F. Min, M. Kopke, and S. Dennis, Gas Fermentation for Commercial Biofuels Production, Liquid, Gaseous and Solid Biofuels - Conversion Techniques, vol.IntechOpen, 2013.

B. Schiel-bengelsdorf and P. Dürre, Pathway engineering and synthetic biology using acetogens, FEBS Letters, vol.586, issue.15, pp.2191-2198, 2012.

F. Liew, M. E. Martin, R. C. Tappel, B. D. Heijstra, C. Mihalcea et al., Gas Fermentation?A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks, Frontiers in Microbiology, vol.7, p.694, 2016.

K. Schuchmann and V. Müller, Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria, Nature Reviews Microbiology, vol.12, issue.12, pp.809-821, 2014.

F. R. Bengelsdorf, M. Straub, and P. Dürre, Bacterial synthesis gas (syngas) fermentation, Environmental Technology, vol.34, issue.13-14, pp.1639-1651, 2013.

M. Köpke, C. Mihalcea, J. C. Bromley, and S. D. Simpson, Fermentative production of ethanol from carbon monoxide, Current Opinion in Biotechnology, vol.22, issue.3, pp.320-325, 2011.

M. Köpke, C. Mihalcea, F. Liew, J. H. Tizard, M. S. Ali et al., 2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, Using Industrial Waste Gas, Applied and Environmental Microbiology, vol.77, issue.15, pp.5467-5475, 2011.

M. Köpke and S. D. Simpson, Pollution to products: recycling of ?above ground? carbon by gas fermentation, Current Opinion in Biotechnology, vol.65, pp.180-189, 2020.

H. Latif, A. A. Zeidan, A. T. Nielsen, and K. Zengler, Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms, Current Opinion in Biotechnology, vol.27, pp.79-87, 2014.

B. D. Heijstra, C. Leang, and A. Juminaga, Gas fermentation: cellular engineering possibilities and scale up, Microbial Cell Factories, vol.16, issue.1, 2017.

D. E. Cameron, C. J. Bashor, and J. J. Collins, A brief history of synthetic biology, Nature Reviews Microbiology, vol.12, issue.5, pp.381-390, 2014.

W. Zhang and D. R. Nielsen, Synthetic biology applications in industrial microbiology, Frontiers in Microbiology, vol.5, p.451, 2014.

L. Zhu, Y. Zhu, Y. Zhang, and Y. Li, Engineering the robustness of industrial microbes through synthetic biology, Trends in Microbiology, vol.20, issue.2, pp.94-101, 2012.

P. E. Purnick and R. Weiss, The second wave of synthetic biology: from modules to systems, Nature Reviews Molecular Cell Biology, vol.10, issue.6, pp.410-422, 2009.

Y. Liu, L. Liu, J. Li, G. Du, and J. Chen, Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis, Trends in Biotechnology, vol.37, issue.5, pp.548-562, 2019.

H. Chi, X. Wang, Y. Shao, Y. Qin, Z. Deng et al., Engineering and modification of microbial chassis for systems and synthetic biology, Synthetic and Systems Biotechnology, vol.4, issue.1, pp.25-33, 2019.

K. R. Choi, W. D. Jang, D. Yang, J. S. Cho, D. Park et al., Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering, Trends in Biotechnology, vol.37, issue.8, pp.817-837, 2019.

L. S. Qi, M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman et al., Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression, Cell, vol.152, issue.5, pp.1173-1183, 2013.

N. S. Mccarty, A. E. Graham, L. Studená, and R. Ledesma-amaro, Multiplexed CRISPR technologies for gene editing and transcriptional regulation, Nature Communications, vol.11, issue.1, pp.1-13, 2020.

D. Ro, E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman et al., Production of the antimalarial drug precursor artemisinic acid in engineered yeast, Nature, vol.440, issue.7086, pp.940-943, 2006.

V. J. Martin, D. J. Pitera, S. T. Withers, J. D. Newman, and J. D. Keasling, Engineering a mevalonate pathway in Escherichia coli for production of terpenoids, Nature Biotechnology, vol.21, issue.7, pp.796-802, 2003.

Y. Ko, J. W. Kim, J. A. Lee, T. Han, G. B. Kim et al., Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production, Chemical Society Reviews, vol.49, issue.14, pp.4615-4636, 2020.

