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Forest trees like poplar are particular in many ways compared to other domesticated

species. They have long juvenile phases, ongoing crop-wild gene flow, extensive

outcrossing, and slow growth. All these particularities tend to make the conduction of

breeding programs and evaluation stages costly both in time and resources. Perennials

like trees are therefore good candidates for the implementation of genomic selection (GS)

which is a good way to accelerate the breeding process, by unchaining selection from

phenotypic evaluation without affecting precision. In this study, we tried to compare GS

to pedigree-based traditional evaluation, and evaluated under which conditions genomic

evaluation outperforms classical pedigree evaluation. Several conditions were evaluated

as the constitution of the training population by cross-validation, the implementation

of multi-trait, single trait, additive and non-additive models with different estimation

methods (G-BLUP or weighted G-BLUP). Finally, the impact of the marker densification

was tested through four marker density sets. The population under study corresponds

to a pedigree of 24 parents and 1,011 offspring, structured into 35 full-sib families. Four

evaluation batches were planted in the same location and seven traits were evaluated

on 1 and 2 years old trees. The quality of prediction was reported by the accuracy, the

Spearman rank correlation and prediction bias and tested with a cross-validation and an

independent individual test set. Our results show that genomic evaluation performance

could be comparable to the already well-optimized pedigree-based evaluation under

certain conditions. Genomic evaluation appeared to be advantageous when using an

independent test set and a set of less precise phenotypes. Genome-based methods

showed advantages over pedigree counterparts when ranking candidates at the

within-family levels, for most of the families. Our study also showed that looking at ranking

criteria as Spearman rank correlation can reveal benefits to genomic selection hidden by

biased predictions.

Keywords: black poplar, genomic evaluation, marker density, degraded phenotypes, non-additive effects,

multi-trait, intra-family selection, breeding scheme
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1. BACKGROUND

Forest tree species of interest for domestication like poplar
are particular in many ways compared to other domesticated
species, notably when it comes to breeding. Among the various
particularities, forest trees have long juvenile phases, ongoing
crop-wild gene flow, and extensive outcrossing (Miller and
Gross, 2011). All of these hamper the process of “controlled”
recombination by the breeder. Slow growth and cumbersomeness
typical of trees do not facilitate either the conduction of breeding
programs, notably with evaluation stages being costly both
in time and resources. One of the poplar’s particularities is
clonality or the possibility of asexual reproduction, which is a
powerful tool in evaluation and operational breeding (Bisognin,
2011). However, benefits rarely go hand in hand with simplicity.
Typically for developing a new poplar variety, a first year is used
for mating and seedling growth in nurseries. A second year is
used to propagate the cuttings and install the experiments using
a statistical design to do evaluations in different environments,
and many subsequent years pass before we can assess genotype-
by-environment (G × E) interactions, or late maturation traits
like wood quality. Selection in poplars proceeds typically via
independent level stages (independent culling levels), with early
stages involving screening for fast-growing, disease-resistant
individuals from large numbers of candidates. Late stages focus
on a reduced remainder to select on final growth, architecture,
disease resistance, and wood properties. This has been so far
operationally efficient considering the constraints imposed by the
particularities of trees, but it remains time consuming and lacks
precision at the early stages.

For previous and additional reasons, perennials like trees are
good candidates for the implementation of genomic selection
(GS) (Muranty et al., 2014). GS can potentially accelerate the
breeding process, by unchaining selection from phenotypic
evaluation without affecting precision (Meuwissen et al., 2001).
When applied early at the seedling stage, GS could potentially
save evaluation resources and reduce the time required for
evaluation of late maturation traits. GS involves ranking and
selecting individuals by using a genome-wide marker set and
prediction models calibrated previously in a training set. GS has
been made possible thanks to easy access to cheap genotyping
data, and to recent developments in evaluation methodology (de
los Campos et al., 2009). Recent studies of GS in forest trees
were conducted on several species: eucalypts (Resende et al.,
2012b; Müller et al., 2017; Tan et al., 2017, 2018; Cappa et al.,
2019; Ballesta et al., 2020), spruce (Gamal El-Dien et al., 2015,
2016; Ratcliffe et al., 2015; Lenz et al., 2017, 2020; Chen et al.,
2018; Chamberland et al., 2020), pines (Resende et al., 2012a;
de Almeida Filho et al., 2016; Ratcliffe et al., 2017; Gianola and
Fernando, 2020; Ukrainetz and Mansfield, 2020), and rubber
trees (Cros et al., 2019; Souza et al., 2019). Given the differences
among forest species in general, and between their breeding
programs in particular, assessments of GS feasibility at a case-by-
case basis are often desirable.

According to Hayes et al. (2009), several parameters are
involved in genomic evaluation accuracy. First, the extent of

linkage disequilibrium in the population, which is linked to
the effective population size, affects the accuracy of genomic
prediction. Linkage facilitates the use of markers as proxies
of unknown QTLs in estimating genetic effects. The required
marker density is directly dictated by the extent of linkage
disequilibrium: the lower the linkage disequilibrium, the higher
the number of requiredmarkers (Grattapaglia and Resende, 2011;
Wientjes et al., 2013). The second parameter of importance for
accuracy is the composition of the training set. Such a set must
be representative of the candidates for which a prediction is
required. Several studies developed methods to optimize the
composition of the training set (Rincent et al., 2012; Akdemir
et al., 2015; Isidro et al., 2015). The third parameter is trait
genetic architecture, usually unknown or poorly understood,
but that has an influence on the performances of the different
evaluation methods (Wimmer et al., 2013). Some evaluation
methods, such as those using some efficient strategy to focus only
on relevant variables like the family of bayesian methods, appear
to be more efficient with traits with fairly uneven distributions
of gene effects. Other methods with less stringent a priori on
the distribution of gene effects work generally well with highly
polygenic traits, like G-BLUP. Other modeling approaches intent
to capture the underlying complexity of genetic architectures,
by including non-additive effects like dominance and epistatic
interactions (Toro and Varona, 2010; Su et al., 2012; Vitezica
et al., 2013, 2017; Muñoz et al., 2014; Martini et al., 2017), and by
considering multiple correlated traits. The latter have not been
often used, despite some promising simulation studies (Calus
and Veerkamp, 2011; Guo et al., 2014), empirical studies (Jia
and Jannink, 2012), and the known fact from classical evaluation
that genetic correlations can back accuracies of poorly heritable
traits or those harboring many missing values in the dataset
(Gilmour et al., 2009).

In the present work, we intended to benefit from the large
corpus of knowledge already established around the concept of
GS to carry out a proof-of-concept study on the feasibility of the
methodology in the context of the black poplar breeding program
in France. Black poplar is the leading Eurasian species of riparian
forest, with a wide distribution area, and contributing as a parent
together with Populus deltoides to one of the most widely used
hybrid (Populus × canadensis) tree in the wood industry. This
study is the first GS study for a Populus species. One of the
main objectives of the study was to compare GS to pedigree-
based traditional evaluation, by assessing different modeling
options including non-additive genetic effects and multiple-
trait evaluation. The study also considered the role of marker
densification in the performance of GS, by benefiting from a
recent imputation study (Pegard et al., 2018). The potential
benefits of shortening the breeding cycle, although of importance,
were not evaluated but only discussed in present work, because
of the relatively late sexual maturity in the species. Finally, the
design of the calibration and validation sets was taken into
account as an additional factor in the comparison. Globally, the
study intended to identify the situations in which GS could be a
feasible option for poplar, and also the assessments required to
reveal any eventual advantage.
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TABLE 1 | Description of the pedigree and distribution of family sizes after correction of the pedigree from the marker information.

