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Abstract

This paper provides a survey on the literature using dynamic games to
analyse the decision-making processes of common pool resources (CPRs)
users. The purpose of this paper is to shed some light on the application
of dynamic games in laboratory experiments. In this way, we focus on ar-
ticles presenting both a theoretical model with laboratory experiments, by
making a distinction between discrete time and continuous time. There-
fore, we put a particular attention to subjects’ classi�cation according to
their observed behavior, the di�erent channels by which cooperation can
occur and the econometric tools used to analyse experimental data.
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1 Introduction
The issue of environmental protection remains a practical concern since no en-
vironmental aspect is untouched by human activity (Rose, 2002). Common pool
resources (water, �sheries, forestry, pastures, etc) are natural resources for which
the exclusion of users is di�cult, and the use of the resource by one user re-
duces the available amount for other users. Given their non-excludability and
their rivalrous nature, common pool resources are the locus of the "Tragedy of
the Commons" (Hardin, 1968). In other words, common pool resource users are
faced with dilemmas which can lead to a severe overexploitation when they are
not solved, and even to the destruction of the resource. Without rules, resource
users will engage in a race for its use (Janssen & Ostrom, 2006). To �nd solutions
for the management of common pool resources (CPRs), the well understand-
ing of resource users decision-making processes is required. Previous work on
this problem focused on a static framework until the early 1970′s from which
a transition to a more realistic dynamic framework took place, with the use of
dynamic programming, dynamic game theory and equilibrium analysis to solve
people’s decision-making problems (Dasgupta & Heal, 1979; Gisser & Sanchez,
1980; Clark, 1990; Basar & Olsder, 1999; Dockner et al., 2000; Haurie & Zaccour,
2005; Engwerda, 2005; Van Long, 2010).

Moreover, experimental economics is a powerful tool used to test theoretical
models, and have with cognitive and social psychology challenged the rational-
ity of individuals, leading to consider the in�uence of social interactions and the
role of emotions in people’s rational decision-making (Carlsson & Johansson-
Stenman, 2012; Croson & Treich, 2014). Thanks to laboratory experiments, ex-
perimental economics is able to build a simpli�ed economic situation for which
the experimenter has control over all the variables. While there is an extensive
theoretical literature on dynamic common pool resource management, the liter-
ature combining theory and experiments on dynamic common pool resource is
very scarce, with some of the studies using continuous time, others using dis-
crete time and others again making a mix of both continuous and discrete time.
Notice however that a continuous time model have di�erent predictions from a
discrete time model, except if the latter is a discretization of the continuous time
model.

This review aims to shed some light on the implementation of dynamic games
in laboratory, especially on continuous time, to study the behavior of the users of
CPRs. Hence, we are particularly interested in the research questions, the classi�-
cation of subjects according to their behavior and the channels by which cooper-
ation occurs. We would also like to know how the experimental instructions were
presented to subjects. Another aspect we are interested in this survey is to know
the di�erent econometric models used in these articles to answer the questions
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they ask. The behavioral benchmarks to which subjects are frequently compared
in this survey are the social optimum equilibrium, the Nash feedback equilibrium
and the myopic equilibrium. The social optimum equilibrium is equivalent to a
joint maximization problem. In the Nash feedback equilibrium, each subject take
into account the dynamics of the resource in his decision process. When behav-
ing myopically, a subject ignores the dynamics of the resource in his decision
process. In this survey, we contribute to highlight the di�erent applications of
dynamic games in the lab, as a tool for solving CPRs problems. We especially
point out the place of continuous time, whose implementation in the laboratory
is very recent. Our work is complementary to that of Tasneem & Benchekroun
(2020) on dynamic games in environmental and resource economics, as we give
a more detailed description of the reviewed articles, we also distinguish mixed
time articles and provide a discussion on experimetrics.1 Finally, in order to facil-
itate reading, we have endeavoured to harmonize the notations and terminology
used. Appendices 6 provide a summary of the variables used.

In what follows, we present in the second section articles in discrete time.
The third section is devoted to continuous time articles. In the fourth section
we present articles having combined continuous and discrete time. One should
keep in mind that when presenting the articles, we do not focus on the models
used in the data analysis because, section �ve is devoted to a discussion of the
econometric models used in the reviewed articles. The last section gives some
concluding remarks.

2 Discrete Time Models of CPRs
The vast literature combining theory with experimentation in the management
of common pool resources (CPRs) is in discrete time, since laboratory experi-
ments have been successful in this framework. Discrete time o�ers the opportu-
nity to experimental agents to make their decisions at the same time. It can also
be assimilate to a repeated game in which a variable evolves over periods, which
makes it easy to implement in the lab. However, repeated games are widely im-
plemented in lab experimentation. They can be de�ned as static games which
are repeated over a given number of periods without changing the conditions of
the game. Repeated games di�er from dynamic discrete time games, in which a
state variable evolves over time an a�ects subjects’ decision processes. Hence,
the change in the conditions of the game is speci�c to discrete time, which is also
called "supergame" (Pénard, 1998).
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2.1 Externalities from the Use of CPRs
In the last �ve decades, a growing number of scholars have started to use the
theory of dynamic games to model the dynamic interactions involving in the use
of common pool resources. These interactions create exernalities having mostly
a time dependence structure. Herr et al. (1997) and Mason & Phillips (1997) dis-
cuss dynamic and static externalities related to costs in the use of CPRs, while
Gardner et al. (1997) distinguish three kinds of dynamic externalities occuring in
the use of groundwater. A strategic externality, that appears because the use of
groundwater via ownership creates depletion. A congestion externality, that is
due to the short distance between the wells allowing to pump groundwater, and
creates a loss in e�ciency. The last externality is stock externality, occuring be-
cause the use of water by an individual reduces the available amount for others,
increasing their pumping costs.

Herr et al. (1997) investigate the e�ects on agents behaviors, of two types
of externalities (static and dynamic) resulting from the use of a common non-
renewable resource assimilated to a groundwater bassin. Time independent or
static externalities are situations in which the current extraction of an agent leads
only to an increase of the current extraction costs of other agents, whereas time
dependent or dynamic externalities involve both an increase in current and fu-
ture extraction costs of others. Supposing no discount rate, they used a linear
quadratic �nite horizon model where n agents share an access to a groundwa-
ter bassin. Each agent i has to maximize his net bene�t function, which is the
di�erence between the bene�t function (Bit) and the cost function (Cit), under
the dynamics of the marginal cost (ct). The net bene�t depends on the agent’s
extraction, xit, at period t and the total group extraction Xt. The authors have
de�ned three benchmark solutions that are the social optimum, the Nash feed-
back equilibrium and the myopic solution.

For time independent externalities, the marginal cost as well as the depth to
water are reset to their initial values at each period, so that ct = c. It is a static
game repeated over T periods where in each period, the Nash equilibrium is
obtained by maximizing equation (1). For time dependent externalities however,
the marginal cost is linearly increasing by k as the depth to water becomes high,
so that the Nash feedback equilibrium is given by maximizing equation (1) in
each period, subject to equation (2) :

max
T∑
t=0

Benefit︷ ︸︸ ︷
axit − bx2it−xit(ct + kXt/2)︸ ︷︷ ︸

Cost

(1)

s.t ct+1 = ct + kXt (2)
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The authors ran eight experimental sessions of a non contextualized exper-
iment. These sessions involved �ve treatments : three time independent and
two time dependent, and lasted about an hour and a half each. In each experi-
mental session, the authors ran two training phases followed by two experiment
phases called "series". When the treatment involved a time independent setting,
an experiment phase consisted of 10 repetitions of a one-shot game where the
marginal cost is reset to its original value each period. However, when the treat-
ment involved a time dependent setting, an experiment phase consisted of a sin-
gle 10 periods game where the marginal cost is linearly increasing over periods.
In this case, it was possible that the phase stops before the 10th period, when the
cost of the base token becomes so higher that positive pro�ts disappear. In each
experimental session, groups of two and �ve subjects had to individually and si-
multaneously with the other members of the group order entire values of tokens
between a lower bound of zero and an upper bound according to the parame-
terization chosen by the authors. The cost incurred by an individual for a given
period depends on both the number of tokens he has ordered and the total num-
ber of tokens ordered by the group. Subjects were given a bene�ts table showing
them the total bene�ts they can individually earn. At each experiment phase,
they were also informed of the total number of tokens ordered by the group, the
average cost of a token and their individual pro�ts. They had the ability to see
at any time the results of previous periods.

