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Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium

provided one of the most comprehensive maps of Transcription Start Sites (TSSs) in several

species. Strikingly, ∼ 72% of them could not be assigned to a specific gene and initiate at

unconventional regions, outside promoters or enhancers. Here, we probed these unassigned

TSSs and showed that, in all species studied, a significant fraction of CAGE peaks initiate

at microsatellites, also called short tandem repeats (STRs). To confirm this transcription,

we developed Cap Trap RNA-seq, a technology which combines cap trapping and long reads

MinION sequencing. We trained sequence-based deep learning models able to predict CAGE

signal at STRs with high accuracy. These models unveiled the importance of STR surround-

ing sequences not only to distinguish STR classes, as defined by the repeated DNA motif,

one from each other, but also to predict their transcription. Excitingly, our models predicted

that genetic variants linked to human diseases affect STR-associated transcription and cor-

respond precisely to the key positions identified by our models to predict transcription. To-

gether, our results extend the repertoire of non-coding transcription associated with DNA

tandem repeats and complexify STR polymorphism.
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Introduction

RNA polymerase II (RNAPII) transcribes many loci outside annotated protein-coding gene pro-

moters 1, 2 to generate a diversity of RNAs, including for instance enhancer RNAs 3 and long non-

coding RNAs 4. In fact, > 70% of all nucleotides are thought to be transcribed at some point 1, 5, 6.

Using the Cap Analysis of Gene Expression (CAGE) technology 7, 8, the FANTOM5 consortium

provided one of the most comprehensive maps of TSSs in several species 2. Integrating multiple

collections of transcript models with FANTOM CAGE datasets, Hon et al. built a new annota-

tion of the human genome (FANTOM CAGE Associated Transcriptome, FANTOM CAT), with

an atlas of 27,919 human lncRNAs, among them 19,175 potentially functional RNAs 4. Despite

this annotation, many CAGE peaks remain unassigned to a specific gene and/or initiate at uncon-

ventional regions, outside promoters or enhancers, providing an unprecedented mean to further

characterize non-coding transcription within the genome ’dark matter’ 9 and to decode part of the

transcriptional noise.

Non-coding transcription is indeed far from being fully understood 10 and some authors sug-

gest that many of these transcripts, often faintly expressed, can simply be ’noise’ or ’junk’ 11, 12. On

the other hand, many non annotated RNAPII transcribed regions correspond to open chromatin 1

and cis-regulatory modules bound by transcription factors (TFs) 13. Besides, genome-wide asso-

ciation studies showed that trait-associated loci, including those linked to human diseases, can be

found outside canonical gene regions 14–16. Together, these findings suggest that the non-coding re-

gions of the human genome harbor a plethora of potentially transcribed functional elements, which
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can drastically impact genome regulations and functions 9, 16.

The human genome is scattered with repetitive sequences, and a large portion of non-coding

RNAs derive from repetitive elements 17, 18, in particular DNA tandem repeats, such as satellite

DNAs 19 and minisatellites 20. Microsatellites, also called Short tandem repeats (STRs), consti-

tute a third class of DNA tandem repeats. They correspond to repeated DNA motifs of 2 to 6 bp

and constitute one of the most polymorphic and abundant repetitive elements 21. Classes of STRs

can be defined based on the repeated DNA motif (e.g. (AC)n will correspond to all STRs with

repeats of the dinucleotide AC). STR polymorphism, which corresponds to variation in number

of repeated DNA motif (i.e. STR length), is presumably due to their susceptibility to slippage

events during DNA replication. STRs have been shown to widely impact gene expression and

to contribute to expression variation 22–24. Some constitute genuine expression Quantitative Trait

Loci (eQTLs) 22, 23, called eSTRs 22. At the molecular level, STR can for instance affect expres-

sion by inducing inhibitory DNA structures 25 and/or by modulating the binding of transcription

factors 26, 27.

Provided the abundance of STRs on the one hand and the widespread transcription of the

genome, including at repeated elements, on the other hand, we hypothesized that transcription

initiation also occurs at STRs. To test this hypothesis, we probed CAGE data collected by the

FANTOM5 consortium 2 using the STRs catalog built by Willems et al. 28. We specifically showed

that a significant portion of CAGE peaks (∼ 8.6%) initiate at STRs. This transcription, which was

confirmed by Cap Trap RNA-seq (CTR-seq), a technology which combines cap trapping and long
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read MinIoN sequencing, not only extends the repertoire of non-coding transcription but also STR

polymorphism, with STRs having the same length but different transcription rate and, conversely,

STRs with different lengths having similar transcription rate. We further learned a sequence-

based Convolutional Neural Networks (CNNs) able to predict this transcription with high accuracy

(correlation between observed and predicted CAGE signal> 0.68 for 14 STR classes with> 5,000

elements). These models unveil the importance of STR flanking sequences in distinguishing STR

classes, one from each other, and also in predicting their transcription. We finally showed that

many genetic variants linked to human diseases, including those located, not only within, but

also around STRs, can affect this STR-associated transcription, thereby advancing our capacity to

interpret several nucleotide variants.

Results

CAGE peaks are detected at STRs. We first intersected the coordinates of 1,048,124 CAGE

peak summits 2 with that of 1,620,030 STRs called by HipSTR 28. We found that 89,948 CAGE

peaks (∼ 8.6%) initiate at 84,555 STRs (Figure 1A and Supplementary Figure S1). Among these

CAGE peaks, 10,727 correspond to TSSs of FANTOM CAT transcripts4 and 8,823 to enhancer

boundaries 3 (Supplementary Table S1). Note that the FANTOM CAT annotation was shown to

be more accurate in 5’ end transcript definitions compared to other catalogs, because transcript

models combine various independent sources (GENCODE release 19, Human BodyMap 2.0, mi-

Transcriptome, ENCODE and an RNA-seq assembly from 70 FANTOM5 samples) and FANTOM

CAT TSSs were validated with Roadmap Epigenome DHS and RAMPAGE data sets 4. This tran-
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scription does not correspond to random noise because the fraction of STRs harbouring a CAGE

peak within each class differs depending on the STR class, without any link with their abundance

(Figures 1B and 1C). Some STR classes with low abundance are indeed more often associated with

a CAGE peak than more abundant STRs (Figures 1B and 1C, compare for instance (CTTTTT )n

or (AAAAG)n vs. (AT )n or (ATTT )n). Likewise, the number of STRs associated with CAGE

peaks cannot merely be explained by their length, as several STR classes have similar length dis-

tribution but very different fractions of CAGE-associated loci (compare for instance (AT )n and

(GT )n in Figure 1C and Supplementary Figure S2).

We next computed the tag count sum along each STR ± 5bp, and averaged the signal across

988 FANTOM5 libraries. We noticed the existence of very low (tagcount = 1) CAGE tag counts

all along STRs, which artificially increase the signal (see examples in Figure 1A, Spearman corre-

lation coefficient between sum CAGE tag count along STR and STR length ∼ 0.26). To remove

any dependence between STR length and CAGE signal, the mean tag count was therefore normal-

ized by the length of the window used to compute the signal (i.e. STR length + 10bp). Looking

directly at this CAGE signal (not CAGE peaks) along the genome, we observed that some STR

classes are more transcribed than others (Figure 1D, compare (CGG)n or (CCG)n vs. (AAGG)n

or (AAAAT )n). While STRs are mostly intragenic (1,195,065 out of 1,620,030), there is no dras-

tic difference in term of transcription between intra- and intergenic STRs (Supplementary Figure

S3). Looking at each STR class separately, we confirmed that our CAGE signal computation is not

sensitive to the STR length (Supplementary Figure S4). Supplementary Figure S4 also shows that

STRs with different lengths can be associated with the same CAGE signal while, conversely, that
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two STRs with different CAGE signals can have the same length. Thus, considering transcription,

STR polymorphism appears to not only rely on the number of repeated elements. Transcription

therefore appears to complexify STR polymorphism.