Father SAN-GIORGIO

Mother SRZ BDG 71077-308 92510-1 72145-007 72131-017 73182-009 73193-056 72131-036 3824-3 71034-2-406 72146-11 Total

VGN 55 57 54 32 34 14 30 276

71041-3-402 28 11 17 30 25 111

71072-501 25 28 29 82

SSC 15 20 20 22 77

71040 24 20 44

662200037 25 32 118 31 206

73193-089 22 20 18 60

662200216 31 19 50

71069-914 22 22

73193-091 21 30 51

H480 13 19 32

Total 95 133 114 71 79 108 208 79 19 56 19 30 1,011

Colors correspond to experimental field trials: green for the trial conducted in 2000/2001, pink for the trial conducted in 2012/2013, blue for the trial conducted in 2014/2016, and

orange for the trial conducted in 2017/2018. These latter individuals represent two parental females (underlined codes) are progenies of VGN and BDG and were subsequently used as

parent for the multiple pair mating.

2. MATERIALS AND METHODS

2.1. Plant Material
The population under study corresponds to a pedigree of 24
parents and 1,011 offspring, structured into 35 full-sib cohorts,
and involving a 4 by 4 factorial mating design together with
a series of multiple pair-mating designs (Pegard et al., 2018).
Most of the parents were sampled from natural populations
or were high-performance trees already used in the breeding
program. The population corresponds therefore to the offsprings
of these individuals obtained by controlled crosses. The effective
population size was estimated to be 12 from coancestry matrices
(Caballero, 2000) computed from pedigree corrected by marker
information. Family size ranged from 10 to 118, with an
average of 26 individuals per family. Pedigree description and
distribution of family sizes are available in Table 1.

2.2. Phenotyping
Field evaluations corresponded to four different experimental
trials. All four experimental trials were planted in the same
location (47◦ 37’59” N, 1◦ 49’59” W, Guéméné-Penfao,
France) with small variations in plot orientation and with
common genotypes as controls across experimental trials
(Supplementary Table 1). The first experimental trial (2000
and 2001) involved the factorial mating design with a total
of 14 families and 413 offspring phenotyped. In second and
third experimental trials, 126 individuals in 6 families and 105
from 5 families were phenotyped (2012/2013 and 2014/2016,
respectively). Finally, in order to reinforce the connectivity
between the different experimental trials, 10 additional full-
sib families with some parents already in use in previous
experimental trials were added in 2015 and phenotyped in
2017/2018. In total, 367 individuals were phenotyped in this last
batch. At their respective time-frames, all 1,011 offspring and

the 24 parents were vegetatively propagated, and field evaluated
in separate experiments according to the same six randomized
complete block design.

Phenotyping involved seven different measurements
over different years (2000/2001, 2012/2013, 2014/2016, and
2017/2018), and for five different traits. Growth was assessed
as stem circumference and tree height. Stem circumference at
1 m was considered for the second year (circ2). Height was
assessed with a graduated rod after 1 (height1) and 2 years
of growth (height2). Mean branching angle was scored on
proleptic branches at the age of 2 years with a 1–4 scoring scale
(angbranch; score 1 : 0–30◦ from the horizontal; score 2: 30–40◦;
score 3: 40–55◦; score 4: >55◦). The scale for angbranch was
calibrated in such a way that resulting measures in the same
population of reference resulted in phenotyping distributions
being close to normality. Rust resistance was assessed with a
1 (no symptom) to 9 (generalized symptoms) scale (Legionnet
et al., 1999) at year 1 (rust1) and year 2 (rust2). Budburst
phenology of the stem terminal bud was evaluated by measuring
its kinetics (every 3 or 5 days from March to April) with a 0–5
scale, where stage 0 corresponded to a completely closed bud
while stage 5 corresponded to the initiation of stem internode
elongation (Castellani et al., 1967). A local polynomial regression
model was fitted between stages and dates for each individual
and this model was further used to predict the date in Julian days
at which the terminal bud was at stage 3 and in order to assess
individual susceptibility to late frosts (Howe et al., 2000). As a
result of such fitting for budburst, distributions were continuous
and close to normality.

All seven phenotypes were independently adjusted to field
micro-environmental heterogeneity with the breedR package
[Muñoz and Sanchez, 2018, implemented in R3.3.1 platform
(R Core Team, 2018)]. We used an individual-tree mixed
model over all four experimental trials, comprising all available
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information with genotyped and non-genotyped individuals (not
included in this study) according to a single-step formulation
(mixture of pedigree relationship matrix for non-genotyped
individuals and genomic equivalent for genotyped individuals)
(Legarra et al., 2009). A random effect capturing spatial
heterogeneity at individual level within trials was fitted thanks
to the use of a bi-splines surface covering row and column
axes (Cappa and Cantet, 2007; Cappa et al., 2015). Such a
surface was nested within each evaluation experimental trial.
Bi-splines were anchored at a given number of knots for rows
and columns, with higher numbers increasing the roughness
of the surfaces and lower numbers giving extra smoothness.
Knot numbers were optimized by an automated grid search
based on the Akaike information criterion (Akaike 1974)
provided by breedR. The use of all available information in
field trials, including non-genotyped individuals, minimized
the occurrence of gaps in the surfaces and facilitated the
prediction of accurate micro-environmental individual effects
across the experiment. The fact of using common genotypes
across trials (see Supplementary Table 1) and the use of genomic
and pedigree relatedness in the mixed model facilitated the
adjustment across trials. The micro-environmental individual
effect was subtracted from the observed phenotype to obtain
a spatially adjusted individual phenotype. A clonal mean of
spatially adjusted phenotypes was calculated for each trait and
used as raw phenotypes for the rest of the study (hereafter
adjusted clonal mean). As a default option, data from all blocks (6
Blocs) were used as input to themodel. The samemodel was fitted
to data from only three of the blocks (blocks 1, 3, and 5 called 3
Blocs model afterwards), to assess prediction quality with a less
precise phenotype. All measurements were tested for deviations
from normality by a randomized Q-Q plot.

2.3. Genotyping
All 1,033 individuals in this population (22 parents, 2 being both
parents and offspring, and 1,009 offspring) were genotyped using
the Populus nigra 12K custom Infinium Bead-Chip (Illumina,
San Diego, CA) (Faivre-Rampant et al., 2016). Additionally, 43
individuals were sequenced, including an extra founder that was
identified as one of the grandparents in the pedigree. Among the
remaining 42 sequenced, there were 22 parents, 14 progenies, and
six unrelated individuals from natural populations. Progenies
were chosen in such a way that all parents had at least one
offspring with its genome sequenced. The set of unrelated
individuals were used to assess the imputation ability under
challenging conditions. In a previous study (Pegard et al., 2018)
genotype imputation from 7K (effective SNPs out of 12K in array)
to 1,466,586 SNPs was performed attaining imputation qualities
higher than 0.84 per individual, and evaluated by a leave-one-
out cross-validation scheme (CV). Resulting imputation was used
in the present study to constitute alternative sets of selected
markers for genotyping. For quality assessment and selection
of the marker sets, we used the proportion of alleles correctly
imputed by genomic position across individuals (Props), and
Props corrected by the probability of correct imputation by
chance (Badke et al., 2013; cProps). Among the imputed SNPs,
we selected those with Props higher than 0.90, with cProps higher

than 0.60 and aminor allele frequency (MAF) higher than 0.05, to
obtain a set of 249,805 SNPs (250K). That latter set comprised the
total of the 7K from the chip. We selected two alternative smaller
marker sets: 50K (with 50,565 SNPs), and 7K_homo (with 7,048
SNPs) where coverage and homogeneity of density was optimized
over the original 7K array. These two sets were composed by
selecting, respectively 1 SNPs every 1,000 or 50,000 bp out of
the 250K set. Whenever more than one candidate SNPs were
available for the same window, we selected the one that had the
highest values of Props and cProps.

