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Abstract

Shake-the-Box (STB) method (Schanz er  al.  2016) has become the de facto standard  Lagrangian  Particle Tracking

(LPT) approach that reconstructs the 3D particle tracks from time-resolved particle-seeded stereoscopic images. To our

knowledge, the STB is the only available LPT method on the market that works on highly concentrated particle images

(beyond 0.1 particle per pixel (ppp)). Many developments on the STB method have been published ever since. Some

developments concentrated on extending the power of STB to other types of data. For example, Novara et al. (2016,

2019) proposed the multi-pulse STB to deal with high-speed flow applications where the time-resolved data is not

available. Tan et al. (2020) introduced the pruning algorithm to remove ghost particles and applied the STB method to

blurred particle images.  Others are more application-specific concerning a particular sub-module of the whole LPT

workflow, such as the calibration procedure (Schröder et al.,  2020). But very few works exist to improve the core

tracking ability of STB. STB's core tracking scheme features a prediction phase that forecasts a particle's position for

the current frame given its history and a correction phase that finds its optimal location around its predicted position by

minimizing the gap between the records and the projected image residual. We argue that the optimization scheme in

STB, initially proposed in Wieneke (2012), can be less effective or even fail with the sparse temporal data or with data

extracted from complex flows. The consequences are either one track is terminated prematurely,  or one particle is

identified on the wrong track. The main reason is that STB's optimization scheme requires the cost function to be

relatively smooth locally to perform well. This high level of smoothness can not be guaranteed when the predictor failed

to provide a good starting point for data with large-time separation or local complicated flow structure. In this work, we

propose a tracking scheme rooted in the function learning/approximation paradigm. For particle p, we intend to learn a

nonlinear function f that maps the image set Пp, containing the small square local patch Ip extracted from the recorded

image for all cameras, to Xp, the particle's 3D coordinate. The function f can be learned by minimizing an empirical risk

loss built on sample pairs (Пp, Xp). The sample image set is obtained using the camera model and the optical transfer

function.  Under  this  formulation,  the  resulting algorithm can  be  solved  efficiently  using  gradient-based  algorithm

therefore much more robust. This solution can be expressed efficiently using the kernel function  k(●,●).  The kernel

measures the similarities between the two sample images and controls the goodness of the solution. One is encouraged

to choose a  valid and pertinent kernel function that mostly represents the characteristic of data.  Our approach is based

on kernel methods and is thus called Kernalizaed LPT (KLPT). KLPT is evaluated against both synthetic and real

experiments. The synthetic data is generated based on a Large Eddy Simulation data simulating the turbulent cylinder

wake-flow at Re3900 (Parnaudeau et al. 2018). Figure 1 shows the mean error of detected particles of KLPT and

compared  to 2 different  implementations of STB (one from an in-house code,  one from the commercial  software

Davis10.4). Our KLPT produces satisfactory results for data with medium to high ppp levels and large time separation.

We also apply KLPT and STB (Davis 10) to data depicting an impinging jet at Re2500. Figure 2 visualizes a subset of

the tracks reconstructed by STB (left) and KLPT (right). We observe that, compared to STB, KLPT can capture longer

tracks and allows more detailed flow reconstruction at highly turbulent regions. We conclude that our KLPT scheme

always is more robust compared to STB and more accurate for densely seeded particle flow fields.

Another line of work concerning STB is to retrieve the volumetric data (typically velocity) on Eulerian grids from the 

Lagrangian data generated by STB. Representative methods include FlowFit (Gesemann et al. 2016) and VIC+ 

(Schneiders et al. 2016)/VIC# (Jeon et al. 2018). Their main idea is to leverage the volumetric velocity field between 

the particle-based data and an Eulerian dynamical model's solution. We argue that if only the Eulerian flow variables 

are needed, it is naturally more accurate to base our knowledge on raw images instead of passing through the redundant 

LPT procedure. On the other hand, the TomoPIV method estimates the volumetric velocity field by first reconstructing 

the 3D voxel intensity volume from 2D stereoscopic images, then inferring the 3D velocity vectors using volume 
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correlation techniques. Our proposed method Lagrangian PIV (LAPIV, Yang et al. 2019), differs from the above two 

approaches. Our primary motivation is to directly infer the volumetric velocity fields from raw image data without any 

intermediate procedure. To this end, we adopt the above kernel formulation under KLPT, taking account of a transport 

model that links the particles’ 3D coordinate X at frame k to the Eulerian velocity field at frame k-1. By doing so, we 

are able to obtain the unknown flow velocity field. Our formulation allows estimating the velocity vector through 

tracking a group of particles, contrary to single-particle tracking done in KLPT. Naturally, LAPIV can handle particle 

image data of very high ppp levels (beyond 0.12) at which any single-particle tracking scheme failed to converge. 

Inspired by the successful practice in optical flow estimation, we implemented a coarse-to-fine estimation scheme 

combined with the median filtering of the estimated velocity field. The added trick is able to handle large displacement 

and can significantly boost the performance of our proposed approach. LAPIV can deal with both time-resolved and 

two-pulse data. Although labeled as a PIV approach, LAPIV can also produce accurate particle positions. This feature is

particularly relevant for very high ppp data. The results will be shown during the workshop.

        

Fig. 1 Synthetic test result on mean error of detected particles. Fig. 2. The particle tracks of the first 3000  reconstructed particles

visualized at the 50th snapshot: left, STB in Davis, right, KLPT.          
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