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Forest trees like poplar are particular in many ways compaceto other domesticated

species. They have long juvenile phases, ongoing crop-wildyene ow, extensive

outcrossing, and slow growth. All these particularities ted to make the conduction of

breeding programs and evaluation stages costly both in timand resources. Perennials
like trees are therefore good candidates for the implementan of genomic selection (GS)
which is a good way to accelerate the breeding process, by uniaining selection from
phenotypic evaluation without affecting precision. In tkistudy, we tried to compare GS
to pedigree-based traditional evaluation, and evaluatednder which conditions genomic
evaluation outperforms classical pedigree evaluation. Seral conditions were evaluated
as the constitution of the training population by cross-vadiation, the implementation
of multi-trait, single trait, additive and non-additive mdels with different estimation
methods (G-BLUP or weighted G-BLUP). Finally, the impact adhe marker densi cation

was tested through four marker density sets. The populatiomnder study corresponds

to a pedigree of 24 parents and 1,011 offspring, structuredrito 35 full-sib families. Four
evaluation batches were planted in the same location and sen traits were evaluated
on 1 and 2 years old trees. The quality of prediction was repoed by the accuracy, the

Spearman rank correlation and prediction bias and tested wh a cross-validation and an
independent individual test set. Our results show that genmic evaluation performance
could be comparable to the already well-optimized pedigredased evaluation under
certain conditions. Genomic evaluation appeared to be adwstageous when using an
independent test set and a set of less precise phenotypes. Geome-based methods

showed advantages over pedigree counterparts when rankingcandidates at the

within-family levels, for most of the families. Our study s showed that looking at ranking
criteria as Spearman rank correlation can reveal bene ts tgenomic selection hidden by
biased predictions.

Keywords: black poplar, genomic evaluation, marker density, degraded phenotypes, non-additive effects,

multi-trait, intra-family selection, breeding scheme
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1. BACKGROUND linkage disequilibrium in the population, which is linked to
the e ective population size, a ects the accuracy of genomic
Forest tree species of interest for domestication like poplasrediction. Linkage facilitates the use of markers paexies
are particular in many ways compared to other domesticatedf unknown QTLs in estimating genetic e ects. The required
species, notably when it comes to breeding. Among the variougarker density is directly dictated by the extent of linkage
particularities, forest trees have long juvenile phasespiogg disequilibrium: the lower the linkage disequilibrium, thégher
crop-wild gene ow, and extensive outcrossiny/lier and  the number of required markersyrattapaglia and Resende, 2011;
Gross, 201)L All of these hamper the process afdhtrolled  \ientjes et al., 20)3The second parameter of importance for
recombination by the breeder. Slow growth and cumbersorsgne accuracy is the composition of the training set. Such a set mus
typical of trees do not facilitate either the conduction oébding  pe representative of the candidates for which a prediction is
programs, notably with evaluation stages being costly botfequired. Several studies developed methods to optimize the
in time and resources. One of the poplars particularities isomposition of the training setincent et al., 2012; Akdemir
clonality or the possibility of asexual reproduction, whichd et al., 2015; Isidro et al., 2015The third parameter is trait
powerful tool in evaluation and operational breedirigi€ognin,  genetic architecture, usually unknown or poorly understood,
201)). However, bene ts rarely go hand in hand with simplicity. put that has an in uence on the performances of the di erent
Typically for developing a new poplar variety, a rstyear is use@vyaluation methods\{/immer et al., 2013 Some evaluation
for mating and seedling growth in nurseries. A second year ifhethods, such as those using some e cient strategy to foalis o
used to propagate the cuttings and install the experimentsgusinpn relevant variables like the family of bayesian methopigear
a statistical design to do evaluations in di erent environm®  to be more e cient with traits with fairly uneven distributins
and many subsequent years pass before we can assess genoiypgene e ects. Other methods with less stringenpriori on
by-environment (G  E) interactions, or late maturation traits the distribution of gene e ects work generally well with highl
like wood quality. Selection in poplars proceeds typically Vigolygenic traits, like G-BLUP. Other modeling approaches inten
independent level stages (independent culling levels), eatty  to capture the underlying complexity of genetic architectyre
stages involving screening for fast-growing, diseasste#® by including non-additive e ects like dominance and epistatic
individuals from large numbers of candidates. Late stagessf interactions {Toro and Varona, 2010; Su et al., 2012; Vitezica
on a reduced remainder to select on nal growth, architeetur et al., 2013, 2017; Mufioz et al., 2014; Martini et al., p@nd by
disease resistance, and wood properties. This has been so ¢ghsidering multiple correlated traits. The latter have neeh
operationally e cient considering the constraints imposegthe  often used, despite some promising simulation studiéslis
particularities of trees, but it remains time consuming aadks  and Veerkamp, 2011; Guo et al., 2)\1émpirical studies Jia
precision at the early stages. and Jannink, 201)2and the known fact from classical evaluation
For previous and additional reasons, perennials like trees athat genetic correlations can back accuracies of poorlytasie
good candidates for the implementation of genomic selectiofraits or those harboring many missing values in the dataset
(GS) (Muranty et al., 201 GS can potentially accelerate the(Gilmour et al., 2000
breeding process, by unchaining selection from phenotypic |n the present work, we intended to bene t from the large
evaluation without a ecting precision\(euwissen et al., 2001 corpus of knowledge already established around the concept of
When applied early at the seedling stage, GS could potentiallys to carry out a proof-of-concept study on the feasibilitytuf t
save evaluation resources and reduce the time required fefethodology in the context of the black poplar breeding program
evaluation of late maturation traits. GS involves rankingla in France. Black poplar is the leading Eurasian species of riparia
selecting individuals by using a genome-wide marker set anfbrest, with a wide distribution area, and contributing asarent
prediction models calibrated previously in a training set.I&S  together withPopulus deltoide® one of the most widely used
been made possible thanks to easy access to cheap genotypigrid (Populus canadens)stree in the wood industry. This
data, and to recent developments in evaluation methodoldgy ( study is the rst GS study for @opulusspecies. One of the
los Campos et al., 20p09Recent studies of GS in forest treesmain objectives of the study was to compare GS to pedigree-
were conducted on several species: eucalypts¢nde et al., pased traditional evaluation, by assessing di erent madgli
2012b; Muller et al., 2017; Tan et al., 2017, 2018; Cappa et @ptions including non-additive genetic e ects and multiple-
2019; Ballesta et al., 2028pruce Gamal El-Dien et al., 2015, trajt evaluation. The study also considered the role of marker
2016; Ratclie et al., 2015; Lenz et al., 2017, 2020; Chen, et ensi cation in the performance of GS, by bene ting from a
2018; Chamberland et al., 202pines Resende et al., 2012a; recent imputation study Pegard et al., 20).8The potential
de Almeida Filho et aI., 2016; Ratcli e et aI., 2017; Gianole alNpene ts Ofshortening the breeding Cyc]e, a|th0ugh Ofimm(te,
Fernando, 2020; Ukrainetz and Mans eld, 2)2@nd rubber ere not evaluated but only discussed in present work, becaus
trees Cros et al., 2019; Souza et al., 20Given the di erences of the relatively late sexual maturity in the species. Fjnahe
among forest species in general, and between their breedingsign of the calibration and validation sets was taken into
programs in particular, assessments of GS feasibility atealmgs account as an additional factor in the comparison. Globakg, t
case basis are often desirable. study intended to identify the situations in which GS couldée
According to Hayes et al.(2009, several parameters are feasible option for poplar, and also the assessments required to
involved in genomic evaluation accuracy. First, the extefht reveal any eventual advantage.
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TABLE 1 | Description of the pedigree and distribution of family sizeafter correction of the pedigree from the marker informatin.