2.4. Models
We estimated variance components and heritabilities with the
complete data set and single trait models, and genetic correlations
with a genomic multiple-trait model (GBLUP). The Akaike
Information Criterion (AIC) was used to assess for each given
trait the quality of each model. Two alternative methods were
used to calculate genomic estimated breeding values for each
trait: the best linear unbiased prediction based on genomic
information (GBLUP) (Whittaker et al., 2000; Meuwissen et al.,
2001), and the weighted GBLUP (wGBLUP; Legarra et al., 2009;
Zhang et al., 2016). They were all compared to the best linear
unbiased prediction based on pedigree information (PBLUP)
(Henderson, 1975). The models for GBLUP (and PBLUP) using
matrix notation for additive and non-additive effects were
given by:

y = Bβ + Zu+ ε (1)

y = Bβ + Zu+Wd + ε (2)

where y was the adjusted clonal mean, β a vector of fixed effects,
u the vector of random additive effects following N(0,Gσ 2

a ) with
σ 2
a the additive variance and G (or A in PBLUP) the relationship

matrix, d was the vector of random dominance effects following
N(0,Dσ 2

d
) with σ 2

d
the dominance variance and D the dominance

relationship matrix, ε the vector of residual effects following
N(0,Iσ 2

e ) with σ 2
e the residual variance. The design matrix B

contains the values of the covariables with fixed effects and Z,
W, and I are indicator matrices relating the clonal mean to the
random effects. The methods used to obtain the relationship
matrices are explained in the next section. The PBLUP and
GBLUP single-trait models as well as the multi-trait models were
fitted with the R package breedR (Muñoz and Sanchez, 2018). All
the analyses are summarized in Table 2.

2.5. Relationship Matrix Estimation
The ARM (additive relationship matrix) was built from the
known pedigree at the moment of the controlled crossings,
and denoted hereafter as A. However, a preliminary marker
assessment in this study showed that there were errors in the
pedigree. Pedigree was corrected based on these results and
a new reconstructed ARM was obtained, denoted hereafter as
Acor . Pedigree errors involved in most cases a wrong paternity
attribution and, less frequently, individuals supposed to be
different genetically. The total number of parents after correction
did not change, with an added father and a removed mother.
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TABLE 2 | Combination of models and marker sets tested.

Methods ADD ADD + DOM MultiTrait SNP set

P-BLUP Yes Yes Yes None

P-BLUPcor Yes Yes Yes None

GBLUP

Yes Yes Yes 7K

Yes Yes No 50K

Yes Yes No 100K

Yes Yes No 250K

wGBLUP

Yes Yes No 7K

Yes Yes No 50K

Yes Yes No 100K

Yes Yes No 250K

BayesCpi

Yes No No 7K

Yes No No 50K

Yes No No 100K

No No No 250K

The main change concerned the number of families that went
from 39 to 35. Both A and Acor were calculated with the R
package nadiv (Wolak, 2012), and kept for the comparison in
order to show the potential loss due to pedigree errors and the
maximum performance attainable by pedigree. Concerning the
genomic relationship, we used a normalized matrix (G Equation
3) calculated following VanRaden’s formulation (Habier et al.,
2007; VanRaden, 2007) and the scaling proposed by Forni et al.
(2011) to assure compatibility with A, for each genotyping set
(7K, 50K, 100K, and 250K) :

G =
(M − P1)Wa(M − P1)′

trace[(M − P1)Wa(M − P1)′]/n
(3)

where M was a genotyping matrix with m markers in columns
and n individuals rows, P1 was a matrix (n × p) containing the
minor allele frequency (2pi), at the marker i, andWa was a matrix
of weights described below.Ad hoc scripts in R were used tomake
the computations for G (R3.3.1 platform). To assess dominance
effects, a dominance matrix based on the pedigree information
was calculated with the R package nadiv (Wolak, 2012) with
expected and observed pedigree information (D and Dcor). The
genomic dominance matrix was calculated as:

D =
(X − P2)Wd(X − P2)′

trace[(X − P2)Wd(X − P2)′]/n
(4)

where X was the genotyping (n × p) matrix containing code
“0” for the homozygous and “1” for the heterozygous, P2 the
(n × p) matrix containing the heterozygous frequency (2piqi)
according to Vitezica et al. (2013) and normalized in the same
way as for G in Equation 3, and Wd the matrix of weights
as described below. We used one of the procedures of Wang
et al. (2012) for calculating weights in wGBLUP. Unlike GBLUP,
where all markers have the same variance and therefore the same
weight, the derivative wGBLUP uses a transformed G according
to marker weights to select markers. The weights were calculated

as wj = û2j where wj was the weight for the SNP j and ûj was the
estimated marker effect obtained as

ûa = WaX
′G−1ĝ (5)

ûd = WdX
′D−1d̂, (6)

where Wa,d was a diagonal of weights, either a identity
matrix (GBLUP) or a diagonal of w weights (wGBLUP) for
additive (Wa) or dominance (Wd) relationship matrices, ĝ the

genomic estimated breeding values (GEBV) and d̂ the estimated
dominance effects. Several iterations of recomputed ûa, ûd, ĝ, and

d̂ were performed to update G, following recommendation by
Wang et al. (2012), and according to the following steps:

1. Define i = 1,W(a,d)i = I and Gi as Equation (3)
2. Compute ĝi using GBLUP approach
3. Compute additive SNP effects with Equation (5) and

dominance SNP effects with Equation (6)
4. Calculate SNP weights as waj+1 = û2ai and wdj+1 = û2

di
5. Scale waj+1 and wdj+1

6. Calculate Gi+1 with Equation (3)
7. Calculate Di+1 with Equation (4)
8. i = i+ 1
9. Iterate from 2 until i = 3.

A weighted relationship matrix was obtained from each
subsequent iteration, giving respectively, Gw1, Gw2, and Gw3, as
three distinct matrices leading to separate evaluation methods. In
this study, therefore, eight relationship matrices were tested (A,
Acor, G, Gw1, Gw2, Gw3, D, Dcor), and the resulting predictions
were compared via cross-validation and by an independent
data set.

2.6. Prediction Accuracy and
Cross-Validation
We assessed the impact of the composition of the training (TS)
and validation sets (VS) on the performance of the genomic
evaluation by trying two TS/VS sizes and two different TS/VS
compositions in a 10-fold cross-validation scheme. The two sizes
were 50% (T50) and 25% (T25) of the individuals evaluated in the
2000/2001, 2012/2013, and 2014/2016 experimental trials. The
last field evaluation trial of 2017/2018 did not contribute to TS
and was used as an extra independent validation set (TestSet)
for each of the four TS, as it represented a sample of the next
generation of selection candidates. Such Testset represents an
independent validation experiment without the risk of eventual
overfitting that is typical of cross-validation schemes, and it is
the result of a mating campaign involving a sample of parents
from the breeding population (seeTable 1). The two composition
scenarios for TS and VS involved: a sampling of individuals
independently of their family membership and a sampling of
different family sets. Both size and composition were combined
to obtain the desired percentage (50 or 25%) of individuals or
the desired percentage (50 or 25%) of families. The performance
of the models was evaluated following different criteria. Firstly,
predictive ability, which was defined as the Pearson correlation
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coefficient between the adjusted clonal means and the GEBVs of
the samples in the VS, or in the TestSet. The accuracy (Accuracy
and Accuracy test) of the models were estimated by dividing
each predictive ability by the square root of the heritability of
the corresponding A model for the given trait. Additionally, the
Spearman rank correlation between the adjusted clonal means
and the GEBVs of the individuals in the VS was calculated
(Spearman).We estimated the Spearman and Pearson correlation
of the top 5% of the trait, for the section between 5 and 10%,
and between 10 and 50% within the VS. Finally, we assessed
potential bias in genomic predictions by estimating the intercept
and the slope of the linear regression between the adjusted clonal
means and the GEBVs of each model, in the VS and in the
TestSet. Predictive abilities were also calculated at the within
family level. The prediction ability obtained within families
following PBLUP with the corrected pedigree were subtracted
to the equivalent prediction ability obtained from the genomic
model, for given cross-validation scenario and trait. A weighted
average was then calculated according to the size of the family.
given cross-validation scenario and trait. A weighted average was
then calculated according to the size of the family.

