, Arnaud, Pernot, Pascal, Rougier,
Nicolas P., de Castro Guerra, Elisa, Courbin-Coulaud, Martine, Duvaux, Ludovic, Gravier,
Pierre, Le Campion, Grégoire, Roux, Solenne, & Santos, Frédéric. 2019. Towards reproducible
research. Unité régionale de formation à l’information scientifique et technique de Bordeaux.

Dewald, William G, Thursby, Jerry G, & Anderson, Richard G. 1988. Replication in Empirical
Economics: The Journal of Money, Credit and Banking Project: Reply. American Economic
Review, 78(5), 1162–1163.

Dominik, Carsten. 2019. The Org Mode 9.2 Reference Manual. 12th Media Services.

Donoho, David, Maleki, Arian, Rahman, Inam, Shahram, Morteza, & Stodden, Victoria. 2009.
Reproducible Research in Computational Harmonic Analysis. Computing in Science and Engi-
neering, 11(1), 8–18.

Donohue, III, John J., & Levitt, Steven D. 2001. The Impact of Legalized Abortion on Crime.
The Quarterly Journal of Economics, 116(2), 379–420.

Donohue, III, John J., & Levitt, Steven D. 2008. Measurement Error, Legalized Abortion, and
the Decline in Crime: A Response to Foote and Goetz. The Quarterly Journal of Economics,
123(1), 425–440.

Dupas, Pascaline, & Robinson, Jonathan. 2013. Savings Constraints and Microenterprise Devel-
opment: Evidence from a Field Experiment in Kenya. American Economic Journal: Applied
Economics, 5(1), 163–192.

Duvendack, Maren, Palmer-Jones, Richard, & Reed, W Robert. 2017. What Is Meant by “Repli-
cation” and Why Does It Encounter Resistance in Economics? American Economic Review,
107(5), 46–51.

Ernst, Michael. 2012. Version control concepts and best practices. https://homes.cs.
washington.edu/~mernst/advice/version-control.html.

Fomel, Sergey, & Claerbout, Jon F. 2009. Guest Editors’ Introduction: Reproducible Research.
Computing in Science and Engineering, 11(1), 5–7.

Foote, Christopher L., & Goetz, Christopher F. 2008. The Impact of Legalized Abortion on Crime:
Comment. The Quarterly Journal of Economics, 123(1), 407–423.

Fowler, Martin, Beck, Kent, Brant, John, Opdyke, William, & Roberts, Don. 1999. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional.

Galiani, Sebastian, Gertler, Paul, & Romero, Mauricio. 2017. Incentives for replication in eco-
nomics. Working Paper 23576. National Bureau of Economic Research.

38

http://www.escholarship.org/uc/item/9050x4r4
http://www.escholarship.org/uc/item/9050x4r4
https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://homes.cs.washington.edu/~mernst/advice/version-control.html

Gandrud, Christopher. 2015. Reproducible Research with R and RStudio Second Edition. Chapman
& Hall/CRC The R Series.

Gentleman, Robert, & Temple Lang, Duncan. 2007. Statistical Analyses and Reproducible Re-
search. Journal of Computational and Graphical Statistics, 16(1), 1–23.

Gentzkow, Matthew, & Shapiro, Jesse M. 2014. Code and Data for the Social Sciences : a practi-
tioner’s guide. University of Chicago mimeo.

Gleditsch, Nils Petter, & Metelits, Claire. 2003. The replication debate. International Studies
Perspectives, 4(1), 72–79.

Gorp, Pieter Van, & Mazanek, Steffen. 2011. SHARE: a web portal for creating and sharing
executable research papers. Procedia Computer Science, 4, 589–597.

Haghish, E. F. 2016a. markdoc: Literate programming in Stata. Stata Journal, 16(4), 964–988.

Haghish, E. F. 2016b. Rethinking literate programming in statistics. Stata Journal, 16(4), 938–963.

Hamermesh, Daniel S. 2007. Viewpoint: Replication in Economics (Réplication en science
économique). The Canadian Journal of Economics / Revue Canadienne d’Economique, 40(3),
715–733.

Hamermesh, Daniel S. 2013. Six decades of top economics publishing: Who and how? Journal of
Economic Literature, 51(1), 162–172.

Herndon, Thomas, Ash, Michael, & Pollin, Robert. 2014. Does high public debt consistently stifle
economic growth? A critique of Reinhart and Rogoff. Cambridge Journal of Economics, 38(2),
275–279.