The di�erent size of the groups allowed the authors to mesure the level of
depletion of the resource. They found high depletion rates in the initial periods,
with a large number of subjects. This initial depletion was higher in dynamic
designs. They also found by applying a Mean Squared Deviation (MSD) to to-
ken orders, that individual token orders are more closed to the Nash equilibrium
than to the social optimum when considering time independent externalities.
However, they found in time dependent externalities a higher number of myopic
subjects, which exacerbates the tragedy of the commons. The authors �nally
found signi�cantly higher payo�s in time independent externalities compared
to those in time dependent externalities.

In line with Herr et al. (1997), Mason & Phillips (1997) were also interested
in the study of static and dynamic externalities from the use of common pool
resources. In their in�nite horizon model, n agents assimilated to �rms share an
access to a renewable �shery, so that the authors tried to investigate the e�ect of
industry size in the emergence of cooperation. Static and dynamic externalities
are introduced through costs that are assumed to be additively separable. Each
�rm has to maximize his pro�t πit, which is the di�erence between the bene�t
function and the cost function, under the dynamics of the stock, which evolves
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according to a logistic growth function. The pro�t depends on the �rm i’s harvest
level, xit, and the industry total harvest level, Xt. In both the static and the
dynamic externalities, the authors computed the Nash and the social optimum
predictions.

For their static cost externalities, the maximization problem is determined by
equation (3), where c1 is the static cost externality and c2 is equal to zero. For
their dynamic cost externalities, using the assumption of symmetry in which
each �rm i uses the same harvest strategy xe(S), the maximization problem de-
scribed by equation (3) takes into account the dynamics of the stock (4), which
evolves according to a logistic growth function, where c2 re�ects the dynamic
cost externality and c1 is equal to zero

max
xit

∞∑
t=0

ρt

 Benefit︷ ︸︸ ︷
P (Xt)xit − [cf + c1(Xt) + c2(St)]xit︸ ︷︷ ︸

Costs

 (3)

s.t St+1 = St +RSt

[
1 − St

K

]
−

n∑
i=1

xit, with xt = xe(S) (4)

The discount factor is denoted by ρ, cf is �xed costs,R is the intrinsic growth
rate andK denotes the carrying capacity. The authors assumed that �sh stock is
perishable, so that all the stock (St) of a given period is sold in that period. They
also assumed that �rms’ harvests are strategic substitutes and that the market
price P (Xt) in each period t is an inverse demand function of the harvests. In
both the static and the dynamic externalities, the authors wanted to test the hy-
pothesis that subjects will cooperate more than in the one-shot Nash prediction.

The authors ran eight experimental sessions involving four treatments of
static externalities and four treatments of dynamic externalities. The treatments
consisted with industry sizes of two, three, four and �ve �rms, and each treat-
ment lasted from about an hour and a half to two hours. In each experimental
session, the authors ran a training phase to make sure that subjects well under-
stand the experimental conditions. However, in sessions involving dynamic ex-
ternlities, subjects also had to complete a question, allowing them to understand
how their current harvest decisions a�ect futur costs. In each period, subjects
had to make a harvest decision individually and simultaneously with the other
members of their �rm. The authors described a payo� table depending on the
number of �rms in the industry, so that it allowed subjects to know the calculated
pro�t for each possible combination of harvest they might collectively make with
their rivals. Each subject was informed of the choices and payo�s of the other
members of his group.
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The in�nite horizon was simulated by applying a random termination rule.
In this case, the discount factor can be interpreted as a continuation probability,
allowing the authors to deduce the termination probability which is equal to 0.2.
In other words, after 35 periods of play, the experiment stopped at the end of each
period with a probability of 0.2. While static stock externalites were included in
the payo� table given to subjects, dynamic cost externalities were implemented
by giving to subjects a penalty table. This table provide them information about
the adjustment of their payo�s, resulting from each of their choices. They were
also given a detailed description of the link between costs and stock, as well as
the current harvest and future stocks. Finally, to analyze potential extinction in
the dynamic cost externality design with large industry size, the authors ran four
supplementary sessions with industry of size �ve.

Using a learning or a partial adjustment model to analyze current harvest
decisions, the authors found that subjects learn to adjust their actions over time
in both the static and dynamic cost externalities.2 Despite a faster convergence
to the steady state in the dynamic framework than in the static framework, their
results suggest highest cooperation in static cost externalities than in dynamic
cost externalities, where they found more aggressive behavior. Moreover, they
found an optimal industry size of four in the static treatment (which is larger
than the optimal number of �rms in the Nash prediction), while this number is
three in the dynamic treatment (which is equal to the Nash prediction). They
also found little evidence of extinction in the dynamic cost externalities.

Considering externalities resulting from the use of a non-renewable ground-
water, Gardner et al. (1997) investigate the relationship between groundwater
property rights doctrines and extraction behaviors of the users from 17 states in
the American West.3 They distinguished four property rights doctrines. The ab-
solute ownership doctrine, in which the owner of the land overlying an aquifer
can extract the aquifer without limitation. The reasonable use doctrine, based
on the same principle as the previous doctrine, except that it takes into account
the fact that water can provide from the property of the neighbors. The cor-
relative rights doctrine, in which landowners overlying the aquifer must use it
reasonably, as the doctrine imposes an individual quota on the resource stock.
Strategic externalities are suppressed under this doctrine but stock externalities
persist. The last doctrine is the prior appropriation doctrine, which restricts the
entrance to new pumpers by protecting reasonable pumping levels of senior ap-
propriators.

Supposing no discount rate and using a linear quadratic �nite horizon model
in which n users share an access to a groundwater aquifer, each agent i has to
maximize his net bene�t function under the dynamics of the depth to water (dt).
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Water is used as an input in agricultural production. The net bene�t function is
the di�erence between the bene�t function (Bit) and the cost function (Cit) and
depends on the agent’s extraction xit, as well as the total group extraction Xt.
The authors consider for their study three property rights that are the absolute
ownership doctrine, the prior appropriation doctrine and the correlative rights
doctrine. Under each doctrine, they compute the social optimum and the Nash
equilibrium. For example in the absolute ownership doctrine, the social optimum
maximization problem is given by equation (5) :

max
n∑

i=1

T∑
t=0

Benefit︷ ︸︸ ︷
axit − bx2it − [(dt + AXt +B)xit]︸ ︷︷ ︸

Cost

(5)

s.t dt+1 = dt −R + s
∑n

i=1 xit

where a, b, A and B are positives parameters, s is a parameter depending on the
size and the con�guration of the aquifer and R denotes the constant recharge
rate, which is equal to zero. The �nite horizon, the no discount and the no re-
source recharge are the restrictive assumptions that the authors have made to
simplify the model and the experiment, and focus sujects’ attention on strategic
and stock externalities.

Subjects participated in a non contextualized experiment involving three treat-
ments. Each treatment include a set of three experiment phases. In the �rst two
experiment phases, subjects were inexperienced in the decision environment,
while the last experiment phase involved experienced subjects, randomly se-
lected from the group of inexperienced. The baseline treatment, in which groups
of 10 subjects played over 10 periods, illustrates the absolute ownership doctrine
where no restriction is made on pumping levels. The second treatment illustrates
the prior appropriation doctrine in which there is an entry restriction, limiting
the number of subjects to groups of �ve. However, subjects played over 20 peri-
ods instead of 10 periods, in order to keep constant the maximal resource value.
The last treatment, in which groups of 10 subjects played over 10 periods, il-
lustrates the correlative rights doctrine where an individual stock quota of 25 is
imposed. In each period, subjects had to individually and simultaneously with
the other members of their groups, order entire values of tokens between a lower
bound of zero and an upper bound according to the parameterization chosen by
the authors in each treatment.

They were given the cost of a base token at the �rst period and were in-
formed that this cost will increase by a given amount for each token ordered
by the group, with the possibility that the experiment stops before the last pe-
riod, when the token cost is so high that it no longer allows positive pro�ts. In
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the baseline treatment, the experiment stopped after three, two and four peri-
ods respectively in the two inexperienced groups and the experienced subjects.
The experiment stopped after six, �ve and eight periods in the entry restriction
treatment; and after seven, four and three periods in the stock quota treatment.
After each period, subjects were informed of the total number of tokens ordered
by the group, the token cost for this period, the new cost of base token for the
next period and pro�ts for the current period.4

In their analyzes, the authors compared the tokens ordered by subjects in
the experiment to the theoretical social optimum and Nash feedback token or-
ders. Considering the �rst decision periods in each treatment, they found under
the absolute ownership doctrine (no restriction treatment), higher average token
orders than the Nash feedback prediction. The average token orders under the
prior appropriation doctrine (entry restriction treatment) was also higher than
the Nash feedback prediction. However, this number was close to the Nash feed-
back prediction under the correlative rights doctrine (stock quota treatment).
Analysing e�ciency, the authors also found that restricting entry and applying
a stock quota improve performance.