CAGE tags correspond to genuine transcriptional products. CAGE read detection at STRs

faces two problems. First, CAGE tags can capture not only TSSs but also the 5’ ends of post-

transcriptionally processed RNAs 29. To clarify that point, we used a strategy described by de

Rie et al. 30, which compares CAGE tags obtained by Illumina (ENCODE) vs. Heliscope (FAN-

TOM) technologies. Briefly, the 7-methylguanosine cap at the 5’ end of CAGE tags produced by

RNA polymerase II can be recognized as a guanine nucleotide during reverse transcription. This

artificially introduces mismatched Gs at Illumina tag 5’ end, which is not detected with Heliscope

sequencing, which skips the first nucleotide 30. We then evaluated the existence of this G bias in

CAGE tags corresponding to peaks detected at STRs, peaks assigned to genes (for positive con-

trol), and peaks intersecting the 3’ end of precursor microRNAs (pre-miRNAs for negative control)

(Figure 2). While most CAGE tag 5’ ends perfectly match the sequences of pre-miRNA 3’end in

all cell types tested, as previously reported 30, a G bias was clearly observed when considering as-

signed CAGEs and CAGEs detected at STRs, confirming that the vast majority of STR-associated

CAGE tags are truly capped. We also confirmed that STRs located within RNAPII binding sites

exhibit a stronger CAGE signal than STRs not associated with RNAPII binding events (Supple-

mentary Figure S5).

Second, because of their repetitive nature, mapping CAGE reads to STRs is problematic and
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may yield ambiguous results. To circumvent this issue, we used CTR-seq, which combines cap

trapping and long read MinION sequencing. With this technology, median read length is> 500 bp,

thereby greatly limiting the chance of erroneous mapping. Two libraries were generated in A549

cells, including or not polyA tailing. This polyA tailing step before reverse transcription allows the

detection of polyA-minus non-coding RNAs. Long reads initiating at STRs were readily detected

in both libraries (Figures 3A and 3B). As expected provided the depth of MinION sequencing in

only one cell line, the number of STRs associated with long reads is lower than that obtained with

CAGE sequencing collected in 988 libraries (n = 5,472 and 7,812, respectively with and without

polyA tailing with 2,291 STRs associated with long reads in both libraries). Among these 2,291

STRs, 904 (39%) are also associated with a CAGE peak. Thus, compared to the reproducibility of

MinION sequencing in both libraries (only 2,291 STRs in common out of 5,472 (42%) or 7,812

(29%)), CAGE and CTR-seq sequencing results are overall in agreement. In fact, STR classes

associated with CAGE peaks correspond to that associated with CTR-seq reads (Figures 3A and

B compared to Figure 1C). The Spearman correlation ρ between the fractions of STRs associated

with CAGE and MinION reads with and without polyA tailing equals 0.88 and 0.89 respectively.

Besides, 301 out of 904 STRs associated with both CAGE peak and CTR-seq long read correspond

to TSSs of FANTOM CAT transcripts and 54 to enhancer boundaries. Overall, CTR-seq confirms

CAGE data and the existence of transcription initiating at STRs. The similarity of the results

obtained with and without the polyA tailing step also indicates that RNAs initiating at STRs are

mostly polyadenylated.
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Transcription at STRs exhibit specific features. We further looked at sub-cellular localization

of STR-initiating transcripts and used CAGE sequencing data generated after cell fractionation

(see Methods section). While the majority of CAGE tags, including those assigned to genes, are

detected in both nucleus and cytoplasm, CAGE tags initiating at STRs are mostly detected in the

nuclear compartment (Figure 4A). Functionally distinct RNA species were previously categorized

by their transcriptional directionality 31. We then sought to compute the directionality score, as de-

fined in 4, for each STRs associated with CAGE signal (Figure 4B). Briefly, this score corresponds

to the difference between the CAGE signal on the (+) strand and that on the (-) strand divided by

their sum. A score equals to 1 or -1 indicates that transcription is strictly oriented towards the

(+) or (-) strand respectively. A score close to 0 indicates that the transcription is balanced and

that it occurs equally on the (+) and (-) orientation. As shown Figure 4B, some STR classes are

associated with directional transcription either on the (+) (e.g. (ATTT )n, (T )n) or (-) (e.g. (A)n,

(ATG)n) strand, while others are bidirectional and balanced ((CGG)n, (CCG)n). Note that the

HipSTR catalog uses the (+) strand to define a DNA repeat motif. Therefore, (A)n and (T )n for

instance do not correspond to the same loci. Transcription at (A)n, which is mostly detected on

the (-) strand, does confirm the observation that transcription at (T )n is mostly (+). The fact that

transcription can be either directional or bidirectional depending on the STR class suggests that

transcription at STRs is governed by different instructions, which are specific to STR classes.

Probing transcription at STRs using a sequence-based deep learning model reveals that STR

class are distinguishable. We further probed transcription at STRs using a machine learning ap-

proach. We used deep Convolutional Neural Network (CNN), which is able to successfully predict
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CAGE signal in large regions of the human genome 32, 33. This type of machine learning approches

takes as input the DNA sequence directly, without the need to manually define predictive features

before analysis. The first question that arose was then to determine the sequence to use as input.

We first sought to build a model common to all STR classes to predict the CAGE sig-

nal as computed in Figure 1D. Note that, because we used mean signal across CAGE libraires,

our model is cell-type agnostic. This choice was motivated by the observation that the CAGE

signal at STRs in each library is very sparse, thereby strongly reducing the prediction accu-

racy of our model. As input, we used sequences spanning 50bp around the 3’ end of each

STR. Model architecture and constructions of the different sets used for learning are detailed

in the Methods section and in Supplementary Figure S6. Source code is available at https:

//gite.lirmm.fr/ibc/deepSTR. The accuracy of our model was computed as Spearman

correlation between the predicted and the observed CAGE signals. The performance of this global

model was overall high (ρ ∼ 0.72), indicating that transcription at STRs can indeed be predicted

by sequence-level instructions. However, looking at the accuracy for each STR classes, we no-

ticed drastic differences and the accuracy ranges from 0.66 to 0.81 depending on the STR class

(Figure 5A). The global model is notably accurate for the most represented STR class (i.e. (T )n

with 766,747 elements) but performs less well in other STR classes. Differences in accuracies are

not simply linked to the number of elements available for learning in each STR class. They rather

suggest that, as proposed above (Figure 4B), transcription may be governed by instructions specific

to each STR class.
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STR flanking sequences distinguish each STR class from others. It was previously shown that

(AC)n flanking sequences have evolved unusually to create specific nucleotide patterns 34. To

determine if this specific pattern holds true for other STRs, we sought to classify STRs based

only on their surrounding sequences. We trained a CNN model to classify pairs of STR classes

(Supplementary Figure S6). To avoid any problem due to imprecise definition of STR boundaries,

we masked the 7bases located downstream the STR 3’ ends (see Methods). In that case, model

performance is evaluated by the Area Under the ROC (Receiver Operating Characteristics) curve

(AUC, Figure 5B). The AUCs obtained in these pairwise classifications were very high (AUC

> 0.7, Figure 5B), with the notable exceptions of (T )n vs. (GTTT )n ad (T )n vs. (GTTTTT )n

(see below). Thus, STRs can be accurately distinguished, one from each other, using only flanking

sequences, and strikingly, even in the case of complementary STRs, such as (AC)n and (GT )n

(Figure 5B).