Heroux, Michael A. 2015. ACM TOMS replicated computational results initiative. ACM Trans-
actions on Mathematical Software (TOMS), 41(3), 13.

Hinsen, Konrad. 2015. ActivePapers: a platform for publishing and archiving computer-aided
research [version 3]. F1000Research, 3:289.

Höffler, Jan H. 2013. Teaching Replication in Quantitative Empirical Economics. In: World
Economics Association Conferences "the economics curriculum: towards a radical reformation".

Höffler, Jan H. 2017. Replication and economics journal policies. American Economic Review,
107(5), 52–55.

Höffler, Jan H. 2017. ReplicationWiki - Improving Transparency in the Social Sciences. D-Lib
Magazine, 23(3/4).

Höffler, Jan H, & Kneib, Thomas. 2013 (4). Economics Needs Replication. http://
ineteconomics.org/ideas-papers/blog/economics-needs-replication.

Hoxby, Caroline M. 2000. Does Competition among Public Schools Benefit Students and Taxpay-
ers? American Economic Review, 90(5), 1209–1238.

Hoxby, Caroline M. 2007. Does Competition among Public Schools Benefit Students and Taxpay-
ers? Reply. The American Economic Review, 97(5), 2038–2055.

Hunt, Brian R., Lipsman, Ronald L., & Rosenberg, Jonathan M. 2014. A Guide to MATLAB: For
Beginners and Experienced Users Third Edition. Cambridge University Press.

Hunter, John E. 2001. The Desperate Need for Replications. Journal of Consumer Research, 28(1),
149–158.

Hurlin, C., Pérignon, C., & Stodden, V. 2014a. RunMyCode.org: a novel dissemination and
collaboration platform for executing published computational results. Open Science Framework.

39

http://ineteconomics.org/ideas-papers/blog/economics-needs-replication
http://ineteconomics.org/ideas-papers/blog/economics-needs-replication

Hurlin, C., Pérignon, C., & Stodden, V. 2014b. RunMyCode.org: A Research-Reproducibility
Tool for Computational Sciences, in Implementing Reproducible Research. In: V., Stodden, F.,
Leisch, & R., Peng (eds), Implementing Reproducible Research. Chapman & Hall/CRC The R
Series.

Huschka, Denis. 2013. Why should we share our data, how can it be organized, and what are the
challenges ahead? RatSWD German Data Forum.

Ioannidis, John PA. 2005. Why most published research findings are false. PLoS Med, 2(8), e124.

Jann, Ben. 2016. Creating LaTeX documents from within Stata using texdoc. Stata Journal,
16(2), 245–263.

Jann, Ben. 2017. Creating HTML or Markdown documents from within Stata using webdoc. Stata
Journal, 17(1), 3–38.

Kernighan, Brian W, & Pike, Rob. 1999. The Practice of Programming. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

Kerr, Norbert L. 1998. HARKing: Hypothesizing after the results are known. Personality and
Social Psychology Review, 2(3), 196–217.

Kluyver, Thomas, Ragan-Kelley, Benjamin, Pérez, Fernando, Granger, Brian E, Bussonnier,
Matthias, Frederic, Jonathan, Kelley, Kyle, Hamrick, Jessica B, Grout, Jason, Corlay, Sylvain,
Ivanov, Paul, Avila, Damián, Abdalla, Safia, Willing, Carol, & Jupyter development team. 2016.
Jupyter Notebooks – a publishing format for reproducible computational workflows. Pages 87–
90 of: Positioning and power in academic publishing: players, agents and agendas: proceedings
of the 20th international conference on electronic publishing. Amsterdam. IOS Press.

Knuth, Donald E. 1984. Literate Programming. The Computer Journal, 27, 97–111.

Knuth, Donald E. 1992. Literate Programming. Center for the Study of Language and Information.

Koenker, Roger, & Zeileis, Achim. 2009. On Reproducible Econometric Research. Journal of
Applied Econometrics, 24(5), 833–847.

Köster, Johannes, & Rahmann, Sven. 2012. Snakemake - a scalable bioinformatics workflow engine.
Bioinformatics, 28(19), 2520–2522.

LabsExplorer. 2019. 2019 review of the best electronic laboratory notebooks. https://www.
labsexplorer.com/c/2019-review-of-the-best-electronic-laboratory-notebooks_197.

Lagoze, Carl, & Vilhuber, Lars. 2017. O Privacy, Where Art Thou? Making Confidential Data
Part of Reproducible Research. CHANCE, 30(3), 68–72.

