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This paper analyses the concept of Pollution-generating Technologies (PgT). Following the notion of output congestion, a suitable B-disposable assumption is introduced. This approach aims to reveal any PgT in production processes that are compatible with a minimal set of assumptions. Thus, a more general class of PgT (convex and non-convex) is defined. An empirical illustration is proposed to give an illustrative example of the new B-disposal assumption with respect to convex and non-convex non-parametric technologies.

Introduction

Since the early nineties, researchers strive to model undesirable outputs using non-parametric models [START_REF] Tyteca | On the Measurement of the Environmental Performance of Firms -a Literature Review and a Productive Efficiency Perspective[END_REF][START_REF] Zhou | A survey of data envelopment analysis in energy and environmental studies[END_REF][START_REF] Dakpo | Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric framework[END_REF]. In general, several approaches are distinguished in the literature. Following [START_REF] Scheel | Undesirable Outputs in Efficiency Valuations[END_REF], the proposed models can be classified into either direct or indirect approaches. The former consider the original output data and alter the technology assumptions whereas the latter modify the value of the undesirable outputs.

The first approach was to treat bad outputs1 as inputs (Cropper and Oattes, 1992;[START_REF] Reinhard | Environmental Efficiency with Multiple Environmentally Detrimental Variables: Estimated with SFA and DEA[END_REF][START_REF] Hailu | Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry[END_REF][START_REF] Sahoo | Alternative measures of environmental technology structure in DEA: An application[END_REF][START_REF] Mahlberg | Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries[END_REF]. Through an illustrative example, [START_REF] Färe | NonParametric Production Analysis with Undesirable Outputs: Comment[END_REF] show that this method is inconsistent with physical laws. Following [START_REF] Pethig | The 'materials balance approach' to pollution: its origin, implications and acceptance, Universitt Siegen, Fakultt Wirtschaftswissenschaften[END_REF][START_REF] Pethig | Nonlinear Production, Abetment, Pollution and Materials Balance Reconsidered[END_REF], this approach fails to satisfy the Materials Balance Principle (MBP)2 . Moreover, considering residual outputs as inputs comes down to model the technology with an unbounded output set [START_REF] Färe | NonParametric Production Analysis with Undesirable Outputs: Comment[END_REF][START_REF] Leleu | Shadow pricing of undesirable outputs in nonparametric analysis[END_REF]. Thus, this model fails to satisfy the standard axioms of production theory. Furthermore, it does not consider interactions among undesirable production and inputs [START_REF] Førsund | Good Modeling of Bad Outputs: Pollution and Multiple-Output Production[END_REF]. There also exists approaches that alter the value of undesirable outputs to transform them into desirable outputs. Several authors consider an additive inverse transformation3 [START_REF] Koopmans | Analysis of Production as an Efficient Combination of Activities, Activity Analysis of Production and Allocation[END_REF], and the translation invariance property [START_REF] Ali | Translation Invariance in Data Envelopment Analysis[END_REF][START_REF] Seidford | Modeling Undesirable Factors in Efficiency Evaluation[END_REF], while others use a multiplicative inverse alteration [START_REF] Golany | An Application Procedure for DEA[END_REF]. However, as mentioned in [START_REF] Färe | Modeling Undesirable Factors in Efficiency Evaluation: Comment[END_REF], such approaches are not consistent with physical laws since it considers strong disposal of outputs. Moreover, it is difficult to determine the suitable transformations of the bad outputs [START_REF] Scheel | Undesirable Outputs in Efficiency Valuations[END_REF].

The second approach introduces additional production axioms to model residual outputs in production theory. [START_REF] Färe | Multilateral productivity comparisons when some outputs are undesirable: A non parametric approach[END_REF] suggest a model based upon the concept of joint-production. This approach relies on the Weak (or ray) Disposability (WD) axiom [START_REF] Shepard | Theory of Cost and Production Functions[END_REF] and the null jointness assumption. The former means that desirable and undesirable outputs can only be simultaneously decreased by a proportional factor. The latter highlights the pollution problem: desirable production cannot be produced without bad outputs. Nevertheless, models that consider these notions have several limits. First, they consider a single abatement factor that reduces the production set. Hence, it conducts to an artificial high number of efficient Decision Making Units (DMUs). [START_REF] Kuosmanen | Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs[END_REF] proposes to enhance them by introducing a non-uniform abatement factor to capture all feasible production plans.

Second, standard WD model does not exclude positive shadow prices for residual outputs [START_REF] Hailu | Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry[END_REF][START_REF] Hailu | Non-parametric Productivity Analysis with Undesirable Outputs: Reply[END_REF]. Rødseth (2013) examines this issue, and finds that positive prices may be appropriate in cases where bads are recuperated by good outputs. Third, [START_REF] Kuosmanen | Weak Disposability in Nonparametric Production Analysis: Reply to Färe and Grosskopf[END_REF] show that conventional WD technologies are not necessary convex. [START_REF] Podinovski | Modelling Weak Disposability in Data Envelopment Analysis Under Relaxed Convexity Assumptions[END_REF] suggest to model weak disposability under relaxed convexity assumptions. Finally, [START_REF] Hampf | Carbon Dioxide Emission Standards for U.S. Power Plants: An Efficiency Analysis Perspective[END_REF] show that traditional WD model satisfies the MBP only if abatement activities are present. Moreover, these authors show that this model fails to satisfy the second law of thermodynamics4 .