2.7. Testing Factor Importance
In order to assess the main factors accounting for genomic
evaluation performance, we applied the Random Forest
algorithm (Liaw and Wiener, 2002) implemented in the Boruta
R package (Kursa and Rudnicki, 2010). The main factors (or
features) were: Trait, Matrix (A, Acor, G, Gw1, Gw2, Gw3, D,
Dcor, Dw1, Dw2, Dw3), GeneticEffect (Additive, Additive, and
Dominance), ST_MT (Single-Trait, Multiple-Trait), GenoSet
(none, 7K,7K_homo, 50K, 250K), Type (Individual, Family),
Perc (T50, T25), and PhenoSet (6 Blocs, 3 Blocs). Classification of
features was done for each of the performance variables available:
predicting ability, Accuracy, Spearman correlation, and slope.

3. RESULTS

3.1. Heritabilities
Heritabilities with their corresponding variance components and
Akaike Information Criterion (AIC) are shown for all models
and traits in the Supplementary Table 2. In general, most traits
showed intermediate to high heritabilities (average of 0.73) as
illustrated by Figure 1A, with height and rust showing the
highest average values, and budburst correspondingly the lowest.
The fact that we used adjusted clonal means as phenotypes
to be explained in the models induced a low residual term,
which in turn raised the heritability estimates. In terms of
models, G and weighted G resulted in higher heritabilities
across traits (Figure 1B), with an advantage to the latter under
additive models, and to the former under models comprising also
dominance (Figure 1C). Most of the genomic scenarios (G and
weighted G) resulted in higher heritabilities than the pedigree-
based counterparts, with uncorrected pedigree resulting in the
lowest heritabilities overall. Another factor increasing heritability
across traits was marker density, with highest values observed
with the 250K SNPs set, followed by the 50k and the 7K_homo
sets, with 7K resulting in the lowest values among genomic

alternatives. On the contrary, using a phenotype adjusted with
less information had little effect on heritabilities.

3.2. Accuracies Estimated by
Cross-Validation With Different Training
Sets
Three out of seven traits (budburst, height1, and rust1) were
selected to show the cross-validation accuracies in Figure 2

(the remaining traits are shown in Supplementary Figure 1),
assuming different relationship matrices and four different
training scenarios (size and composition). Results correspond to
single-trait additive models with a relationship matrix based on
the 7K SNP panel. Accuracies varied between 0.17 and 1.01 across
all scenarios and traits. It is important to note that, because of
the choice of a particular model of reference to provide a basis
heritability (pedigree-based model with the A matrix), accuracies
larger than one were obtained.

Accuracies responded greatly to changes in the way the
training set was constituted (percentage and composition). The
fact of using different families for training than for validation
had a large impact on the accuracy when compared to the
alternative scenario where the splitting between training and
validation occurredmostly within families. Basically, as expected,
predicting different families was less accurate than predicting
different individuals within the same cohort, with losses in
accuracy averaging 13%. This pattern was found for all traits,
except for one training scenario for angbranch, where differences
between the two compositions were also the weakest. Concerning
the percentage, the effect of reducing the training set from T50
to T25 had also an impact on accuracy, although mostly when
training and validation involved different families. On average,
reduction in accuracy with decreasing training set size was
around 4.2% for the training composition based on individuals,
and vary depending on the trait (from −18 to 8%) for that based
on families.

3.3. Challenging Prediction Models With
New Individuals
We used a completely independent set of individuals
representing the next generation of selection candidates to
evaluate the different prediction models with 7K SNP and
across two different training scenarios (T25 and T50). Results
of accuracies from this independent set are presented for three
traits in Figure 3.

Accuracies were substantially lower under the new more
challenging testing scenario than those already shown for the
cross-validation scheme for the same traits (see Figure 2). In
general, marker-based models resulted in a less affected level of
accuracy compared to the pedigree-based counterparts: the G-
based and Gw1 models were the best performers, notably for
rust1 and budburst. For height1, however, A and Acor models
obtained comparable performances to those from genomic based
models. Otherwise, the model based on uncorrected A had
generally poorer accuracies than those shown by the corrected
A. The behavior of the different models in terms of accuracies
depended greatly on traits and, to a much lower extent, on the
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FIGURE 1 | Heritability obtained with a global model using all the available data. (A) Heritabilities derived from an additive model and the 6-block adjusted dataset, the

boxplots represent the heritabilities per trait (angbranch, budburst, circ2, height1, height2, rust1, rust2), according to the marker density (Ped, CorPed, 7K,7K_homo,

50K, and 250K), across matrix. (B) Heritabilities derived from an additive model and the 6-block adjusted dataset, the boxplots represent the heritabilities per matrix

(A, Acor, G, Gw1, Gw2, Gw3), across traits and marker density. (C) Heritabilities derived from the 6-block adjusted dataset, the boxplots represent the heritabilities per

model (ADD: additive; ADD_DOM), across traits, marker density, and matrix.

training scenario. Concerning the training scenario, it is to be
noted that family sampling obtained slightly higher accuracies
than individual sampling, although differences were not of
significance. These results give an idea of the performance
obtained in a real candidate selection test. In doing so, we decided
to look at the impact of other factors on the independent dataset
rather than on cross-validation. The results obtained for the
cross-validation are in Supplementary Material.

3.4. Prediction Performance in the Test Set
With More Complex Models
By adding a dominance effect to the single trait model for each
trait with the 7K SNP panel, we did not observe significant
changes in accuracy with respect to the purely additive model
(Figure 4, upper part, and Supplementary Figure 2). Overall,
dominance did not lead to losses in accuracy, with similar
performances to that of additive counterparts across traits.

Another added complexity were the multi-trait additive
models, which were also evaluated in terms of accuracies
(Figure 4 lower part, and Supplementary Figure 3). The

advantages of a multiple-trait approach over the single-trait
counterpart were trait-dependent and generally very small. For
instance, rust1 showed clearly no benefit in using a multiple-trait
prediction, while for height1 the multiple-trait prediction had
a small advantage when training over different families. For
budburst, however, the multiple-trait approach brought a loss
with the G-based model in both training scenario. Moreover,
the multiple-trait approach did not seem to benefit from the
use of marker-based G matrices over pedigrees. Therefore, the
multiple-trait prediction did not bring a clear-cut advantage
across traits and training scenarios. Genetic correlations between
the traits involved in the multiple-trait analysis are shown in
Supplementary Figure 4 as supplementary data.

In summary for the TestSet, the accuracy of unweighted
G-based models appeared to be slightly better than with
pedigree-based models, although in most cases the Acor model
obtained comparable levels of performance to the best G-based
method (data not shown). The cross-validation sampling strategy
(individual/family) impacted the accuracy in all cases and for
all traits, with individual scenarios having, in general, higher
accuracy than family scenarios. The percentage of individuals
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FIGURE 2 | Cross-validation prediction accuracies using an additive model with 7K SNP for three traits, grouped by the proportion of individuals (Individual, in blue) or

families (Family, in green), in training sets 50% (T50) and 25% (T25). Each violin plot represented the accuracy of 10 repetitions for each scenario, and the dot

represented the median of each distribution.

in the training population (T50/T25) showed a less important
impact on accuracy than that of composition. More advanced
models involving dominance effects and multiple-traits did not
improve the performance of genomic predictions.

3.5. Effect of Marker Density on Accuracies
The same three traits (budburst, height1, and rust1) were
used to show the effect of an increase in marker density on
prediction accuracy over different modeling approaches on the
TestSet in Figure 5 (Supplementary Figures 5, 6). We compared
the accuracies obtained with four marker sets of increasing
density with a single-trait additive model, and T50/Individual
sampling scheme.

The effects of density were clearly trait-dependent, and the
choice of traits illustrated here cover well these differences in
behavior. Such densities were also differently exploited according
to traits by the different G matrices used in the modeling. For
traits like height1 and rust1, densification in the number of SNPs
had no clear benefit in terms of accuracy, and the use of weighted
G matrices did not exploit the extra density to bring additional
accuracy. For traits like budburst, however, densification brought
some benefits in accuracy when combined with some weighting

in the G matrices, notably after one step of weighting and using
the highest densities of 250K.