Leek, Jeffrey T, & Peng, Roger D. 2015. Opinion: Reproducible research can still be wrong:
Adopting a prevention approach. Proceedings of the National Academy of Sciences, 112(6),
1645–1646.

Leisch, Friedrich. 2002. Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis. Compstat 2002 - Proceedings in Computational Statistics, 575–580.

Leisch, Friedrich. 2006. Sweave User Manual. https://stat.ethz.ch/R-manual/R-devel/
library/utils/doc/Sweave.pdf.

Lenth, Russell V. 2012. StatWeave Users’ Manual. http://homepage.divms.uiowa.edu/
~rlenth/StatWeave/StatWeave-manual.pdf.

Lenth, Russell V, & Højsgaard, Søren. 2007. SASweave: Literate Programming Using SAS. Journal
of Statistical Software, 19(8), 1–20.

Lenth, Russell V, & Højsgaard, Søren. 2011. Reproducible statistical analysis with multiple lan-
guages. Computational Statistics, 26(3), 419–426.

40

https://www.labsexplorer.com/c/2019-review-of-the-best-electronic-laboratory-notebooks_197
https://www.labsexplorer.com/c/2019-review-of-the-best-electronic-laboratory-notebooks_197
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
http://homepage.divms.uiowa.edu/~rlenth/StatWeave/StatWeave-manual.pdf
http://homepage.divms.uiowa.edu/~rlenth/StatWeave/StatWeave-manual.pdf

LeVeque, Randall J. 2009. Python Tools for Reproducible Research on Hyperbolic Problems. Pages
19–27 of: Special issue on Reproducible Research. Computing in Science and Engineering (CiSE).

Levin, Lois. 2006. SAS Programming Guidelines. SUGI 31 Proceedings - Paper 123-31.

Levitt, Steven D. 1997. Using Electoral Cycles in Police Hiring to Estimate the Effect of Police on
Crime. The American Economic Review, 87(3), 270–290.

Levitt, Steven D. 2002. Using Electoral Cycles in Police Hiring to Estimate the Effects of Police
on Crime: Reply. American Economic Review, 92(4), 1244–1250.

Long, J Scott. 2009. The workflow of data analysis using Stata. Stata Press College Station, TX.

MacFarlane, John. 2016. Pandoc User’s Guide. https://pandoc.org/README.pdf.

Martinson, Brian C, Anderson, Melissa S, & de Vries, Raymond. 2005. Scientists behaving badly.
Nature, 435, 737–738.

McCarthy, Ed. 2018. Foundations of Computational Finance With MATLAB. Wiley.

McCrary, Justin. 2002. Using Electoral Cycles in Police Hiring to Estimate the Effect of Police on
Crime: Comment. American Economic Review, 92(4), 1236–1243.

McCullough, B. D. 2009. Open Access Economics Journals and the Market for Reproducible
Economic Research. Economic Analysis and Policy, 39(1), 117–126.

McCullough, B. D. 2018. Quis Custodiet Ipsos Custodes? Despite Evidence to the Contrary, the
American Economic Review Concluded That All Was Well with Its Archive. Economics: The
Open-Access, Open-Assessment E-Journal, 12(2018-52), 1–13.

McCullough, B. D., & Vinod, H. D. 2003. Verifying the Solution from a Nonlinear Solver: A Case
Study. American Economic Review, 93(3), 873–892.

McCullough, B. D., McGeary, Kerry Anne, & Harrison, Teresa D. 2006. Lessons from the JMCB
Archive. Journal of Money, Credit and Banking, 38(4), 1093–1107.

Meredith, Evan, & Racine, Jeffrey S. 2009. Towards Reproducible Econometric Research: The
Sweave Framework. Journal of Applied Econometrics, 24(2), 366–374.

Miara, Richard J, Musselman, Joyce A, Navarro, Juan A, & Shneiderman, Ben. 1983. Program
indentation and comprehensibility. Communications of the ACM, 26(11), 861–867.

Millman, K Jarrod, & Pérez, Fernando. 2014. Developing open source scientific practice. Chap.
6, pages 149–183 of: Implementing Reproducible Research. CRC Press, Stodden, Victoria and
Leisch, Friedrich and Peng, Roger D (ed.).

Morrisson, Shannon M, & Karafa, Matthew T. 2012. Reproducible Research Two Ways: SASweave
vs StatRep. https://www.mwsug.org/proceedings/2012/PH/MWSUG-2012-PH09.pdf.

Nagler, Jonathan. 1995. Coding style and good computing practices. Political Science and Politics,
28(3), 488–492.