Father SAN-GIORGIO

Mother SRz BDG 71077-308 92510-1 72145-007 72131-017 73182 -009 73193-056 72131-036 3824-3 71034-2-406 72146-11 Tota |
VGN 65 57 54 32 34 14 30 276
71041-3-402 28 11 17 30 25 111
71072-501 25 28 29 82
SSC 15 20 20 22 v
71040 24 20 44
662200037 25 32 118 31 206
73193-089 22 20 18 60
662200216 31 19 50
71069-914 22 22
73193-091 21 30 51
H480 13 19 32
Total 95 133 114 71 79 108 208 79 19 56 19 30 1,011

Colors correspond to experimental eld trials: green for the trial enducted in 2000/2001, pink for the trial conducted in 2012/2013, blue for the trial conducted ir2014/2016, and
orange for the trial conducted in 2017/2018. These latter individualgepresent two parental females (underlined codes) are progenies of VGM@BDG and were subsequently used as
parent for the multiple pair mating.

2. MATERIALS AND METHODS the 24 parents were vegetatively propagated, and eld evaluate

. in separate experiments according to the same six randomized
2.1. Plant_MatenaI ) complete block design.
The population under s_tudy correspon_ds toa ped_lgree of 24 Phenotyping involved seven dierent measurements
parents and 1,011 o spring, structured into 35 full-sib com®It 0. qjerent years (2000/2001, 2012/2013, 2014/2016, and
and involving a 4 by 4 factorial mating design together withy,17/5018) "and for ve dierent traits. Growth was assessed
a series of multiple pair-mating designBegard et al., 201‘_8 as stem circumference and tree height. Stem circumferehce a
Most of the parents were sampled from natur.al populatlonsl m was considered for the second year (circ2). Height was
or were h|gh-performance trees already used in the bre?d'ngssessed with a graduated rod after 1 (heightl) and 2 years
program._The_populaﬂon_corresponds therefore to theos_prmgsOf growth (height2). Mean branching angle was scored on
of these_ |nd|y|duals obtz_;uned by controlled crosses. Thettve _ proleptic branches at the age of 2 years with a 1-4 scoring scale
population size was estimated to be ;2 from coancestry matr'cgangbranch; score 1 : 0—30om the horizontal: score 2: 30—40
.(Caballe.ro, ZOQchmpgted from pedigree corrected by rT‘arkerscore 3: 40-55 score 4>55). The scale for angbranch was
information. Fa_1m|_ly_ size ranged _from 1_0 to 118, _W'_th aNcalibrated in such a way that resulting measures in the same
average of 26 |nd_|V|d_uaIs per fan_uly. Pedigree description anpopulation of reference resulted in phenotyping distributions
distribution of family sizes are availableTable 1 being close to normality. Rust resistance was assessed with a

1 (no symptom) to 9 (generalized symptoms) scalegjonnet

2.2. Phenotyping et al., 1999 at year 1 (rustl) and year 2 (rust2). Budburst
Field evaluations corresponded to four di erent experimentalphenology of the stem terminal bud was evaluated by measuring
trials. All four experimental trials were planted in the sameits kinetics (every 3 or 5 days from March to April) with a 0-5
location (47 37'59" N, 1 4959" W, Guéméné-Penfao, scale, where stage O corresponded to a completely closed bud
France) with small variations in plot orientation and with while stage 5 corresponded to the initiation of stem interaod
common genotypes as controls across experimental triaglongation Castellani et al., 19%.7A local polynomial regression
(Supplementary Table 1. The rst experimental trial (2000 model was tted between stages and dates for each individual
and 2001) involved the factorial mating design with a totaland this model was further used to predict the date in Julian days
of 14 families and 413 o spring phenotyped. In second andat which the terminal bud was at stage 3 and in order to assess
third experimental trials, 126 individuals in 6 families a5 individual susceptibility to late frostsHowe et al., 2000 As a
from 5 families were phenotyped (2012/2013 and 2014/2016gsult of such tting for budburst, distributions were contious
respectively). Finally, in order to reinforce the conneityiv and close to normality.
between the dierent experimental trials, 10 additional full- All seven phenotypes were independently adjusted to eld
sib families with some parents already in use in previougnicro-environmental heterogeneity with the breedR package
experimental trials were added in 2015 and phenotyped ifMufioz and Sanchez, 20lémplemented in R3.3.1 platform
2017/2018. In total, 367 individuals were phenotyped in tagg | (R Core Team, 20)B We used an individual-tree mixed
batch. At their respective time-frames, all 1,011 o springdan model over all four experimental trials, comprising all avaiab
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information with genotyped and non-genotyped individuals {no than 0.60 and a minor allele frequency (MAF) higher than 0t65,
included in this study) according to a single-step formwati obtain a set of 249,805 SNPs (250K). That latter set compitiged t
(mixture of pedigree relationship matrix for non-genotyped total of the 7K from the chip. We selected two alternative demal
individuals and genomic equivalent for genotyped indivith)a marker sets: 50K (with 50,565 SNPs), and 7K_homo (with 7,048
(Legarra et al.,, 2009 A random e ect capturing spatial SNPs)where coverage and homogeneity of density was optimized
heterogeneity at individual level within trials was ttetidnks over the original 7K array. These two sets were composed by
to the use of a bi-splines surface covering row and columselecting, respectively 1 SNPs every 1,000 or 50,000 bp out of
axes Cappa and Cantet, 2007; Cappa et al., 208uch a the 250K set. Whenever more than one candidate SNPs were
surface was nested within each evaluation experimentdl trizavailable for the same window, we selected the one that had th
Bi-splines were anchored at a given number of knots for row$ighest values of Props and cProps.
and columns, with higher numbers increasing the roughness
of the surfaces and lower numbers giving extra smoothnesg.4. Models
Knot numbers were optimized by an automated grid searchVe estimated variance components and heritabilities wita th
based on the Akaike information criterion (Akaike 1974)complete data setand single trait models, and genetic commakati
provided by breedR. The use of all available information irwith a genomic multiple-trait model (GBLUP). The Akaike
eld trials, including non-genotyped individuals, minimide Information Criterion (AIC) was used to assess for each given
the occurrence of gaps in the surfaces and facilitated theait the quality of each model. Two alternative methods were
prediction of accurate micro-environmental individual etsc used to calculate genomic estimated breeding values fdr eac
across the experiment. The fact of using common genotypdgait: the best linear unbiased prediction based on genomic
across trials (seBupplementary Table 1and the use of genomic information (GBLUP) {Vhittaker et al., 2000; Meuwissen et al.,
and pedigree relatedness in the mixed model facilitated th200J), and the weighted GBLUP (WGBLUPggarra et al., 2009;
adjustment across trials. The micro-environmental indival Zhang et al., 2006 They were all compared to the best linear
e ect was subtracted from the observed phenotype to obtaimnbiased prediction based on pedigree information (PBLUP)
a spatially adjusted individual phenotype. A clonal mean ofHenderson, 1975 The models for GBLUP (and PBLUP) using
spatially adjusted phenotypes was calculated for each trdit amnatrix notation for additive and non-additive e ects were
used as raw phenotypes for the rest of the study (hereaftgiven by:
adjusted clonal mean). As a default option, data from all kg
Blocs) were used as input to the model. The same model was tted ybDB CZuC” 1)
to data from only three of the blocks (blocks 1, 3, and 5 called
Bloc_s model afterwards), to assess prediction quality Wi'dss_a I yDB CzZuCwdC" )
precise phenotype. All measurements were tested for devgation
from normality by a randomized Q-Q plot. wherey was the adjusted clonal meana vector of xed e ects,