M. E. Pyne, M. Bruder, M. Moo-young, D. A. Chung, and C. P. Chou, Technical guide for genetic advancement of underdeveloped and intractable Clostridium, Biotechnology Advances, vol.32, issue.3, pp.623-641, 2014.

B. Molitor, K. Kirchner, A. W. Henrich, S. Schmitz, and M. A. Rosenbaum, Expanding the molecular toolkit for the homoacetogen Clostridium ljungdahlii, Scientific Reports, vol.6, issue.1, 2016.

L. Westphal, A. Wiechmann, J. Baker, N. P. Minton, and V. Müller, The Rnf Complex Is an Energy-Coupled Transhydrogenase Essential To Reversibly Link Cellular NADH and Ferredoxin Pools in the AcetogenAcetobacterium woodii, Journal of Bacteriology, vol.200, issue.21, 2018.

M. C. Schoelmerich, A. Katsyv, W. Sung, V. Mijic, A. Wiechmann et al., Regulation of lactate metabolism in the acetogenic bacteriumAcetobacterium woodii, Environmental Microbiology, vol.20, issue.12, pp.4587-4595, 2018.

A. Wiechmann, S. Ciurus, F. Oswald, V. N. Seiler, and V. Müller, It does not always take two to tango: ?Syntrophy? via hydrogen cycling in one bacterial cell, The ISME Journal, vol.14, issue.6, pp.1561-1570, 2020.

F. Liew, A. M. Henstra, M. K?pke, K. Winzer, S. D. Simpson et al., Metabolic engineering of Clostridium autoethanogenum for selective alcohol production, Metabolic Engineering, vol.40, pp.104-114, 2017.

P. Tremblay, T. Zhang, S. A. Dar, C. Leang, and D. R. Lovley, The Rnf Complex of Clostridium ljungdahlii Is a Proton-Translocating Ferredoxin:NAD+ Oxidoreductase Essential for Autotrophic Growth, mBio, vol.4, issue.1, pp.406-418, 2012.

C. Leang, T. Ueki, K. P. Nevin, and D. R. Lovley, A Genetic System for Clostridium ljungdahlii: a Chassis for Autotrophic Production of Biocommodities and a Model Homoacetogen, Applied and Environmental Microbiology, vol.79, issue.4, pp.1102-1109, 2012.

T. Ueki, K. P. Nevin, T. L. Woodard, and D. R. Lovley, Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii, mBio, vol.5, issue.5, pp.1636-1650, 2014.

H. Huang, C. Chai, S. Yang, W. Jiang, and Y. Gu, Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii, Metabolic Engineering, vol.52, pp.293-302, 2019.

A. Kita, Y. Iwasaki, S. Sakai, S. Okuto, K. Takaoka et al., Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica, Journal of Bioscience and Bioengineering, vol.115, issue.4, pp.347-352, 2013.

M. Basen, I. Geiger, L. Henke, and V. Müller, A Genetic System for the Thermophilic Acetogenic BacteriumThermoanaerobacter kivui, Applied and Environmental Microbiology, vol.84, issue.3, pp.2210-2227, 2017.

S. Jain, H. M. Dietrich, V. Müller, and M. Basen, Formate Is Required for Growth of the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui Lacking Hydrogen-Dependent Carbon Dioxide Reductase (HDCR), Frontiers in Microbiology, vol.11, 2020.

J. Mock, Y. Zheng, A. P. Mueller, S. Ly, L. Tran et al., Energy Conservation Associated with Ethanol Formation from H2and CO2in Clostridium autoethanogenum Involving Electron Bifurcation, Journal of Bacteriology, vol.197, issue.18, pp.2965-2980, 2015.

E. Marcellin, J. B. Behrendorff, S. Nagaraju, S. Detissera, S. Segovia et al., Low carbon fuels and commodity chemicals from waste gases ? systematic approach to understand energy metabolism in a model acetogen, Green Chemistry, vol.18, issue.10, pp.3020-3028, 2016.

F. Liew, A. M. Henstra, K. Winzer, M. Köpke, S. D. Simpson et al., Insights into CO2Fixation Pathway ofClostridium autoethanogenumby Targeted Mutagenesis, mBio, vol.7, issue.3, pp.427-443, 2016.