Besides the number of markers, their distribution over the
genome seemed also of relevance for accuracy. This is particularly
illustrated in the comparison between the 7K and 7K_homo sets,
where the latter represents an even distribution sample over the
genome. Such even distribution was not beneficial for accuracies
across traits compared to the original 7K set. This latter set was
seemingly richer for some relevant genes, as the array design
from which the 7K set results favored certain regions linked to
important traits over a homogeneous distribution.

3.6. Challenging Prediction Models With
Degraded Phenotypes
Phenotypes used as dependent variables in the models resulted
from averaging six field replicates that were previously spatially
adjusted. To test whether the number of replicates could have
an effect on the difference in performance between pedigree
and genomic-based evaluations, new evaluations were produced
based only on 3 out of 6 replicates. The adjusted clonal means
produced were compared to those obtained with 6 Blocks. The
correlation between the two clonal mean sets was close but
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FIGURE 3 | Prediction accuracies using an additive model with 7K SNP for five traits, grouped by the proportion of individuals (Individual, in blue) or families (Family, in

green), in training sets 50% (T50) and 25% (T25) on an independent Test Set representing the candidates for selection. Each violin plot represented the accuracy of

ten repetitions for each scenario, and the dot represented the median of each distribution.

not equal to 1 (from 0.8 to 0.94: Supplementary Figure 7),
and a t-test on paired data confirmed the difference to be of
significance between the two sets of data. Resulting accuracies
under this new evaluation scheme are presented in Figure 6

(Supplementary Figures 8, 9 for the results in cross validation),
involving the training scenario T50/individuals and the marker
density set of 50K. The prediction accuracy was not significantly
affected by the reduction in repetitions, across models and traits.
This result was also observed for other training scenarios and
for the remaining marker densities (not shown). Therefore,
downgrading the phenotype with half the number of repetitions
did not appear to affect pedigree-based predictions, which were
almost equally competitive. This also suggests that evaluations
under current conditions could have been simplified with either
less field area or extended to extra candidates keeping the same
field area.

3.7. Evaluation of Prediction Models With
Complementary Criteria
Trends for slope of the linear regression between the adjusted
clonal means used as phenotypes and the resulting GEBVs
(or pedigree equivalents EBVs) across models showed

that the pedigree-based approaches had the most robust
behavior with values always around 1. Contrarily, G-based
approaches often showed upwardly biased predictions
(Supplementary Figures 10, 11). This deviation was always
more pronounced for G-BLUP than for weighted G-BLUP, with
a decreasing trend in slope with increasing steps of weighting.
Marker densities had the effect of increasing slopes, notably for
G-BLUP and weighted G-BLUP schemes with fewer steps of
weighting. With a less pronounced effect, the change in training
scenarios from individuals to families and from T50 to T25
increased slopes. In general, G-BLUP schemes showed the largest
deviation in slopes due to changes in training scenarios. Slopes
larger than one correspond generally to biases in predictions that
depend on the magnitude of the predicted variable, being larger
the bias the larger the phenotype.

We compared two correlation coefficients: the classical
Pearson correlation, on which predicting abilities are based, and
a rank-based coefficient like Spearman. Such comparison was
made across different tiers of the evaluated sample of candidates:
from the 5% tier of best candidates to the totality of the TestSet,
with the aim to explain the origin of biases. Results are shown
in Figure 7 for budburst (Supplementary Figure 12 for the
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FIGURE 4 | Prediction accuracies using different evaluation models on the TestSet by cross-validation type “T50” with 7K SNP, and rust1, budburst and height1. The

upper panels involve single-trait (ST) vs. multiple-trait (MT) additive models: with ST with individual sampling (blue), ST with family sampling (green), MT with individual

sampling (orange), and MT with family sampling (yellow). The lower panels involve additive (ADD) vs. additive and dominance (ADD_DOM) single-trait models: with

ADD and individual sampling (blue), ADD and family sampling (green), ADD_DOM and individual sampling (light purple), ADD_DOM and family sampling (dark purple).

cross-validation results). Differences between the two coefficients
were substantial within the best 5% tier, where the Spearman
correlation appeared to magnify the advantages of G-based
models over that of pedigree-based counterparts. Such advantage
became more pronounced for that particular elite tier with G-
basedmodels using highermarker densities. Differences were less
pronounced for other less performing tiers, notably those closer
to the mean. For the totality of the TestSet, Pearson resulted in
slightly higher values than those of Spearman. Thus, the behavior
of the two correlations were opposite whether we looked at the
best tier or to the whole distribution, with Spearman revealing
extra differences between evaluation methods for the tail of the
distribution that is usually relevant for selection. Similar patterns
were observed for rust1 (Supplementary Figure 13 lower part).
Height1 had a pattern slightly different, with an advantage of
Spearman over Pearson for the G-based models relevant for the
50K SNP densities and for the 2 top tiers, and no advantage with
the highest density 250K (Supplementary Figure 13 upper part).

3.8. Genomic Model to Select Among
Full-Sibs
Differences in Prediction ability at within-family level between
genome-based and pedigree-based predictions are shown in
Figure 8, in the shape of distributions over all available full-sib

families and for three traits. Results show important variation
across families, spanning from no advantage of genome-
based methods with respect to the pedigree counterpart (zero
differences and below), to advantages over 0.4 for the genome-
based option for some of the families. The different methods of
constructing the G matrix (G and weighted G) had little effect
on the differences, while increasing the training set (T50 vs. T25)
or sampling families instead of individuals augmented slightly
the genome-based advantage in terms of median differences.
These advantages were higher for budburst and rust1 than for
height1. Overall, genome-based methods showed advantages
over pedigree counterparts when ranking candidates at the
within-family levels, for most of the families.

3.9. Ranking of Factors Impacting
Prediction Accuracies
The Boruta algorithm was used to evaluate the different features
explaining the variability of three performance parameters:
accuracy, Spearman correlation and slope. Results in terms
of Z-score for all features in the cross-validation are shown
in Figure 9. Both correlation-based performance parameters,
accuracy and Spearman, led to similar ranking of features, with
Type (Individual vs. Family), trait, matrix (A and G matrices),
and Perc (T50 vs. T25) being the factors explaining the most
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FIGURE 5 | Marker densification impact on predictive accuracy of a single trait additive model with T50 individual in the TestSet for four genomic relationships

matrices (in columns) and three different traits : height1 (purple), budburst (black), and rust1 (orange). The range of accuracies obtained with the pedigree information

was represented in each column by the tag Ped. The accuracies distribution is represented by a boxplot.

in performances. Thus, the A vs. G comparison, although
important, was not the one at the top. For slope, however, the
features related to modeling and integrating information were
the most important ones, with those related to training and
validation characteristics being negligible. A similar analysis was
conducted on the results obtained with the TestSet (Figure 10).
Results show patterns for accuracy and Spearman correlation
similar to those of cross-validation, except for the fact that the
impact of size and composition of validation was negligible in
TestSet conditions. For slope, the effects of the different features
were very small, again with features related to modeling and
integrating information showing the most important roles. The
main feature explaining variability of prediction within family is
the trait variation (Supplementary Figure 14).

4. DISCUSSION

4.1. Genomics Does Not Improve
Substantially Prediction Accuracy Over
Pedigree in Standard Conditions
This study was conceived as a proof-of-concept of the genomic
evaluation in the black poplar breeding program in order to
evaluate feasibility and performance in a situation close to
operational conditions for the species. Several main messages
could be drawn from this study. Firstly, genome-based models

captured higher heritabilities and higher additive variances than
their pedigree equivalents, although this did not lead to a
systematic advantage in terms of prediction accuracy for the
former over the latter. Although G-BLUP obtained in general
the best prediction accuracies, it was very closely followed by the
evaluation based on a genomically corrected pedigree. Secondly,
the benefit of densification of the marker panel for the prediction
quality was not obvious, with results dependent on traits and
treatment of the G matrix. Finally, the most clear advantages of
genome-based methods and of marker densification were found
in more challenging validation situations, when observing the
ranking among the best 5% elite individuals or when importance
was given to selection within families.