Among the above approaches, the literature in non-parametric environmental efficiency studies shows that WD models are extensively used. Some recent papers assuming WD applied to numerous topics are proposed on leadings journals; see for instance [START_REF] Manello | Productivity growth, environmental regulation and winwin opportunities: The case of chemical industry in Italy and Germany[END_REF], [START_REF] Shen | Aggregate green productivity growth in OECDs countries[END_REF], [START_REF] Falavigna | Judicial productivity, delay and efficiency: A Directional Distance Function (DDF) approach[END_REF], [START_REF] Azad | Measuring environmental efficiency of agricultural water use: A Luenberger environmental indicator[END_REF], [START_REF] Bilsel | Hospital efficiency with risk adjusted mortality as undesirable output: the Turkish case[END_REF] or [START_REF] Picazo-Tadeo | Directional Distance Functions and Environmental Regulation[END_REF]. Two innovative approaches arose due to the limits associated with the WD model. First, following [START_REF] Ayres | Production, consumption, and externalities[END_REF], [START_REF] Lauwers | Materials balance based modelling of environmental efficiency[END_REF], [START_REF] Coelli | Environmental efficiency measurement and the materials balance condition[END_REF] and [START_REF] Lauwers | Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models[END_REF], [START_REF] Rödseth | Axioms of a Polluting Technology: A Materials Balance Approach[END_REF] presents two new axioms of polluting technology based upon the MBP and the entropy law. Second, [START_REF] Murty | On Modeling Pollutiongenerating Technologies[END_REF] suggest an innovative By-Production (BP) technology constructed as an intersection of an intended-production technology and a residualgeneration technology. [START_REF] Murty | On the properties of an emission-generating technology and its parametric representation[END_REF] extends this approach through a set of axioms that corresponds to the properties of polluting technologies. [START_REF] Dakpo | On modeling pollution-generating technologies: a new formulation of the by-production approach[END_REF] present a critical review of these recent developments.

This paper proposes to model PgT using an innovative B-disposal assumption. This approach considers congested output set with a relaxed disposability assumption [START_REF] Briec | Congestion in production correspondences[END_REF]. The new B-disposal assumption is a sort of limited strong disposability. Hence, B-disposal technologies allow to define congestion in the good outputs since the output set does not satisfy the usual disposal assumption. It implies that it is not possible to reduce freely bad outputs; i.e. without any costs. The B-disposal assumption allows to reveal any PgT compatible with a minimal set of assumptions. Moreover, it treats a more general class of PgT satisfying both convex and non-convex assumptions. Indeed, non-convexities often result from negative externalities (eg., pollution). To characterize these technologies, we consider the Shephard output distance function (Shephard, 1953) that is dual to the revenue function [START_REF] Shepard | Cost and Production Functions[END_REF]Mc Fadden, 1978). Since these technologies can satisfy both convex and non-convex assumptions then, we define a test of the usual axiom of convexity5 . This note unfolds as follows. Section 2 presents the traditional technology.

Furthermore, it introduces the new disposal assumption and the boundaries for the residual outputs. Section 3 highlights the notions of output distance function and revenue function on the new PgT technology. From a dual viewpoint, we establish the duality result between the output distance function and a revenue function allowing for negative prices. Thereafter, we show how to detect B-disposability and we test the consistency with revenue maximization. Section 4 defines both convex and non-convex non-parametric B-disposal PgT.

Introducing a generalisation of the B-disposal assumption, we establish relation among the so-called BP approach and the B-disposal model. Section 5 suggests non-parametric procedure to test convexity and disposability of the PgT. An empirical illustration is proposed in section 6. Finally, Section 7 concludes.

2 Technology: Assumptions and Definitions

Technology Based upon Traditional Assumptions

Let us define the notation used in this paper.

R n + is the non-negative Euclidean n-dimensional orthant. For all y, ν ∈ R n + we denote y ≤ ν ⇐⇒ y i ≤ ν i ∀i ∈ [n],
where [n] is the subset {1, ..., n}.

A production technology transforms inputs

x = (x 1 , ..., x m ) ∈ R m + into out- puts y = (y 1 , ..., y n ) ∈ R n + .
It can be characterized by the output correspondence P : R m + -→ 2 R n + where P (x) is the set of all outputs vectors that can be produced from x: P (x) = {y : y can be produced from x} .

(2.1)

Throughout this paper, we assume that the output correspondence satisfies the following regularity properties (see [START_REF] Hackman | Production Economics: Integrating the Microeconomic and Engineering Perspectives[END_REF][START_REF] Jacobsen | Production Correspondences[END_REF][START_REF] Mcfadden | Cost, Revenue and Profit Functions[END_REF]: P 1: P (0) = {0} and 0 ∈ P (x) for all x ∈ R m + . P 2: P (x) is bounded above for all x ∈ R m + . P 3: P (x) is closed for all x ∈ R m + .

Note that P 1 imposes that there is no free lunch and that the null output can always be produced. Moreover, P 2 and P 3 involve that P (x) is compact. In addition to these axioms, there are three other assumptions that we sometimes invoke on the output correspondence:

P 4 : u ≥ x ⇒ P (x) ⊆ P (u). P 5: ∀y ∈ P (x), 0 ≤ v ≤ y ⇒ v ∈ P (x). P 6: P (x) is a convex set for all x ∈ R m + .
Assumption P 6 postulates convexity of the output correspondence. This is useful to provide a dual interpretation through the revenue function and in empirical applications of, for instance, non-parametric technologies. Notice that under P 1 and P 6 if y ∈ P (x) then λy ∈ P (x), ∀λ ∈ [0, 1]. This implies the ray (or weak) disposability of the outputs, while axioms P 4 and P 5 impose the more traditional assumption of strong (or free) disposability of inputs and outputs. Note that a convex, ray disposable technology satisfying P 1 -P 4 and P 6 but failing P 5 is congested in the sense of Färe and Grosskopf (1983). 6Some subsets of the output set P (x) can be defined to measure efficiency. Two subsets denoting production units on the boundary prove useful. For all x ∈ R m + , the efficient subset is defined by:

E(x) = {y ∈ P (x) : v ≥ y and v = y ⇒ v ∈ P (x)}. (2.2)
The weak efficient subset is written as:

W (x) = {y ∈ P (x) : v > y ⇒ v ∈ P (x)}.
(2.3)

Disposal Assumption for Bad Outputs

Let B ⊂ [n], indexing the bad outputs of the technology. We introduce the following symbol:

y ≥ B v ⇐⇒ y j ≤ v j if j ∈ B y j ≥ v j else (2.4) Moreover: y > B v ⇐⇒ y j < v j if j ∈ B y j > v j else (2.5) Obviously, if -y ≥ B -v then y ≤ B v.
Notice that if B = ∅, then we retrieve the standard vector inequality. Indeed, it means that the set of the residual outputs is empty.

We can now define a new disposability assumption for the outputs.

Definition 2.1 Let P be an output correspondence satisfying P1-P4. For any y ∈ R n + , the output set P (x) satisfies the B-disposal assumption if for all y ∅ , y B ∈ P (x), y ≤ ∅ y ∅ and y ≤ B y B implies that y ∈ P (x).

If B = ∅, then B-disposal assumption reduces to the standard free disposability assumption.

In this paper, the free disposal assumption is limited through the combination of it with a particular partial reversion of free disposal. The more the output dimensions are subjected to these reversions, the more the free disposability assumption gets limited and thus weakened. Indeed, Definition 2.1 implies that the larger the bad output subset B is, the more difficult one can dispose outputs. In general, these definitions can take account for cases where there is a simultaneous lack of free disposability in all dimensions. However, it is also possible to define this lack independently in several dimensions.

Let us introduce the following convex cone:

K B = y ∈ R n : y ≥ B 0 .
(2.6)

This notation implies that K ∅ = R n + . Definition 2.1 is illustrated in Figure 1 with B = {2}. For any y, if there is some y Ø that classically dominates y and some y 2 that "{2}-dominates" y, then y ∈ P (x). For a given configuration of observations, this allows to construct an output set that presents a lack of disposability in the dimension of the residual outputs. In such a case, there exists a lower bound on bad outputs that reflects cost disposability of the undesirable production [START_REF] Murty | Externalities and fundamental nonconvexities: a reconciliation of approaches to general equilibrium externality modeling and implications for decentralization[END_REF]. For given values of inputs and desirable outputs, the B-disposal production model is characterized by a unique production set with both upper and lower bounds on residual outputs (Figure 1-2). To study this new disposal assumption from a dual standpoint, we introduce the revenue function R : R n × R m + -→ R ∪ {-∞} defined by: R(p, x) = sup y {p.y :

0 K {2} y 1 y 2 = Bad Output y {2} • y ∅ • y • P (x)
y ∈ P (x)} if P (x) = ∅ -∞ if P (x) = ∅ (2.7)
Notice that this definition allows to take into account negative prices which are specifically linked to PgT.

The following propositions study the properties of the B-disposal assumption.

Proposition 2.2 Let P be an output correspondence satisfying P1-P4. For all

x ∈ R m + , P (x) satisfies the B-disposal assumption if and only if:

P (x) = (P (x) -R n + ) ∩ (P (x) -K B ) ∩ R n + .
This proposition characterizes a B-disposal output set in terms of an intersection of convex cones (2.6). Remark that 2.2 is only based on the B-disposal assumption and P1-P4. Therefore, the above proposition holds even if P (x) is not convex (Figure 2). The following proposition extends the results of Proposition 2.2 to a convex output correspondence. A dual characterization of the B-disposability is proposed.

0 K {2} y 1 y 2 = Bad Output y {2} • y ∅ • y • Pnc(x)
Proposition 2.3 Let P be an output correspondence satisfying P1-P4. Moreover, assume that P6 holds. For all x ∈ R m + , P (x) satisfies the B-disposal assumption if and only if

P (x) = y ∈ R n + : p.y ≤ R(p, x), p ∈ R n + ∪ K B .
Intuitively stated, a convex output set satisfying B-disposability can be enveloped by a revenue function for proper prices. This result constitutes the basis for the duality result developed in Section 3. Now, we define a new notion of congestion in good outputs.

Definition 2.4 Let P be an output correspondence satisfying P1-P4 and let B be a subset of [n]. For all x ∈ R m + , P (x) is congested in the desirable outputs if it fails strong disposability assumption but satisfies B-disposal assumption.

This means that:

(P (x) -R n + ) ∩ R n + = (P (x) -R n + ) ∩ (P (x) -K B ) ∩ R n + .
(2.8) Definition 2.4 provides a strict definition of congestion in good outputs. Recall that in such a case there exists a lower bound on bad outputs for given values of inputs and good outputs. Thus, we have:

P (x) = (P (x) -R n + ) ∩ R n + .
(2.9)

In the following, for all price vector p ∈ R n , we say that an output in P (x) is p-optimal if it maximizes the revenue R(•, p). An output vector y ∈ P (x) is interior, if y > 0. The next result establishes a characterization of the new PgT.

Proposition 2.5 Let P be an output correspondence that satisfies P1-P4. Assume that P6 holds. P (x) is congested in the good outputs if and only if there exists some interior p B -optimal output in P (x) with p B ∈ K B \R n + .