. u the vector of random additive e ects following N, 2) with
2.3. Genotyping 2 the additive variance and G (or A in PBLUP) the relationship
All 1,033 individuals in this population (22 parents, 2 beindtbo matrix, d was the vector of random dominance e ects following
parents and o spring, and 1,009 o spring) were genotyped usingN(0,D dz) with dzthe dominance variance aridlthe dominance
the Populus nigra 12K custom In nium Bead-Chip (lllumina, relationship matrix," the vector of residual e ects following
San Diego, CA)Kaivre-Rampant et al., 20)LéAdditionally, 43  N(0,l e?) with 62 the residual variance. The design matix
individuals were sequenced, including an extra foundet Was contains the values of the covariables with xed e ects ahd
identi ed as one of the grandparents in the pedigree. Among th&v, and| are indicator matrices relating the clonal mean to the
remaining 42 sequenced, there were 22 parents, 14 progemies, aandom e ects. The methods used to obtain the relationship
six unrelated individuals from natural populations. Progenie matrices are explained in the next section. The PBLUP and
were chosen in such a way that all parents had at least or@BLUP single-trait models as well as the multi-trait models were
o spring with its genome sequenced. The set of unrelatedtted with the R package breedR/Auiioz and Sanchez, 20L&l
individuals were used to assess the imputation ability undethe analyses are summarizedTiable 2
challenging conditions. In a previous studyegard et al., 20)8
genotype imputation from 7K (e ective SNPs out of 12K inarray) 2.5. Relationship Matrix Estimation
to 1,466,586 SNPs was performed attaining imputation qualitieThe ARM (additive relationship matrix) was built from the
higher than 0.84 per individual, and evaluated by a leave-on&known pedigree at the moment of the controlled crossings,
out cross-validation scheme (CV). Resulting imputationwsedu  and denoted hereafter a&. However, a preliminary marker
in the present study to constitute alternative sets of setéct assessment in this study showed that there were errors in the
markers for genotyping. For quality assessment and sefectippedigree. Pedigree was corrected based on these results and
of the marker sets, we used the proportion of alleles correctlsg new reconstructed ARM was obtained, denoted hereafter as
imputed by genomic position across individuals (Props), andA¢o. Pedigree errors involved in most cases a wrong paternity
Props corrected by the probability of correct imputation byattribution and, less frequently, individuals supposed to be
chance Badke et al., 201%Props). Among the imputed SNPs, di erent genetically. The total number of parents after catien
we selected those with Props higher than 0.90, with cPropshighdid not change, with an added father and a removed mother.

Frontiers in Plant Science | www.frontiersin.org 4 October 2020 | Volume 11 | Article 581954


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Pégard et al.

Favorable Condition for GS in Poplar

TABLE 2 | Combination of models and marker sets tested.

aswj D 0}2 wherew; was the weight for the SNFand @ was the
estimated marker e ect obtained as

Methods ADD ADD + DOM MultiTrait SNP set
P-BLUP Yes Yes Yes None @1 D WaXOG 1@ (5)
P-BLUPcor Yes Yes Yes None
Yes Yes Yes 7K 1
BLUP Yes Yes No 50K @ D WexD & (6)
Yes Yes No 100K where W,4 was a diagonal of weights, either a identity
Yes Yes No 250K matrix (GBLUP) or a diagonal of w weights (WGBLUP) for
Yes Yes No 7K additive W5) or dominance W) relationship matrices@the
WGBLUP Yes Yes No 50K genomic estimated breeding values (GEBV) &tle estimated
Yes Yes No 100K dominance e ects. Several iterations of recompui2d®, § and
ves Yes No 250K ®were performed to update G, following recommendation by
Yes No No K Wang et al(2019, and according to the following steps:
BayesCpi N e " o 1. DeneiD 1, W D | i i
Yes No No 100K . » Wiag)i andG; as Equation (3)
No No No 250K 2. Compute®using GBLUP approach
3. Compute additive SNP eects with Equation (5) and

dominance SNP e ects with Equation (6)

4. Calculate SNP weightswagci D @ andwgjcy D G,

The main change concerned the number of families that wens.
from 39 to 35. BothA and Acor were calculated with the R 6.
package nadiv\{/olak, 201}, and kept for the comparison in 7.
order to show the potential loss due to pedigree errors and the.
maximum performance attainable by pedigree. Concerning the.

genomic relationship, we used a normalized matrix (G Equmatio

Scalevajc1 andwgic1
Calculatésic, with Equation (3)
Calculatdjc1 with Equation (4)
iDiCl

Iterate from 2 untii D 3.

3) calculated following VanRaden's formulatiohlgbier et al.,
2007; VanRaden, 20p@nd the scaling proposed byorni et al.
(2019 to assure compatibility with A, for each genotyping se
(7K, 50K, 100K, and 250K) :

(M P)Wa(M  Py)°

tracgd(M  P)Wa(M  Pp)9=n )

whereM was a genotyping matrix witm markers in columns
and n individuals rows,P; was a matrix §  p) containing the
minor allele frequency &), at the markei, andW, was a matrix
of weights described belowd hocscripts in R were used to make

t

A weighted relationship matrix was obtained from each
subsequent iteration, giving respectively, Gwl, Gw2, and,@w
three distinct matrices leading to separate evaluation w&shin

this study, therefore, eight relationship matrices wesdd (A,
Acor, G, Gwl, Gw2, Gw3, D, Dcor), and the resulting predicsion
were compared via cross-validation and by an independent
data set.

2.6. Prediction Accuracy and

Cross-Validation
We assessed the impact of the composition of the training (TS)
and validation sets (VS) on the performance of the genomic

the computations for G (R3.3.1 platform). To assess dominand@valuation by trying two TS/VS sizes and two di erent TS/VS
e ects, a dominance matrix based on the pedigree informatiorfompositions in a 10-fold cross-validation scheme. The twess

was calculated with the R package nadiVo(ak, 201) with
expected and observed pedigree informati@nand D¢or). The
genomic dominance matrix was calculated as:

(X P)Wg(X Pp)°

tracg(X Po)Wg(X P2)9=n “)

where X was the genotypingn( p) matrix containing code
“0” for the homozygous and “1” for the heterozygou, the
(n p) matrix containing the heterozygous frequencypi(®)
according toVitezica et al(2013 and normalized in the same
way as for G in Equation 3, anW/y the matrix of weights
as described below. We used one of the procedured/afig

et al.(2019 for calculating weights in wGBLUP. Unlike GBLUP,

were 50% (T50) and 25% (T25) of the individuals evaluatelden t
2000/2001, 2012/2013, and 2014/2016 experimental triaks. Th
last eld evaluation trial of 2017/2018 did not contribute TS

and was used as an extra independent validation set (TestSet)
for each of the four TS, as it represented a sample of the next
generation of selection candidates. Such Testset repeesent
independent validation experiment without the risk of eveatu
over tting that is typical of cross-validation schemes, ahds

the result of a mating campaign involving a sample of parents
from the breeding population (sé@ble 1). The two composition
scenarios for TS and VS involved: a sampling of individuals
independently of their family membership and a sampling of
di erent family sets. Both size and composition were combined
to obtain the desired percentage (50 or 25%) of individuals or

where all markers have the same variance and therefore the sathe desired percentage (50 or 25%) of families. The performance
weight, the derivative wGBLUP uses a transformed G accordingf the models was evaluated following di erent criteria. Birs

to marker weights to select markers. The weights were Gkedl

predictive ability, which was de ned as the Pearson correfat
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coe cient between the adjusted clonal means and the GEBVs ddlternatives. On the contrary, using a phenotype adjusted with
the samples in the VS, or in the TestSet. The accuracy (Acguraless information had little e ect on heritabilities.
and Accuracy test) of the models were estimated by dividing

each predictive ability by the square root of the heritapiif 3.2. Accuracies Estimated by

the corresponding A model for the given trait. Additionalthe Cross-Validation With Different Training
Spearman rank correlation between the adjusted clonal mea§ets

and the GEBVs of the individuals in the VS was calculate h ; its (budb heigh q
(Spearman). We estimated the Spearman and Pearson correlatibNf€€ Out of seven traits (budburst, heightl, and rustl)ever
of the top 5% of the trait, for the section between 5 and 10v5¢/€cted o show the cross-validation accuracies-igure 2
and between 10 and 50% within the VS. Finally, we assess@ﬂe remaining traits f“?‘ Shg.W“ n$upplementarfy F'gufel
potential bias in genomic predictions by estimating the ot assuming dierent relationship matrices and four dierent

and the slope of the linear regression between the adjusteakl training scenarios (size and composition). Results corredpon
means and the GEBVs of each model. in the VS and in th ingle-trait additive models with a relationship matrix besmn
TestSet. Predictive abilities were also calculated at itfgny ¢ e 7K SNP panel. Accuracies varied between 0.17 and 1.05acros

family level. The prediction ability obtained within fangt all scenarios and traits. It is important to note that, becao$

following PBLUP with the corrected pedigree were subtracteH]e_Ch(?i_Ce of a_particular model of r_eference to provide a basis
to the equivalent prediction ability obtained from the geniom erltablrl]ny (pedlgree-bgse_d rr01lodel with the A matrix), akaties
model, for given cross-validation scenario and trait. Agteed arger than one were obtained.