2.2 The Role of Information
From what we saw above, the use of common pool resources generates some ex-
ternalites among the users, leading to a race for the resource which is intensi�ed
by myopic behavior. Otherwise, Gardner et al. (1997) have shown that imposing
a quota could mitigate this situation. The question now is how would resource
users behave in the absence of strategic interaction. This was the point for Hey
et al. (2009).

In a single agent �nite horizon model, they investigate the role that infor-
mation about the stock and the growth function of a renewable resource can
have on agents’ harvesting decisions. Assimilating the resource to a �shery, the
authors assume zero costs with prices normalized to one. Each �sherman has
to maximize his extraction xt, which is the di�erence between the stock before
and the stock after extraction, under the dynamics of the stock, which evolves
according to a logistic growth function :

max
T∑
t=0

ρtxt = max
T∑
t=0

xt (6)

s.t St+1 = St − xit +RSt

[
1 − St

K

]
, with S0 = K

The discount factor is denoted by ρ, which is equal to unity. R is the intrinsic
growth factor and K is the carrying capacity. Thus, the optimal solution is the
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most rapid approach to the Maximum Sustainable Yield (MSY), with an extinction
at the last period.5

A total number of 121 subjects participated in two experimental sessions of
a non contextualized experiment.6 These sessions involved four treatments and
lasted about an hour. A �rst treatment with a stock information and an accurate
signal about the number of existing resource units. A second treatment with in-
formation on the growth function and a noisy signal on the number of existing
resource units. In other words, the noisy signal means that the stock was mul-
tiplied by a random number pulled from a uniform distribution. The third treat-
ment is a full information treatment in which information on both the stock and
the growth function were given to subjects. They received in addition an accurate
signal on the existing number of resource units. The last treatment was a zero
information treatment, with a noisy signal on the existing number of resource
units. Unlike other subjects, subjects in the second and the third treatments were
given an on-screen facility, allowing them to anticipate the consequences of their
extraction choices before con�rming their decisions.

In each treatment, the authors tried to determine the optimal theoretical
strategy. In all the treatments but the full information treatment, they were not
able to derive optimal strategies. That’s why they numerically de�ned for these
treatments, reasonable theoretical strategies which are "prudent"; i.e. extraction
strategies leading to a pre-mature extinction of the resource are excluded.7 In
each treatment, subjects had to decide one hundred times the number of units
they wanted to transfer from a �ctituous resource to their savings account, so
that a logistic growth function was applied to the remaining units. The dynamics
of the resource was then determined by the remaining stock and the initial stock
was equal to the carrying capacity K . Subjects had to exhaust the resource at
the last period, but in case of pre-mature exhaustion the experiment ends instan-
taneously. However in each treatment, subjects were warned when they choose
an extraction of zero units or when the number of units extracted exceeds the
stock signal.

From the experiment the authors found by applying a binomial test on the
distribution of over-harvesters and under-harvesters, that a higher percentage
of subjects under-harvest the resource when they do not receive any informa-
tion.8 In terms of behavioral patterns, the authors found that subjects tried to
control the dynamic system by holding constant the stock or their extraction
level when they received accurate information on stocks. Furthermore, subjects
who received a noisy stock information had a misperception of feedback, leading
them to adopt a pulse extraction by alterning periods of extraction and periods
of non-extraction. This allowed the resource to build up. Finally with no infor-
mation, subjects tend to under-exploit the resource because they misperceive the
non-linearity of the growth function. In other words, as subjects have in mind a
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linear relationship between the stock and the growth, they believe it would make
sense to let the stock grow and harvest at the end the pro�t maximizing the stock
size (as they think that growth increases with the stock size). For a deeper un-
derstanding of this misperception, see Sterman (1994) and Moxnes (1998).

2.3 Taking Into Account Spatial Characteristics
Problems of groundwater allocation have mostly been studied by using relatively
simple models, sometimes to make it easy to understand and sometimes because
of the di�culties to obtain actual data on puming decisions. These models may
mischaracterize the nature of the predicted resource use by ignoring the possibil-
ity for users behaviors to diverge from social optimum and myopic predictions.
However, there is another part of the literature that in order to overcome the
shortcomings of the traditional model, takes into account the spatial e�ects of
groundwater pumping (Gisser & Sanchez, 1980; Feinerman & Knapp, 1983; Ru-
bio & Casino, 2003). Moreover, even if these studies take into account the spa-
tial characteristics of groundwater, they �nd a rather paradoxical result known
as the Gisser-Sanchez’s e�ect (GSE). The GSE, discovered by Gisser & Sanchez
(1980), suggests that the social bene�ts of optimal groundwater management are
insigni�cant, because as the storage capacity of the groundwater increases, the
di�erence between optimal management and private exploitation becomes neg-
ligible. This is even more when we consider that the optimal management is not
costless.

Suter et al. (2012) analyze the impact of hydrogeologic characteristics of the
aquifer on users behavior and pumping rates by using an in�nite time horizon
model. They de�ned and compared two theoretical models that are a traditional
bathtub model and a spatially explicit model, in which the spatial characteristics
of the aquifer are taken into account. n users share a common groundwater and
must choose individually at each period, a pumping rate that maximizes their
pro�t, which is the di�erence between bene�t and costs, taking into account the
dynamics of the depth to water dt.

In the bathtub model, the authors assumed that pumping made by a user
increases equally in the next period the depth to water for all the users, while
in the spatially explicit model it is the speci�c hydrogeologic characteristics of
the aquifer (transmissivity, storativity, the distance between wells, and time) that
determine how the depth to water is in�uenced by pumping in future periods.9 In
each model they de�ned three benchmarks that are the social optimum, the Nash
feedback and the myopic solution. The correspondig social optimum problem for
the bathtub model is given by equation (7) and by equation (8) for the spatially
explicit model :
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max
n∑

i=1

 ∞∑
t=0

ρt

axit − b

2
x2it︸ ︷︷ ︸

Benefit

−
Costs︷ ︸︸ ︷
c0dtxit


 (7)

s.t dt+1 = dt +

∑n
i=1 xit −R

AS

max
n∑

i=1

 ∞∑
t=0

ρt

axit − b

2
x2it︸ ︷︷ ︸

Benefit

−
Costs︷ ︸︸ ︷
c0dtxit


 (8)

s.t dit+1 =
∑t

k=1

∑n
j=1

xik − xjk−1
4πTr

× w(t− k + 1, v(i, j)) − (t+ 1)R

AS

R is the recharge rate andAS denotes the area time the storativity of the aquifer,
ρ is the discount factor, b is the slope of the demande curve, a is the intercept of
the demande curve, x is the quantity of groundwater pumped, c0 is a cost param-
eter and r is the discount rate. v(i, j) is the radial distance between well i and
well j, Tr is the transmissivity and w(t, v) is the well function. Solving the prob-
lem by means of the Hamiltonian and using the approximation of Feinerman &
Knapp (1983) the authors are able to determine the optimal and the Nash feed-
back quantity of pumping in both the bathtub and the spatially explicit model.10

They found similar myopic pumping levels for the spatially explicit model and
the bathtub model. The authors also found that both in the bathtub and the
spatially explicit model, a higher storativity value leads to the reduction of the
overall e�ect of pumping on the future depth to water.11 In addition, the ratio
of private to external costs increases with higher strorativity values when trans-
missivity is low, and vice-versa.

A total number of 96 subjects participated in eight experimental sessions in-
volving four treatments. The �rst treatment denoted Bathtub, illustrates a com-
mon bathub model. The second treatment denoted Spatial 1, illustrates a spatially
explicit model with a low storativity. The third treatment denoted Spatial 2, il-
lustrates a spatially explicit model with a high storativity. The last treatment
denoted Individual Bathtub, illustrates an optimal control treatment in which a
single user exploits the groundwater and where future costs of pumping are en-
tirely private. There is no interaction between subjects in this theatment. The
experiment was contextualized to an aquifer commonly shared by goups of six
subjects. The aquifer was divided into six plots in which each subject has to
operate one of the well located in the middle of a plot, in order to make an in-
dividual and anonymous pumping decisions in each period. The authors have
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intentionnaly made instructions vague to re�ect the real-life groundwater dy-
namics which is not exactly known. Thus, they chose a discount factor and a
transmissivity value that represent real-world cases.