F. R. Bengelsdorf, A. Poehlein, S. Linder, C. Erz, T. Hummel et al., Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis, Frontiers in Microbiology, vol.7, 2016.

S. Nagaraju, N. K. Davies, D. J. Walker, M. Köpke, and S. D. Simpson, Genome editing of Clostridium autoethanogenum using CRISPR/Cas9, Biotechnology for Biofuels, vol.9, issue.1, p.219, 2016.

H. Huang, C. Chai, N. Li, P. Rowe, N. P. Minton et al., CRISPR/Cas9-Based Efficient Genome Editing inClostridium ljungdahlii, an Autotrophic Gas-Fermenting Bacterium, ACS Synthetic Biology, vol.5, issue.12, pp.1355-1361, 2016.

R. Zhao, Y. Liu, H. Zhang, C. Chai, J. Wang et al., CRISPR-Cas12a-Mediated Gene Deletion and Regulation in Clostridium ljungdahlii and Its Application in Carbon Flux Redirection in Synthesis Gas Fermentation, ACS Synthetic Biology, vol.8, issue.10, pp.2270-2279, 2019.

P. Xia, I. Casini, S. Schulz, C. Klask, L. T. Angenent et al., Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing via Deamination, ACS Synthetic Biology, vol.9, issue.8, pp.2162-2171, 2020.

J. Shin, S. Kang, Y. Song, S. Jin, J. S. Lee et al., Genome Engineering of Eubacterium limosum Using Expanded Genetic Tools and the CRISPR-Cas9 System, ACS Synthetic Biology, vol.8, issue.9, pp.2059-2068, 2019.

J. Jeong, J. Kim, B. Park, I. Choi, and I. S. Chang, Genetic engineering system for syngas-utilizing acetogen, Eubacterium limosum KIST612, Bioresource Technology Reports, vol.11, p.100452, 2020.

M. Kopke, C. Held, S. Hujer, H. Liesegang, A. Wiezer et al., Clostridium ljungdahlii represents a microbial production platform based on syngas, Proceedings of the National Academy of Sciences, vol.107, issue.29, pp.13087-13092, 2010.

F. U. Becker, G. Grund, M. Orschel, K. Doderer, G. Löhden et al., Hämoglobinopathien 26.?28. April 2012, Kinder- und Jugendmedizin, vol.12, issue.02, pp.A1-A6, 2012.

S. Han, X. Gao, H. Ying, and C. C. Zhou, NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells, Green Chemistry, vol.18, issue.8, pp.2473-2478, 2016.

G. Yang, D. Jia, L. Jin, Y. Jiang, Y. Wang et al., Rapid Generation of Universal Synthetic Promoters for Controlled Gene Expression in Both Gas-Fermenting and SaccharolyticClostridiumSpecies, ACS Synthetic Biology, vol.6, issue.9, pp.1672-1678, 2017.

M. Straub, M. Demler, D. Weuster-botz, and P. Dürre, Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii, Journal of Biotechnology, vol.178, pp.67-72, 2014.

S. Hoffmeister, M. Gerdom, F. R. Bengelsdorf, S. Linder, S. Flüchter et al., Acetone production with metabolically engineered strains of Acetobacterium woodii, Metabolic Engineering, vol.36, pp.37-47, 2016.

Y. Song, J. S. Lee, J. Shin, G. M. Lee, S. Jin et al., Functional cooperation of the glycine synthase-reductase and Wood?Ljungdahl pathways for autotrophic growth of Clostridium drakei, Proceedings of the National Academy of Sciences, vol.117, issue.13, pp.7516-7523, 2020.

S. Kang, Y. Song, S. Jin, J. Shin, J. Bae et al., Adaptive Laboratory Evolution of Eubacterium limosum ATCC 8486 on Carbon Monoxide, Frontiers in Microbiology, vol.11, 2020.

J. T. Heap, O. J. Pennington, S. T. Cartman, and N. P. Minton, A modular system for Clostridium shuttle plasmids, Journal of Microbiological Methods, vol.78, issue.1, pp.79-85, 2009.

F. Rahayu, Y. Kawai, Y. Iwasaki, K. Yoshida, A. Kita et al., Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica, Bioresource Technology, vol.245, pp.1393-1399, 2017.