Boundaries for Bad Outputs

It remains an open question: how to detect undesirable outputs from the structure of the output correspondence? To answer this question, it is useful to introduce the concept of bad frontier. Therefore, the following definition identifies a subset that is not efficient, but that is a part of the boundary of a B-disposal output correspondence.

Definition 2.6 Let P be an output correspondence satisfying P1-P4 and let B ⊂ [n]. For all x ∈ R m + , we call bad output efficient frontier the subset:

E B (x) = {y ∈ P (x) : v ≥ B y and v = y ⇒ v ∈ P (x)}.
We call bad output weakly efficient frontier the subset:

W B (x) = {y ∈ P (x) : v > B y ⇒ v ∈ P (x)}. It follows that E ∅ (x) = E(x)
is the usual efficient subset of P (x). Moreover, note that y ∈ E B (x) if and only if:

(P (x)\{y}) ∩ (y + K B ) = ∅.
(2.10) Proposition 2.7 Let P be an output correspondence satisfying P1-P4. Assume that P6 holds.

(a)

The subsets E B (x) and W B (x) are closed.

(b) If the output set P (x) is congested in good outputs then, the subset E B (x)\E(x) is non-empty and contains an interior point.

(c) Suppose that E B (x)\E(x) is non-empty and contains an interior point. Moreover, assume that P (x) satisfies the B-disposal assumption. Then, P (x) is congested in good outputs.

Remark 2.8 There exists output sets that are not congested in the good dimension and for which there exists a boundary point in E B (x)\E(x). For example assume that P (x) is the cube defined by P

(x) = {(y 1 , y 2 ) ∈ R 2 + : y 1 ≤ 1, y 2 ≤ 1}. Then y B = (1, 0) ∈ E {1} \E.
However, P (x) satisfies free disposability of undesirable outputs.

Note that the bad frontier corresponds to the lower bound of the output set. The bad frontier is of interest for policy makers and researchers to define global (economic and environmental) recommendations.

3 Duality between Technology and Revenue Function Based on B-Disposability Shephard (1953) introduced the so-called Shephard distance function in production theory. This distance function characterises technology and provides a useful tool in efficiency and productivity measurement.7 Moreover, it is always feasible under P1-P3 and P6.

Distance Function and Revenue Function on PgT : A Duality Result

The output distance function ψ P : R m+n + -→ R ∪ {+∞} is defined by:

ψ P (x, y) = inf{λ > 0 : 1 λ y ∈ P (x)} if 1 λ y ∈ P (x) for some λ > 0 +∞ otherwise (3.1)
The above definition holds for a technology that satisfies the ray disposability assumption.

Traditional duality result [START_REF] Jacobsen | Production Correspondences[END_REF][START_REF] Mcfadden | Cost, Revenue and Profit Functions[END_REF] allows to state a duality result on an output set P (x) that satisfies the ray disposal assumption. It establishes a connection between the revenue function and the output distance function.

Proposition 3.1 Let P be an output correspondence satisfying P1-P6. We have the following properties: (a) For all (x, y) ∈ R m+n

+ ψ P (x, y) = sup p≥0 p.y R(p, x) : R(p, x) = 0 . (3.2) (b)
Let p be a non-negative output price vector. We have:

R(p, x) = sup y p.y ψ P (x, y) : y ∈ R n + . (3.3)
A weaker duality result allows to state duality relationship between the revenue function and the ray (or weak) disposable output distance function [START_REF] Shephard | Indirect Production Functions, Meisenheim am Glan[END_REF]. In such a case, some (but not all) prices are allowed to be negative (assumption P5 is dropped). 8Now, we extend the properties of the distance function allowing negative orientations. Moreover, we prove that it is compatible with output sets satisfying the B-disposal assumption. Proposition 3.2 Let P be an output correspondence satisfying P1-P4 and P6. Moreover, assume that P (x) satisfies the B-disposal assumption. We have the following properties: (a) For all (x, y) ∈ R m+n + :

ψ P (x, y) = sup p∈K B ∪R n + p.y R(p, x) : R(p, x) = 0 . (3.4) (b) Let p ∈ K B ∪ R n
+ be an output price vector possibly having some negative components. Then:

p.y ψ P (x, y) : y ∈ R n + . (3.5)
Property (a) extends the results of Shephard (1953) to an output correspondence that may fail both strong and weak disposability assumptions. The converse results expressing the revenue function with respect to the Shephard distance function is stated in (b). This duality result considerably weakens current duality results imposing strong disposability. Otherwise stated, this proposition shows that B-disposal of outputs is a necessary and sufficient condition allowing the output Shephard distance function to characterize technology. Hence, traditional result based upon ray disposability of outputs to characterize technology is substantially weakened.

This new duality result is illustrated in Figure 2. Since the first (good) output is clearly congested, the second (bad) output receives a negative price. Thus, the revenue function presents a positive rather than a negative slope.

In principle it is possible to relax the convexity assumption. Under nonconvexity, the duality result in Proposition 3.2 would only hold locally (similar to the local duality result in, e.g., [START_REF] Briec | Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity[END_REF]).

It should be clear by now that when the output set satisfies free disposal, then it contains the output set that satisfies B-disposal assumption. However, the converse is not necessarily true. The same applies to weak disposal assumption: an output set satisfying weak disposability assumption also contains the output set that satisfies the B-disposal assumption. Nevertheless, the converse need not be true.