Deep learning models unveil key role of STR flanking sequences. To further probe the sequence-

level instructions for transcription at STRs, we decided to build a model for each STR class with

> 5,000 elements (n = 47). Here, CNN is again used in a regression task to predict the CAGE

signal as in Figure 5A. Sequences spanning 50bp around the 3’ end of each STR were used as

input. Longer sequences were tested without improving the accuracy of the model (Supplemen-

tary Figure S7). These class-specific models achieved overall better performance than the global

model tested on each STR class separately (Figure 5A). The only exceptions were classes com-

posed of repetitions of T ((GTTTTT )n, (GTTT )n and (CTTTT )n). In these cases, global and

(T )n-specific models achieved better performance than specific model. These results have two
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explanations: (i) compared to (T )n, these classes have less occurrences (18,707 for (GTTTTT )n,

55,898 for (GTTT )n and 15,433 for (CTTTT )n), making hard to learn models for these classes

and (ii) the classification AUCs to distinguish (GTTTTT )n, (GTTT )n or (CTTTT )n from (T )n

were among the lowest observed (Figure 5B), suggesting the existence of common sequence fea-

tures that can be used by global and (T )n-specific models. Overall, we estimated that these specific

models were accurate for 14 STR classes (ρ > 0.68, Figure 5A).

We anticipated that class-specific models should not be equivalent and could not be inter-

changeable. We formally tested this hypothesis by measuring the accuracy of a model learned on

one STR class and tested on another one (Figure 5C). We caution again the fact that the perfor-

mance of a STR-specific model also depends on the number of sequences available for learning.

As observed earlier, the best accuracy is obtained with (T )n, which are over-represented in our

catalog. Overall, the performance of one model tested on another STR class drastically decreases

(Figure 5C), formally demonstrating the existence of STR class-specific features for transcription

prediction. We also noticed that several models achieved non negligible performance on other

STR classes (Spearman ρ > 0.5, Figure 5C), implying that some features governing transcription

at STRs are conserved between these STR classes. Thus, CNN models identified both common

and specific features able to predict transcription at STRs.

Our results unveil the importance of STR flanking sequences. We then evaluated the contri-

bution of the sole surrounding sequences in transcription prediction and built a model considering

only these sequences (50bp upstream and downstream STR, masking the STR itself). These mod-
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els were less accurate that the formers but accuracies were still high for several classes (Figure

5D), confirming that surrounding sequences contain instructions for transcription. The observed

decrease in accuracies (Figure 5D) implies that the STR itself contains instructions, which are

combined with features present in flanking regions to predict transcription. Remember that the

CAGE signal predicted by our CNN models is normalized by the length of the STR (see above),

which makes them unable to assess the contribution of STR length in transcription.

Sequence-level instructions for STR transcription are conserved between human and mouse.

To test whether transcription at STRs is biologically relevant, we relied on two criteria: conserva-

tion and association with diseases. First, we studied conservation in mouse.

The abundance of STR classes globally differs between mouse and human genomes, except

for highly abundant classes (e.g. (T )n, (A)n, (AC)n, (GT )n or (AT )n, compare Figure 1B and

Figure 6A). We applied the strategy used in human to compute the CAGE signal (as mean raw tag

count in STR ± 5bp divided by STR length + 10bp) in mouse using 397 CAGE libraries (Figure

6B). As observed in human, several STR classes were associated with CAGE signal. This signal

appears lower than in human (compare Figure 1D and Figure 6B). This might be due to the fact that

mouse CAGE data are small-scaled in terms of number of reads mapped and diversity in CAGE

libraries, compared to human CAGE data 2, making the mouse CAGE signal at STRs probably less

reliable that the human one.

We nonetheless tested the correlation of the human and mouse CAGE signals at orthologous

STRs. Orthologous STRs were identified converting the mouse STR coordinates into human coor-
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dinates with the UCSC liftover tool (see Methods). We intersected the coordinates of human STRs

with that of orthologous mouse STRs and computed the Pearson correlation between the CAGE

signal observed in human and that observed in mouse on the same strand (n = 18,072). In that case,

Pearson’s r reaches ∼ 0.87 (Spearman ρ ∼ 0.51), suggesting that transcription at STRs is indeed

conserved between mouse and human. As expected, no correlation was observed (r < 0.01) when

randomly shuffling one of the two vectors or when correlating the signals of 18,072 randomly

chosen mouse and human STRs.

We then built a CNN model to predict CAGE signal at mouse STR classes corresponding to

the 14 classes well predicted in human (Figure 6C, green dots). The performances of the models

ranged from ∼ 0.4 to ∼ 0.8, demonstrating that, as observed for human STRs, transcription at

several mouse STR classes can be predicted by sequence-level instructions. Notable exception is

(CTTTT )n with Spearman ρ < 0.2 (see below). The mouse models were overall less accurate than

human models (Figure 6C, compare red and green dots), likely due to differences in the quality of

the CAGE signal (i.e. predicted variable), as mentioned above.

We then tested whether the sequence features able to predict STR transcription were con-

served between mouse and human. We specifically tested the performances of models learned in

one species and tested on another one (Figure 6C and Supplementary Figure S8). For all STR

classes tested, the Spearman correlation between the signal predicted by the human model and the

observed mouse signal was > 0.4 (Figure 6C), implying that several features are conserved be-

tween human and mouse. For some classes (e.g. (A)n, (AC)n, (AAAT )n), the human and mouse
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models even appeared equally efficient in predicting transcription in mouse (Figure 6C, green and

blue dots are close), indicative of a strong conservation of predictive features. For other classes

(e.g. (CT )n, (AGG)n), the performance of the human model was lower than that obtained with

the mouse model when tested on mouse data (Figure 6C, green and blue dots are distant). Thus,

specific features also exist in mouse that were not learned in human sequences. Likewise, human

specific features also exist (Supplementary Figure S8). Strikingly, in the case of (CTTTT )n, the

human model was even able to predict mouse CAGE signal, when the mouse model was not (Fig-

ure 6C). This effect is likely due to the number of examples, which is higher in human (n = 15,433)

than in mouse (n = 10,494). Overall, we concluded that several features predictive of transcription

at STRs are conserved between human and mouse and that the level of conservation also varies

depending on STR classes.

Clinically relevant genetic variants are predicted to impact STR transcription. Second, we

evaluated the potential implication of STR transcription in human diseases and used the ClinVar

database, which lists medically important variants 35. We found that 34,578 STRs harbour at least

one ClinVar variants in a window encompassing STR ± 50bp. Strikingly, these STRs are asso-

ciated with high CAGE signal compared to STRs without variants (n = 3,068,280, Figure 7A),

indicative of potential biological and clinical relevance for STR transcription. The clinical sig-

nificance of the variants, as defined in theClinVar database 35, does not appear directly linked to

the transcription rate of STRs (Supplementary Figure S9). Likewise, several diseases were found

enriched comparing variant fractions located at transcribed STRs (Fisher’s exact test < 5e-3, Sup-

plementary Table S2) but no clear association with a specific clinical trait was noticed.
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Moreover, there is a significant proportion of ClinVar variants located in the immediate vicin-

ity of the STR (Figure 7B), indicating that these positions may often be more important from a

clinical point of view.

We then used a perturbation-based approach 36 and randomly created in silico mutations to

identify key positions of the models (Figure 7B and see Methods section). Random variations were

directly introduced into STR sequences and predictions were made on these mutated sequences

using the CNN model specific of the STR class considered. The impact of the variation was then

assessed as the difference between the predictions obtained with mutated and reference sequences.

Same analyses were performed with ClinVar variants (Supplementary Figure S10). Key positions

were defined as positions, which, when mutated, have a strong impact on the prediction changes

(i.e. high variance), being either positive or negative. As shown Figure 7C, for both random and

ClinVar variants, the most important positions appeared located around STR 3’end and their dis-

tribution is skewed towards the sense orientation of the transcripts. Hence, the most important

positions identified by our models correspond to positions with high occurrences of ClinVar vari-

ants (Figures 7B and 7C). This indicated that our models have learned key positions to predict

transcription at STRs and that these positions correspond precisely to genetic variants linked to

human diseases. Note that a similar distribution is observed for ClinVar variants around assigned

CAGEs but not around all identified CAGE peaks (Supplementary Figure S11).
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Discussion

The human genome is scattered with repetitive sequences, and the vast majority of the genome is

supposed to be transcribed 1, 5, 6. The human transcriptome should then contain a large portion of

RNAs derived from repetitive elements 17, including STRs. Previous works have already shown

that several classes of repetitive elements can be transcribed, from retrotransposons 37 to DNA

satellites 19, 20. Here, using FANTOM CAGE data 2, we provide evidence that a significant fraction

of STRs, from distinct classes, are also transcribed in both human and mouse, a process which

further complexifies STR polymorphism.