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., Buck, S.,
Chambers, C. D., Chin, G., Christensen, G., Contestabile, M., Dafoe, A., Eich, E., Freese, J.,
Glennerster, R., Goroff, D., Green, D. P., Hesse, B., Humphreys, M., Ishiyama, J., Karlan,
D., Kraut, A., Lupia, A., Mabry, P., Madon, T., Malhotra, N., Mayo-Wilson, E., McNutt,
M., Miguel, E., Paluck, E. Levy, Simonsohn, U., Soderberg, C., Spellman, B. A., Turitto, J.,
VandenBos, G., Vazire, S., Wagenmakers, E. J., Wilson, R., & Yarkoni, T. 2015. Promoting an
open research culture. Science, 348(6242), 1422–1425.

Pérez, Fernando, & Granger, Brian E. 2007. IPython: a System for Interactive Scientific Comput-
ing. Computing in Science and Engineering, 9(3), 21–29.

41

https://pandoc.org/README.pdf
https://www.mwsug.org/proceedings/2012/PH/MWSUG-2012-PH09.pdf

Pérignon, Christophe, Gadouche, Kamel, Hurlin, Christophe, Silberman, Roxane, & Debonnel,
Eric. 2019. Certify reproducibility with confidential data. Science, 365(6449), 127–128.

Pesaran, Bahram, & Pesaran, M Hashem. 2010. Time Series Econometrics Using Microfit 5.0: A
User’s Manual. Oxford University Press, Inc.

Pesaran, Hashem. 2003. Introducing a Replication Section. Journal of Applied Econometrics,
18(1), 111.

Peters, Tim. 2004. Pep 20–the zen of Python. https://www.python.org/dev/peps/pep-0020/
#id3.

Racine, Jeffrey S. 2019. Energy, economics, replication & reproduction. Energy Economics, 82,
264–275.

Reinhart, Carmen M., & Rogoff, Kenneth S. 2010. Growth in a Time of Debt. American Economic
Review, 100(2), 573–78.

Rodriguez, German. 2017. Literate data analysis with Stata and Markdown. Stata Journal, 17(3),
600–618.

Rothstein, Jesse. 2007. Does Competition Among Public Schools Benefit Students and Taxpayers?
Comment. American Economic Review, 97(5), 2026–2037.

Rougier, Nicolas P., Hinsen, Konrad, Alexandre, Frédéric, Arildsen, Thomas, Barba, Lorena A.,
Benureau, Fabien C.Y., Brown, C. Titus, de Buyl, Pierre, Caglayan, Ozan, Davison, Andrew P.,
Delsuc, Marc-André, Detorakis, Georgios, Diem, Alexandra K., Drix, Damien, Enel, Pierre,
Girard, Benoît, Guest, Olivia, Hall, Matt G., Henriques, Rafael N., Hinaut, Xavier, Jaron,
Kamil S., Khamassi, Mehdi, Klein, Almar, Manninen, Tiina, Marchesi, Pietro, McGlinn, Daniel,
Metzner, Christoph, Petchey, Owen, Plesser, Hans Ekkehard, Poisot, Timothée, Ram, Karthik,
Ram, Yoav, Roesch, Etienne, Rossant, Cyrille, Rostami, Vahid, Shifman, Aaron, Stachelek,
Joseph, Stimberg, Marcel, Stollmeier, Frank, Vaggi, Federico, Viejo, Guillaume, Vitay, Julien,
Vostinar, Anya E., Yurchak, Roman, & Zito, Tiziano. 2017. Sustainable computational science:
the ReScience initiative. PeerJ Computer Science, 3(Dec), e142.

Sandve, Geir Kjetil, Nekrutenko, Anton, Taylor, James, & Hovig, Eivind. 2013. Ten Simple Rules
for Reproducible Computational Research. PLoS Comput Biol, 9(10), 1–4.

Santaguida, Vincent. 2010. Folder and File Naming Convention - 10 Rules for Best Practice. http:
//www.exadox.com/en/articles/file-naming-convention-ten-rules-best-practice.

Schulte, E., & Davison, D. 2011. Active Documents with Org-Mode. Computing in Science
Engineering, 13(3), 66–73.

Schulte, Eric, Davison, Dan, Dye, Thomas, & Dominik, Carsten. 2012. A Multi-Language Comput-
ing Environment for Literate Programming and Reproducible Research. Journal of Statistical
Software, 46(1), 1–24.