B. A. Diner, J. Fan, M. C. Scotcher, D. H. Wells, and G. M. Whited, Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene, Applied and Environmental Microbiology, vol.84, issue.1, pp.1723-1740, 2017.

M. Koepke and W. Y. Chen, 5472856 Recombinant human thymopoietin proteins and uses therefor, Biotechnology Advances, vol.15, issue.1, p.87, 1997.

S. Nagaraju, B. Al-sinawi, S. D. Tissera, and M. Koepke, Recombinant Microorganisms and Methods of use Thereof, 2015.

M. Köpke, M. L. Gerth, D. J. Maddock, A. P. Mueller, F. Liew et al., Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase, Applied and Environmental Microbiology, vol.80, issue.11, pp.3394-3403, 2014.

S. Bron and E. Luxen, Segregational instability of pUB110-derived recombinant plasmids in Bacillus subtilis, Plasmid, vol.14, issue.3, pp.235-244, 1985.

K. Friehs, Plasmid Copy Number and Plasmid Stability, New Trends and Developments in Biochemical Engineering, pp.47-82, 2003.

O. Borkowski, F. Ceroni, G. Stan, and T. Ellis, Overloaded and stressed: whole-cell considerations for bacterial synthetic biology, Current Opinion in Microbiology, vol.33, pp.123-130, 2016.

M. Strätz, G. Gottschalk, and P. Dürre, Transfer and expression of the tetracyclin resistance transposon Tn925inAcetobacterium woodii, FEMS Microbiology Letters, vol.68, issue.1-2, pp.171-176, 1990.

G. Philipps, S. De-vries, and S. Jennewein, Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii, Biotechnology for Biofuels, vol.12, issue.1, 2019.

M. Karberg, H. Guo, J. Zhong, R. Coon, J. Perutka et al., Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria, Nature Biotechnology, vol.19, issue.12, pp.1162-1167, 2001.

A. M. Lambowitz and S. Zimmerly, Group II Introns: Mobile Ribozymes that Invade DNA, Cold Spring Harbor Perspectives in Biology, vol.3, issue.8, pp.a003616-a003616, 2010.

J. T. Heap, O. J. Pennington, S. T. Cartman, G. P. Carter, and N. P. Minton, The ClosTron: A universal gene knock-out system for the genus Clostridium, Journal of Microbiological Methods, vol.70, issue.3, pp.452-464, 2007.

J. T. Heap, S. A. Kuehne, M. Ehsaan, S. T. Cartman, C. M. Cooksley et al., The ClosTron: Mutagenesis in Clostridium refined and streamlined, Journal of Microbiological Methods, vol.80, issue.1, pp.49-55, 2010.

S. A. Kuehne and N. P. Minton, ClosTron-mediated engineering of Clostridium, Bioengineered, vol.3, issue.4, pp.247-254, 2012.

I. Plante and B. Cousineau, Restriction for gene insertion within the Lactococcus lactis Ll.LtrB group II intron, RNA, vol.12, issue.11, pp.1980-1992, 2006.

D. J. Lampe, M. E. Churchill, and H. M. Robertson, A purified mariner transposase is sufficient to mediate transposition in vitro., The EMBO Journal, vol.15, issue.19, pp.5470-5479, 1996.

Y. Zhang, A. Grosse-honebrink, and N. P. Minton, A Universal Mariner Transposon System for Forward Genetic Studies in the Genus Clostridium, PLOS ONE, vol.10, issue.4, p.e0122411, 2015.

J. Fu, S. C. Wenzel, O. Perlova, J. Wang, F. Gross et al., Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition, Nucleic Acids Research, vol.36, issue.17, pp.e113-e113, 2008.

J. T. Heap, M. Ehsaan, C. M. Cooksley, Y. Ng, S. T. Cartman et al., Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker, Nucleic Acids Research, vol.40, issue.8, pp.e59-e59, 2012.

N. P. Minton, M. Ehsaan, C. M. Humphreys, G. T. Little, J. Baker et al., A roadmap for gene system development in Clostridium, Anaerobe, vol.41, pp.104-112, 2016.

W. Jiang, D. Bikard, D. Cox, F. Zhang, and L. A. Marraffini, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nature Biotechnology, vol.31, issue.3, pp.233-239, 2013.

P. D. Hsu, E. S. Lander, and F. Zhang, Development and Applications of CRISPR-Cas9 for Genome Engineering, Cell, vol.157, issue.6, pp.1262-1278, 2014.