RNA species can be functionally categorized according to transcriptional directionality 31.

In the case of STRs, transcription directionality appears to depend on the STR class (Figure 4B).

It is thus likely that RNAs initiating at STRs fulfil distincts function and many hypotheses could

be proposed. For instance, 10,727 CAGE peaks mapped at STRs correspond to TSSs of FANTOM

CAT transcripts (Supplementary Table S1), extending the findings made by by Bertuzzi et al. in

the case of minisatellites and NPRL3 gene 20 to STRs. Many RNAs initiating at STRs may also

correspond to non-coding RNAs, as for instance enhancer RNAs (Supplementary Table S1). As

could have been anticipated given the distinction of enhancers and promoters based on CpG din-

ucleotide 38, FANTOM CAT transcripts mostly initiate at GC-rich STRs, while enhancer RNAs

more often correspond to A/T-rich STRs (Supplementary Table S1). Another possible function

is provided by (T )n, which are over-represented in eukaryotic genomes 39 and have been shown

to act as promoter elements by depleting repressive nucleosomes 40. As a consequence, (T )n can
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increase transcription of reporter genes in similar levels to TF binding sites 41. The findings that

(A)n and (T )n represent distinct directional signals for nucleosome removal 42, are very well com-

patible with differences observed in flanking sequences (Figure 5B) and directional transcription

(Figure 4B), both able to create asymmetry at (A)n and (T )n. Besides, we show that most CAGE

tags initiating at STRs remain nuclear (Figure 4A). This observation suggests that, similar to other

repeat-initiating RNAs 43, 44, STR-initiating RNAs could also play a role in DNA topology 44, 45.

At this stage, it remains to clarify whether STR-associated RNAs or the act of transcription per se

is functionally important 10. Dedicated experiments are now required to formally identify the bio-

logical functions linked to the transcription of each STR class. These experiments are all the more

warranted as STR transcription is associated with clinically relevant genomic variations (Figure 7).

One key finding of our study is the discovery that STR flanking sequences are not inert but

rather contain important features that play critical roles in their biology, as previously suspected 34.

These results call for the development of novel methods able to take these sequences into account

in order to revisit STR mapping/genotyping and integrate SNVs located at STR vicinity. These

methods should have broad applications in various fields of research and medicine, from forensic

medicine to population genetics for instance. STR length variations have notably been shown to

influence gene expression and, similar to expression quantitative trait loci (eQTLs), several ex-

pression STR (eSTR) have been identified 46, 47. Their exact mode of action still remain largely

elusive but, the majority of eSTRs appears to act by global mechanisms, in a tissue-agnostic man-

ner 46. Interestingly, some eSTRs have strand-specific effects 46, which is again compatible with

the possible sources of asymmetry unveiled by our study (i.e. flanking sequences and directional
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transcription). Using transcription level of STRs, as predicted by our CNN models for instance,

coupled with length variations 46, 47, may help to take into account the impact of genetic variants

located in sequences surrounding STRs, and to refine eSTR computations.

There are still several ways to improve our CNN models. Notably, to avoid any bias linked

to CAGE noise signal observed along STRs, we decided to predict a signal normalized by the

STR length. Therefore, our models do not allow to properly assess the contribution of STR length

in transcription, although it clearly represents the most studied features of STRs 21, 46, 47. Note that

simply increasing the quality of the reads considered (using Q20 instead of Q3 filter) yielded sparse

data and decreased the performance of our model. A new computation of the CAGE signal aimed

at removing ’noise’ at STRs could be developed. This may also help develop tissue-specific CNN

models, which will only use CAGE data 33. Besides, the same architecture was used for all STR

classes while achieving different accuracies (Figures 5A and C). These results cannot be merely

explained by the varying numbers of STR sequences available for training because swapping the

models for training and testing demonstrated the existence of STR class-specific features predictive

of transcription (Figure 5C). Rather, the chosen architecture may not be optimal for all STRs,

as illustrated by the design of a global model with overall good performance, but very distinct

accuracies depending on the STR class (Figure 5A). Our CNN architecture was initially optimized

on the (T )n class, which represents the most abundant class (n = 766,747). Because each STR

class harbour sequence specificities including in flanking sequences, hyperparameters, such as

convolutional filter sizes, their number and/or max-pooling, could be adapted to each STR class.

These hyperparameters have indeed already been shown to influence the results of CNN models as
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well as their interpretation 48.

More broadly, the same rationale could be applied to other methods aimed at predicting

CAGE signal along the genome 33, distinguishing biological entities (genes, enhancers, . . . ), ge-

nomic segments 49, 50 and/or isochores 51 based on their sequence features. Building a general

model increases the risk of designing a model suited for the most represented elements, not for

the others. Notably, promoters and enhancers can be distinguished by different CpG content, the

presence of polyA signal and of 5’ splice sites 38, as well as different transcription factor combina-

tions 3, 52. It is therefore likely that the same filters will not apply similarly to predict transcription in

both cases and that one may want to develop a specific model for each of these entities to increase

the accuracy of the predictions.

The prediction of transcription initiation based solely on sequence features has long been

studied, especially using CAGE data 53, 54. The high accuracy achieved by CNN models for this

task, as illustrated in this study or in 32, 33, as well as the development of methods aimed at interpret-

ing this type of statistical models 36, 48, 55, 56, will certainly accelerate the achievement of this goal,

which becomes more than ever ’a realistic short-term objective rather than a distant aspiration’ 54.
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Methods

Data and bioinformatic analyses. The bedtools window 57 was used to look for CAGE peaks

(http://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/CAGE_peaks/

hg19.cage_peak_coord_permissive.bed.gz) at STRs ± 5bp (https://github.

com/HipSTR-Tool/HipSTR-references/raw/master/human/hg19.hipstr_reference.

bed.gz) as followed:

windowBed -w 5 -a hg19.hipstr_reference.bed -b hg19.cage_peak_coord_permissive

.bed

Similar analyses were performed using mouse STR catalog: https://github.com/

HipSTR-Tool/HipSTR-references/blob/master/mouse/mm10.hipstr_reference.

bed.gz) liftovered to mm9 using UCSC liftover tool 58 as:

liftover mm10.hipstr_reference.bed mm10ToMm9.over.chain.gz mm9.

hipstr_reference.bed unlifted.bed

To compute the CAGE signal, we used raw tag count along the genome with a 1bp binning

and Q3 quality mapping filter. At each position of the genome, the mean tag count across 988

librairies for human and 387 for mouse was computed. The values obtained at each position of a

window encompassing the STR± 5bp were then summed and normalized (i.e. divided by the STR

length + 10 bp) to limit the impact of CAGE noise signal observed along STRs. CAGE signals at

human and mouse STRs are available at https://gite.lirmm.fr/ibc/deepSTR as re-

spectively hg19.hipstr reference.cage.bed and mm9.hipstr reference.cage.bed (The CAGE signal

is indicated in the 5th column). The fasta files (500 bp around STR 3’end) used to build our mod-

els are also available at the same location as hg19.hipstr reference.cage.500bp.around3end.fa and
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mm9.hipstr reference.cage.500bp.around3end.fa

The bedtools intersect 57 was used to distinguish intra- and intergenic STRs, intersecting their

coordinates with that of the FANTOM gene annotation https://fantom.gsc.riken.jp/

5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.

bed.gz.