Schwab, Matthias, Karrenbach, Martin, & Claerbout, Jon. 2000. Making scientific computations
reproducible. Computing in Science & Engineering, 2-6, 61–67.

Staniland, Mark. 2018. Nature Research journals trial new tools to enhance code peer
review and publication. http://blogs.nature.com/ofschemesandmemes/2018/08/01/
nature-research-journals-trial-new-tools-to-enhance-code-peer-review-and-publication.

Stata News. 2018. StataCorp LLC and Code Ocean partner to accelerate reproducible research with
code. https://codeocean.com/press-release/stata.

Stodden, V., Bailey, D.H., Borwein, J., LeVeque, R.J., Rider, W., & Stein, W. 2013. Setting the
Default to Reproducible: Reproducibility in Computational and Experimental Mathematics.

Stodden, Victoria. 2014. The reproducible research movement in statistics. Statistical Journal of
the IAOS, 30(2), 91–93.

42

https://www.python.org/dev/peps/pep-0020/#id3
https://www.python.org/dev/peps/pep-0020/#id3
http://www.exadox.com/en/articles/file-naming-convention-ten-rules-best-practice
http://www.exadox.com/en/articles/file-naming-convention-ten-rules-best-practice
http://blogs.nature.com/ofschemesandmemes/2018/08/01/nature-research-journals-trial-new-tools-to-enhance-code-peer-review-and-publication
http://blogs.nature.com/ofschemesandmemes/2018/08/01/nature-research-journals-trial-new-tools-to-enhance-code-peer-review-and-publication
https://codeocean.com/press-release/stata

Stodden, Victoria, McNutt, Marcia, Bailey, David H., Deelman, Ewa, Gil, Yolanda, Hanson,
Brooks, Heroux, Michael A., Ioannidis, John P.A., & Taufer, Michela. 2016. Enhancing re-
producibility for computational methods. Science, 354(6317), 1240–1241.

Sweeney, L, Crosas, M, & Bar-Sinai, M. 2015. Sharing Sensitive Data with Confidence: The
Datatags System. Technology Science.

Toomey, Dan. 2016. Learning Jupyter. Packt Publishing, Limited.

Ushey, Kevin, McPherson, Jonathan, Cheng, Joe, Atkins, Aron, & Allaire, JJ. 2016. packrat: A
Dependency Management System for Projects and their R Package Dependencies. R package
version 0.4.8-1.

Van Noorden, Richard. 2011. The troubles with retractions. Nature, 478, 26–28.

van Rossum, Guido, Warsaw, Barry, & Coghlan, Nick. 2001. PEP 8–style guide for Python code.
python.org.

Vilhuber, Lars, Turrito, James, & Welch, Keesler. 2020. Report by the AEA Data Editor. AEA
Papers and Proceedings, 110(May), 764–75.

Vlaeminck, Sven, & Herrmann, Lisa-Kristin. 2015. Data Policies and Data Archives: A New
Paradigm for Academic Publishing in Economic Sciences? Pages 145–155 of: Schmidt, Birgit, &
Dobreva, Milena (eds), New Avenues for Electronic Publishing in the Age of Infinite Collections
and Citizen Science. IOS Press.

Wilson, Greg, Aruliah, D. A., Brown, C. Titus, Chue Hong, Neil P., Davis, Matt, Guy, Richard T.,
Haddock, Steven H. D., Huff, Kathryn D., Mitchell, Ian M., Plumbley, Mark D., Waugh, Ben,
White, Ethan P., & Wilson, Paul. 2014. Best Practices for Scientific Computing. PLOS Biology
12(1), e1001745.

Wolfram Research, Inc. 2008. Wolfram Mathematica Tutorial Collection: Notebooks and Docu-
ments. Wolfram Research, Inc.

Xie, Yihui. 2015. Dynamic Documents with R and knitr, Second Edition. Chapman & Hall/CRC
The R Series.

Xie, Yihui, Allaire, J., & Grolemund, Garrett. 2018. R Markdown: The Definitive Guide. Chapman
& Hall/CRC The R Series.

