ICTV Virus Taxonomy Profile: Caulimoviridae

To cite this version:

HAL Id: hal-03025267
https://hal.inrae.fr/hal-03025267
Submitted on 26 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
ICTV Virus Taxonomy Profile: *Caulimoviridae*

Pierre-Yves Teycheney1,2,*, Andrew D. W. Geering3, Idranil Dasgupta4, Roger Hull5, Jan F. Kreuze6, Ben Lockhart7, Emmanuelle Muller8,9, Neil Olszewski10, Hanu Pappu11, Mikhail M. Pooggin12, Katja R. Richert-Pöggeler13, James E. Schoelz14, Susan Seal15, Livia Stavolone16,17, Marie Umber18 and ICTV Report Consortium

Abstract

Caulimoviridae is a family of non-enveloped reverse-transcribing plant viruses with non-covalently closed circular dsDNA genomes of 7.1–9.8 kbp in the order *Ortervirales*. They infect a wide range of monocots and dicots. Some viruses cause economically important diseases of tropical and subtropical crops. Transmission occurs through insect vectors (aphids, mealybugs, leafhoppers, lace bugs) and grafting. Activation of infectious endogenous viral elements occurs in *Musa balbisiana*, *Petunia hybrida* and *Nicotiana edwardsonii*. However, most endogenous caulimovirids are not infectious. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family *Caulimoviridae*, which is available at ictv.global/report/caulimoviridae.

Table 1. Characteristics of members of the family *Caulimoviridae*

<table>
<thead>
<tr>
<th>Typical member: cauliflower mosaic virus- Cabb-S (V00141), species Cauliflower mosaic virus, genus Caulimovirus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Virion</td>
<td>Non-enveloped, isometric or bacilliform with a single-core capsid protein</td>
</tr>
<tr>
<td>Genome</td>
<td>7.1–9.8 kbp of non-covalently closed circular dsDNA with discontinuities in both genome strands at specific places</td>
</tr>
<tr>
<td>Replication</td>
<td>Cytoplasmic via reverse transcription of pregenomic RNA by viral reverse transcriptase. Terminally redundant pregenomic RNA is transcribed in the nucleus from repaired, covalently closed circular dsDNA by host DNA-directed RNA polymerase II</td>
</tr>
<tr>
<td>Translation</td>
<td>From capped and polyadenylated pregenomic RNA; in some viruses from subgenomic RNA and spliced versions of pregenomic RNA</td>
</tr>
<tr>
<td>Host range</td>
<td>Plants (monocots and dicots); some are transmitted by insects</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>Realm Riboviria, kingdom Pararnavirae, phylum Artverviricota, class Revtraviricetes, order Ortervirales, multiple genera including >80 species</td>
</tr>
</tbody>
</table>

VIRION

Virions are either isometric of 45–52 nm in diameter or, in the case of members of the genera *Badnavirus* and *Tungrovirus*, bacilliform particles of 30 nm × 60–900 nm (Table 1, Fig. 1). Virion sedimentation coefficient ($S_{20,w}$) is 200–220 S; density in CsCl is 1.37 g cm$^{-3}$. No envelope is present.

GENOME

Virions contain a single molecule of non-covalently closed circular dsDNA of 7.1–9.8 kbp [1, 2] with discontinuities at specific sites in the negative-sense (one) and positive-sense strand (one to three). Genomes contain 1–8 ORFs encoding 5–6 conserved protein domains (Fig. 2), depending on the genus.

Received 04 August 2020; Accepted 04 September 2020; Published 17 September 2020

Author affiliations: 1CIRAD, UMR AGAP, F-97130 Capesterre-Belle-Eau, Guadeloupe, France; 2AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France; 3Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland 4001, Australia; 4Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; 5Child Okeford, Blandford Forum, Dorset, UK; 6International Potato Center (CIP), Apartado 1558, Lima 12, Peru; 7Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, USA; 8CIRAD, UMR BGPI, F-34398 Montpellier, France; 9BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France; 10Department of Plant Biology, University of Minnesota, Minneapolis, Minnesota, USA; 11Department of Plant Pathology, Washington State University, Pullman, Washington, USA; 12INRA, UMR BGPI, F-34398 Montpellier, France; 13Julius Kühn-Institut, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany; 14Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA; 15Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK; 16Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy; 17International Institute of Tropical Agriculture, Ibadan, Nigeria; 18CIRAD, UMR ASTRO, F-97170, Petit-Bourg, Guadeloupe, France.

Correspondence: Pierre-Yves Teycheney, pierre-yves.teycheney@cirad.fr

Keywords: Caulimoviridae; ICTV Report; taxonomy.
REPLICATION
Following entry into the cell, the virion is targeted to the nucleus by a nuclear localization signal in the N-terminus of the capsid protein. Discontinuities in the genome are sealed to give supercoiled DNA, which associates with histones to form mini-chromosomes in the nucleus. These are transcribed by host DNA-directed RNA polymerase II to give a greater-than-genome length transcript (35S or 34S RNA) that has a terminal redundancy of 35 to 270 nt. This transcript (pregenomic RNA) serves as a template for reverse transcription to give the negative-sense strand DNA and as a polycistronic mRNA for expression of at least some of the ORFs [3].

Unlike retroviruses, the episomal replication cycle does not involve an integration phase [4–6]. Negative-sense strand DNA synthesis is primed by host cytosolic tRNAmet. Synthesis of both strands is performed by the viral reverse transcriptase and RNase H1. RNase H1-resistant polypurine stretches serve as primer for positive-sense DNA synthesis. The site-specific discontinuities are at the priming sites for both negative- and positive-sense strand DNA synthesis and are made by the oncoming strand displacing the existing strand for a short distance and not ligating to form a closed circle [2].

TAXONOMY
Current taxonomy: \texttt{ictv.global/report/caulimoviridae}. Members of the genera \textit{Badnavirus} and \textit{Tungroivirus} have bacilliform virions whereas members of the genera \textit{Caulimovirus}, \textit{Cavemovirus}, \textit{Petuvirus}, \textit{Rosadnavirus}, \textit{Solendovirus} and \textit{Soymovirus} have isometric virions. The number of ORFs ranges between one (petuviruses and vacciniviruses), three or more (badnaviruses), four (cavemoviruses, dioscoviruses, solendoviruses and tungroviruses), seven (caulimoviruses), seven or eight (soymoviruses) and eight (rosadnaviruses). Insect-mediated transmission has been reported for badnaviruses, caulimoviruses and tungroviruses. Infectious endogenous viral elements (EVEs) have been reported for several banana streak viruses (\textit{Badnavirus}), petunia vein clearing virus (\textit{Petuvirus}) and tobacco vein clearing virus (\textit{Solendovirus}).

RESOURCES
Current ICTV Report on the family \textit{Caulimoviridae}: \texttt{ictv.global/report/caulimoviridae}

Conflicts of interest
The authors declare that there are no conflicts of interest

References
5. Geering AD, Scharaschkin T, Teycheney PY. The classification and nomenclature of endogenous viruses of the family \textit{Caulimoviridae}. \textit{Arch Viral} 2010;155:123–131.