average was then calculated according to the size of thdyfami Agcurames responded dgreatly to chan%es n the.:.V\*/]ayTthe
given cross-validation scenario and trait. A weighted agerwas training set was constituted (percentage and compasitiohl

then calculated according to the size of the family. fact of using di erent families for training than for validan

had a large impact on the accuracy when compared to the
27 Testing Factor Importance altgrngtive scenario where 'th.e split.t?ng betvyeen trainimgl a
In order to assess the main factors accounting for genomi¥alidation occurred mostly within families. Basicallyeapected,
evaluation performance, we applied the Random Foreéf_red":t'”g d_| (_arent farr_nllgs was less accurate than predgt!n
algorithm (Liaw and Wiener, 20QZimplemented in the Boruta di erent |nd|V|du§1Is within thg same cohort, with losses in
R packageKursa and Rudnicki, 2090 The main factors (or accuracy averaging 13%. Th.|s pattern was found for.aII traits,
features) were: Trait, Matrix (A, Acor, G, Gwl, Gw2, Gw3, pexcept for one training scenario for angbranch, where di eres _
Dcor, Dw1, Dw2, Dw3), GeneticE ect (Additive, Additive, and between the two compositions were alsothe vye_akest. Conagrnin
Dominance), ST _MT (Single-Trait, Multiple-Trait), Genosetthe percentage, the e ect of reducing the training set from T50

(none, 7K,7K_homo, 50K, 250K), Type (Individual, Family),to T25 had also an impact on accuracy, although mostly when
Perc (T50 T25_) and PhenoSet (6 Blocs, 3 Blocs). Classircati training and validation involved di erent families. On awege,

features was done for each of the performance variableshiaiil reduction in accuracy _W_ith decreas_ir\g training s?t ;i;e was
predicting ability, Accuracy, Spearman correlation, anghelo around 4.2% for the training composition based on individgjal
and vary depending on the trait (from 18 to 8%) for that based

on families.

3. RESULTS

3.1. Heritabilities 3.3. Challenging Prediction Models With

Heritabilities with their corresponding variance componsand  New Individuals

Akaike Information Criterion (AIC) are shown for all models We used a completely independent set of individuals
and traits in theSupplementary Table 2In general, most traits representing the next generation of selection candidates to
showed intermediate to high heritabilities (average oBD.As evaluate the dierent prediction models with 7K SNP and
illustrated by Figure 1A, with height and rust showing the across two di erent training scenarios (T25 and T50). Results
highest average values, and budburst correspondingly thedb  of accuracies from this independent set are presented foethre
The fact that we used adjusted clonal means as phenotyp#asits in Figure 3

to be explained in the models induced a low residual term, Accuracies were substantially lower under the new more
which in turn raised the heritability estimates. In terms of challenging testing scenario than those already shown Her t
models, G and weighted G resulted in higher heritabilitiescross-validation scheme for the same traits (5egure 2). In
across traitsFigure 1B), with an advantage to the latter under general, marker-based models resulted in a less a ected dével
additive models, and to the former under models comprising als accuracy compared to the pedigree-based counterparts: the G-
dominance Figure 10). Most of the genomic scenarios (G and based and Gwl models were the best performers, notably for
weighted G) resulted in higher heritabilities than the pediy  rustl and budburst. For heightl, however, A and Acor models
based counterparts, with uncorrected pedigree resultinghan t obtained comparable performances to those from genomic based
lowest heritabilities overall. Another factor increashegitability  models. Otherwise, the model based on uncorrected A had
across traits was marker density, with highest values @bser generally poorer accuracies than those shown by the corrected
with the 250K SNPs set, followed by the 50k and the 7K_hom@. The behavior of the di erent models in terms of accuracies
sets, with 7K resulting in the lowest values among genomidepended greatly on traits and, to a much lower extent, on the
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FIGURE 1 | Heritability obtained with a global model using all the aviable data. (A) Heritabilities derived from an additive model and the 6-blk adjusted dataset, the
boxplots represent the heritabilities per trait (angbrart budburst, circ2, heightl, height2, rustl, rust2), accoding to the marker density (Ped, CorPed, 7K,7K_homo,
50K, and 250K), across matrix.(B) Heritabilities derived from an additive model and the 6-bkk adjusted dataset, the boxplots represent the heritabtiies per matrix
(A, Acor, G, Gwl, Gw2, Gw3), across traits and marker densityC) Heritabilities derived from the 6-block adjusted datasetthe boxplots represent the heritabilities per
model (ADD: additive; ADD_DOM), across traits, marker deitg, and matrix.

training scenario. Concerning the training scenario, itésbe advantages of a multiple-trait approach over the single-trait
noted that family sampling obtained slightly higher accieac counterpart were trait-dependent and generally very smali. F
than individual sampling, although dierences were not ofinstance, rustl showed clearly no bene tin using a multiplaittr
signi cance. These results give an idea of the performancerediction, while for heightl the multiple-trait prediction da
obtained in areal candidate selection test. Indoing so,e@edd a small advantage when training over di erent families. For
to look at the impact of other factors on the independent datasebudburst, however, the multiple-trait approach brought a loss
rather than on cross-validation. The results obtained fbet with the G-based model in both training scenario. Moreover,
cross-validation are iSupplementary Material the multiple-trait approach did not seem to benet from the
use of marker-based G matrices over pedigrees. Therefage, th
Lo . multiple-trait prediction did not bring a clear-cut advantage
3.4. Prediction Performance in the Test Set across traits and training scenarios. Genetic correlatimtaieen
With More Complex Models the traits involved in the multiple-trait analysis are shown i
By adding a dominance e ect to the single trait model for eachSupplementary Figure 4as supplementary data.
trait with the 7K SNP panel, we did not observe signicant In summary for the TestSet, the accuracy of unweighted
changes in accuracy with respect to the purely additive modé&b-based models appeared to be slightly better than with
(Figure 4, upper part, andSupplementary Figure 2 Overall, pedigree-based models, although in most cases the Acor model
dominance did not lead to losses in accuracy, with similaobtained comparable levels of performance to the best G-based
performances to that of additive counterparts across traits. method (data not shown). The cross-validation samplingtstggt
Another added complexity were the multi-trait additive (individual/family) impacted the accuracy in all cases and fo
models, which were also evaluated in terms of accuraciedl traits, with individual scenarios having, in generaigtrer
(Figure 4 lower part, and Supplementary Figure 3 The accuracy than family scenarios. The percentage of individual
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FIGURE 2 | Cross-validation prediction accuracies using an additivenodel with 7K SNP for three traits, grouped by the proportiorof individuals (Individual, in blue) o
families (Family, in green), in training sets 50% (T50) an8% (T25). Each violin plot represented the accuracy of 10 regitions for each scenario, and the dot
represented the median of each distribution.

in the training population (T50/T25) showed a less importantin the G matrices, notably after one step of weighting and gisin
impact on accuracy than that of composition. More advancedhe highest densities of 250K.
models involving dominance e ects and multiple-traits didtno ~ Besides the number of markers, their distribution over the
improve the performance of genomic predictions. genome seemed also of relevance for accuracy. This is partycu
illustrated in the comparison between the 7K and 7K_homo sets,
. . where the latter represents an even distribution sample ower th
3.5. Effect of Marker Density on Accuracies genome. Such even distribution was not bene cial for accies
The same three traits (budburst, heightl, and rustl) wer@cross traits compared to the original 7K set. This lattensa
used to show the e ect of an increase in marker density orseemingly richer for some relevant genes, as the array rdesig
prediction accuracy over di erent modeling approaches on therom which the 7K set results favored certain regions linked