Before the beginning of each session, subjects had to answer several compre-
hension questions. An experimental session was divided into a training phase
followed by four experiment phases. After each phase, the groups of six subjects
were randomly match. The in�nite horizon was simulated by applying a stochas-
tic termination rule. The discount factor is then interpreted as a continuation
probability (85%), allowing the authors to deduce the termination probability
which is equal to 15%. This allowed the authors to �nd an expectation of 6.67
periods per experiment phase. Thus, the four experiment phases were respec-
tively of six, ten, �ve and seven periods. The authors derived three predictions
including subpredictions for each. The �rst prediction suggests that "di�erences
in the hydrogeologic model across treatments lead to di�erences in pumping"
levels. In other words, depending on the treatment, pumping levels are higher or
lower.12 The second prediction suggests that "di�erences in the hydrogeologic
model across treatments lead to di�erences in the pumping strategy types used
by participants". This prediction explains that the frequency with which subjects
adopt a behavior (myopic, Nash feedback or optimal) depends on the treatment.
The �nal prediction suggests that "di�erences in the hydrogeologic model across
treatments lead to di�erences in the observed social e�ciency". In other words,
depending on the treatment, observed social e�ciency is higher or lower.

The authors found support for all their predictions. Regressing pumping lev-
els on myopic pumping in each treatment to analyse myopic behavior, they found
on average more myopic in the Bathtub than in the Individual Bathtub treatment
(single agent). Even if subjects pump less in the Individual Bathtub treatment on
average, they pump more than the level that maximizes the discounted net bene-
�ts. The authors also found on average that subjects’ behavior in the two Spatial
treatments are between optimal and Nash feedback predictions. Furthermore,
analysing individual myopic behavior in each treatment, they found the fewest
number of myopic subjects in the Individual Bathtub treatment. They also found
few myopic subjects in the two Spatial treatments, with a high number of myopic
subjects in the Bathtub treatment.13

With a social e�ciency of 80%, and the resulting e�ciency if all the subjects
were myopic lying in the range of [50% − 80%], results suggest that e�ciency
gains from the management of pumping levels are less su�cient to o�set the
cost of implementing such a policy. This seems to be in line with the Gisser-
Sanchez’s e�ect (GSE). While the authors did not �nd robust results on learning
e�ects (resulting from the stochastic termination rule), they observed a reduction
of pumping levels in the third experiment phase compared to the previous two
phases.14 Table 1 summarizes the discrete time articles we reviewed.
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3 Continuous Time Challenges
Another possible way to analyze subjects decisions in the use of common pool
resources is to use continuous time, which emphasizes the non stop evolution
of CPRs. Although there is a growing literature on the implementation of con-
tinuous time models in experiments, it is still quite recent. Few examples of
continuous time situations in real life, with quick interactions can be electric-
ity markets with high-frequency bidding, �nancial markets with high-frequency
computerized trading (Bigoni et al., 2015).

We can �nd in the literature two ways of implementing continuous time in
lab experiments : by using extensive form games and by using di�erential games.
The �rst way is in line with Simon & Stinchcombe (1989) who suggested a general
model of games played in continuous time. They considered discrete grids in the
time interval [0, 1) for games with �nite numbers of players and actions. Thus,
they obtained under some technical conditions (for example, keeping uniformly
bounded for each player, the number of strategy switches) in the limit as the grid
interval approaches zero, well-de�ned games in continuous time. Therefore, ar-
ticles using this method are quali�ed as quasi-continuous time articles (Friedman
& Oprea, 2012; Oprea et al., 2014; Bigoni et al., 2015; Leng et al., 2018). The second
way is in line with Tasneem et al. (2017, 2019) who used dynamic models.

3.1 "Quasi-continuous" time Experiments
In this subsection, we provide a short review of quasi-continuous time articles.
For instance, Friedman & Oprea (2012) study a prisoner’s dilemma in a �nite hori-
zon to mesure the tension between e�cient cooperation and ine�cient defection.
In addition to their continuous time treatment, they implemented a one-shot
treatment and a discrete time treatment. They found, using a pairwise Mann-
Whitney test on subject’s median cooperation rates, that continuous time gives
the highest level of cooperation. Cooperation was never apears in the one-shot
treatment and was heterogeneous in the discrete time treatment. Bigoni et al.
(2015) also study cooperation in a repeated prisoner’s dilemma, with di�erent
termination rules (deterministic and stochastic time horizons) and di�erent du-
rations (long and short). They ran two deterministic treatments (long and short
durations), two stochastic treatments (long and short durations) and one deter-
ministic treatment with variable durations across supergames. By analysing me-
dian and mean cooperation rates, they found signi�cantly high cooperation rates
with short duration deterministic time horizon.15 However, they found similar
cooperation rates with long duration, both for deterministic and stochastic time

1NF : Nash Feedback equilibrium. SO : social optimum equilibrium.
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horizons.
Oprea et al. (2014), in a �nite horizon framework, crossed time protocol (con-

tinuous vs. discrete time) and communication protocol (no communication vs.
unrestricted communication) to get four treatments through which they study
subject’s contributions in a public good game. By analysing median and mean
cooperation, they found high contributions in continuous than in discrete time.
However, the results suggested that without communication continuous time
does not perform better than discrete time. Similar results have been found by
Leng et al. (2018) who studied a minimum e�ort game by crossing time protocol
(continuous vs. discrete time) and information feedback (group minimum e�ort
level vs. each member of the group e�ort level) to measure cooperation in a
minimum e�ort game, also called a weak-link game.16 Analysing the minimum
and the average e�ort levels to mesure cooperation, the authors used a two-sided
Mann Whitney rank sum test and found contrary to their expectations that when
the number of subjects become larger, continuous time without communication
or an additional feedback information have no signi�cant impact, because sub-
jects hardly coordinate to increase the group minimum e�ort within a period.
They also found no signi�cant di�erence in the minimum e�ort level between
continuous time and discrete time.

3.2 Real Time : A Feature of Continuous Time
In continuous time, interactions among agents are made in real time and imply
an uninterrupted update of information in the lab. Thus, some recent experimen-
tal studies have tryed to introduce more realism (mimic �eld settings) by taking
into account spatial and temporal dimensions in the study of renewable social
ecological systems. For example, Janssen et al. (2010) study the impact of com-
munication and costly punishment in the governance of a renewable resource
assimlate to a 29-by-29 grid of cells from which subjects have to harvest tokens.
The resource dynamics is represented by the renewal rate, which depends on
the density. They mainly found that communication allows the regeneration of
the resource by reducing it’s exploitation. However, without communication,
costly punishment does not allow the increase of the group payo�.17 Moreover,
Cerutti (2017) revisited the experiment proposed by Janssen et al. (2010) to study
the e�ects on subjects’ behavior, of introducing a spatial representation of the
resource. The author compared the baseline version of the experiment to a blind
version. In the baseline version, the resource is assimilated to a grid of 18 × 18
cells from which subjects have to harvest tokens. Contrary to Janssen et al. (2010)
there was neither communication nor costly punishment, but a bar representing
the current amount of tokens. In the blind version, only the bar representing
the current amount of tokens could be seen by subjects. The resource dynamics,
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represented by the renewal rate, depends only on the total amount of tokens in
the grid. The main result was that, contrary to the baseline version, the blind
version gives results close to the social optimum. The authors derive the social
optimum equilibrium by simulating the behavior of ten thousand groups behav-
ing cooperatively. Their �nding was that in the social optimum, subjects allowed
the resource to cover up to 50% before harvesting above this threshold.