L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto et al., Multiplex Genome Engineering Using CRISPR/Cas Systems, Science, vol.339, issue.6121, pp.819-823, 2013.

K. S. Makarova, Y. I. Wolf, O. S. Alkhnbashi, F. Costa, S. A. Shah et al., An updated evolutionary classification of CRISPR?Cas systems, Nature Reviews Microbiology, vol.13, issue.11, pp.722-736, 2015.

I. C. Cañadas, D. Groothuis, M. Zygouropoulou, R. Rodrigues, and N. P. Minton, RiboCas: A Universal CRISPR-Based Editing Tool for Clostridium, ACS Synthetic Biology, vol.8, issue.6, pp.1379-1390, 2019.

F. M. Seys, P. Rowe, E. L. Bolt, C. M. Humphreys, and N. P. Minton, A Gold Standard, CRISPR/Cas9-Based Complementation Strategy Reliant on 24 Nucleotide Bookmark Sequences, Genes, vol.11, issue.4, p.458, 2020.

B. Zetsche, J. S. Gootenberg, O. O. Abudayyeh, I. M. Slaymaker, K. S. Makarova et al., Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System, Cell, vol.163, issue.3, pp.759-771, 2015.

X. Ao, Y. Yao, T. Li, T. Yang, X. Dong et al., A Multiplex Genome Editing Method for Escherichia coli Based on CRISPR-Cas12a, Frontiers in Microbiology, vol.9, p.2307, 2018.

B. Adiego-pérez, P. Randazzo, J. M. Daran, R. Verwaal, J. A. Roubos et al., Multiplex genome editing of microorganisms using CRISPR-Cas, FEMS Microbiology Letters, vol.366, issue.8, 2019.

B. Zetsche, M. Heidenreich, P. Mohanraju, I. Fedorova, J. Kneppers et al., Multiplex gene editing by CRISPR?Cpf1 using a single crRNA array, Nature Biotechnology, vol.35, issue.1, pp.31-34, 2016.

M. Koepke and F. Liew, Genetically Engineered Bacterium with Altered Carbon Monoxide Dehydrogenase (codh) Activity. U.S. Patent, 2016.

I. A. Figueroa, T. P. Barnum, P. Y. Somasekhar, C. I. Carlström, A. L. Engelbrektson et al., Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2fixation pathway, Proceedings of the National Academy of Sciences, vol.115, issue.1, pp.E92-E101, 2017.

J. Bertsch and V. Müller, Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria, Biotechnology for Biofuels, vol.8, issue.1, pp.1-12, 2015.

H. Richter, B. Molitor, H. Wei, W. Chen, L. Aristilde et al., Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression, Energy & Environmental Science, vol.9, issue.7, pp.2392-2399, 2016.

A. Banerjee, C. Leang, T. Ueki, K. P. Nevin, and D. R. Lovley, Lactose-Inducible System for Metabolic Engineering of Clostridium ljungdahlii, Applied and Environmental Microbiology, vol.80, issue.8, pp.2410-2416, 2014.

V. Mahamkali, K. Valgepea, R. De-souza-pinto-lemgruber, M. Plan, R. Tappel et al., Redox controls metabolic robustness in the gas-fermenting acetogenClostridium autoethanogenum, Proceedings of the National Academy of Sciences, vol.117, issue.23, pp.13168-13175, 2020.

S. D. Simpson, M. Koepke, and F. Liew, Recombinant Microorganisms and Methods of use Thereof, 2011.

A. P. Mueller, M. Koepke, and S. Nagaraju, 5472856 Recombinant human thymopoietin proteins and uses therefor, Biotechnology Advances, vol.15, issue.1, p.87, 1997.

C. Liao, S. Seo, V. Celik, H. Liu, W. Kong et al., Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation byClostridium acetobutylicum, Proceedings of the National Academy of Sciences, vol.112, issue.27, pp.8505-8510, 2015.

N. Nguyen, C. Raynaud, I. Meynial-salles, and P. Soucaille, Reviving the Weizmann process for commercial n-butanol production, Nature Communications, vol.9, issue.1, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01883880

M. Koepke, S. D. Simpson, F. Liew, and W. Chen, 4740464 Fermentation process and microorganism for producing aconitic acid, Biotechnology Advances, vol.6, issue.4, p.776, 1988.