TestSetirFigure 5(Supplementary Figures 56). We compared  important traits over a homogeneous distribution.
the accuracies obtained with four marker sets of increasing

density with a single-trait additive model, and T50/Indivial . L. .
sampling scheme. 3.6. Challenging Prediction Models With

The e ects of density were clearly trait-dependent, and thdDegraded Phenotypes
choice of traits illustrated here cover well these dierenée Phenotypes used as dependent variables in the models resulted
behavior. Such densities were also di erently exploited aticgr  from averaging six eld replicates that were previously spatiall
to traits by the di erent G matrices used in the modeling. Foradjusted. To test whether the number of replicates could have
traits like heightl and rustl, densi cation in the number®NPs an e ect on the dierence in performance between pedigree
had no clear bene tin terms of accuracy, and the use of weidht and genomic-based evaluations, new evaluations were prdduce
G matrices did not exploit the extra density to bring additadn based only on 3 out of 6 replicates. The adjusted clonal means
accuracy. For traits like budburst, however, densi catisought  produced were compared to those obtained with 6 Blocks. The
some bene ts in accuracy when combined with some weightingorrelation between the two clonal mean sets was close but
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FIGURE 3 | Prediction accuracies using an additive model with 7K SNP fove traits, grouped by the proportion of individuals (Indidual, in blue) or families (Family, ir
green), in training sets 50% (T50) and 25% (T25) on an indepdent Test Set representing the candidates for selection. Ezn violin plot represented the accuracy of
ten repetitions for each scenario, and the dot representedhte median of each distribution.

not equal to 1 (from 0.8 to 0.94Supplementary Figure J,  that the pedigree-based approaches had the most robust
and at-test on paired data con rmed the di erence to be of behavior with values always around 1. Contrarily, G-based
signi cance between the two sets of data. Resulting ac@saciapproaches often showed upwardly biased predictions
under this new evaluation scheme are presentedrigure 6  (Supplementary Figures 10 11). This deviation was always
(Supplementary Figures 89 for the results in cross validation), more pronounced for G-BLUP than for weighted G-BLUP, with
involving the training scenario T50/individuals and the rkar ~ a decreasing trend in slope with increasing steps of weighting
density set of 50K. The prediction accuracy was not signitgan Marker densities had the e ect of increasing slopes, notatty f

a ected by the reduction in repetitions, across models andstai G-BLUP and weighted G-BLUP schemes with fewer steps of
This result was also observed for other training scenarit a weighting. With a less pronounced e ect, the change in tragnin
for the remaining marker densities (not shown). Therefore,scenarios from individuals to families and from T50 to T25
downgrading the phenotype with half the number of repetitionsincreased slopes. In general, G-BLUP schemes showed the larges
did not appear to a ect pedigree-based predictions, which wereéeviation in slopes due to changes in training scenarios. Slope
almost equally competitive. This also suggests that evahgt larger than one correspond generally to biases in predictibats
under current conditions could have been simpli ed with esth  depend on the magnitude of the predicted variable, being farge
less eld area or extended to extra candidates keeping the sarthe bias the larger the phenotype.

eld area. We compared two correlation coe cients: the classical

. L . Pearson correlation, on which predicting abilities are blased
3.7. Evaluation of Prediction Models With a rank-based coe cient like Spearman. Such comparison was
Complementary Criteria made across di erent tiers of the evaluated sample of candi&lat

Trends for slope of the linear regression between the adjustérom the 5% tier of best candidates to the totality of the Best
clonal means used as phenotypes and the resulting GEBWsth the aim to explain the origin of biases. Results are shown
(or pedigree equivalents EBVs) across models showed Figure 7 for budburst Supplementary Figure 12for the
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FIGURE 4 | Prediction accuracies using different evaluation modelsrothe TestSet by cross-validation type “T50” with 7K SNP, andust1, budburst and heightl. The
upper panels involve single-trait (ST) vs. multiple-traiT) additive models: with ST with individual sampling (@) ST with family sampling (green), MT with individual
sampling (orange), and MT with family sampling (yellow). &ower panels involve additive (ADD) vs. additive and don@ince (ADD_DOM) single-trait models: with
ADD and individual sampling (blue), ADD and family samplirigreen), ADD_DOM and individual sampling (light purple)D®_DOM and family sampling (dark purple).

cross-validation results). Di erences between the two coents  families and for three traits. Results show important vaadati
were substantial within the best 5% tier, where the Spearmaarcross families, spanning from no advantage of genome-
correlation appeared to magnify the advantages of G-basdzhsed methods with respect to the pedigree counterpart (zero
models over that of pedigree-based counterparts. Such aalyant di erences and below), to advantages over 0.4 for the genome-
became more pronounced for that particular elite tier with G-based option for some of the families. The di erent methods of
based models using higher marker densities. Di erences ieeee  constructing the G matrix (G and weighted G) had little e ect
pronounced for other less performing tiers, notably thoseseto on the di erences, while increasing the training set (T50V&5)
to the mean. For the totality of the TestSet, Pearson redufte or sampling families instead of individuals augmented slight
slightly higher values than those of Spearman. Thus, thewi@ha the genome-based advantage in terms of median di erences.
of the two correlations were opposite whether we looked at th&hese advantages were higher for budburst and rustl than for
best tier or to the whole distribution, with Spearman revegli heightl. Overall, genome-based methods showed advantages
extra di erences between evaluation methods for the tailhef t over pedigree counterparts when ranking candidates at the
distribution that is usually relevant for selection. Sianipatterns  within-family levels, for most of the families.
were observed for rustiSUpplementary Figure 13ower part).
Heightl had a pattern slightly di erent, with an advantage of3.9. Ranking of Factors Impacting
Spearman over Pearson for the G-based models relevant for tiradiction Accuracies
SOK SNP densities and for the 2 top tiers, and no advantade witrhe Boruta algorithm was used to evaluate the di erent feaure
the highest density 250kStipplementary Figure 13ipper part).  explaining the variability of three performance parameters:
. accuracy, Spearman correlation and slope. Results in terms
3.8. Genomic Model to Select Among of Z-score for all features in the cross-validation are show
Full-Sibs in Figure 9 Both correlation-based performance parameters,
Di erences in Prediction ability at within-family level beeen accuracy and Spearman, led to similar ranking of featuret, wi
genome-based and pedigree-based predictions are shown Tiype (Individual vs. Family), trait, matrix (A and G matrides
Figure 8, in the shape of distributions over all available full-siband Perc (T50 vs. T25) being the factors explaining the most
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FIGURE 5 | Marker densi cation impact on predictive accuracy of a sing trait additive model with T50 individual in the TestSet fdour genomic relationships
matrices (in columns) and three different traits : heightpgrple), budburst (black), and rustl (orange). The range afccuracies obtained with the pedigree information
was represented in each column by the tag Ped. The accuraciedistribution is represented by a boxplot.

in performances. Thus, the A vs. G comparison, althougltaptured higher heritabilities and higher additive variaathan
important, was not the one at the top. For slope, however, théheir pedigree equivalents, although this did not lead to a
features related to modeling and integrating informatioere systematic advantage in terms of prediction accuracy for the
the most important ones, with those related to training andformer over the latter. Although G-BLUP obtained in general
validation characteristics being negligible. A similaabsis was the best prediction accuracies, it was very closely followyettid
conducted on the results obtained with the Test$egre 10. evaluation based on a genomically corrected pedigree. 8kcon
Results show patterns for accuracy and Spearman correlatidhe bene t of densi cation of the marker panel for the predicti
similar to those of cross-validation, except for the facttttiee  quality was not obvious, with results dependent on traits and
impact of size and composition of validation was negligible irtreatment of the G matrix. Finally, the most clear advantagfes
TestSet conditions. For slope, the e ects of the di erent featu genome-based methods and of marker densi cation were found
were very small, again with features related to modeling anoh more challenging validation situations, when observtheg
integrating information showing the most important roleshd ranking among the best 5% elite individuals or when impor&nc
main feature explaining variability of prediction within falpis  was given to selection within families.
the trait variation Supplementary Figure 14 The genomic evaluation captured generally more genetic
variance than pedigree evaluation, regardless of the {faie
number of markers tted in the model generally increased the
4. DISCUSSION proportion of genetic variance explained by the model, but
. this occurred mostly under G-BLUP. When using a weighted
4.1. Genomics Does Not Improve GBLUP variant, the proportion of genetic variance explained by
Substantially Prediction Accuracy Over the model decreased with the cycles of weighting and setecti
Pedigree in Standard Conditions of relevant markers. Without variable selection, plain GBL.
This study was conceived as a proof-of-concept of the genomiBcreasing the number of markers favored a better coveragt o
evaluation in the black poplar breeding program in order togenomic regions, including those close or inside relevant QT
evaluate feasibility and performance in a situation close tdariable selectioninweighted GBLUP could have eroded rateva
operational conditions for the species. Several main messagériation, a ecting the proportion of captured variation. This
could be drawn from this study. Firstly, genome-based modelype of behavior could re ect an underlying in nitesimalkié
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FIGURE 6 | Impact on predictive accuracy of two alternative ways of prodcing phenotypes, with 3 (pink) and with 6 (blue) replicatesvith a single trait additive model
in the Test set (T50 individual sampling strategy) by genomielationships matrices (in columns) and three differentdits (in rows): heightl, budburst, and rustl. The
accuracies distribution is represented by a violin plot antheir median by the dot.