FANTOM CAT robust transcripts coordinates can be found at http://fantom.gsc.

riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.

lv3_robust.gtf.gz and that of FANTOM enhancers at https://fantom.gsc.riken.

jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_

1_and_2.bed.gz

ENCODE RNAPII ChIP-seq bed files can be donwloaded at http://hgdownload.

cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsHaibGm12878Pol2Pcr2xUniPk.

narrowPeak.gz, http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/

wgEncodeAwgTfbsHaibH1hescPol2V0416102UniPk.narrowPeak.gz, http://hgdownload.

cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsHaibHelas3Pol2Pcr1xUniPk.

narrowPeak.gz and http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/

wgEncodeAwgTfbsHaibK562Pol2V0416101UniPk.narrowPeak.gz.

Expression data used to determine the nucleo-cytoplasmic distribution of CAGE peaks can

be found at http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_

peaks/hg19.cage_peak_phase1and2combined_tpm_ann.osc.txt.gz.
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Orthologous STRs were identified using UCSC liftover tool 58 and the mm9ToHg19.over.chain.gz

file.

Evaluating mismatched G bias at Illumina 5’end CAGE reads. Comparison between Helis-

cope vs. Illumina CAGE sequencing was performed as in de Rie et al. 30. Briefly, ENCODE CAGE

data were downloaded as bam file (http://hgdownload.cse.ucsc.edu/goldenpath/

hg19/encodeDCC/wgEncodeRikenCage/*NucleusPap*) and converted into bed file us-

ing samtools view 59 and unix awk as follow:

samtools view file.bam | awk ’{FS="\t"}BEGIN{OFS="\t"}{if($2=="0") print $3,

$4-1,$4,$10,$13,"+"; else if($2=="16") print $3,$4-1,$4,$10,$13,"-"}’ >

file.bed

The bedtools intersect 57 was further used to identify all CAGE tags mapped at a given

position. The unix awk command was used to count the number and type of mismatches as follow:

intersectBed -a positions_of_interest.bed -b file.bed -wa -wb -s |

awk ’{if(substr($11,1,6)=="MD:Z:0" && $6=="+") print substr($10,1,1)}’ | grep

-c "N"

with N = {A, C, G or T}, positions of interest.bed being coordinates of CAGE peaks as-

signed to genes, or that located at pre-miRNA 3’ ends, or peaks associated with STR. The file.bed

corresponds to the Illumina CAGE tag coordinates.

Absence of mismatch focusing on the plus strand were counted as:

intersectBed -a positions_of_interest.bed -b file.bed -wa -wb -s |

awk ’{if(substr($11,1,6)!="MD:Z:0" && $6=="+") print $0}’ |wc -l
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As a control, we used the 3’ end of the pre-miRNAs, which were defined, as in de Rie et al. 30,

as the 3’ nucleotide of the mature miRNA on the 3’ arm of the pre-miRNA (miRBase V21, ftp:

//mirbase.org/pub/mirbase/21/genomes/hsa.gff3), the expected Drosha cleav-

age site being immediately downstream of this nucleotide (pre-miR end + 1 base).

Cap-Trapping MinION sequencing A549 cells were grown in Dulbeccos modified Eagle medium

(DMEM) supplemented with 10% fetal bovine serum (FBS). A549 cells were washed with PBS.

The RNAs were isolated by using RNeasy kit (QIAGEN). The poly-A tail addition to A549 total

RNA was carried out by poly-A polymerase. (PAPed RNA) The cDNA synthesis was carried out

by using 5 g of total RNA or 1 g of PAPed RNA with RT primer (5-TTTTTTTTUUUTTTTTVN-3)

by PrimeScript II Reverse Transcriptase (TaKaRa Bio). The full-length cDNAs were selected by

Cap Trapper method 60. After the ligation of 5 linker, cDNAs were treated with USER enzyme

to shorten the poly-T derived from RT primer. After SAP treatment, 3 linker was ligated to the

cDNAs. The linkers used in the library preparation were prepared by annealing using these oligos

https://pubmed.ncbi.nlm.nih.gov/32124327/ with following oligos:

5’ linker GN5 up: 5- GTGGTAUCAACGCAGAGUACGNNNNN -P-3’

5’ linker N6 up: 5- GTGGTAUCAACGCAGAGUACNNNNNN -P-3’

5’ linker down: 5’-P- GTACTCTGCGTTGATACCAC-P-3’

3’ linker up: 5’-AAAAABBBBBBBBGCAUCGCUGTCTCUTAUACACAUCUCCGAGCCCACGAGAC

-P-3

3’ linker down: 5’- GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGATGC -3’

As for the 3’ linker, after annealing step, the UMI complemental region (BBBBBBBB) was filled
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with Phusion High-Fidelity DNA polymerase (NEB) and dVTPs (dATP/dGTP/dCTP) instead of

dNTPs. The 2nd strand was synthesized using 2nd primer (5- TCGTCGGCAGCGTCAGATGTG-

TATAAGAGACAGNNNNNNNNGTGGTATCAACGCAGAGTAC -3) with KAPA HiFi HS mix

(KAPA Biosystems). The double stranded cDNAs were amplified using Illumina adapter-specific

primers and LongAmp Taq DNA polymerase (NEB). After 16 cycles of PCR (8?minutes for elon-

gation time), amplified cDNAs were purified with equal volume of AMPure XP beads (Beckmann

Coulter). Purified cDNAs were subjected to Nanopore sequencing library following to manufac-

turers 1D ligation sequencing protocol (version NBE 9006 v103 revO 21Dec2016).

Nanopore libraries were sequenced by MinION Mk1b with R9.4 flowcell. Sequence data

was generated by MinKNOW 1.7.14. Basecalling was processed by Albacore v2.1.0 basecaller

software provided by Oxford Nanopore Technologies to generate fastq files from FAST5 files. To

preparing clean reads from fastq files, adopter sequence was trimmed by Porechop v0.2.3.

Detailed protocol is provided as Supplementary Methods.

Data were deposited on DNA Data Bank of Japan Sequencing Read Archive (accession num-

ber: DRA010491).

The mapping computational pipeline used a prototype of primer-chop available at https:

//gitlab.com/mcfrith/primer-chop. The precise methods and command lines are

provided as Supplementary Methods. Data were first mapped on hg38 reference genome and

liftovered to hg19 for analyses.
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Directionality score We collected CAGE signal at each STR of the HipSTR catalog (see above).

When a signal was detected on both (+) and (-) strands, we computed the directionality score for

each STR using the following formula:

(CAGE signal on the (+) strand − CAGE signal on the (−) strand)
(CAGE signal on the (+) strand + CAGE signal on the (−) strand)

The CAGE signal was computed as explained above. A score equals to 1 or -1 indicates that tran-

scription is strictly oriented towards the (+) or (-) strand respectively. A score close to 0 indicates

that the transcription is balanced and that it occurs equally on the (+) and (-) orientation.

Convolutional Neural Network. CNN architecture is described in Supplementary Figure S6. Se-

quences spanning 50bp around the 3’ end of each STR were used as input. Longer sequences

were tested without improving the accuracy of the model (Supplementary Figure S7). Note that

only 89,189 STRs (out of 1,620,030, ∼ 5.5%) are longer than 50bp and, only in these few cases,

the sequence located upstream STR 3’ end only corresponds to the STR itself. The param-

eters of the model (such as number of layers, number of neurons, optimizer, activation func-

tions...) were determined by brut force algorithms. The model is implemented in PyTorch.

the source code of the model, alongside scripts and Jupyter notebooks are available at https:

//gite.lirmm.fr/ibc/deepSTR.

In order to minimize overfitting, droupout is added to the fully connected layers (probability

of droupout = 0.30). The training pipeline is described in Supplementary Figure S6: we separate

training, testing and validation datasets prior to model training, and these sets are stored on disk.

This allows us to perform analysis on data that the models have never seen. During training, we
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stop the training once the loss function calculated on the validation set drops for 5 consecutive

epochs (early stopping). Note that relatively good performances on mouse datasets (Figure 6C)

show that the model generalizes well to unknown data.