0 K {2} y 1 y 2 = Bad Output R(p, x) p.y y • P (x)

Measurement of Bad Disposability

Now, we show relationship between special cases of the output distance function introduced below and the congestion concept. Following [START_REF] Luenberger | Microeconomic Theory[END_REF], to study this relationship from a dual viewpoint we introduce the adjusted price correspondence p : R m+n

+ -→ 2 R n : p(x, y) = arg min p∈K B ∪R n + p.y R(p, x) : R(p, x) = 0 . (3.6)
Notice that if the minimum is not achieved, then p(x, y) = ∅. At points where ψ P (x, •) is differentiable and applying the envelop theorem to 3.4 we obtain:

∇ y ψ P (x, y) = p(x, y) R(p, x) . (3.7) Thus, p(x, y) = ∇ y ψ P (x, y)R(p, x) (3.8)
For the sake of simplicity, we introduce the following notation:

P ∅ (x) = (P (x) -K ∅ ) ∩ R n + = (P (x) -R n + ) ∩ R n + , (3.9) P B (x) = (P (x) -K B ) ∩ R n + , (3.10) P {∅,B} (x) = P ∅ (x) ∩ P B (x) = (P (x) -R n + ) ∩ (P (x) -K B ) ∩ R n + .
(3.11) In the next proposition, the impact of adding convexity to axioms P 1 -P 4 is analyzed. Proposition 3.3 Let P be an output correspondence satisfying P1-P4. Moreover, assume that P6 holds. For all x ∈ R m + , we have the following properties: (a) P (x) is congested in good outputs if and only if there exists some y ∈ P (x) such that p(x, y) ⊂ K B \R n + . (b) P (x) is congested in desirable outputs if and only if there exists some y ∈ P (x) such that ψ P ∅ (x, y) < ψ P {∅,B} (x, y).

In the following a procedure is proposed to measure congestion in good outputs9 . Definition 3.4 Let P be an output correspondence satisfying P1-P4. For all production vector (x, y) ∈ T , we define the following ratio to measure congestion in good outputs:

DC B (x, y) = ψ P {∅,B} (x, y)/ψ P ∅ (x, y)
.

We can now state the following corollary for our congestion measure.

Corollary 3.5 Let P be an output correspondence satisfying P1-P4. Assume moreover that for all x ∈ R m + , P (x) satisfies the B-disposal assumption. Then, there exists some y ∈ P (x) such that DC B (x, y) > 1 if and only if P (x) is congested in desirable outputs.

This measure DC B (x, y) evaluates subvector congestion per subset B.

Testing for Consistency with Revenue Maximization

Suppose given data on input-output vectors (x z , y z ) and output prices p z for all z ∈ Z, where Z is an index set of natural number. Here we ask whether or not there is a family of output sets P (x) that can make sense of this observed behavior. It is possible to show that the existence of negative prices involves congestion in the general sense defined in this contribution. Following [START_REF] Varian | The Nonparametric Approach to Production Analysis[END_REF] we say that a family of output sets P (x) rationalizes the data if y z is a solution of the program: max y {p z .y : y ∈ P (x z )} (3.12) for all z ∈ Z. Equivalently, a family of output sets P (x) rationalizes the data if for all z ∈ Z and all y ∈ P (x z ):

p z .y z ≥ p z .y. (3.13)
Assume that the output set is one-dimensional (n = 1). The main difference with [START_REF] Varian | The Nonparametric Approach to Production Analysis[END_REF] Weak Axiom of Profit Maximization (WAPM) is that here prices can be negative. This excludes the strong disposal (or negative monotonic) property of the output set. Following [START_REF] Varian | The Nonparametric Approach to Production Analysis[END_REF] we assume that the family of output sets is nested by the following assumption: ∀y ∈ P (x), x ≤ u implies that y ∈ P (u).

(3.14)

In the following, we suppose that for all z p z,j < 0 if j ∈ B and p z,j > 0 if j / ∈ B (3.15)

The key idea of the following result is that if a collection of output sets P (x) rationalizes the data, then it necessarily satisfies a B-disposal assumption and a congestion assumption in the output dimension.

Proposition 3.6 The following conditions are equivalent: (a) There exists a family of nested output sets P (x) that rationalizes the data.

(b) If x k ≤ x z , then p z .y k ≤ p z .y z for all z, k ∈ Z. (c)
There exists a family of nontrivial closed, convex and nested output sets that rationalizes the data and that satisfies congestion in the good outputs dimension.

An immediate consequence is that negative prices imply congestion of the technology. Obviously, if all observed prices are nonnegative, then we have B = ∅ for z ∈ Z and, because of B = ∅, we retrieve the [START_REF] Varian | The Nonparametric Approach to Production Analysis[END_REF] WAPM result.

Notice that in principle it is possible to relax the convexity assumption (e.g., as in [START_REF] Briec | Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity[END_REF]). Obviously, the same remarks as those mentioned at the end of subsection 3.1 apply.

Bad Outputs on Non-Parametric Technologies

In this section we focus on convex and non-convex non-parametric technologies.

In particular we consider the so-called Data Envelopment Analysis (DEA) model due to [START_REF] Banker | Some Models for Estimating Technical and Scale Efficiency in Data Envelopment Analysis[END_REF] and the Free Disposal Hull (FDH) non-convex production model [START_REF] Tulkens | On FDH efficiency analysis: some methodological issues and applications toretail banking, courts and urban transit[END_REF].