M. Koepke and F. Liew, Patent Evaluation: Methods for the Improved Production of Recombinant Retroviruses, Current Opinion on Therapeutic Patents, vol.2, issue.8, pp.1195-1196, 1992.

W. Y. Chen, F. Liew, and M. Koepke, 5472856 Recombinant human thymopoietin proteins and uses therefor, Biotechnology Advances, vol.15, issue.1, p.87, 1997.

M. Beeby, M. Cho, J. Stubbe, and G. J. Jensen, Growth and Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha, Journal of Bacteriology, vol.194, issue.5, pp.1092-1099, 2011.

P. Bhagowati, S. Pradhan, H. R. Dash, and S. Das, Production, optimization and characterization of polyhydroxybutyrate, a biodegradable plastic byBacillusspp., Bioscience, Biotechnology, and Biochemistry, vol.79, issue.9, pp.1454-1463, 2015.

R. D. Lemgruber, K. Valgepea, R. Tappel, J. B. Behrendorff, R. W. Palfreyman et al., Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB), Metab. Eng, vol.53, pp.14-23, 2019.

Z. Q. Beck, M. A. Cervin, G. K. Chotani, B. A. Diner, and J. Fan, Recombinant Anaerobc Acetogenic Bacteria for Production of Isoprene and/or Industrial Bo-Products Using Synthesis Gas, 2014.

F. J. Annan, B. Al-sinawi, C. M. Humphreys, R. Norman, K. Winzer et al., Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum, Applied Microbiology and Biotechnology, vol.103, issue.11, pp.4633-4648, 2019.

G. S. Hossain, M. Saini, R. Miyake, H. Ling, and M. W. Chang, Genetic Biosensor Design for Natural Product Biosynthesis in Microorganisms, Trends in Biotechnology, vol.38, issue.7, pp.797-810, 2020.

Y. Tan, J. Liu, X. Chen, H. Zheng, and F. Li, RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically, Molecular BioSystems, vol.9, issue.11, p.2775, 2013.

S. M. Utturkar, D. M. Klingeman, J. M. Bruno-barcena, M. S. Chinn, A. M. Grunden et al., Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies, Scientific Data, vol.2, issue.1, 2015.

J. M. Whitham, O. Tirado-acevedo, M. S. Chinn, J. J. Pawlak, and A. M. Grunden, Metabolic Response of Clostridium ljungdahlii to Oxygen Exposure, Applied and Environmental Microbiology, vol.81, issue.24, pp.8379-8391, 2015.

Y. Song, J. Shin, Y. Jeong, S. Jin, J. Lee et al., Determination of the Genome and Primary Transcriptome of Syngas Fermenting Eubacterium limosum ATCC 8486, Scientific Reports, vol.7, issue.1, 2017.

F. Kremp, A. Poehlein, R. Daniel, and V. Müller, Methanol metabolism in the acetogenic bacteriumAcetobacterium woodii, Environmental Microbiology, vol.20, issue.12, pp.4369-4384, 2018.

J. Shin, Y. Song, S. Jin, J. Lee, D. R. Kim et al., Genome-scale analysis ofAcetobacterium bakiireveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation, RNA, vol.24, issue.12, pp.1839-1855, 2018.

M. M. Al-bassam, J. Kim, L. S. Zaramela, B. P. Kellman, C. Zuniga et al., Optimization of carbon and energy utilization through differential translational efficiency, Nature Communications, vol.9, issue.1, p.4474, 2018.

Y. Song, J. Shin, S. Jin, J. Lee, D. R. Kim et al., Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth, BMC Genomics, vol.19, issue.1, 2018.

K. Valgepea, R. De-souza-pinto-lemgruber, K. Meaghan, R. W. Palfreyman, T. Abdalla et al., Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens, Cell Systems, vol.4, issue.5, pp.505-515.e5, 2017.

J. Greene, J. Daniell, M. Köpke, L. J. Broadbelt, and K. E. Tyo, Kinetic ensemble model of gas fermenting Clostridium autoethanogenum for improved ethanol production, Biochemical Engineering Journal, vol.148, pp.46-56, 2019.