3.3 Taking Into Account Strategies in CPRs
This subsection reviews continuous time article using di�erential games. To our
knowledge, Tasneem et al. (2017) was the �rst article that have tried to implement
di�erential games in the lab. The peculiarity of the articles reviewed here and in
the following subsection is that the authors analyse agents’ behavior according
to Markovian strategies (state dependent strategies). Tasneem et al. (2017) inves-
tigates the choice of extraction strategies between linear and non linear, resulting
from the use of a common renewable resource assimilated to a �shery. Using a
linear quadratic in�nite horizon model, they consider groups of two identical
agents, who individually and simultaneously exploit the �shery. Assuming zero
costs, each agent i has to maximize the present value of his discounted payo�,
which depends only on his extraction rate xi(t), under the dynamics of the stock,
which evolves according to a logistic growth function F (S(t)). The maximiza-
tion problem is given by equation (9) :

max

∫ ∞
0

exp−rt xi(t) −
xi(t)

2

2
dt (9)

s.t


˙S(t) = F (S(t)) − xi(t) − xj(t)

S(0) = S0

xi(t) ≥ 0

with F (S) =


RS for S ≤ Sth

RSth

(
K − S

K − Sth

)
for S > Sth

where r is the discount rate, R is the replenishing rate, RSth denotes the
maximum sustainable yield and K is the carrying capacity. This problem admits
a piecewise linear Markov-perfect equilibrium and also a continuum of nonlinear
local Markov-perfect equilibria which di�ers in terms of the aggressiveness of
the resource exploitation.

17



A total number of 134 subjects participated in nineteen experimental sessions
of a contextualized experiment. Each session lasted about two hours, with groups
of two subjects randomly formed at the beginning of each session and remaining
the same during the session. To make sure that subjects well understand the
Markovian environment, they had to successed to a test before the beginning of
a session, in which they learned how to manage their extraction rate. The test
consisted in choosing an extraction rate to increase and keep the stock constant
at this new level, then in decreasing and holding the stock constant to another
level. This was called "constant rate".18 Subjects were given �fteen tries. They
were dissmissed in case of failure and received ten dollars show up fees. A total
of 25 subjects failed this test.

In each experimental session, each subject, assimilated to a �sherman, had
to decide in real time and simultaneously with the other member of his group,
the speed at which he wants to harvest a �shery. The authors chose the replen-
ishing rate R, the discount rate r and the initial stock, so that the time required
to reach the steady state does not exceed four minutes. An experimental session
consisted in four training phases followed by six phases for pay. A phase stops
after four minutes, or with a stock level of zero or after 30 seconds of inactiv-
ity because a steady state is supposed to be reached. Continuous time has been
implemented by updating all information every second and allowing subjects to
take their decision at any time by using a graduated slider from zero to an upper
bound, according to the parameterization chosen. Moreover, the in�nite horizon
has been simulated by discounting payo�s over a �xed period and computing a
continuation payo� as if the phase went forever, assuming that the last extrac-
tion rate of the group remains constant. This computation also takes into account
the probability the stock level could drop to zero. After making a decision, sub-
jects could see the dynamics of the stock in real time, as well as other information
(their extraction rate, the group extraction rate, the time elapsed). At each phase,
the authors set both the starting stock level and the initial extraction rate. They
varied the design according to two dimensions. First, by varying the initial ex-
traction, with constant initial stock. This allowed them to analyse whether initial
conditions a�ect subjects’ extraction behavior. Second, by keeping constant the
strategies resulting from initial extractions, they ran two treatments with a low
initial stock and a high initial stock.

Analysing their experimental data, the authors found that when focusing on
linear strategies, subjects’s extraction rates reach the best possible steady state.
However, taking into account non linear strategies allow them to �nd other pos-
sible steady states including those leading to the exhaustion of the stock. To
analyse if a pair reached a steady state, they used a steady state detection al-
gorithm called MSER-5.19 By investigating the e�ects of initial conditions, they
found that di�erent initial extraction rates did not a�ect subjects’ behavior. Fur-
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thermore, grouping in each treatment all the phases for pay and applying a two-
sample Kolmogorov-Smirnov test, the authors found that the steady state total
extraction distribution in the second treatment (high initial stock) contains larger
values then that of the �rst treatment (low initial stock).

Finally, to investigate whether subjects’ decision-making are susceptible to
be a�ected by other variables, the authors ran for each phase for pay a subject-
by-subject individual Tobit regression on the general model shown by equation
(10) :

xt = β0 + β1St + β2(St)
2 + β3xt−1 + β4xother, t−1 + β5t+ et (10)

where xt denotes the current extraction rate of a subject, xt−1 is his lagged ex-
traction rate, the time in seconds for a decision is denoted by t, xother, t−1 is the
lagged extraction rate of the other subject of the group, et denotes the error term,
and St is the current stock level.20 They found that half of the strategies condi-
tion on time and that about half of the extraction strategies condition on the
extraction rate of the other player of the group. Their results also shown that
a high percentage of the models selected were non-linear strategies, and that a
less but not negligible percentage were "rule-of-thumb" strategies, which do not
depend on the stock level. The rule-of-thumb strategy is close to the social op-
timum equilibrium in the sense that it consists of choosing a zero or a very low
extraction rate, in order to quickly increase the stock to the level allowing the
highest extraction rate.

3.4 Sustainability in CPRs
Following Tasneem et al. (2017), Tasneem et al. (2019) investigate a private man-
agement of a renewable resource. More precisely, they want to know to what
extent a single agent can manage a private �shery in a sustainable and e�cient
way. Assuming zero costs, each agent has to maximize the discounted sum of
his instantaneous payo�s, which depends on his extraction rate x(t), taking into
account the dynamics of the stock S(t). Using a linear quadratic in�nite horizon
model, the maximization problem is given by (11) :

max
x(t)

∫ ∞
0

exp−rt x(t) − x(t)2

2
dt (11)
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s.t


˙S(t) = RS(t) − x(t)

S(0) = S0

x(t) ≥ 0

where r is the discount rate andR is the replenishing rate. The optimal solution is
a piecewise extraction rate function composed of three regimes. The �rst regime
consists in a null extraction regime allowing the stock to grow. In the second
regime, the extraction rate is a linear function of the stock and the last regime is
a steady state regime with the maximum extraction rate.

A total number of 31 subjects participated in three experimental sessions of
a contextualized experiment. Each session lasted about two hours, where each
subject had to decide in real time the speed at which he wants to harvest exclu-
sively a �shery. The authors chose the discount rate r, the replenishing rate R
and the initial stock, so that the time required to reach the steady state does not
exceed two minutes. An experimental session consisted in ten training phases
with the same initial stock, followed by twenty phases for pay with di�erent ran-
domly increasing initial stocks whithin the range of the optimal solution. During
a phase, the computer checked whether the stock would drop to zero or not and
computed the discounted sum of future payo�s till in�nity. In case of 30 sec-
onds of inactivity, the computer assumes a steady state is reached and the phase
stops. The phase also stops after two minutes, or with a lower stock level of zero
or when the stock reaches its maximum level. The in�nite horizon and continu-
ous time were also implemented as in Tasneem et al. (2017), with the di�erence
that all the information were updated every half second, which is faster enough
to simulate continuous time. After making a decision, subjects could see the dy-
namics of the stock in real time, as well as other information (their extraction
rate, the constant rate, their instantaneous and cumulative payo�s).21 The pay-
o� in the experiment depends on both the quantity of �sh extracted by a subject
and the time of the extraction.

Adopting the same procedure as Tasneem et al. (2017) to analyse their exper-
imental data, the authors, by using the steady state detection algorithm called
MSER-5, checked wether an extraction behavior results in a steady state.22 To
analyse the relationship between stock and extraction, the authors compared
subjects’ extraction behaviors to the optimal extraction policy. They did it be-
cause their design admits a cross-sectional analysis of initial extraction rates, as
they chose their parameters in the range of the optimal extraction policy. Thus,
in their phases for pay, and for nine di�erent half seconds in time, the authors
regressed subjects’ extraction rates on the stock level according to equation (12).
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xij = α0 + α1Sij + eij (12)

where i denotes the order of a phase for pay and j denotes the order of a sub-
ject (one up to thirty one). Comparing the regression to the optimal policy, they
found that even below a certain stock level, subjects still tend to extract the re-
source when they should not. Investigating whether there was an improvement
in subjects extraction behavior, the authors found that the tradeo� between in-
stantaneous payo� and the future sum of payo�s created by the discount fac-
tor, leads to initial overextraction of the resource which persists over sessions.23

They also checked for the model that best describes the behavior of subjects in
the di�erent phases for pay, by estimating a more general model (13) with three
subspeci�cations.24

xt = β0 + β1St + β2(S
2
t ) + β3xt−1 + β4t+ et (13)

The �rst subspeci�cation includes the current stock (St) and the lagged ex-
traction rate (xt−1). The second subspeci�cation includes the time (t) in half
seconds in the �rst subspeci�cation, while the last subspeci�cation includes the
square root of the current stock (S2

t ) in the �rst subspeci�cation. The results sug-
gested that linear model better explains extraction rate than non linear model,
and that the second subspeci�cation was the most selected by subjects. Table
2 summarizes the continuous time articles we reviewed in subsections (3.3) and
(3.4).
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4 Mixed Time CPRs Models
As it is obvious from sections 2 and 3, the literature emphasizes the management
of common pool resources either in discrete time or in continuous time. How-
ever, a small but signi�cant part of the literature has studied CPRs by combining
continuous and discrete time for various reasons (Noussair et al., 2015). Most of
the time in these articles, continuous time is used for the theoretical model, while
discrete time is used for the experiment. One of these reasons could be the fact
that the implementation of continuous time in the lab is relatively recent and a
bit di�cult, while discrete time is quite simple and more rational. This property
of discrete time makes it easy to implement in the lab. Another reason could be
that using a very small discretization in time, continuous time can be approxi-
mated by discrete time, which avoids the di�culty of implementing continuous
time in the lab.