Non-Parametric Convex and Non-Convex Technologies

We consider a set of DMUs A = {(x z , y z ) : z ∈ Z} where Z is an index set of natural number. We assume that the technology satisfy the Variable Returns to Scale (VRS) assumption [START_REF] Banker | Some Models for Estimating Technical and Scale Efficiency in Data Envelopment Analysis[END_REF] 10 . In such case the production technology is defined by:

T ∅,DEA = (x, y) : x ≥ z∈Z µ z x z , y ≤ z∈Z µ z y z , z∈Z µ z = 1, µ ≥ 0 (4.1)
For any observed (x 0 , y 0 ), the output correspondence is:

P ∅,DEA (x 0 ) = y : x 0 ≥ z∈Z µ z x z , y ≤ z∈Z µ z y z , z∈Z µ z = 1, µ ≥ 0
To establish congestion of the output correspondence, we need to identify the following subset:

P B,DEA (x 0 ) = y : x 0 ≥ z∈Z θ z x z , y ≤ B z∈Z θ z y z , z∈Z θ z = 1, θ ≥ 0 (4.2)
We now have

P {∅,B} (x 0 ) = P ∅ (x 0 )∩P B (x 0 ) = P (x 0 ) -R n + ∩ P (x 0 ) -K B ∩ R n
+ . Equivalently, we have:

P {∅,B},DEA (x 0 ) = P ∅,DEA (x 0 ) ∩ P B,DEA (x 0 ) (4.3)
The subset (4.2) allows to define the bad frontier of the PgT. The latter corresponds to the lower bound of the output set. The upper bound is established by the frontier of the subset P ∅,DEA (x 0 ). Thus, we have

P {∅,B},DEA (x 0 ) = y : x 0 ≥ z∈Z θ z x z , x 0 ≥ z∈Z µ z x z y ≤ B z∈Z θ z y z , y ≤ z∈Z µ z y z z∈Z θ z = z∈Z µ z = 1, θ, µ ≥ 0 (4.4)
P {∅,B},DEA (x 0 ) characterizes an overall convex PgT with both upper and lower bounds on bad outputs for given values of desirable outputs and inputs. We can now state the following result: Proposition 4.1 The non-parametric convex output correspondence satisfies the following properties. (a) P {∅,B},DEA is convex; (b) P {∅,B},DEA satisfies the B-disposal assumption; (c) P {∅,B},DEA is a closed subset of R n + .

The above system of linear inequations (4.4) can be formulated:

P {∅,B},DEA (x 0 ) = y : x 0,i ≥ z∈Z θ z x z,i , i = 1, ..., m x 0,i ≥ z∈Z µ z x z,i , i = 1, ..., m y j ≥ z∈Z θ z y z,j , j ∈ B y j ≤ z∈Z θ z y z,j , j / ∈ B y j ≤ z∈Z µ z y z,j , j = 1, ..., n z∈Z θ z = z∈Z µ z = 1, θ, µ ≥ 0 (4.5)
Remark that, if θ = µ then, (4.5) shows non-disposability of undesirable outputs [START_REF] Kuosmanen | Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs[END_REF]. Following [START_REF] Leleu | Shadow pricing of undesirable outputs in nonparametric analysis[END_REF], this representation is an incorrect modeling of VRS assumption in traditional Shepard's weakly disposable technology. Nevertheless, this modeling has been widely implemented in the literature (see for instance [START_REF] Picazo-Tadeo | Directional Distance Functions and Environmental Regulation[END_REF][START_REF] Bilsel | Hospital efficiency with risk adjusted mortality as undesirable output: the Turkish case[END_REF]. This contribution provides an innovative axiomatic characterization of the incorrect modeling of VRS assumption in traditional Shepard's weakly disposable technology.

Furthermore, notice that if we consider a set of DMUs A ′ = {(x z , y z ), (x z , 0) : z ∈ Z}11 then, we find the correct way to linearize VRS Shepard's weakly disposable technology suggested in [START_REF] Kuosmanen | Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs[END_REF]. [START_REF] Kuosmanen | Weak Disposability in Nonparametric Production Analysis: Reply to Färe and Grosskopf[END_REF], show that this technology is the smallest convex extension of Shepard's weakly disposable technology. Following the initial work of [START_REF] Podinovski | Bridging the Gap Between the Constant and Variable Return-to-scale Models: Selective Proportionality in Data Envelopment Analysis[END_REF], they highlight that Kuosmanen's technology is the correct minimum extrapolation technology that verified the stated axioms. This modeling permits to consider proper abatement factor for each observed activity. Through this approach, a dual interpretation of weak disposability is proposed in [START_REF] Kuosmanen | Duality of Weakly Disposable[END_REF] 12 . This paper provides an axiomatic characterization of the Kuosmanen's technology.

In the same vein, if we consider A ′ 0 = {(x z , y z ), (x 0 , 0) : z ∈ Z} 11 then, we are getting the correct way to linearize VRS Shepard's weakly disposable technology suggested in [START_REF] Leleu | Shadow pricing of undesirable outputs in nonparametric analysis[END_REF]. This modeling allows to define dual interpretation of weak disposability assumption.