43

Appendices for the paper:

"How To Make A Pie: Reproducible Research for Empirical
Economics and Econometrics"

by V. Orozco, C. Bontemps, E. Maigné, V. Piguet,
A. Hofstetter, A. Lacroix, F. Levert, J.M. Rousselle

1

A Evolution of economics journal replication policies

Rank Journal
Mandatory replication policy

2003 2009 2020 2020 policy’ details
1 Am Econ Review – YES YES mandatory (data + code) sharing*

2 J Finance – – YES mandatory code, encourage data sharing*

3 Q J Economics – – YES mandatory (data + code) sharing*, AER

4 Econometrica – YES YES mandatory (data + code) sharing
5 J Financial Econ – – – encourage (data + code) sharing
6 J Political Econ – YES YES mandatory (data + code) sharing*, AER

7 Rev Financial Stud – – –
8 J Econ Theory – – – encourage (data + code) sharing
9 Rev Econ Studies – YES YES mandatory (data + code) sharing
10 J Econometrics – – – encourage (data + code) sharing
11 J Econ Literature – – YES mandatory (data + code) sharing*

12 J Monetary Econ – – – encourage (data + code) sharing
13 J Econ Perspectives – YES YES mandatory (data + code) sharing*

14 Rev Econ & Stat – YES YES mandatory (data + code) sharing
15 Eur Econ Review – – – encourage (data + code) sharing
16 Int Econ Review – – –
17 J Int Econ – – – mandatory data, encourage code sharing
18 Economic Journal – – –
19 J Public Econ – – – encourage (data + code) sharing
20 Game Econ Behav – – – encourage (data + code) sharing
21 RAND J Economics – – –
22 J Money Credit Bank YES YES YES mandatory (data + code) sharing*

23 Economic Theory – – – encourage data sharing
24 J Bus & Econ Stat – – – encourage (data + code) sharing
25 Economics Letters – – – mandatory data, encourage code sharing
...
41 J Appl Econometrics – – YES mandatory data, encourage code sharing

∗∗

Specialized journals (data not available before 2019)
Eur Review of Agri Econ n.a YES mandatory (data + code) sharing*

Ecological Econ n.a – encourage (data + code) sharing
Am J of Agri Econ n.a YES mandatory (data + code) sharing
Food Policy n.a – encourage (data + code) sharing
Applied Econ n.a – encourage data sharing
Resource and Energy Econ n.a – encourage (data + code) sharing

Ranks and columns for years 2003 and 2009 are from McCullough (2009).

Information for year 2020 has been verified by the authors on journal websites (last access 24-07-2020).
∗ Requested before publication. AER The journal follows the American Economic Review data availability policy.
∗∗ This journal also provides a replication section.

Table 5: Overview of EEE journals replication policies over time.

2

https://www.aeaweb.org/journals/policies/data-availability-policy
https://afajof.org/wp-content/uploads/files/policies-and-guidelines/CodePolicy_FAQ.pdf
https://academic.oup.com/qje/pages/Data_Policy
https://www.econometricsociety.org/publications/ecoNometrica/information-authors/instructions-submitting-articles#replication
https://www.elsevier.com/journals/journal-of-financial-ecoNomics/0304-405x/guide-for-authors#87001
http://www.journals.uchicago.edu/journals/jpe/datapolicy
https://www.elsevier.com/journals/journal-of-economic-theory/0022-0531?generatepdf=true
http://www.restud.com/submissions/
https://www.elsevier.com/journals/journal-of-econometrics/0304-4076/guide-for-authors
https://www.aeaweb.org/journals/policies/data-availability-policy
https://www.elsevier.com/journals/journal-of-monetary-ecoNomics/0304-3932/guide-for-authors
https://www.aeaweb.org/journals/policies/data-availability-policy
http://www.mitpressjournals.org/journals/rest/sub
https://www.elsevier.com/journals/european-ecoNomic-review/0014-2921?generatepdf=true
https://www.elsevier.com/journals/journal-of-international-ecoNomics/0022-1996?generatepdf=true
https://www.elsevier.com/journals/journal-of-public-ecoNomics/0047-2727?generatepdf=true
https://www.elsevier.com/journals/games-and-ecoNomic-behavior/0899-8256?generatepdf=true
https://jmcb.osu.edu/archive
https://www.springer.com/journal/199/submission-guidelines#Instructions%20for%20Authors_Electronic%20Supplementary%20Material
http://amstat.tandfonline.com/action/authorSubmission?show=instructions&journalCode=ubes20
https://www.elsevier.com/journals/ecoNomics-letters/0165-1765?generatepdf=true
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1255/homepage/ForAuthors.html
https://academic.oup.com/erae/pages/General_Instructions
https://www.elsevier.com/journals/ecological-ecoNomics/0921-8009?generatepdf=true
https://academic.oup.com/ajae/pages/Author_Guidelines
https://www.elsevier.com/journals/food-policy/0306-9192?generatepdf=true
http://www.tandfonline.com/action/authorSubmission?journalCode=raec20&page=instructions#Using_third_party_material
https://www.elsevier.com/journals/resource-and-energy-economics/0928-7655/guide-for-authors

B Practitioner’s checklist

Organize your work: Yes No see section

Is your directory structure separating raw data from created ones,
programs, documentation and outputs?