Laboratory experiments (in vitro), despite their relative simplicity and the re-
liability of the data obtained thanks to the control exerted by the experimenter,
have been widely criticized for their lack of external validity (Loewenstein, 1999).
Field experiments (in vivo) could be an alternative in providing external valid-
ity and can be divided into three main groups. Artefactual �eld experiments,
which are identical to laboratory experiments, but are carried out with subjects
representative of the active population. Framed �eld experiments, which are
artefactual �eld experiments with realistic environment and information. Natu-
ral �eld experiments, also identical to framed �eld experiments except that the
studied environment is the one in which subjects perform their tasks and they
ignore that they are participating in an experiment. For precise details about
experimental economics, see Serra (2012).

4.1 An Example of Field Experiment
Framed �eld experiments have the advantage of testing the in�uence of context
elements on agents’ behavior. Based on this framework, Noussair et al. (2015) try
to investigate cooperation among the users of a common renewable resource.
Departing from the canonical model of Schaefer (1957), the authors de�ned a
continuous time �nite horizon model in which n agents share a �shery. Assum-
ing zero costs, each agent i has to maximize his catch xi(t) under the dynamics of
the stock S(t), which is renewed according to a logistic growth functionF (S(t)).
Then, the authors derived two benchmarks that are the Nash and the social opti-
mum outcomes. The correspondig social optimum problem is given by equation
(14) :
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max
xi(t)

∫ T

t=0

n∑
i=1

exp−rt p̄ α Ei(t)S(t)︸ ︷︷ ︸
xi(t)

dt (14)

s.t Ṡ(t) =

F (S(t))︷ ︸︸ ︷
RS(t)

(
1 − S(t)

K

)
−

n∑
i=1

α Ei(t)S(t)︸ ︷︷ ︸
xi(t)

with S0 = K

whereEi(t) denotes the harvesting e�ort and Ē is the maximum amount of e�ort
an agent can provide. R is the intrinsic growth, K is the carrying capacity and
p̄ is the marginal value of an extracted resource unit.

Eight �xed groups of four subjects participated in two experimental sessions
of a recreational �shing. To make sure that all the subjects well understand the
game, they had to answer test questions before the start of a session. Each ses-
sion consisted in four periods of one hour each and each member of a same group
wore a colored ribbon to indicate to which group he belongs. The authors imple-
mented their experiment by making a discrete approximation of the dynamics of
the stock as shown by equation (15) :

St+1 = St −Xt + F (St −Xt) (15)

where Xt =
n∑

i=1

xit denotes the total catch. In the experiment, the stock size is

also called the "allowable catch remaining" (ACR) at the beginning of period t.
At the beginning of the �rst period, experimenters released into a pond 38 rain-
bow trout including a supplementary six trout, so that each subject can catch 2
trout. Then, as long as the total catch did not exceed the available amount for
the group, each participant could harvest as many �sh as he liked. Regeneration
was simulated by adding at the end of each period and for groups that have not
exhausted their stock, an amount of �sh equals to the amount harvested in the
previous period. This aimed to have the same amount of �sh at the beginning
of each period. At the end of each period, subjects were given all information
to begin a new period, but in case of resource exhaustion before the last period,
they had to leave the pond. To avoid the problem of negative marginal utility,
subjects were allowed to take home all the �sh they caught and received in ad-
dition �ve euros for each �sh caught. The authors derived two main predictions
to distinguish cooperation from non-cooperation. The �rst prediction is that the
social optimum equilibrium is reached when the logistic growth function equals
the discount rate. Given their parameterization, subjects should quickly harvest
the stock until it remain four �sh, stop catching for the stock to regenerate up
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to eight �sh, and quickly catch again four �sh. Thus, the �shing e�ort will de-
pend on the remaining group stock under cooperation. The second prediction is
that, contrary to the �rst prediction, subjects’ will not modify their harvest over
the four periods under the Nash equilibrium, which involves the depletion of the
stock within the �rst period.

Although they found a lack of cooperation, consistent with the standard eco-
nomic theory, the authors emphasize the importance of contextualization when
testing the canonical renewable resource model. A Wilcoxon test on the distribu-
tion of the average group e�ort between the �rst and the fourth period, allowed
them to �nd support to their second prediction. And applying a �xed e�ects re-
gression con�rmed that harvesting e�ort does not di�er statistically regardless
of the stock size.25 Table 3 summarizes the mixed time article we reviewed in
this subsection.
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5 Empirical Methods used in the Studied Articles
Another crucial step in the study of the behavior of common pool resource users
is data analysis, as it is based on these results that policy implications can emerge
to ensure the e�ective management of CPRs. Experimental data collected in the
studies we reviewed are generally panel data. That is, they contain several ob-
servations for the same individual over a period of time, and therefore have two
dimensions : an individual dimension (cross-sectional) and a temporal dimen-
sion (time series). However, one of the key elements for the analysis of experi-
mental data lies in the choice between parametric and non-parametric methods.
Parametric methods are based on distributional assumptions (most commonly,
the normality of the outcome variable) which holds if the analyzed variables are
cardinal. Nevertheless, experimental data do not always satisfy normality con-
dition, so that non-parametric methods seem to provide a compelling alternative
to parametric methods.26 Most of the articles studied in this survey adopted non-
parametric methods, some used parametric methods and others made a combi-
nation of both. In this section, we will review the main methods frequently used
by the authors to analyze their data.

The �rst category of empirical methods that we will examine is that of sta-
tistical indicators. Some authors compare the mean to the median because they
are positional measures that give a quick idea of the characteristics of the study
sample. They have the advantage of simplicity, are intuitive, the median is robust
to extreme values, and they could therefore be a good beginning for further anal-
ysis. For instance, Oprea et al. (2014) used this method to compare contribution
levels to a public good in quasi-continuous time to those in discrete time. This
was also the case for Bigoni et al. (2015), for the determination of cooperation
levels in their repeated prisoner’s dilemma game.

The research question most frequently addressed in this review was the deter-
mination of the theoretical behavior to which experimental subjects are closest.
To do this, a simplest parametric method is to compute the Mean Squared De-
viation (MSD), which is a dispersion parameter used to accurately estimate the
di�erence between the optimal and the observed behavior (Herr et al., 1997).27

One should keep in mind that the MSD is only relevant if it is compared to an-
other value of MSD. Suppose for example that we want to know whether a sub-
ject’s behavior is closer to myopic or to optimal behavior. We should therefore
compute the myopic MSD and the optimal MSD. Thus, the lowest value of MSD
(close to zero) will determine the behavior to which the subject is closest. How-
ever, using the MSD as the only criterion for classifying behaviors could give
misleading results, as the MSD allows for a global classi�cation of subjects’ be-
havior, without taking into account the fact that subjects may deviate from the
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theoretical solution. It is therefore necessary to combine the MSD with a regres-
sion method to obtain an accurate classi�cation. See Djiguemde et al. (2019) for
a detailed explanation.

Finally, the last criterion we found is e�ciency. Determined by almost all
the authors, e�ciency is de�ned as the ratio of the total observed payo�s to
the optimal payo�. (Herr et al., 1997; Suter et al., 2012; Tasneem et al., 2017,
2019). Tasneem et al. (2019) found that average e�ciency increases with the ini-
tial stock of the resource and the experience of subjects. Otherwise, Gardner et
al. (1997) de�ned e�ciency as the coe�cient of resource utilization (CRU). But
unlike previous authors, Hey et al. (2009) de�ned e�ciency by the ratio of ob-
served extraction to optimal extraction, and used it for the calculation of payo�s,
which they de�ned as the product between e�ciency and a premium speci�c to
each of their four treatments.