trait architecture of the traits studied rather than a fendenlying  for cocoa and wheat it was reached after thousands or tens
QTLs with a substantial e ect4hang et al., 20106 of thousands of markers. Together with the fact that pedigree
Capturing more genetic variance with marker-based modelsvaluations already obtained high levels of prediction eaxy
did not result necessarily in a better prediction of the phema&  there is also the point that correcting pedigrees generalty da
than using plain A models. Our prediction accuracy was alreadipene cial e ect, making the resulting model truly competitiv
relatively high under pedigree evaluation, probably due te thin some situations and with some traits compared to genome-
fact of using a good evaluation design with enough repetitionbased models. This is not new in forest assessments, given the
and spatial adjustments at individual level. Markers did help  fact that controlled crosses are cumbersome and prone ta®rro
to improve this scenario or very little. Globally, when thevas In loblolly pine (Munoz et al., 2014and in maritime pine
a di erence between pedigree-based and genomic predictiongartholomé et al., 20)6 pedigree errors led to decreases in
this occurred with G or Gw1 matrices. Using several weightin predicting ability, and by completing or correcting the pedigr
cycles (Gw2 and Gw3) did not show in any case better resultthe predicting ability could be increased. In the maritime @in
Comparable results with decreasing e ciency of severalaycl study @artholomé et al., 20)6 the predicting ability was
of weighting were found in other recent studiege(ssier et al., improved by the completion of the pedigree information in such
2019. Our results show little or no gain by increasing markera way that the genomic evaluation had little extra room for
density, even when combining densication with a variableimprovement in predicting ability. The error rate in our pedeg
selection method, such as Gw. This lack of gain in accuragy mavas 15%, involving in most cases wrong paternity attribution
suggest that we have reached a plateau and that 7K markext complete or partial families, or individuals supposed to be
are su cient for this population. Some authors have alreadydi erent genetically.
reported plateaus in performance when increasing the number of In our study, model complexi cation using a dominance e ect
markers: in cocoaomero Navarro et al., 20),ivheat N\orman  had no e ect (positive or negative) on the quality of prediction
et al., 201Band eucalyptusKainer et al., 2003 For eucalyptus, Our results are in line with previous studies. Several stdie
the plateau in correlation was still not reached at 500K, gvhil integrated dominance or epistatic e ects in the GS. The results
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FIGURE 7 | Comparison of Spearman (green) and Pearson (purple) corations between phenotypes and estimated breeding values fobudburst in the Test set (T50
individual sampling strategy), for different relationghimatrices (within panels abscissas) and SNP densities (auss panel columns). Across panel rows represent the
tier used for the calculation of correlations: 0-5% for the % best individuals; 5-10%, between the 5 and 10% best individals; 10-50%, between the 10 and 50%
best individuals, and 100% for the whole Test set.

on real datasets showed either no improvement in terms oflarchal et al., 2016; Schulthess et al., 20t @ould also reduce
accuracy lfeidaritabar et al., 2014; Gamal El-Dien et al., 2016prediction bias Kadarmideen et al., 20D.3An interesting and
Jiang et al., 20)7even if a non-additive proportion of variance promising approach called “Trait-assisted genomic prediction”
was observed for the traits, or a small improvement in predicti by Ben-Sadoun et a(202() allows to optimize the phenotyping
accuracyAfliloo et al., 2016; Moghaddar and van der Werf, 2017¢cost by using a multiple-trait approach.

Tan et al., 2018 This so far limited success may be due to Apart from the general trends between pedigree vs. genomic
the fact that the populations under study were not big enoughmodels, results of prediction accuracy were fundamentally
nor with an optimal design to reveal the bene ts of addingtrait-dependent and mostly driven by the kind of training
non-additive e ects in genomic prediction. Despite a few sjon scenario being applied. This is clearly shown by the results
genetic correlations in our population, the same observatiam of the Boruta algorithm, which found trait and training
be drawn for the multi-trait approach, which did not bring a scenarios to be key features in explaining predicting aceesac
clear advantage to the quality of the predictions. One of th&imilarly to other authorslorman et al., 2013 we observed
possible explanations could be found in the small di erence irthat prediction accuracy resulted in higher levels when the
missing values between traits in our dataset. This has @dfreatraining and validation populations were closely related, as
been pinpointed as a cause of lack of performance by othavhen the split between the two occurred at within family
authors working with a multi-trait approachJ(a and Jannink, levels. On the contrary, prediction accuracy could be greatly
2012; Dos Santos etal., 2016; Lyra et al., 2017; Rambotemi@a a ected when resulting from distant, independent validation
et al., 2018 Multi-trait evaluation can help the prediction sets. In our study, the cross-validation with individuairgaling

by compensating missing values in dierent traits and poorperformed better than with family sampling, and this somehow
heritabilities Calus and Veerkamp, 2011; Jia and Jannink, 201Hmited the use of genomic evaluations to predict unobserved
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FIGURE 8 | Prediction gain compared to Pedigree based predicting aktly within independent test families. Predicting abilitiewere obtained using an additive model
with 7K SNP for three traits grouped by the proportion of indiiduals (Individual) or families (Family) in training sef3% (T50) and 25% (T25). The color of violin plots
correspond to the sampling strategy: in blue, the individuasampling strategy and in green the family sampling stratggEach violin plot represented the accuracy of
ten repetitions for each relationship matrix. The dot repsented the weighted mean of the prediction gain, the mean wasveighted by the number of offspring in each
family.

crosses in our population with current approaches. The siz®ne additional scenario of training that could be considered
of the training set used to develop prediction calibration isas especially challenging, corresponded to the validatian se
often cited as an important facto\@kaya and Isobe, 20).2 of newly obtained crosses from parents that were mostly
Curiously, the di erences between our T50 and T25 schemesnderrepresented in the cross-validation sets. This could be
(50 and 25% of individuals to construct the calibration mbde seen as an operational demand to incorporate comparatively
respectively) was not as large as one could expect and theiew material for selection. Our results showed that such
performances overlapping to a large degree, making sometimekallenges (represented by the validation in the test settac

the di erences between the two alternative training nedligi  substantially the prediction accuracy across models, althoug
This is presumably very dependent on the properties of th&-BLUP and Gwl were generally the most robust performers

populations being used for training. and pedigree-based evaluations the ones with the greatest lo
. o overall. In the cross-validation scheme, the factorial glesi

4.2. Genomic Prediction Advantages Are had a relatively large in uence in demographic terms in the

Mostly Observed in Challenging Conditions training set. Being a system that creates a well-intercaedec