� � 3.2

Do you have a naming convention for your files? More specifically
for programs, are you able to quickly know their goal?

� � 3.2

Is the whole pipeline of your programs and data clear (drawn or
depicted somewhere)?

� � 3.3 & 5.3

Have you defined a strategy for differentiating updated files from
old ones?

� � 3.4.2

Is it easy to compare different versions of your code? � � 3.4.2

Have you discussed with your co-authors (if any) how to share
your documents and programs?

� � 3.4.1 & 3.4.3

Do you keep track of your ideas, tests or record your notes and
conversations with coauthors (if any)?

� � 3.1.1

Do you have a backup procedure? � � 3.4.2

Code for others:

Are your variable names explicit? � � 4.1.2

Do you use a convention for variables that you created vs original
ones?

� � 4.1.2

Do you use relative paths in your programs? � � 4.1.3

Could you run your code on another computer? � � 4.1.3

Is your code as generic as possible? � � 4.1.3

Do you have comments in your code? � � 3.1.2 & 4.2

Is your code understandable without any other documentation? � � 4.1 & 4.2

Automate as much as you can:

Does your software record code in a readable format? � � 5.1

Did you avoid any cut-and-paste? � � 5.2 & 5.4

Is it easy to recall in which order you ran each of your programs? � � 5.3

Is it easy to track how each table, figure and result in your docu-
ment was created?

� � 3.3, 5.1 & 5.3

Is it easy to rerun all the programs (and find all the results)? � � 5.4

3

C GraphViz code used to draw the workflow of Figure 2

digraph G {
rankdir = RL;
node [width =2, height=0.7];

subgraph cluster_data {
style=invis;
node [shape=box, style = rounded]

rawdata [label = "Raw data"];
working [label = "Working data set"];
interm [label = <Intermediate files
(data, results)>];

node [style=dashed]
final [label=<Final results

(Tables, Figures, Summaries)>];
publication [label = "Publication"];

{rank=same; rawdata; working; interm; publication}
}

subgraph cluster_code {
style=invis;
node [shape = ellipse, fillcolor=gray73, style="filled"]

dataprep [label = <Data preparation
code>];
analysis [label = "Analysis code"];
codeout [label = "Code output"];
coderes [label = <Code for
presenting results>];

node [fillcolor=gray93, style="filled"]
method1 [label = "Method 1", width=1.5];
method2 [label = "Method 2", width=1.5];

{rank=same; dataprep; analysis; codeout; coderes}
{rank=same; method1; method2}
//dataprep -> analysis -> codeout -> coderes [invis];
method1 -> analysis;
method2 -> analysis;

}

rawdata -> dataprep -> working -> analysis -> interm -> codeout ->
final -> coderes -> publication;

}

4

D Version control software details
Figure 13 shows that repository and working copy are the two key elements of the client/server
architecture of distributed version control software. A repository is a database of changes; it con-
tains all the historical versions of the files. It is possible to store code, text or image files, although
versioning is designed to address files that people edit. The working copy is a directory that con-
tains the project’s files, but only the files that the user has chosen to track will have a history. All
the modifications are made on this working copy. The commit function allows users to send the
modifications to the local repository and to provide a description of the changes.

Figure 13: Distributed version control (Ernst, 2012).

To give other computers access to your project (and its history), you need to define a central
repository and push your local repository to this central repository. The server where the central
repository is located can be another personal computer, but most programmers use a web site to
share their repositories. To obtain the latest version of a project, it is necessary to first pull it
to retrieve a copy of the central repository to your local repository and then to update it in order
to take into account the changes in your working copy. The most widely used distributed version
control software is Git, and the Carpentry Software online lesson titled “Version Control with Git”
is one of the numerous resources available for getting started.

While each computer has its own repository in distributed version control systems, it is not the
case in centralized version control tools (Figure 14), where there is only one repository in the server.
It is thus not possible to work offline with centralized version control software. Furthermore, as all
changes are saved on the server, it does not provide the opportunity to take time to save and try
changes before sharing them.

Figure 14: Centralized version control (Ernst, 2012).