Classification The CNN model can also be set up for a classification task (Figure 5B). In that case,

the only difference with the previous model is the last neuron in the last fully connected layer. The

classifier CNN uses the same training method. The data are also prepared by separate scripts before

training is done and stored on disk. All analyses resulting from classification are performed on the

test sets to avoid optimistic bias in accuracy estimation. Note that 7bp were masked after STR 3’

end and replaced by Ns because we noticed that this window can contain bases corresponding to

the DNA repeated elements, a feature that can easily be learned by a CNN. The sequence used as

input are centered around STR 3’ end and consist of 50bp-long upstream sequence + 9 Ns, which

mask the STR itself + 7 Ns + 43bp-long downstream sequence (total length = 109bp).

Model swaps between human STRs classes After models are trained on all STR classes, their

weights are stored in a .pt file (following the PyTorch convention). Predictions were then computed

on all test sets with all models.

Predicting impact of ClinVar variants ClinVar vcf file was downloaded January 8th 2019 (

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/) and then converted into bed file. We

looked for STRs associated withClinVar variants (Figure 7A) using bedtools window 57 as follows:

bedtools window -w 50 -a clinvar_mutation.bed -b str_coordinates.bed

Variants were directly introduced into STR sequences (± 50bp) using Biopython 61 library
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and the seq.tomutable() function. To keep sequences aligned, we only considered single nucleotide

variants (SNVs). The CNN model developed previously was then used to predict the CAGE signal

of the initial and mutated sequences. The change was computed by the difference between the

prediction obtained with mutated sequence and that obtained with the reference sequence.

To insert random variations (Figure 7B and 7C), we created a mutation position map, which

follows a uniform distribution (each position has an equal probability of receiving a mutation).

Then, we took sequences in the database and mutated them one by one at a position taken from

the mutation map. All possible mutations at the chosen position have an equal probability of

occurrence (see Figure 7B).
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Figure 1 CAGE peaks are detected at STRs. A. Three examples of STRs associated

with a CAGE peak. The Zenbu browser 62 was used. top track, hg19 genome sequence ;

middle track, CAGE tag count as mean across 988 libraries (BAM files with Q3 filter were

used) ; bottom track, CAGE peaks as called in 2. B. Number of STRs per STR class.

For sake of clarity, only STR classes with > 2,000 loci are shown. C. Fraction of STRs

associated with a CAGE peak in all STR classes considered in B. D. CAGE signal at STR

classes with > 2,000 loci. CAGE signal was computed as the mean raw tag count of

each STR (tag count in STR ± 5bp) across all 988 FANTOM5 libraries. This tag count

was further normalized by the length of the window used to compute the signal (i.e. STR

length + 10bp).

Figure 2 CAGE tags initiating at STRs are truly 5’-capped. G bias in ENCODE CAGE

tags (bam files from nuclear fraction, polyA+) was assessed at FANTOM5 CAGE peaks

assigned to genes (positive control) and CAGE peaks initiating at STRs. G bias at pre-

microRNA 3’ ends was also assessed as negative control. Five libraries were analyzed

corresponding to A549 (replicates 3 and 4), GM12878, HeLa-S3 and K562 cells. The

number of intersecting tags in each case is indicated in bracket.

Figure 3 CTR-seq confirms the existence of transcription initiation at STRs The

fractions of STRs associated with at least one CTR-seq long read start site were com-

puted for all STR classes considered in Figure 1B. RNAs were collected in A549 cells

with (B) or without (A) polyA tailing before reverse transcription.
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Figure 4 CAGE peaks at STRs exhibit specific features A. STR-associated CAGE

tags are preferentially detected in the nuclear compartment. For each indicated library

(x-axis) and each CAGE peak, CAGE expression (TPM) was measured in nuclear and

cytoplasmic fractions. Each CAGE peak was then assigned to nucleus (if only detected

in the nucleus), cytoplasm (if only detected in the cytoplasm) or both compartments (if

detected in both compartments). The number of CAGE peaks in each class is shown for

each sample as a fraction of all detected CAGE peaks. The sample Fibroblast Skin 2

likely represents a technical artifact. Analyses were conducted considering 201,802 FAN-

TOM5 CAGE peaks (top), 54,001 CAGE peaks assigned to genes (middle), and 14,509

CAGE peaks associated with STRs (bottom). B. Boxplots of directionality scores for each

STR classes with > 100 elements. A score of 0 means that the transcription is bidirec-

tional and occurs on both strands. A score of 1 indicates that transcription occurs on the

(+) strand, while -1 indicates transcription exclusively on the (-) strand.

Figure 5 Probing STR sequences with CN models. A. Comparison of the accura-

cies of global vs. class-specific models. A model was learned on all STR sequences,

irrespective of their class, and tested on each indicated STR classes (accuracies ob-

tained in each case, as Spearman ρ, is shown as blue points). Distinct models were also

learned for each indicated classes, without considering others (accuracies are shown in

red). B. CNN-based pairwise classification of STRs using only STR flanking sequences

(see Methods section). The pairs are defined by the line and the column of the matrix (i.e.

the bottom left tile represents a classification task between T flanking sequences and A
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flanking sequences). The values displayed on the tiles correspond to AUCs measured on

the test set with the model trained specifically for the task. Clustering was performed to

group pairs of STRs according to AUCs. C. CNN performances to predict transcription

at STRs evaluated as the Spearman correlation between predicted and observed CAGE

signal. The heatmap represents the performance of one model learned on one STR class

(rows) and tested either on the same or another class (columns). Clustering is also used

to show which models are similar (high correlation) and which ones differ (low correlation).

D. CNN models were learned on flanking sequences. The models use as input only the

50bp-long sequences flanking the STR, which is hidden and replaced by 9Ns (vectors of

zeros in the one-hot encoded matrix). See Methods section.

Figure 6 STR transcription in mouse A. Number of mouse STRs per class. For sake

of clarity, only STR classes with > 5,000 loci are shown. B. CAGE signal at mouse STR

classes with > 5,000 loci. CAGE signal was computed as in Figure 1D. C. Testing the

accuracy of CNN models built in human and tested in mouse for different STR classes.

Performance of the model is assessed by computing the Spearman ρ between CAGE

signal observed in mouse and that predicted by a model learned in human (blue dots),

CAGE signal observed in mouse and that predicted by a model learned in mouse (green

dots) and CAGE signal observed in human and that predicted by a model learned in

human (green dots).
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Figure 7 Assessing the impact of ClinVar variants on STR transcription A.CAGE

signal distribution of STRs associated (light blue) or not (dark blue) with at least one

ClinVar variant. The number of STRs considered in each case is indicated in bracket. B.

Distribution of ClinVar (black) and random (red) variants around STR 3’end. The number

of variants and their position relative to STR 3’end (position 0) are indicated on the y-axis

and x-axis respectively. C. Impact of the changes induced by ClinVar (black) and random

(red) variants in CNN predictions. Predictions are made on the hg19 reference sequence

and on a mutated sequence, containing the genetic variants. Changes are then computed

as the difference between these two predictions (reference - mutated, Supplementary

Figure S10) and their impact is measured as their variance at each position around STR 3’

end (x-axis). To keep sequences aligned, only single nucleotide variants were considered.
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Supplementary Methods: Cap Trap and MinION sequencing 
 
1. Addition of polyA tail 
The polyA tail addition was carried out by using 8 ug of totalRNA in 14.5ul of water, 
2.0ul of 10x PolyA polymerase buffer (NEB), 2.0ul of 10mM ATP (NEB), 1.0ul of 
RNaseOUT (Invitrogen) and 0.5ul of PolyA polymeras(5 U/ul).  We incubated this 
reaction mix at 37C for 15m, then put the tube on ice. After polyA polymerase reaction, 
polyA-tailed totalRNA (PAPed RNA) was purified with Agencourt RNAClean XP kit 
(Beckman coulter) according to the manufacturer’s instructions and eluted in 40ul of 
water.  
 