As mentioned previously (subsection 2.2), it is possible to introduce nonconvex B-disposal technologies. Let us consider the following individual production possibility sets:

S ∅ (x z , y z ) = (x, y) ∈ R n+m + : x ≥ x z , y ≤ y z (4.6) and S B (x z , y z ) = (x, y) ∈ R n+m + : x ≥ x z , y ≤ B y z . (4.7)
Intersection of the non-convex unions of (4.6) and (4.7) allows to define FDH non-convex PgT. P {∅,B},DEA nc (x) = y : (x, y) ∈ ∪ z∈Z S ∅ (x z , y z ) ∩ ∪ z∈Z S B (x z , y z ) . (4.8) Note that VRS assumption is imposed in the above FDH non-convex production model. Other returns to scale assumption can be introduced adding specific scaling parameter in (4.6) and (4.7). More precisely,

S ∅,δ (x z , y z ) = (x, y) ∈ R n+m + : x ≥ δx z , y ≤ δy z (4.9) and S B,δ (x z , y z ) = (x, y) ∈ R n+m + : x ≥ δx z , y ≤ B δy z . (4.10) With δ ≥ 0 (CRS assumption), δ ∈ [0, 1] (NIRS assumption) or δ ≥ 1 (NDRS assumption).
Following [START_REF] Briec | Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity[END_REF], we can define a consolidated B-disposal PgT as follows:

P {∅,B},DEA Ω,∆ (x) = y : x ≥ δ z∈Z θ z x z , x ≥ δ z∈Z µ z x z y ≤ B δ z∈Z θ z y z , y ≤ δ z∈Z µ z y z θ, µ ∈ Ω, δ ∈ ∆ . Where Ω ∈ {Ω c , Ω nc }, with Ω c = (θ, µ) : z∈Z θ z = z∈Z µ z = 1, θ, µ ≥ 0 and Ω nc = (θ, µ) : z∈Z θ z = z∈Z µ z = 1, θ, µ ∈ {0, 1} . Moreover, ∆ ∈ {δ : δ = 1}; {δ : δ ≥ 0}; {δ : δ ∈ [0, 1]}; {δ : δ ≥ 1}
allows to consider several returns to scale assumptions (ie, VRS, CRS, NIRS and NDRS).

Furthermore, since the B-disposal technology is defined as an intersection of sub-technologies, we can introduce a hybrid (convex and non convex) PgT as follows:

P {∅,B},DEA h -,∆ (x) = y : x ≥ δ z∈Z θ z x z , x ≥ δ z∈Z µ z x z y ≤ B δ z∈Z θ z y z , y ≤ δ z∈Z µ z y z θ ∈ Ω nc , µ ∈ Ω c , δ ∈ ∆ .
(4.11)

In (4.11), upper bound of the output set presents convexity whereas nonconvexity applies to the bad frontier (Figure 4). In such a case, the hybrid PgT corresponds to the intersection of the convex union of (4.9) and the non-convex union of (4.10).

P {∅,B},DEA h -,∆ (x) = y : (x, y) ∈ Co ∪ z∈Z S ∅,δ (x z , y z ) ∩ ∪ z∈Z S B,δ (x z , y z ) .
(4.12)

By-production technology and generalised B-disposal assumption

In the previous section, the B-disposability corresponds to the cost disposability assumption of [START_REF] Murty | On Modeling Pollutiongenerating Technologies[END_REF]. However, the B-disposal assumption is applied to the costly disposal hull of the technology rather than to the technology itself. The [START_REF] Murty | On Modeling Pollutiongenerating Technologies[END_REF] model is more general because it does not assume the strong disposability assumption on the input side. This approach considers a partition of inputs into polluting and no-polluting ones such that, the former satisfies costly disposability assumption. In the previous sections, we focus on the output side and do not fix an a priori input partition (i.e., polluting versus no-polluting). However, all this framework could be extended to a general case considering the B-disposal assumption both in inputs and outputs sides.

0 K {2} y 1 y 2 = Bad Output y {2} • y ∅ • y • P {∅,B},DEA h -,∆ (x) 
We first present the notation used to define a generalised version of the B-

disposal assumption. Let B = {B in , B out } ⊂ [m] × [n]
, indexing the inputs generating pollution and the bad outputs of the technology. We assume that there are polluting and no-polluting inputs such that x = (x p , x np ). Let T a production technology satisfying the following regularity properties:

T 1: (0, 0) ∈ T , (0, y) ∈ T ⇒ y = 0. T 2: T (y) = {(u, v) ∈ T : v ≤ y} is bounded for all y ∈ R n + . T 3: T is closed. T 4: ∀(x, y) ∈ T ∧ ∀(u, v) ∈ R m + × R n + if (x, -y) ≤ (u, -v) then (u, v) ∈ T .
The assumptions T 1 -T 3 are equivalent to P 1 -P 3. T4 imposes traditional assumption of strong disposability of inputs and outputs. Definition 4.2 Let T a production technology satisfying T1-T3. For any

(x, y) ∈ R m + × R n + , the technology T satisfies the generalised B-disposal assumption if for all (x ∅ , y ∅ ), (x B , y B ) ∈ T , (-x, y) ≤ ∅ (-x ∅ , y ∅ ) and (-x, y) ≤ B (-x B , y B ) im- plies that (x, y) ∈ T . Where, B = {B in , B out } ⊂ [m] × [n]
indexes the inputs generating pollution and the bad outputs of the technology. If B = ∅, then the generalised B-disposal assumption reduces to the standard free disposability assumption (T 4).