The genomic evaluation captured generally more genetic
variance than pedigree evaluation, regardless of the trait. The
number of markers fitted in the model generally increased the
proportion of genetic variance explained by the model, but
this occurred mostly under G-BLUP. When using a weighted
GBLUP variant, the proportion of genetic variance explained by
the model decreased with the cycles of weighting and selection
of relevant markers. Without variable selection, plain G-BLUP,
increasing the number of markers favored a better coverage of all
genomic regions, including those close or inside relevant QTLs.
Variable selection in weighted GBLUP could have eroded relevant
variation, affecting the proportion of captured variation. This
type of behavior could reflect an underlying infinitesimal-like
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FIGURE 6 | Impact on predictive accuracy of two alternative ways of producing phenotypes, with 3 (pink) and with 6 (blue) replicates, with a single trait additive model

in the Test set (T50 individual sampling strategy) by genomic relationships matrices (in columns) and three different traits (in rows): height1, budburst, and rust1. The

accuracies distribution is represented by a violin plot and their median by the dot.

trait architecture of the traits studied rather than a few underlying
QTLs with a substantial effect (Zhang et al., 2016).

Capturing more genetic variance with marker-based models
did not result necessarily in a better prediction of the phenotype
than using plain A models. Our prediction accuracy was already
relatively high under pedigree evaluation, probably due to the
fact of using a good evaluation design with enough repetitions
and spatial adjustments at individual level. Markers did not help
to improve this scenario or very little. Globally, when there was
a difference between pedigree-based and genomic predictions,
this occurred with G or Gw1 matrices. Using several weighting
cycles (Gw2 and Gw3) did not show in any case better results.
Comparable results with decreasing efficiency of several cycles
of weighting were found in other recent studies (Teissier et al.,
2018). Our results show little or no gain by increasing marker
density, even when combining densification with a variable
selection method, such as Gw. This lack of gain in accuracy may
suggest that we have reached a plateau and that 7K markers
are sufficient for this population. Some authors have already
reported plateaus in performance when increasing the number of
markers: in cocoa (Romero Navarro et al., 2017), wheat (Norman
et al., 2018) and eucalyptus (Kainer et al., 2018). For eucalyptus,
the plateau in correlation was still not reached at 500K, while

for cocoa and wheat it was reached after thousands or tens
of thousands of markers. Together with the fact that pedigree
evaluations already obtained high levels of prediction accuracy,
there is also the point that correcting pedigrees generally had a
beneficial effect, making the resulting model truly competitive
in some situations and with some traits compared to genome-
based models. This is not new in forest assessments, given the
fact that controlled crosses are cumbersome and prone to errors.
In loblolly pine (Munoz et al., 2014) and in maritime pine
(Bartholomé et al., 2016), pedigree errors led to decreases in
predicting ability, and by completing or correcting the pedigree
the predicting ability could be increased. In the maritime pine
study (Bartholomé et al., 2016), the predicting ability was
improved by the completion of the pedigree information in such
a way that the genomic evaluation had little extra room for
improvement in predicting ability. The error rate in our pedigree
was 15%, involving in most cases wrong paternity attribution
of complete or partial families, or individuals supposed to be
different genetically.

In our study, model complexification using a dominance effect
had no effect (positive or negative) on the quality of prediction.
Our results are in line with previous studies. Several studies
integrated dominance or epistatic effects in the GS. The results
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FIGURE 7 | Comparison of Spearman (green) and Pearson (purple) correlations between phenotypes and estimated breeding values for budburst in the Test set (T50

individual sampling strategy), for different relationship matrices (within panels abscissas) and SNP densities (across panel columns). Across panel rows represent the

tier used for the calculation of correlations: 0–5% for the 5% best individuals; 5–10%, between the 5 and 10% best individuals; 10–50%, between the 10 and 50%

best individuals, and 100% for the whole Test set.

on real datasets showed either no improvement in terms of
accuracy (Heidaritabar et al., 2014; Gamal El-Dien et al., 2016;
Jiang et al., 2017), even if a non-additive proportion of variance
was observed for the traits, or a small improvement in prediction
accuracy (Aliloo et al., 2016; Moghaddar and van der Werf, 2017;
Tan et al., 2018). This so far limited success may be due to
the fact that the populations under study were not big enough,
nor with an optimal design to reveal the benefits of adding
non-additive effects in genomic prediction. Despite a few strong
genetic correlations in our population, the same observation can
be drawn for the multi-trait approach, which did not bring a
clear advantage to the quality of the predictions. One of the
possible explanations could be found in the small difference in
missing values between traits in our dataset. This has already
been pinpointed as a cause of lack of performance by other
authors working with a multi-trait approach (Jia and Jannink,
2012; Dos Santos et al., 2016; Lyra et al., 2017; Rambolarimanana
et al., 2018). Multi-trait evaluation can help the prediction
by compensating missing values in different traits and poor
heritabilities (Calus and Veerkamp, 2011; Jia and Jannink, 2012;

Marchal et al., 2016; Schulthess et al., 2016). It could also reduce
prediction bias (Kadarmideen et al., 2003). An interesting and
promising approach called “Trait-assisted genomic prediction”
by Ben-Sadoun et al. (2020) allows to optimize the phenotyping
cost by using a multiple-trait approach.

Apart from the general trends between pedigree vs. genomic
models, results of prediction accuracy were fundamentally
trait-dependent and mostly driven by the kind of training
scenario being applied. This is clearly shown by the results
of the Boruta algorithm, which found trait and training
scenarios to be key features in explaining predicting accuracies.
Similarly to other authors (Norman et al., 2018), we observed
that prediction accuracy resulted in higher levels when the
training and validation populations were closely related, as
when the split between the two occurred at within family
levels. On the contrary, prediction accuracy could be greatly
affected when resulting from distant, independent validation
sets. In our study, the cross-validation with individual sampling
performed better than with family sampling, and this somehow
limited the use of genomic evaluations to predict unobserved
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FIGURE 8 | Prediction gain compared to Pedigree based predicting ability within independent test families. Predicting abilities were obtained using an additive model

with 7K SNP for three traits grouped by the proportion of individuals (Individual) or families (Family) in training sets 50% (T50) and 25% (T25). The color of violin plots

correspond to the sampling strategy: in blue, the individual sampling strategy and in green the family sampling strategy. Each violin plot represented the accuracy of

ten repetitions for each relationship matrix. The dot represented the weighted mean of the prediction gain, the mean was weighted by the number of offspring in each

family.

crosses in our population with current approaches. The size
of the training set used to develop prediction calibration is
often cited as an important factor (Nakaya and Isobe, 2012).
Curiously, the differences between our T50 and T25 schemes
(50 and 25% of individuals to construct the calibration model,
respectively) was not as large as one could expect and their
performances overlapping to a large degree, making sometimes
the differences between the two alternative training negligible.
This is presumably very dependent on the properties of the
populations being used for training.

4.2. Genomic Prediction Advantages Are
Mostly Observed in Challenging Conditions
The choice of the training and validation sets is known to have
a non-negligible impact on the prediction accuracy (Rincent
et al., 2012). In that sense, our results showed that there was
a substantial variation around each cross-validation realization,
although often the ranking in performance between realizations
was preserved across scenarios, notably for the individual
sampling. In general, these cross-validation cases corresponded
to operational situations where validation contributes with
extra selection intensities, for instance, with new crosses from
known parents or additional sibs across families to select from.