J. K. Liu, C. Lloyd, M. M. Al-bassam, A. Ebrahim, J. Kim et al., Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen, PLOS Computational Biology, vol.15, issue.3, p.e1006848, 2019.

H. Zhu, Z. Liu, X. Zhou, J. Yi, Z. Lun et al., Energy Conservation and Carbon Flux Distribution During Fermentation of CO or H2/CO2 by Clostridium ljungdahlii, Frontiers in Microbiology, vol.11, 2020.

J. K. Heffernan, K. Valgepea, R. De-souza-pinto-lemgruber, I. Casini, M. Plan et al., Enhancing CO2-Valorization Using Clostridium autoethanogenum for Sustainable Fuel and Chemicals Production, Frontiers in Bioengineering and Biotechnology, vol.8, 2020.

H. Nagarajan, M. Sahin, J. Nogales, H. Latif, D. R. Lovley et al., Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii, Microbial Cell Factories, vol.12, issue.1, p.118, 2013.

S. D. Brown, S. Nagaraju, S. M. Utturkar, S. De-tissera, S. Segovia et al., Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia, Biotechnology for Biofuels, vol.7, issue.1, p.40, 2014.

A. Poehlein, M. Cebulla, M. M. Ilg, F. R. Bengelsdorf, B. Schiel-bengelsdorf et al., The Complete Genome Sequence of Clostridium aceticum: a Missing Link between Rnf- and Cytochrome-Containing Autotrophic Acetogens, mBio, vol.6, issue.5, pp.1168-1183, 2015.

C. M. Humphreys, S. Mclean, S. Schatschneider, T. Millat, A. M. Henstra et al., Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium, BMC Genomics, vol.16, issue.1, pp.1-10, 2015.

J. Shin, Y. Song, Y. Jeong, and B. Cho, Analysis of the Core Genome and Pan-Genome of Autotrophic Acetogenic Bacteria, Frontiers in Microbiology, vol.7, 2016.

M. Aklujkar, C. Leang, P. M. Shrestha, M. M. Shrestha, and D. R. Lovley, Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H2 and CO2 compared to organotrophic growth with fructose, Scientific Reports, vol.7, issue.1, pp.1-14, 2017.

K. Valgepea, R. De-souza-pinto-lemgruber, T. Abdalla, S. Binos, N. Takemori et al., H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum, Biotechnology for Biofuels, vol.11, issue.1, pp.1-15, 2018.

A. Esposito, S. Tamburini, L. Triboli, L. Ambrosino, M. L. Chiusano et al., Insights into the genome structure of four acetogenic bacteria with specific reference to the Wood?Ljungdahl pathway, MicrobiologyOpen, vol.8, issue.12, 2019.

J. Lee, J. W. Lee, C. G. Chae, S. J. Kwon, Y. J. Kim et al., Domestication of the novel alcohologenic acetogen Clostridium sp. AWRP: from isolation to characterization for syngas fermentation, Biotechnology for Biofuels, vol.12, issue.1, pp.1-14, 2019.

S. E. Wang, A. E. Brooks, B. Cann, and A. Simoes-barbosa, The fluorescent protein iLOV outperforms eGFP as a reporter gene in the microaerophilic protozoan Trichomonas vaginalis, Molecular and Biochemical Parasitology, vol.216, pp.1-4, 2017.

C. Zhang, X. Xing, and K. Lou, Rapid detection of a gfp-markedEnterobacter aerogenesunder anaerobic conditions by aerobic fluorescence recovery, FEMS Microbiology Letters, vol.249, issue.2, pp.211-218, 2005.

A. M. Buckley, J. Petersen, A. J. Roe, G. R. Douce, and J. M. Christie, LOV-based reporters for fluorescence imaging, Current Opinion in Chemical Biology, vol.27, pp.39-45, 2015.

A. M. Buckley, C. Jukes, D. Candlish, J. J. Irvine, J. Spencer et al., Lighting Up Clostridium Difficile: Reporting Gene Expression Using Fluorescent Lov Domains, Scientific Reports, vol.6, issue.1, 2016.

H. E. Streett, K. M. Kalis, and E. T. Papoutsakis, A Strongly Fluorescing Anaerobic Reporter and Protein-Tagging System for Clostridium Organisms Based on the Fluorescence-Activating and Absorption-Shifting Tag Protein (FAST), Applied and Environmental Microbiology, vol.85, issue.14, 2019.