The second category of methods, the most commonly used by the authors, is
a non-parametric test of comparison called the Mann Whitney test.28 This test
is a non-parametric alternative to the Student t-test, used to compare two paired
groups, by calculating and analyzing the di�erence between each set of pairs.
(Herr et al., 1997; Oprea et al., 2014; Noussair et al., 2015; Leng et al., 2018). The
two-sample Kolmogorov-Smirnov test is similar to the Mann Whitney test, as it
allows to test whether two samples come from the same distribution (Tasneem et
al., 2017). However, in case of more than two independent samples, the Kruskal-
Wallis test is used as an extension of the Wilcoxon Rank-Sum test, but is replaced
by the Jonckheere-Terpstra test of ordered alternatives when there is an expected
order to the group medians (Hey et al., 2009).

The third category of empirical methods deals with estimation methods. One
of the most widely used estimation method nowadays is the Maximum Like-
lihood (ML) method, whose goal is to �nd the parameter that maximizes the
probability of observing the sample actually observed, by assuming a conditional
distribution of the explained variable with respect to the explanatory variables
(Mason & Phillips, 1997). It can be applied to linear regression and under some
assymptions like the Gaussian assumption (normality of errors), the Maximum
Likelihood gives the same estimations as the Ordinary Least Squares (OLS).29 The
Maximum Likelihood also allows the estimation of qualitative variables (most of-
ten dichotomous). However, in the case of qualitative variables, the dependent
variable is not always observable (latent). The Tobit model, intermediate be-
tween linear and dichotomous models, is then adapted for this type of analysis,
because it is a censored regression model that describes the relationship between
a limited dependent variable (which is continuous but can only be observed over
a certain interval) and one or more independent variables.30 When the dependent
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variable is limited by two bounds, the model used is a two-limit Tobit (Tasneem
et al., 2017, 2019).

In economics, the use of simple dynamic regression models such as partial
adjustment models dates back to Nerlove (1958), who used this type of model to
investigate the lags in farmers’ response to price changes. In econometrics, par-
tial adjustment models are used to justify taking into account one or more lags
of the dependent variable in a regression function. It has been used by Mason
& Phillips (1997) to study the decision-making of experimental subjects. How-
ever, the problem with the partial adjustment model is that the OLS estimator,
although convergent, is biased. Hence the use of alternative methods such as
the Feasible Generalized Least Squares (FGLS), which is an implementable ver-
sion of the Generalized Least Squares (GLS), used when the covariance of the
errors is unknown. FGLS is built in two stages : the model is �rstly estimated by
Ordinary Least Squares (OLS) to build a consistent estimator of the errors covari-
ance matrix with the residuals. Using secondly this consistent estimator, one can
implement Weighted Least Squares (WLS). GLS is a generalization of OLS tech-
nique, used to estimate the parameters of a model in case of serial correlation
and/or heteroskedasticity (the errors can have di�erent variances), while WLS is
a special case of GLS where covariance matrix is diagonal, i.e. the error terms
are uncorrelated. Feasible Generalized Least Squares were also used by Suter et
al. (2012), but with the Prais-Winsten procedure, to analyse individual myopic
behavior in each of their four treatments. This procedure is a modi�cation of the
Cochrane-Orcutt estimation and is a special case of Feasible Generalized Least
Squares, taking into account the serial correlation of type AR(1) (autoregressive-
1) in a linear model.31

6 Conclusion
In this survey, we attempted to bring an overview of the recent literature us-
ing dynamic games to examine the issues of common pool resources throughout
experiments. Our goal was to identify the di�erent steps for the implementa-
tion of these games into the lab. This leads us to distinguish continuous time
from discrete time, �nite from in�nite horizon and provide a discussion on ex-
perimetrics. We found that most of the articles were in discrete time, due to its
relative simplicity of implementation in the lab compared to continuous time.
The time horizon over which the study is conducted is also very determining,
since it strongly in�uences the results. We thus found that the �nite horizon was
the most implemented for several reasons including its simplicity. For Hey et
al. (2009) for instance, «in�nite horizon cannot be implemented in laboratory».
Moreover, implementing �nite horizon instead of in�nite horizon seems logical,
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since «... the earth does not exist inde�nitely... ».
Therefore, we paid special attention to continuous time and in�nite horizon

for two reasons. First, their implementation in the lab is in its infancy, as they
are very challenging. Continuous time makes it possible to simulate the real
evolution of common pool resources, which takes place without interruption
over time. As for the in�nite horizon, it is simple to implement from a theoret-
ical point of view and allows to obtain predictions over a very very large time
interval. From an experimental point of view, the in�nite horizon ensures the
sustainability of the resource, because it allows experimental subjects to have a
projection of the consequences of their decision making on the resource up to
in�nity. This stimulates them to adopt a less myopic behavior. Furthermore, al-
though people don’t live forever, they may care about their o�spring, by taking
care of the resource. Second, we wanted to contibute to the growing literature on
the study of the behavior of CPR users. We wanted to do that, simultaneously in
a simple dynamic environment without interactions �rst and second by allowing
for strategic interactions between users, in order to analyze potential di�erences
(Djiguemde et al., 2019). This allowed us to distinguish continuous time using
di�erential games (Tasneem et al., 2017, 2019) from quasi-continuous time using
extensive form games (Friedman & Oprea, 2012; Oprea et al., 2014; Bigoni et al.,
2015; Leng et al., 2018).32

However, we found that the ability of continuous time to foster coopera-
tion seems mixed, so that some authors suggest supplementary mechanisms like
punishment, communication, regulation, voting processes to improve coopera-
tion (Gardner et al., 1997; Noussair et al., 2015; Leng et al., 2018). We also found
two ways of implementing in�nite horizon : either by imposing a random termi-
nation rule (Mason & Phillips, 1997; Suter et al., 2012); or, by discounting payo�s
over a �xed period while adding a continuation payo�, which computes the pay-
o� that subjects would have obtained if the experimentation pursue inde�nitely
with the last conditions remaining constant (Tasneem et al., 2017, 2019). We
suggest the use of the second alternative, because unlike the random termina-
tion rule, it allows to get rid of the use of a continuation probability. Moreover, it
ensures all players the same end of experiment. The main �nding in this survey
was that, when taking into account the dynamics of the resource, suboptimal be-
havior (myopic) is a frequent outcome (Herr et al., 1997; Mason & Phillips, 1997;
Tasneem et al., 2019). However, Hey et al. (2009) found contrary to the literature,
that subjects tend to underexploit the resource when they have no information,
neither on the stock, nor on the growth function. Therefore, the dynamic envi-
ronment created by common pool resources does not always promote virtuous
behavior from the users of these resources. Hence the need to pay particular
attention to the design of the experiment.

Thus, we propose three key elements to anyone wishing to carry out an ex-
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perimental study on dynamic CPRs. Note however that these key elements can
be extended to other types of studies such as those relating to public goods. The
�rst key element is the framing of the experiment, as it greatly in�uences the re-
sults. When choosing to contextualize an experiment, one must pay attention to
the framing e�ects, which could bias the behavior of experimental subjects (Dé-
solé, 2011; Cerutti, 2017). The importance of contextualization was also stressed
by Noussair et al. (2015). We recommend contextualisation for very speci�c CPRs
studies for which simulation of the natural environment allows to capture the at-
tention of experimental subjects. However, although contextualization provides
a fairly accurate representation of real life, it must be ensured that framing e�ects
do not bias the results obtained. The second key element is to ensure experimen-
tal subjects fully understand the complex dynamic environment. This requires
the implementation of a comprehension questionnaire and even several training
phases before the beginning of the experiment. This was done by almost all the
reviewed articles, with however the special cases of Bigoni et al. (2015); Leng et
al. (2018) and Tasneem et al. (2017), for whom the participation to the experi-
ment was conditional on passing a test. Although the test allow the elimination
of outliers in the data collected, it can however be criticized because all the users
of CPRs in real life do not have a perfect knowledge of the resource they har-
vest. The last key element one should keep in mind is data analysis, as it will
determine the results obtained. Parametric and/or non parametric methods can
be applied depending on the research question.