The choice of the training and validation sets is known to énav network of families £arensen et al., 200%he factorial design

a non-negligible impact on the prediction accuradyirfcent seemingly favored pedigree predictions to a level that made
et al., 201p In that sense, our results showed that there wa# competitive compared to genomic predictions in the cross-
a substantial variation around each cross-validationizasibn,  validation. However, the new testing set posed a challenging
although often the ranking in performance between realragi  prediction problem to pedigree-based models, as the relatednes
was preserved across scenarios, notably for the individuBetween training and validation was certainly weak to support
sampling. In general, these cross-validation cases comesgo quality predictions solely from a sparse A matrix. Despite
to operational situations where validation contributes twit that, the situation was not always a clear-cut di erence betwe
extra selection intensities, for instance, with new credsem pedigree and genome-based evaluations, as shown by traits
known parents or additional sibs across families to selesnfr like heightl.
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FIGURE 9 | Importance (Z-score) for each feature estimated with Borutalgorithm to explain Accuracy, slope, and Spearman corretaon (Spearman) variability in the
validation population. Boruta shadow features were ShadoMin, ShadowMean, and ShadowMax, as random references. Theest factors were Trait (rusti, rust2,
heightl, height2, circ2, budburst, angbranch), Matrix (AAcor, G, Gw1l, Gw2, Gw3, D), GeneticEffect (Additive, Addite, and Dominance), ST_MT (Single-Trait,
Multiple-Trait), GenoSet (none, 7K,7K_homo, 50K, 250K)ype (Individual, Family), and Perc (T50, T25). Algorithm dsion for each factor, based on the signi cativity
of the difference between factors and the shadow features @ shadow features (green), con rmed (blue), and rejecteddd).

If the extent of relatedness thanks partly to the factoriabetween predictions and true breeding values is one of the mos
design could have facilitated the competitiveness of pedigrecommon means of quality assessmentiétwyler et al., 20)3
based predictions, the fact of using a high quality adjustedhis latter correlation shows a linear relationship witlethenetic
phenotype involving 6 repetitions was another element thatdtou response Kalconer, 1981 For the poplar breeding program,
have a role in diminishing the di erences between pedigredowever, the stress is given to the selection of genotypes for
and genome-based performances in prediction terms. Actuallglonal dissemination at the production stage directly, eatthan
our results showed that downgrading the quality of clonalfor gametic dispersion in seed orchards. This essential dhee
means used as phenotypes clearly had no dierential e ecleads to the importance of ranking in selection decisions for
between pedigree and genome-based predictions, with thex lattpoplars, as for any other domesticated species with clonal
retaining prediction quality at a level without replicate rexdion.  selection. When assessing the potential of genomic evahsti
This evaluation simpli cation has also important operationalit is essential to take into account the way predictions will
implications for eld evaluation, which need to be balanceithw be used for. Thus, we used alternative measures of prediction

the genomic investments. quality, like the slope of the regression of “true” breedinluea

] o on estimated breeding values. This slope represents a way to
4.3. Genomic Prediction Enables the assess departures due to bias in predictions, generally caysed
Ranking of Candidates to Selection unequal representations of lineages in the trainifgify and

One of the main objectives of genetic evaluation is ultifyate Ducrocg, 201), unbalanced dataB(air and Pollak, 1984 or

to rank individuals according to their breeding values, imler ~ the use of wrong variance estimatiosqrensen and Kennedy,
to use subsequently nal selections as reproductors for thé989. Bias can lead eventually to wrong selection decisions when
next generation. In that sense, identifying accuratelyitighest ~ involving di erently biased candidates. Our results sugdbat
breeding values is a key element in genetic progress, and tReBLUP was particularly a ected by biases, with large depasture
use of predicting abilities based on a parametric correlatiofoward greater slopes, i.e., best phenotypes gave proportionall
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FIGURE 10 | Importance (Z-score) for each features estimated with Boratalgorithm to explain Accuracy, slope, and Spearman corration (Spearman) variability in
the TestSet population. Boruta shadow features were ShadoMin, ShadowMean, and ShadowMax. The test factors were Trafrustl, rust2, heightl, height2, circ2,
budburst, angbranch), Matrix (A, Acor, G, Gwl, Gw2, Gw3, D)eneticEffect (Additive, Additive and Dominance), ST_M®iagle-Trait, Multiple-Trait), GenoSet (none,
7K,7K_homo, 50K, 250K), Type (Individual, Family), and Pe(@50, T25). Algorithm decision for each factor, based on theigni cativity of the difference between
factors and the shadow features are: in color: Green: shadovieatures (green), con rmed (blue), and rejected (red).

higher predictions than worst phenotypes. To a lesser extenthe tail of the distribution that is usually relevant for sdlen.
the best weighted G-BLUP (Gw1l) also presented departures Pearson, on the other hand, attained its maximum correfatio
slope. Comparatively, pedigree-based predictions were pgrfectvhen considering the whole population. Such a di erence in
unbiased with slopes of one. behavior could be of relevance when considering di erentleve
This result casted some doubts on the relevance aifselection intensities, or weights given to each trait&ekection
rankings derived from G-BLUP genomic predictions. We addedndex. Usually, the interesting part of the distribution iseth
an alternative measure of prediction quality, the Spearmatop percentiles, where Spearman could be a criterion of choice.
correlation between predictions and true breeding valudsclv.  However, in some cases the interest lies at intermediateesal
is a non-parametric estimate measuring the variation of thdike for budburst. The goal here is to have trees that do not
ranking. Moreover, this focus on ranking appeared as amudburst too early to avoid late frosts, nor too late to avoid
appealing feature in the context of poplar breeding. Althougrshortening the growing season. For those central tiersh bot
less frequent in the literature than Pearson-based prewjcti correlations showed similar performances.
abilities, a few authors used Spearman correlation to etatha We have already pinpointed the fact that the population
prediction quality and to serve as criterion to select eviiduia  used for training, given the level of parental factorization
approaches&onzalez-Recio et al., 2009; Mota et al., 3088me  their mating, presented favorable conditions for pedigresdd
other authors suggest that individual ranking strategiesid be  evaluation. One condition where genome-based evaluaton i
more e cient (Blondel et al., 2005 expected to outperform a pedigree counterpart is when selecting
Our comparison of Spearman vs. Pearson correlationat within-family levels. Our results showed that only geresm
revealed that their di erences in behavior were dependent omased evaluations were able to rank sibs with some degree of
the selected tier in the distribution used for calculatipmsth  accuracy within family cohorts, where pedigrees do not brimg a
Spearman magnifying the advantages of G-based models aagtra information. Although such advantage over the pedigre
high marker densities over pedigree for the best 5-10% tiersjas not clear for all the families, a majority of them showeshs
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FIGURE 11 | Micro-environmentally adjusted phenotypic variabilityyofull-sibs families (in x-axis) for the seven traits used this study. In color the families includes in
the TS/VS (in blue) or in the TestSet (in pink).

potential for gain over several traits. The fact that thisligbi many constraints derived from the phenotypic evaluation and
did not translate into larger di erences in our population could operational factors over the years. It comprises several steps
result from families of reduced size and/or from segregwlo of selection conducted at the greenhouse, at the nursery, in
variances too narrow to feed gain in a substantial way. Whil¢he laboratory viain vitro tests and later in eld trials, with
family sizes were not specially large for what is usual indireg  each step implying di erent selection intensities and nojabl
programs (on average 26 sibs per family), the variation adi erent selection accuracies. It is important to note thatcha
within-family level appeared indeed as notably reduced whegelection step is done sequentially and conditionally othie
compared with between-family di erences (showrfigure 11),  precedent (i.e., independent culling levels), instead otlpand

and that for most of the traits in the analysis. This couldsimultaneously, leading to ine ciencies with the risk ofdimg

be the result of a narrow parental variation in the training,in the rst steps important variation for subsequent steps. Firs
but also from crossings between genetically similar parealts steps of selection at the greenhouse and nursery are the less
characteristics of a reduced e ective population size. Ouiidahit accurate, but the ones that screen most of the variation. towe
estimates of e ective population size (12) already pinpointad th limited eld evaluation surface, a small number of individs@er
narrow genetic diversity. A small e ective size could explain family is kept for the next steps, reducing the phenotypic vaganc
some extent the small di erence that was found between ouwithin each family. Conversely, later steps at the lab andhen t
four training set scenarios, as well as the low impact of theelds are relatively accurate but screen through a subsamiple o
densi cation in the number of markers. In that sense, it isal  original variation. Therefore, accuracy and genetic \anado

that there is a need to expand this proof-of-concept approachot meet in a single same step for maximum e ciency in the

with extra diversity. current scheme.