5

E Stata code for Table 2
/***/
/* Define dependent ("Y") and independent variables
(exogeneous ones "Xexo", endogeneous one "Xendo")
and instrumental variables ("IV") */
/***/
local Y "Taste"
local Xexo "Cooker_Level NbIngredients NbServers French Michelin"
local Xendo "price"
local IV "Eggs_Price Flour_Price Sugar_Price"

/***/
/* Estimations : OLS and 2SLS */
/***/
eststo OLS : reg ‘Y’ ‘Xendo’ ‘Xexo’
eststo IV : ivreg2 ‘Y’ ‘Xexo’ (‘Xendo’ = ‘IV’), endog(‘Xendo’) first ///
savefirst savefprefix(First_Stage)

/***/
/* Export a nice table (LaTeX format) with both OLS and 2SLS estimation
results */
/***/
esttab OLS IV using RegressionTable.tex, ///
scalar("N Observations" "r2 R2" "sargan Sargan statistic" ///
"sarganp Sargan p") b(3) not nonumber mtitle compress replace se ///
star(* 0.10 ** 0.05 *** 0.01) label ///
title(Regression table created using Stata \textit{esttab} command. ///
\label{ExampleNiceReg}) ///
addnote("Standard errors are in parentheses." ///
"IV are input prices: sugar, flour and eggs prices." ///
"Sargan test is an overidentification test of all instruments." ///
"This is a fictive example (no real interpretation).") ///
"\sym{*} p < 0.10, \sym{**} p < 0.05, \sym{***} p < 0.01." ///
mtitle("OLS" "2SLS") wide

6

F Details for Table 4

Language
Tool

Source Output Chunk
usage Chunk syntax

Code Text extension format

Sweave-like tools

R LaTeX Sweave .Rnw
TeX,
Beamer,
PDF

code
«chunckname»=
R code
@

R, Python,
Markdown R Markdown .Rmd

HTML, PDF,
MS Word,
Beamer, . . .

code
“‘r“‘
R code
“‘

SAS, SQL,
. . .
SAS

LaTeX

SASWeave

.SAStex

TeX,
PDF code

\begin{SAScode}
SAS code
\end{SAScode}

R .Rtex

SAS + R .SASRtex,
.RSAStex

R

noweb

.Rnw

SAS + R .SASnw,
.nwSAS

R, SAS,
MATLAB,
Stata, . . .

LaTeX,
OpenOffice StatWeave .snw TeX, ODT code

\begin{Statacode}
Stata code
\end{Statacode}

Stata Markdown Markstat .stmd
TeX,
PDF,
HTML

code
“‘s
Stata code
“‘

SAS LaTeX StatRep .tex TeX,
PDF code

\begin{SAScode}
SAS code
\end{SAScode}

MATLAB plain text
markup Publish .m MS Word, HTML,

PDF, TeX text %%title
%text

R, Stata,
MATLAB,
Python, . . .

plain text
markup Org-mode .org

TeX, PDF,
HTML, ODT,
. . .

text

#+BEGIN_SRC
<language>
code
#+END_SRC

Notebooks
Python, R, SAS

Markdown Jupyter
Notebook .ipynb

HTML,
rST,
PDF

code
&
text

Stata, MATLAB,
Julia, . . .

Mathematica Wolfram
language

Mathematica
Notebook .nb HTML, PDF,

TeX, . . .

code
&
text

R, Python, SAS,
SQL, . . . Markdown R Notebook .Rmd

HTML,
rST,
PDF

code
“‘r“‘
R code
“‘

MATLAB Formatted
text Live Scripts .mlx HTML,

PDF

code
&
text

A “chunk” is a block of code or text (see column “Chunk usage”). Its syntax is software specific (see column “Chunk
syntax”).

Table 6: Source extension and code chunk syntax for literate programming tools.

7

	Introduction
	Reproducible Research
	Organize Your Work
	Organizing Tasks and Documentation
	From Post-Its to Task Management Systems
	From Comments to Task Documentation

	Organizing Workspace
	Keeping Track of the Workflow
	Handling Files
	Sharing Files
	Version Control
	Collaborative Writing

	Code for Others (Including Your Future Self)
	Programming with Style
	Conventions on Layout
	Conventions on Naming
	Writing Generic Code

	Documenting the Code

	Automate As much As You Can
	Coding Everything
	Exporting the Results
	Linking Everything
	Creating Reproducible Documents

	Conclusion
	Appendices
	Evolution of economics journal replication policies
	Practitioner's checklist
	GraphViz code used to draw the workflow of Figure 2
	Version control software details
	Stata code for Table 2
	Details for Table 4