One additional scenario of training that could be considered
as especially challenging, corresponded to the validation set
of newly obtained crosses from parents that were mostly
underrepresented in the cross-validation sets. This could be
seen as an operational demand to incorporate comparatively
new material for selection. Our results showed that such
challenges (represented by the validation in the test set) affected
substantially the prediction accuracy across models, although
G-BLUP and Gw1 were generally the most robust performers
and pedigree-based evaluations the ones with the greatest loss
overall. In the cross-validation scheme, the factorial design
had a relatively large influence in demographic terms in the
training set. Being a system that creates a well-interconnected
network of families (Sørensen et al., 2005), the factorial design
seemingly favored pedigree predictions to a level that made
it competitive compared to genomic predictions in the cross-
validation. However, the new testing set posed a challenging
prediction problem to pedigree-based models, as the relatedness
between training and validation was certainly weak to support
quality predictions solely from a sparse A matrix. Despite
that, the situation was not always a clear-cut difference between
pedigree and genome-based evaluations, as shown by traits
like height1.
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FIGURE 9 | Importance (Z-score) for each feature estimated with Boruta algorithm to explain Accuracy, slope, and Spearman correlation (Spearman) variability in the

validation population. Boruta shadow features were ShadowMin, ShadowMean, and ShadowMax, as random references. The test factors were Trait (rust1, rust2,

height1, height2, circ2, budburst, angbranch), Matrix (A, Acor, G, Gw1, Gw2, Gw3, D), GeneticEffect (Additive, Additive, and Dominance), ST_MT (Single-Trait,

Multiple-Trait), GenoSet (none, 7K,7K_homo, 50K, 250K), Type (Individual, Family), and Perc (T50, T25). Algorithm decision for each factor, based on the significativity

of the difference between factors and the shadow features are: shadow features (green), confirmed (blue), and rejected (red).

If the extent of relatedness thanks partly to the factorial
design could have facilitated the competitiveness of pedigree-
based predictions, the fact of using a high quality adjusted
phenotype involving 6 repetitions was another element that could
have a role in diminishing the differences between pedigree
and genome-based performances in prediction terms. Actually,
our results showed that downgrading the quality of clonal
means used as phenotypes clearly had no differential effect
between pedigree and genome-based predictions, with the latter
retaining prediction quality at a level without replicate reduction.
This evaluation simplification has also important operational
implications for field evaluation, which need to be balanced with
the genomic investments.

4.3. Genomic Prediction Enables the
Ranking of Candidates to Selection
One of the main objectives of genetic evaluation is ultimately
to rank individuals according to their breeding values, in order
to use subsequently final selections as reproductors for the
next generation. In that sense, identifying accurately the highest
breeding values is a key element in genetic progress, and the
use of predicting abilities based on a parametric correlation

between predictions and true breeding values is one of the most
common means of quality assessment (Daetwyler et al., 2013).
This latter correlation shows a linear relationship with the genetic
response (Falconer, 1981). For the poplar breeding program,
however, the stress is given to the selection of genotypes for
clonal dissemination at the production stage directly, rather than
for gametic dispersion in seed orchards. This essential difference
leads to the importance of ranking in selection decisions for
poplars, as for any other domesticated species with clonal
selection. When assessing the potential of genomic evaluations,
it is essential to take into account the way predictions will
be used for. Thus, we used alternative measures of prediction
quality, like the slope of the regression of “true” breeding values
on estimated breeding values. This slope represents a way to
assess departures due to bias in predictions, generally caused by
unequal representations of lineages in the training (Patry and
Ducrocq, 2011), unbalanced data (Blair and Pollak, 1984), or
the use of wrong variance estimation (Sorensen and Kennedy,
1984). Bias can lead eventually to wrong selection decisions when
involving differently biased candidates. Our results suggest that
G-BLUP was particularly affected by biases, with large departures
toward greater slopes, i.e., best phenotypes gave proportionally
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FIGURE 10 | Importance (Z-score) for each features estimated with Boruta algorithm to explain Accuracy, slope, and Spearman correlation (Spearman) variability in

the TestSet population. Boruta shadow features were ShadowMin, ShadowMean, and ShadowMax. The test factors were Trait (rust1, rust2, height1, height2, circ2,

budburst, angbranch), Matrix (A, Acor, G, Gw1, Gw2, Gw3, D), GeneticEffect (Additive, Additive and Dominance), ST_MT (Single-Trait, Multiple-Trait), GenoSet (none,

7K,7K_homo, 50K, 250K), Type (Individual, Family), and Perc (T50, T25). Algorithm decision for each factor, based on the significativity of the difference between

factors and the shadow features are: in color: Green: shadow features (green), confirmed (blue), and rejected (red).

higher predictions than worst phenotypes. To a lesser extent,
the best weighted G-BLUP (Gw1) also presented departures in
slope. Comparatively, pedigree-based predictions were perfectly
unbiased with slopes of one.

This result casted some doubts on the relevance of
rankings derived from G-BLUP genomic predictions. We added
an alternative measure of prediction quality, the Spearman
correlation between predictions and true breeding values, which
is a non-parametric estimate measuring the variation of the
ranking. Moreover, this focus on ranking appeared as an
appealing feature in the context of poplar breeding. Although
less frequent in the literature than Pearson-based predicting
abilities, a few authors used Spearman correlation to evaluate the
prediction quality and to serve as criterion to select evaluation
approaches (González-Recio et al., 2009; Mota et al., 2018). Some
other authors suggest that individual ranking strategies could be
more efficient (Blondel et al., 2015).

Our comparison of Spearman vs. Pearson correlations
revealed that their differences in behavior were dependent on
the selected tier in the distribution used for calculations, with
Spearman magnifying the advantages of G-based models and
high marker densities over pedigree for the best 5–10% tiers,

the tail of the distribution that is usually relevant for selection.
Pearson, on the other hand, attained its maximum correlation
when considering the whole population. Such a difference in
behavior could be of relevance when considering different levels
of selection intensities, or weights given to each trait in a selection
index. Usually, the interesting part of the distribution is the
top percentiles, where Spearman could be a criterion of choice.
However, in some cases the interest lies at intermediate values,
like for budburst. The goal here is to have trees that do not
budburst too early to avoid late frosts, nor too late to avoid
shortening the growing season. For those central tiers, both
correlations showed similar performances.

We have already pinpointed the fact that the population
used for training, given the level of parental factorization in
their mating, presented favorable conditions for pedigree-based
evaluation. One condition where genome-based evaluation is
expected to outperform a pedigree counterpart is when selecting
at within-family levels. Our results showed that only genome-
based evaluations were able to rank sibs with some degree of
accuracy within family cohorts, where pedigrees do not bring any
extra information. Although such advantage over the pedigree
was not clear for all the families, a majority of them showed some
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FIGURE 11 | Micro-environmentally adjusted phenotypic variability by full-sibs families (in x-axis) for the seven traits used in this study. In color the families includes in

the TS/VS (in blue) or in the TestSet (in pink).

potential for gain over several traits. The fact that this ability
did not translate into larger differences in our population could
result from families of reduced size and/or from segregational
variances too narrow to feed gain in a substantial way. While
family sizes were not specially large for what is usual in breeding
programs (on average 26 sibs per family), the variation at
within-family level appeared indeed as notably reduced when
compared with between-family differences (shown in Figure 11),
and that for most of the traits in the analysis. This could
be the result of a narrow parental variation in the training,
but also from crossings between genetically similar parents, all
characteristics of a reduced effective population size. Our initial
estimates of effective population size (12) already pinpointed this
narrow genetic diversity. A small effective size could explain to
some extent the small difference that was found between our
four training set scenarios, as well as the low impact of the
densification in the number of markers. In that sense, it is clear
that there is a need to expand this proof-of-concept approach
with extra diversity.

4.4. Is There a Better Place in the Selection
Scheme for Genomic Evaluation?
The present study took place at a particular step in the poplar
breeding program, as illustrated in (Figure 12), specifically when
evaluating selected candidates on juvenile traits in the nursery.
The current selection scheme was the result of optimizing for

many constraints derived from the phenotypic evaluation and
operational factors over the years. It comprises several steps
of selection conducted at the greenhouse, at the nursery, in
the laboratory via in vitro tests and later in field trials, with
each step implying different selection intensities and notably
different selection accuracies. It is important to note that each
selection step is done sequentially and conditionally onto the
precedent (i.e., independent culling levels), instead of jointly and
simultaneously, leading to inefficiencies with the risk of losing
in the first steps important variation for subsequent steps. First
steps of selection at the greenhouse and nursery are the less
accurate, but the ones that screen most of the variation. Due to a
limited field evaluation surface, a small number of individuals per
family is kept for the next steps, reducing the phenotypic variance
within each family. Conversely, later steps at the lab and in the
fields are relatively accurate but screen through a subsample of
original variation. Therefore, accuracy and genetic variation do
not meet in a single same step for maximum efficiency in the
current scheme.