Our test of genomic selection was performed with moderate
4.4. 1s There a Better Place in the Selection to high heritability traits, well-evaluated in eld trials,nd
Scheme for Genomic Evaluation? on a relatively reduced set of individuals (with low e ective

The present study took place at a particular step in the poplapopulation size) that were the result of two previous steps of
breeding program, as illustrated iffigure 12, speci cally when Selection conducted typically with a low precision and at a
evaluating selected candidates on juvenile traits in thesery. ~ relatively high selection intensity (séégure 12 with the red
The current selection scheme was the result of optimizing fogircle indicating where genomic evaluation was tested)eseh
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FIGURE 12 | Schematic representation of a breeding cycle in poplar, witthe evolution in the number of individuals and the selectiorate during the different steps of
selection after crossings (year 0). Numbers correspond toree cycle of selection. Selection rate values correspond to &ate relative to the previous step. The place
where the genome-based evaluation test was carried out is iehti ed by a red circle.

conditions are often the ones encountered in late stages with custom SNP arrays shared between specigsa-Junior
breeding program cycles, when the implementation of genomiet al., 2015; Gutierrez et al., 2(),1Such a possibility appears now
evaluation is typically devised, and where the precious gémomwithin the reach of breeding program budgets. In the case of ou
and phenotypic resources that are required are to be founds Thistudy, sequencing had an average cost ofe4# individual,

is the case, probably, of other species undergoing domesticat although with large variations due to techniques and depths,
with elites concentrating most of the evaluation resoureesl ~ while genotyping experienced gradual reductions during data
founder bases only lightly evaluated. Theoretically,¢tisroom  gathering from a starting ®to late 4@&per sample (notincluding
for improvement in the way genomic evaluation is integrated i chip design costs).

this kind of scheme, where extra precision is specially regliir . .

at the rst stages of selection. Such a scenario would irevolv4.5. Recommendations for Future Studies
automatically larger e ective population sizes than thosedusein Genomic Evaluation in Poplar

here. The only drawback of such an early implementatiorOne of the main limitations of the study was probably the use
would certainly be the costs associated with a mass gen@fypirof a training population with a design that did not correspond
involving thousands of candidates at the greenhouse. Hewev necessarily to what is routinely done in poplar breeding. kdie
with current prices attaining record low levels every yeatably  the factorial mating design, although potentially interagtiin
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terms of the parental variability, was more oriented for citige  generation interval, and by increasing the selection isignWe
or mapping studies. This was partially overcome by the additiopropose to implement GS sooner in the cycle, at the seedling
of extra families and crosses, well-connected to the bngedi stage, than what was assessed in this study. In the short term
program. In that sense, a training population truly represeintat a genomic selection scheme at the seedling stage, whenishere
of the base population for the breeding program could have mada great number of individuals taking up the least space, would
more easily generalizable the results of the study. Resaniplingbe of great benet to the breeding program. Such an early
the existing population is a good way to improve the trainingscheme combined with a multi-trait approach with a selection
population and increase the prediction accuracy. For instancéndex can increase the genetic gain in the short term for most
to include 6-8 trees per family and evaluation site appearsaits simultaneously, even for those phenotyped at maturity
to be su cient to guarantee an accurate estimation of gemeti like wood properties. For now, only thie. nigraparents could
parameters for wood density and growth in an open pollinatecbe selected with such early genome-based approach, and in
test of black sprucederron et al., 200)3For some specie€(os order to identify the best black poplar parents at the same
et al., 2015; Tayeh et al., 2),l6Dmeans has given good resultsyear as the controlled-crosses to produce both pure species
in optimizing the training populationRincent et al., 20)2Some descendants and hybrids with other species. Time-consuming
preliminary work not shown in this study, however, suggeste@nd resource-intensive evaluations could then take placg onl
that there is no clear advantage for such an optimal procedur@n those genomically preselected parents, with the possihility t
and one of the reasons could be the lack of di erentiation with enlarge the panel of pre-selections. In the longer term, GS can
the population to derive truly di erent training sets. The optah  be implemented in the other parental species deltoidgsand
procedure could also be tried with a denser SNP set, like theven at the hybrid progenyrén et al., 201)7 depending on the
50K. Another strategy to optimize the training step would be t breeding strategy for hybrids. In this case, in addition ket
integrate existing information in the pedigree and from gene step at the nursery evaluation, new steps at the laboratany ca
association studies in the way proposeddyyricola et al(2017.  focus on other targeted traits, like interaction genotypeust

Further investigations are still necessary to improve thetrain and woolly aphid resistance for hybrids, increasing th
model prediction in terms of accuracy, but also to reduceaccuracy of prediction for costly traits related to resistarBiech
systematic and overdispersion biases. The slope bias seenpedpositions could save eventually from 5 up to 9 years in the
to be positively correlated with the number of markers, whilebreeding program. One of the evaluations for which time gains
the use of variable selection models like wGBLUP was ab&e expected is that related to wood quality, with the inténgs
to reduce the slope bias as density was allowed to increagmssibility of predicting potential uses at the individual leve
Density and marker distribution of the original 7K chip did according to the wood properties.
not allow GS to get a clear advantage over the pedigree-basedHowever, there are limits to the rapid advancements of the
counterpart. Marker densities lower than 7K did not appearcycle, and we can cite here two main ones: one is regulatory
to be of interest here, given already the slight advantage and the other is of biological nature. Even if accurate gemomi
7K. Marker selection could be optimized to select the bestvaluation is available at very early stages, the releasgiefies
repartition. Our trial of an alternative SNP set with 7K beingunder current regulations will require carrying out evalioas
homogeneously distributed along the genome did not leadinder production conditions in several environments, which
to gains in accuracy. The original 7K array was somehowsually takes 10 years. Biological constraints are related
enriched for markers in some genomic regions relevant foto sexual maturity. Indeed, if we want to use a selected
economically important traits Kaivre-Rampant et al., 200L6 individual from a parental species for hybridization, it is
Alternatively, marker repartition could follow recombinati  necessary to wait until sexual maturity at around 7 years
rate maps obtained from a pedigreed population, enrichingf age. Another added problem when dealing with sex and
in SNPs around recombination hotspots. Such distributionsarly selection is the sex determination, which cannot be
could be combined with haplotypic approaches based on LPredicted accurately from markerd/(iller et al., 2020 Sex
information. Some studies show that haplotypic approacheprediction at early stages could indeed save resources among
could increase the reliability of predictions because of théhe selected candidates while waiting for sexual maturity
extra capture of linkage disequilibrium with respect to singlefor mating.
SNPs (ess et al., 20)7

Multi-trait and multi-environment evaluations are esseiiin
plant and tree breeding programs, although performing single5. CONCLUSIONS AND PERSPECTIVES
step analyses in these circumstances could be methodallygic
and computationally challenging. In that sensdpntesinos- Our proof-of-concept study shows that genomic evaluation
Lopez et al(2019 have proposed e cient heuristic methods advantages are context-dependent. Its performance could
based on multi-trait deep learning (MTDL), which appear to bebe comparable to the already well-optimized pedigree-based
well-adapted when data is highly unbalanced, contain mgssinevaluation under certain standard conditions and with asce
values data and there is a need for accommodating di erento low to medium SNP density panels. Genomic evaluation
design factors. appeared to be advantageous under less standard scenatios wit

GS can contribute to accelerate genetic gain by increakimg ta certain degree of challenge which have been pinpointed in
individual selection accuracy at early stages, thus shimgethe  our present work. Our study focused on a fairly advanced
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stage of the evaluation in the breeding program, where aontributed to the present study, and read and approved the
substantial part of the variation has already been let asidaal manuscript.

by using pragmatic but less e cient early selections at the

nursery (based on early growth, rooting ability ...). Weided FUNDING
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