T. Drepper, R. Huber, A. Heck, F. Circolone, A. Hillmer et al., Flavin Mononucleotide-Based Fluorescent Reporter Proteins Outperform Green Fluorescent Protein-Like Proteins as Quantitative In Vivo Real-Time Reporters, Applied and Environmental Microbiology, vol.76, issue.17, pp.5990-5994, 2010.

S. Yeom, M. Kim, K. K. Kwon, Y. Fu, E. Rha et al., A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts, Nature Communications, vol.9, issue.1, 2018.

S. Raman, J. K. Rogers, N. D. Taylor, and G. M. Church, Evolution-guided optimization of biosynthetic pathways, Proceedings of the National Academy of Sciences, vol.111, issue.50, pp.17803-17808, 2014.

D. Yang, W. J. Kim, S. M. Yoo, J. H. Choi, S. H. Ha et al., Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria, Proceedings of the National Academy of Sciences, vol.115, issue.40, pp.9835-9844, 2018.

D. Bikard, W. Jiang, P. Samai, A. Hochschild, F. Zhang et al., Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system, Nucleic Acids Research, vol.41, issue.15, pp.7429-7437, 2013.

S. Konermann, M. D. Brigham, A. E. Trevino, J. Joung, O. O. Abudayyeh et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, vol.517, issue.7536, pp.583-588, 2014.

C. Dong, J. Fontana, A. Patel, J. M. Carothers, and J. G. Zalatan, Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria, Nature Communications, vol.9, issue.1, p.2489, 2018.

S. Cleto, J. V. Jensen, V. F. Wendisch, and T. K. Lu, Corynebacterium glutamicumMetabolic Engineering with CRISPR Interference (CRISPRi), ACS Synthetic Biology, vol.5, issue.5, pp.375-385, 2016.

Z. Wen, N. P. Minton, Y. Zhang, Q. Li, J. Liu et al., Enhanced solvent production by metabolic engineering of a twin-clostridial consortium, Metabolic Engineering, vol.39, pp.38-48, 2017.

A. W. Westbrook, M. Moo-young, and C. P. Chou, Development of a CRISPR-Cas9 Tool Kit for Comprehensive Engineering of Bacillus subtilis, Applied and Environmental Microbiology, vol.82, issue.16, pp.4876-4895, 2016.

M. Wu, L. Sung, H. Li, C. Huang, and Y. Hu, Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis, ACS Synthetic Biology, vol.6, issue.12, pp.2350-2361, 2017.

S. K. Kim, G. H. Han, W. Seong, H. K. Kim, S. K. Kim et al., CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production, Metabolic Engineering, vol.38, pp.228-240, 2016.

L. Lv, Y. Ren, J. Chen, Q. Wu, and G. Chen, Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis, Metabolic Engineering, vol.29, pp.160-168, 2015.

B. M. Woolston, D. F. Emerson, D. H. Currie, and G. Stephanopoulos, Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi), Metabolic Engineering, vol.48, pp.243-253, 2018.

H. H. Lee, N. Ostrov, B. G. Wong, M. A. Gold, A. S. Khalil et al., Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi, Nature Microbiology, vol.4, issue.7, pp.1105-1113, 2019.

X. Liu, C. Gallay, M. Kjos, A. Domenech, J. Slager et al., High?throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae, Molecular Systems Biology, vol.13, issue.5, p.931, 2017.

J. M. Peters, A. Colavin, H. Shi, T. L. Czarny, M. H. Larson et al., A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria, Cell, vol.165, issue.6, pp.1493-1506, 2016.

T. Wang, C. Guan, J. Guo, B. Liu, Y. Wu et al., Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance, Nature Communications, vol.9, issue.1, 2018.

A. A. Nielsen and C. A. Voigt, Multi?input CRISPR / C as genetic circuits that interface host regulatory networks, Molecular Systems Biology, vol.10, issue.11, p.763, 2014.

B. F. Cress, J. A. Jones, D. C. Kim, Q. D. Leitz, J. A. Englaender et al., Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes inEscherichia coli, Nucleic Acids Research, vol.44, issue.9, pp.4472-4485, 2016.

P. Tremblay, D. Höglund, A. Koza, I. Bonde, and T. Zhang, Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products, Scientific Reports, vol.5, issue.1, 2015.