2. Reverse Transcription 
We put 5ul each of PAPed RNA into 8 wells.  
The cDNA synthesis was carried out by using 5ug of total RNA or 1ug of PAPed RNA in 
5ul of water and 0.5ul of 100uM RT primer (5’- TTTTTTTTUUUTTTTTVN -3’) by 
PrimeScript II Reverse Transcriptase(TaKaRa). We heated RNA and primer at 65C for 
5min and then placed them on ice. Then we added the reaction mixture, 4ul of 5x 
PrimeScript II buffer, 4ul of water, 1ul of RNaseOUT and 1ul of PrimeScript II, followed 
by reverse transcription in a thermal cycler: 42C for 60min, then chilled at 4C. 
After the reaction, the cDNA/RNA hybrids were purified with Agencourt RNAClean XP. 
 
3. Oxidation / Biotinylation 
To oxidize the diol residue of Cap structure, 40ul of purified cDNA/RNA hybrids were 
mixed with 2ul of 1M NaOAc (pH4.5) and 2ul of 250mM NaIO4 (Sigma-Aldrich) and 
incubated on ice for 5min in dark. To stop the reaction, the oxidized cDNA/RNA hybrids 
were mixed with 16ul of 1M Tris-HCl(pH8.5). The sample was purified with RNAClean 
XP.  Four ul of 1M NaOAc (pH6.2) and 4ul of 100mM Biotin (long arm) hydrazide 
(Vector Laboratories) in DMSO were added and the reaction mixture were incubated at 
40C for 30min. After the incubation, the biotinylated sample was purified with 
RNAClean XP. Finally, single-strand RNA regions which were not protected by a 
complementary first-strand cDNA strand were digested using RNaseONE(Promega) by 
addition of 4.5ul of 10×RNaseI buffer and 0.5ul of RNaseONE and incubation at 37C 
for 30min. The reaction mixture were purified with RNAClean XP. 
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4. CapTrap 
Thirty microliters of Dynabeads M-270 Streptavidin beads slurry (ThermoFisher 
Scientific) was washed with 30ul of LiCl binding buffer (7M LiCl, 10mM Tris-HCl 
(pH7.5), 0.1% Tween20, 2mM EDTA (pH8.0)) twice and resuspended in 95ul of LiCl 
buffer. The washed M-270 beads were added to 40ul of purified biotinylated cDNA/RNA 
hybrids. Binding was carried out for 15min at 37C, then beads were purified using a 
magnetic bar and washed with TE wash buffer (10mM Tris-HCl (pH7.5), 0.1% Tween20, 
1mM EDTA(pH8.0)) three times.  
Captured cDNA was released from the beads by heat shock and RNaseI treatment. 
Beads were resuspended in 35ul of release buffer (1x RNaseONE buffer, 0.01% 
Tween20), incubated at 95C for 5min and chilled on ice immediately. The supernatant 
containing cDNA was transferred to a new tube. The beads were washed with 30ul of 
release buffer, and the supernatant was pooled together with the first elution. Then the 
sample was treated with RNase (0.1ul of 60U/ul RNaseH (TaKaRa) and 2ul of 10U/ul 
RNaseI for 30min at 37C) to remove RNA completely. Then the Cap-Trapped cDNA was 
purified with Agencourt AMPure XP (Beckman coulter) according to the 
manufacture’s protocol. The cDNA quantity was determined with the Quant-iT 
OliGreen ssDNA Assay kit (ThermoFisher Scientific). 
 
  
5. Linker Ligation 
 5’/3’linkers was ligated to the both end of Cap-trapped cDNA. 
 
5.1 How to make a linker 
Dissolve the oligonucleotides of 5’linker to 1mM in TE buffer. For the annealing 
reaction, GN5 linker reaction solution (4ul of 5’linker up GN5 (5’- 
GTGGTAUCAACGCAGAGUACGNNNNN -P-3' : 1mM), 4ul of 5’linker down (5'-P- 
GTACTCTGCGTTGATACCAC-P-3' : 1mM), 4 ul of 1M NaCl and 28 ul of water) and N6 
linker reaction solution (1ul of 5’linker up N6 (5'- 
GTGGTAUCAACGCAGAGUACNNNNNN -P-3' : 1mM), 1ul of 5’linker down (1mM), 1 
ul of 1M NaCl and 7 ul of water) were incubated the following conditions: 95°C, 5 min 
gradient 0.1°C/sec, 83°C, 5 min, gradient 0.1°C/sec, 71°C 5 min, gradient 0.1°C/sec, 59°C 
5 min, gradient 0.1°C/sec, 59°C 5 min, gradient 0.1°C/sec, 47°C 5 min, gradient 
0.1°C/sec, 35°C 5 min, gradient 0.1°C/sec, 23°C 5 min, gradient 0.1°C/sec and 11°C Hold. 
The annealed GN5 linker solution(40ul) and N6 linker solution(10ul) were mixed 
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(5’CTR-Seq linker (100uM)). The 5’CTR-Seq linker (100uM) was diluted to 10uM with 
0.1M NaCl (in TE).  
For the 3’CTR-Seq linker, 1ul of 3’CTR-Seq up (5'- 
AAAAABBBBBBBBGCAUCGCUGTCTCUTAUACACAUCUCCGAGCCCACGAGAC 
-P-3') and 1ul of 3’CTR-Seq down (5'- 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGATGC -3'), 1 ul of 1M NaCl and 
7 ul of wather. Then incubate the mixed solution as same condition as the 5’linker. 
After annealing step, the UMI part (BBBBBBBB) was filled with Phusion High-Fidelity 
DNA polymerase (NEB) and dVTPs(dATP/dGTP/dCTP) instead of dNTPs. After filling 
reaction, the 3’linker solution was purified with AMPure XP. Then adjust the 
concentration to 10uM with 0.1M NaCl in TE buffer. 
 
5.2 5’SSLL 
The cDNA solution was dried up using a SpeedVac (80C for 35min). The pellet was 
dissolved in 4ul of water. After incubation of cDNA solution at 95C for 5min and chilled 
on ice for 2min, 1ul of 5’CTR-Seq linker (10uM), which was incubated at 55C for 5min 
and chilled on ice, was added. Then 10ul of Mighty Mix (TaKaRa) was added, mixed 
gently and incubated at 30C for 4h. The sample after ligation was purified with AMPure 
XP. 
 
5.3 USER 
To shorten the long polyT stretch of RT primer, the U residues in the RT primer were 
digested with USER enzyme (NEB). We added 2ul of USER enzyme (2U/ul), 5ul of 10x 
CutSmart buffer (NEB) and 3ul of water to 40ul of 5’linker ligated cDNA. We 
incubated the reaction solution at 37C for 30min and chilled on ice.   
Then the dT stretch at 5’end of cDNA became 5nt. The cDNA was purified with 
AMPure XP beads. 
 
 
5.4 3’SSLL 
The cDNA solution was dried up using a SpeedVac (80C for 35min). The pellet was 
dissolved in 4ul of water. After incubation of cDNA solution at 95C for 5min and chilled 
on ice for 2min, 1ul of 3’CTR-Seq linker (10uM), which was incubated at 65C for 5min 
and chilled on ice, was added. Then 10ul of Mighty Mix was added, mixed gently and 
incubated at 16C for 16h. The sample after ligation was purified with AMPure XP. 
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6. SAP treatment 
To digest excessed 3’linker and dephosphorylate the 3’end of 5’linker down strand, the 
cDNA was treated with 1ul of SAP (Affymetrics) and 2ul of USER in 1x SAP buffer, 
incubated at 37C for 30min. After reaction, the cDNA was purified with AMPure XP. 
 