Although there has been considerable progress in the implementation of dy-
namic games in the lab, more research is needed to improve and facilitate the
implementation of continuous time and in�nite horizon, which are still very re-
cent. In addition, methods or a combination of data analysis methods, su�ciently
harmonized for the study of common pool resources are needed. All these im-
provements will facilitate the establishment of much more targeted policies for
the e�cient management of common pool resources.33
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Notes
1Experimetrics is a word used to designate the di�erent econometric techniques customized

to analyse experimental data.
2See section 5 for a detailed explaination of the partial adjustment model.
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3The 17 states are Arizona, California, Colorado, Idaho, Kansas, Montana, Nebraska, Nevada,
New Mexico, North Dakota, Oklahoma, Oregon, South Dakota, Texas, Utah, Washington, Wyoming.

4 • The token cost for an individual is equal to the average cost of the token for this period
× the total number of tokens ordered for this period.

• The new cost of base token is equal to : (1+ the total number of tokens ordered in previous
periods )× the amount of the increase.

5the Maximum Sustainable Yield (MSY), is the largest extraction an agent can achieve from a
given stock.

6The non contextualization was to avoid an emotional bias related to the pity subjects will
feel when confronted with the slaughter of �shs.

7To provide these prudent benchmarks, the authors used for the �rst treatment, a "hill-climbing
algorithm" to identify the stock level inducing the maximum growth. For the second treatment,
they applied a "Monte-Carlo simulation" on extraction excluding a pre-mature extinction of the
resource. In the zero information treatment, they applied a combination of the two previous
methods.

8In case of only two categories (here, over-harvesters and under-harvesters), the binomial
test allows the comparison between the observed distribution and the theoretical distribution.

9The main di�erence between the spatially explicit model and the bathtub model is that in
the spatially explicit model, the depth to water variable is speci�c to the location and depends on
both the distance of the sequence of pumping occured in all previous periods. Another di�erence
between the two models lies in the memory of the system, meaning that the impact on well j of
pumping in well i in period t is very small in period t+ 1, but larger in later periods.

10This approximation assumes that the costate variable λ is stationary, implying that future
pumping is equal to current pumping. Thus, with λt = λt+1 = λ, the �rst order condition gives
λ = nc0xt/(ρ− 1). Substituting it and solving for xt gives the optimal quantity of pumping.

11The storativity estimates the relation between pumping and its e�ect on the future depth to
water, while transmissivity estimates the distance between wells. A low transmissivity value in-
dicates that wells are more evenly spaced. When the transmissivity tends to in�nity, the spatially
explicit model converges to the bathtub model.

12Here, authors made numerical predictions by regressing in each period the predicted pump-
ing rates on treatment-speci�c indicator variables and also on the treatment indicators interacted
with the period number.

13While a higher number of myopic subjects was found in the Bathtub treatment, the authors
found on average that subjects in that treatment adopt a Nash feedback behavior. This di�erence
in results can be explained by the fact that the fewest subjects exploiting less than the myopic
prediction, allow the groundwater to grow, leading on average to a Nash feedback behavior.

14All along their analyses, the authors have clustured standard errors either at participant level
or at group level.

15In long duration treatments, subjects played supergames lasting 60 seconds each; whereas
in short duration treatments, the supergame lasted 20 seconds.

16The minimum e�ort game is a coordination game having multiple Pareto-ranked Nash equi-
libria and where players coordinate on the less e�cient equilibrium by choosing low e�ort, be-
cause of the high strategic uncertaincy associated with the choice of a high e�ort which leads to
the more e�cient equilibrium. For more detailed information about the minimum e�ort game,
see Cartwright (2018).

17The social optimum equilibrium is consistent with maintaining for most of the decision pro-
cess a 50% density of token and harvesting at the end of the decision process the remaining
tokens.
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18Knowing the replenishment rate and using the constant rate, subjects learned how to keep
the stock at a constant level.

19For more details about the the MSER-5 (Mean Squared Error Reduction ou Marginal Standard
Error Rule) algorithm, see their "Appendix C : Steady state analysis".

20Authors used the "general-to-speci�c" modeling appoach, consisting in detecting the best
model. See their "Appendix D : General-to-speci�c algorithm" for more details.

21The constant rate is the extraction rate allowing the stock level to be constant. The instanta-
neous payo� is a quadratic function of the extraction rate, where the maximum is reached for an
extraction rate of one. The cumulative payo� is the sum of the discounted instantaneous payo�s,
obtained by multiplying instantaneous payo�s by exp−rt.

22To compute the MSER-5, the authors do not take into consideration situations involving a
minimum stock of zero or a maximum stock of twenty �ve. For more details about this algorithm,
refer to their Appendix 5 : Identifying Steady States in the Choice Data.

23To �nd this result, the authors regressed the di�erence between the initial extraction rate
and the optimal extraction rate, on the order of the phases for pay, by controlling for the stock
level and clustering standard errors by subjects. Given the panel structure of the data, there is a
correlation between some observations, hence the necessity to adjust standard errors before any
analysis in order to get a good speci�cation.

24In each phase for pay, the authors applied a multi-path search general to speci�c model
selection approach to estimate the best-�tting extraction policy. See Their Appendix C : General-
to-Speci�c Algorithm, for more details about this approach. Then, they estimated a two limit
Tobit panel model with an upper bound of two and a lower bound of zero, where each subject is
a panel unit, to �nd the three subspeci�cations.

25While theoretical predictions and the experimental earnigs are mainly based on the number
of �sh caught, the harvesting e�ort is measured through the amount of times a �sherman casts
his rod.

26See Mo�att (2015) for a clear overview of econometric methods in experimental economics.
27Let’s n be the size of the sample, xobsit the observed behavior and xpredit the predicted or the

theoretical behavior. The Mean Squared Deviation (MSD) is obtained through this formula :

MSD =

∑
i

∑
t(x

obs
it − xpredit )2

n

28The Mann Whitney test is also known under various names such as : the Mann Whitney U
test, the two-sided Mann Whitney rank sum test, the pairwise Mann Whitney test, the Mann-
Whitney-Wilcoxon test, the Wilcoxon-Mann-Whitney test, the Wilcoxon rank-sum test and the
Wilcoxon signed rank test.

29The Maximum Likelihood (ML) method requires to know the distribution law of the param-
eters beforehand, unlike the Ordinary Least Squares (OLS) method. OLS is a linear regression
method that estimates the relationship between independent and dependent variables by mini-
mizing the sum of squared errors from the data.

30In censored models, the entire sample contains observations of the explanatory variables.
31 The Prais-Winsten estimation is a modi�cation of the Cochrane-Orcutt estimation because

it does not lose the �rst observation, thus providing a more e�cient result.
32An innovative aspect in the implementation of (quasi) continuous time in the lab by Bigoni

et al. (2015), was the use of touch screens instead of a computer mouse in subjects’ decision-
making processes. This allowed the switch of decisions, not to be heard by the other members
of the group.

33For a supplementary review on groundwater management, see Koundouri (2004) and Foley
et al. (2012) for habitat-�sheries.
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Appendices

Table 4 – Variables for game articles

Variables Description

xit An agent’s extraction (an agent’s extraction rate in continuous time)
xjt Other agent’s extraction rate (in continuous time)
Xt Total group extraction
Bit Bene�t function
π Pro�t
Cit Total extraction cost function
ct Marginal cost
c0 Cost parameter
cf Fixed costs
cop Opportunity cost
c1 Static crowding externality
c2 Dynamic externality
P Price
k Incremental cost parameter
V Value function
dt Depth to water
s Parameter on the size and con�guration of the aquifer
St Stock of the resource
Sth Threshold stock
F (S) Logistic growth function
n Number of users
i Index of users
T Finite time horizon
r Discount rate
ρ Discount factor (in discrete time)

exp−r Discount factor (in continuous time)
R Recharge rate or replenishment rate or intrinsic growth rate
K Carrying capacity

MSY Maximum Sustainable Yield
E Extraction e�ort
E0 Per period e�ort endowment
Ē Maximum amount of extraction e�ort
α Extraction technology
p̄ Marginal value of an extracted resource unit
AS Area times storativity of the aquifer
Tr Transmissivity

v(g, h) Radial distance between well g and well h
w(t, v) The well function
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Table 5 – Variables for optimal control articles

Variables Description

xt An agent’s extraction (an agent’s extraction rate in continuous time)
St Stock of the resource

F (St) Logistic growth function
n Number of users
i Index of users
T Finite time horizon
r Discount rate
ρ Discount factor (in discrete time)

exp−r Discount factor (in continuous time)
R Recharge rate or replenishment rate or intrinsic growth
K Carrying capacity

MSY Maximum Sustainable Yield

Remark : In this survey, extraction, harvesting, pumping, catch or �shing
refer to the same concept.
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