Our test of genomic selection was performed with moderate
to high heritability traits, well-evaluated in field trials, and
on a relatively reduced set of individuals (with low effective
population size) that were the result of two previous steps of
selection conducted typically with a low precision and at a
relatively high selection intensity (see Figure 12, with the red
circle indicating where genomic evaluation was tested). These
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FIGURE 12 | Schematic representation of a breeding cycle in poplar, with the evolution in the number of individuals and the selection rate during the different steps of

selection after crossings (year 0). Numbers correspond to one cycle of selection. Selection rate values correspond to a rate relative to the previous step. The place

where the genome-based evaluation test was carried out is identified by a red circle.

conditions are often the ones encountered in late stages in
breeding program cycles, when the implementation of genomic
evaluation is typically devised, and where the precious genomic
and phenotypic resources that are required are to be found. This
is the case, probably, of other species undergoing domestication,
with elites concentrating most of the evaluation resources, and
founder bases only lightly evaluated. Theoretically, there is room
for improvement in the way genomic evaluation is integrated in
this kind of scheme, where extra precision is specially required:
at the first stages of selection. Such a scenario would involve
automatically larger effective population sizes than those used
here. The only drawback of such an early implementation
would certainly be the costs associated with a mass genotyping,
involving thousands of candidates at the greenhouse. However,
with current prices attaining record low levels every year, notably

with custom SNP arrays shared between species (Silva-Junior
et al., 2015; Gutierrez et al., 2017), such a possibility appears now
within the reach of breeding program budgets. In the case of our
study, sequencing had an average cost of 400e per individual,
although with large variations due to techniques and depths,
while genotyping experienced gradual reductions during data
gathering from a starting 94e to late 46e per sample (not including
chip design costs).

4.5. Recommendations for Future Studies
in Genomic Evaluation in Poplar
One of the main limitations of the study was probably the use
of a training population with a design that did not correspond
necessarily to what is routinely done in poplar breeding. Indeed,
the factorial mating design, although potentially interesting in
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terms of the parental variability, was more oriented for cognitive
or mapping studies. This was partially overcome by the addition
of extra families and crosses, well-connected to the breeding
program. In that sense, a training population truly representative
of the base population for the breeding program could have made
more easily generalizable the results of the study. Resampling in
the existing population is a good way to improve the training
population and increase the prediction accuracy. For instance,
to include 6–8 trees per family and evaluation site appears
to be sufficient to guarantee an accurate estimation of genetic
parameters for wood density and growth in an open pollinated
test of black spruce (Perron et al., 2013). For some species (Cros
et al., 2015; Tayeh et al., 2015), CDmeans has given good results
in optimizing the training population (Rincent et al., 2012). Some
preliminary work not shown in this study, however, suggested
that there is no clear advantage for such an optimal procedure,
and one of the reasons could be the lack of differentiation within
the population to derive truly different training sets. The optimal
procedure could also be tried with a denser SNP set, like the
50K. Another strategy to optimize the training step would be to
integrate existing information in the pedigree and from genetic
association studies in the way proposed by Cericola et al. (2017).

Further investigations are still necessary to improve the
model prediction in terms of accuracy, but also to reduce
systematic and overdispersion biases. The slope bias seemed
to be positively correlated with the number of markers, while
the use of variable selection models like wGBLUP was able
to reduce the slope bias as density was allowed to increase.
Density and marker distribution of the original 7K chip did
not allow GS to get a clear advantage over the pedigree-based
counterpart. Marker densities lower than 7K did not appear
to be of interest here, given already the slight advantage at
7K. Marker selection could be optimized to select the best
repartition. Our trial of an alternative SNP set with 7K being
homogeneously distributed along the genome did not lead
to gains in accuracy. The original 7K array was somehow
enriched for markers in some genomic regions relevant for
economically important traits (Faivre-Rampant et al., 2016).
Alternatively, marker repartition could follow recombination
rate maps obtained from a pedigreed population, enriching
in SNPs around recombination hotspots. Such distributions
could be combined with haplotypic approaches based on LD
information. Some studies show that haplotypic approaches
could increase the reliability of predictions because of the
extra capture of linkage disequilibrium with respect to single
SNPs (Hess et al., 2017).

Multi-trait andmulti-environment evaluations are essential in
plant and tree breeding programs, although performing single-
step analyses in these circumstances could be methodologically
and computationally challenging. In that sense, Montesinos-
Lopez et al. (2018) have proposed efficient heuristic methods
based on multi-trait deep learning (MTDL), which appear to be
well-adapted when data is highly unbalanced, contain missing
values data and there is a need for accommodating different
design factors.

GS can contribute to accelerate genetic gain by increasing the
individual selection accuracy at early stages, thus shortening the

generation interval, and by increasing the selection intensity. We
propose to implement GS sooner in the cycle, at the seedling
stage, than what was assessed in this study. In the short term,
a genomic selection scheme at the seedling stage, when there is
a great number of individuals taking up the least space, would
be of great benefit to the breeding program. Such an early
scheme combined with a multi-trait approach with a selection
index can increase the genetic gain in the short term for most
traits simultaneously, even for those phenotyped at maturity
like wood properties. For now, only the P. nigra parents could
be selected with such early genome-based approach, and in
order to identify the best black poplar parents at the same
year as the controlled-crosses to produce both pure species
descendants and hybrids with other species. Time-consuming
and resource-intensive evaluations could then take place only
on those genomically preselected parents, with the possibility to
enlarge the panel of pre-selections. In the longer term, GS can
be implemented in the other parental species, P. deltoides, and
even at the hybrid progeny (Tan et al., 2017), depending on the
breeding strategy for hybrids. In this case, in addition to the
step at the nursery evaluation, new steps at the laboratory can
focus on other targeted traits, like interaction genotype × rust
strain and woolly aphid resistance for hybrids, increasing the
accuracy of prediction for costly traits related to resistance. Such
propositions could save eventually from 5 up to 9 years in the
breeding program. One of the evaluations for which time gains
are expected is that related to wood quality, with the interesting
possibility of predicting potential uses at the individual level
according to the wood properties.

However, there are limits to the rapid advancements of the
cycle, and we can cite here two main ones: one is regulatory
and the other is of biological nature. Even if accurate genomic
evaluation is available at very early stages, the release of varieties
under current regulations will require carrying out evaluations
under production conditions in several environments, which
usually takes 10 years. Biological constraints are related
to sexual maturity. Indeed, if we want to use a selected
individual from a parental species for hybridization, it is
necessary to wait until sexual maturity at around 7 years
of age. Another added problem when dealing with sex and
early selection is the sex determination, which cannot be
predicted accurately from markers (Müller et al., 2020). Sex
prediction at early stages could indeed save resources among
the selected candidates while waiting for sexual maturity
for mating.

5. CONCLUSIONS AND PERSPECTIVES

Our proof-of-concept study shows that genomic evaluation
advantages are context-dependent. Its performance could
be comparable to the already well-optimized pedigree-based
evaluation under certain standard conditions and with access
to low to medium SNP density panels. Genomic evaluation
appeared to be advantageous under less standard scenarios with
a certain degree of challenge which have been pinpointed in
our present work. Our study focused on a fairly advanced
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stage of the evaluation in the breeding program, where a
substantial part of the variation has already been let aside
by using pragmatic but less efficient early selections at the
nursery (based on early growth, rooting ability . . . ). We believe
that genomic selection could be an interesting option at that
early stage, where selection precision is typically poor and
genetic variability abundant. Our study also showed that it is
important to assess performances by looking at other alternative
criteria, like those related to ranking, notably when these criteria
respond to the operational context of the breeding program
under scrutiny.
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