7. 2nd strand synthesis 
The cDNA solution was concentrated to 5ul using a SpeedVac (80C for 35min). The 2nd 
strand synthesis was carried out using 5ul of cDNA, 0.5ul of 2nd primer (5’ - 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNNGTGGTATCAACGCA
GAGTAC -3’:100uM), 1.3ul of DMSO, 5.8ul of water and 12.5ul of 2x KAPA HiFi HS 
mix (NIPPON Genetics). The reaction mix was incubated for the following condition; 
95C for 5min, 55C for 5min, 72C for 30min and hold at 4C. After 2nd strand synthesis, 
the excessed primer were digested with adding 1ul of Exonuclease I (20U/ul, NEB) and 
incubation at 37C for 30min. Then the sample solution was purified with AMPure XP 
twice. The volume of used AMPure XP beads was 46.8ul at 1st purification and 40ul at 
2nd purification. The sample was dried up with SpeedVac (37C for 75min). The pellet 
was dissolved in 7ul of water. 
 
 
8. quantification/qualification 
The ds cDNA was quantified using Quant-iT PicoGreen Assay kit (Thermofisher 
Scientific), according to the manufacturer’s instructions. For quantification, we used 
1ul of ds-cDNA. And we analyzed the length distribution with Agilent High Sensitivity 
DNA kit (Agilent).    
 
9．cDNA amplification 
The double stranded cDNAs were amplified using Illumina adapter-specific primers and 
LongAmp Taq DNA polymerase (NEB). After 16 cycles of PCR (8 minutes for elongation 
time), amplified cDNAs were purified with equal volume of AMPure XP beads 
(Beckmann Coulter). 
 
10. NanoPore Sequencing 
Purified cDNAs were subjected to Nanopore sequencing library following to 
manufacturer’s 1D ligation sequencing protocol (version 
NBE_9006_v103_revO_21Dec2016). Nanopore libraries were sequenced by MinION 
Mk1b with R9.4 flowcell. Sequence data was generated by MinKNOW 1.7.14 
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11. NanoPore Basecalling 
In order to generate fastq files from FAST5 files, Basecalling was processed by 
“Albacore v2.1.0” basecaller software which was provided from Oxford NanoPore 
Technologies. 
 
12. Trimming adapter sequence from fastq file 
To preparing clean reads from fastq files, trimming was processed by “Porechop v0.2.3”. 
 
13. Method for aligning RIKEN MinION cDNA reads to the human genome 
 
* Software versions: LAST 941, Python 2 
 
First, an index (named "hdb") of the genome and linkers was prepared: 
 
    lastdb -P0 -uNEAR -R01 hdb hg38.analysisSet.fa linkers.fa 
 
Then, the rates of insertion, deletion, and substitution between reads 
and genome were estimated: 
 
    last-train -P0 --matsym hdb BC01_A549_OligoDT.fa > f6nano.mat 
 
This was done for BC01 and BC02, with and without --matsym.  The 
results were similar, and the result of the above command was used 
in the next steps. 
 
The reads were aligned to the linkers: 
 
    lastdb -c -uNEAR linkerdb linkers.fa 
 
    echo "N 0 0 0 0" | cat f6nano.mat - | 
    lastal -P0 -p- linkerdb reads.fa | last-split -m1 > linkers-reads.maf 
 
(This adds a row of zero scores for N to the score matrix, which is 
appropriate for the UMI with Ns.  The other UMI with Vs/Bs is scored 
appropriately by default.) 
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Then the reads were oriented in the RNA forward-strand direction: 
 
    analyze-linkers.py reads.fa linkers-reads.maf > reads-fwd.fa 2> linkers-reads.txt 
 
The .txt files have some statistics on linker analysis failures. 
 
Finally, the reads were aligned to the genome: 
 
    parallel-fasta -k "lastal -p f6nano.mat -d90 -m50 -D10 hdb | last-split -g hdb -m1" < 
reads-fwd.fa > reads.maf 
 
And alternative alignment formats were prepared: 
 
    maf-convert -j1e6 psl reads.maf | grep -v linker > reads.psl 
    pslToBed reads.psl reads.bed 
 
## Warnings 
 
* The results include low-confidence alignments.  In the maf files, 
  each alignment has a "mismap" probability, which is the estimated 
  probability that it's aligned to the wrong place. 
 
* There are probably some incorrect alignments to processed 
  pseudogenes.  It's hard to avoid these completely.  (There may also 
  be correct alignments to processed pseudogenes.) 
 
* There may be an artifactual tendency for first exons to begin just 
  after AG, and last exons to end just before GT. This is because the 
  spliced alignment method does not treat linkers differently. 
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Figure S1: Distribution of CAGE peak summits along STR. The relative position (x-axis) was com-
puted on a window corresponding to STR length ± 5bp. y-axis, frequency of CAGE peaks. Only STR
classes with > 200 CAGE peaks on (+) strand and > 200 CAGE peaks on (-) strands are shown.

Figure S2: STR length distribution in different classes. STR classes are sorted by median length.
Only STR classes with > 2,000 elements are shown.

1

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.10.195636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.195636
http://creativecommons.org/licenses/by-nd/4.0/


0

1

2

3

intergenic intragenic
class

ca
ge
_s
ig
na
l

class
intergenic

intragenic

Figure S3: CAGE signal at inter- and intragenic STRs. FANTOM CAT annotation [1] was used to
define inter- and intragenic STRs. See Methods section.
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Figure S4: CAGE signal in different STR classes according to STR length. Quantiles were defined
using the Pandas quantile-based discretization qcut function. x-axis: quantiles ; y-axis: CAGE signal
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Figure S5: CAGE signal at STRs located within RNAP-II peaks. The coordinates of STRs were
intersected with that of RNAP-II ChIP-seq narrow peaks from ENCODE. The CAGE signal associated
with STRs located (red) or not (blue) in RNAP-II binding sites were compared. Wilcoxon test was
performed in all four cell types tested with a p-value < 2.2e-16.
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Figure S6: Definition of testing/training sets (top) and model architectures used for classification
(bottom) and regression (middle) tasks. The input sequence corresponds to ± 50bp around STR
3’end. Each layer is complemented with a RELU activation function, and dropout is implemented after
the first dense layer. Source code is available at https://gite.lirmm.fr/ibc/deepSTR.
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Figure S7: Impact of the length of the sequences used as input of the CNN models. Spearman
(orange) and Pearson (blue) correlations (y-axis)were computed between the predicted and the observed
CAGE signal. Different sequence size were tested as input (50bp, 100bp, 150bp and 200bp). The size
is indicated as multiples of 50bp on the x-axis. Only 6 representative STR classes are shown.
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Figure S8: Testing the accuracy of CNN models built in mouse and tested in human for different
STR classes. Performance of the model is assessed by computing the Spearman correlation between
CAGE signal observed in human and that predicted by a model learned in mouse (blue dots), CAGE
signal observed in mouse and that predicted by a model learned in mouse (red dots) and CAGE signal
observed in human and that predicted by a model learned in human (green dots). Remember that the
mouse models are overall less accurate than human models (Figure 6C). The mouse model is not able
to predict transcription at mouse or human (CTTTT )n (ρ < 0.2). Likewise, this model hardly predicts
transcription at human (T )n (ρ < 0.2). For other classes, the Spearman correlation between the signal
predicted by the mouse model and the observed human signal was > 0.3, confirming that several features
are conserved between human and mouse.
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Figure S9: CAGE signal (y-axis) at STRs associated with ClinVar variants ordered according to
their clinical significance (x-axis). The number of variants considered for each ClinVar class is indicated
in bracket.
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Figure S10: Impact of ClinVar variants on CNN predictions. Predictions are made on the hg19
reference sequence and on a mutated sequence, containing the genetic variants. Note that to keep
sequences aligned, only single nucleotide variants are considered. Changes (y-axis) are then measured as
the difference between these two predictions (reference - mutated). Values are grouped by the position
of the variants relative to the STR 3’ end (position 0 on the x-axis). Note that variations at -3, 8 and 19
have no impact, revealing the potential existence of ’blind’ positions, where models did not learn features.
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Figure S11: Distribution of ClinVar variants around all CAGE peak summits (red, n = 1,048,124)
and CAGE peak summits assigned to genes (blue, n = 130,286).
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