Proposition 4.3 Let T be a technology satisfying T1-T3. For all (x, y) ∈ R m + × R n + , T satisfies the generalised B-disposal assumption if and only if:

T = T + (R m + × (-R n + )) ∩ T + (K B in × (-K Bout )) ∩ (R m + × R n + ).
Note that proposition 4.3 holds true even if the technology is not convex. For simplicity, we introduce the following notations:

T ∅ = T + (R m + × (-R n + )) ∩ (R m + × R n + ), (4.13) T B = T + (K B in × (-K Bout )) ∩ (R m + × R n + ), (4.14) T {∅,B} = T ∅ ∩T B = T +(R m + ×(-R n + )) ∩ T +(K B in ×(-K Bout )) ∩(R m + ×R n + ). (4.15)
We assume that the technology satisfies Variable Returns to Scale (VRS) assumption [START_REF] Banker | Some Models for Estimating Technical and Scale Efficiency in Data Envelopment Analysis[END_REF]. To establish generalised congestion of polluting inputs and desirable outputs, we need to identify the following subset:

T B,DEA = (x, y) : x ≥ B in z∈Z θ z x z , y ≤ Bout z∈Z θ z y z , z∈Z θ z = 1, θ ≥ 0 (4.16)
Now, we can state:

T {∅,B},DEA = T ∅,DEA ∩ T B,DEA
(4.17) Thus, we have

T {∅,B},DEA = (x, y) : x ≥ z∈Z µ z x z , x ≥ B in z∈Z θ z x z y ≤ z∈Z µ z y z , y ≤ Bout z∈Z θ z y z z∈Z θ z = z∈Z µ z = 1, θ, µ ≥ 0
T {∅,B},DEA defines an overall PgT with a lower bound on bad outputs and an upper bound on polluting inputs. This kind of PgT allows to identify simultaneously congestion in the dimensions of polluting input and good output (see Appendix B). Following the [START_REF] Murty | On Modeling Pollutiongenerating Technologies[END_REF] words, T B,DEA reflects nature's residual generation. T ∅,DEA allows to capture the intended-production activities of firms. The intersection of T B,DEA and T ∅,DEA defines a generalised B-disposal PgT. Note that the subsets T B,DEA and T ∅,DEA consider both polluting and no-polluting inputs. Then, intended and unintended outputs depend on the same set of inputs (Försund, 2016).

The above system of linear inequations can be rewritten as follows:

T {∅,B},DEA = (x, y) :

x i ≤ z∈Z θ z x z,i , i ∈ B in x i ≥ z∈Z θ z x z,i , i / ∈ B in x i ≥ z∈Z µ z x z,i , i = 1, ..., m y j ≥ z∈Z θ z y z,j , j ∈ B out y j ≤ z∈Z θ z y z,j , j / ∈ B out y j ≤ z∈Z µ z y z,j , j = 1, ..., n z∈Z µ z = 1, z∈Z θ z = 1, µ ≥ 0, θ ≥ 0 (4.18)
The above PgT (4.18) does not consider abatement outputs, but obviously it is straightforward to introduce such outputs. We just have to insert the following constraint:

y j ≥ z∈Z θ z y z,j , j ∈ B ′ out . Where, B = {B in , B out , B ′ out } ⊂ [m] × [n]
indexes the inputs generating pollution, the bad outputs and the abatement outputs of the technology. Now, consider the following constraints:

z∈Z θ z x z,i = z∈Z µ z x z,i , i / ∈ B in (4.19) and z∈Z θ z y z,j = z∈Z µ z y z,j , j / ∈ B out , (4.20) 
Note that if we suppose the independence of T ∅,DEA from {y j } j∈Bout and if we add the constraints (4.19) and (4.20) to (4.18) then, the PgT corresponds to the by-production technology of [START_REF] Murty | On Modeling Pollutiongenerating Technologies[END_REF] 13 . Let us consider the following individual production possibility set:

S B in ,Bout (x z , y z ) = (x, y) ∈ R n+m + : x ≥ B in x z , y ≤ Bout y z . (4.21) T {∅,B},DEA nc = (x, y) : (x, y) ∈ ∪ z∈Z S ∅ (x z , y z ) ∩ ∪ z∈Z S B in ,Bout (x z , y z ) .
(4.22) Then, a consolidated generalised B-disposal technologies can be suggested as follows:

T {∅,B},DEA Ω,∆ = (x, y) : x i ≤ δ z∈Z θ z x z,i , i ∈ B in x i ≥ δ z∈Z θ z x z,i , i / ∈ B in x i ≥ δ z∈Z µ z x z,i , i = 1, ..., m y j ≥ δ z∈Z θ z y z,j , j ∈ B out y j ≤ δ z∈Z θ z y z,j , j / ∈ B out y j ≤ δ z∈Z µ z y z,j , j = 1, ..., n θ, µ ∈ Ω, δ ∈ ∆ (4.23)
Adding the constraints (4.19), (4.20) and the independence of T ∅,DEA nc from {y j } j∈Bout in (4.23), we can introduce a non-convex version of the by-production technology. A hybrid (convex and non-convex) version of (4.23) is defined as,

T {∅,B},DEA h -,∆ = (x, y) : x i ≤ δ z∈Z θ z x z,i , i ∈ B in x i ≥ δ z∈Z θ z x z,i , i / ∈ B in x i ≥ δ z∈Z µ z x z,i , i = 1, ..., m y j ≥ δ z∈Z θ z y z,j , j ∈ B out y j ≤ δ z∈Z θ z y z,j , j / ∈ B out y j ≤ δ z∈Z µ z y z,j , j = 1, ..., n θ ∈ Ω nc , µ ∈ Ω c , δ ∈ ∆ (4.24) T {∅,B},DEA h -,∆
presents non convexity on the lower bound of undesirable outputs and on the upper bound of polluting inputs (see Figure 11 and 12 in Appendix B). Thus,

T {∅,B},DEA h -,∆ = (x, y) : (x, y) ∈ Co ∪ z∈Z S ∅,δ (x z , y z ) ∩ ∪ z∈Z S B in ,Bout,δ (x z , y z ) .
(4.25)

Where S B in ,Bout,δ (x z , y z ) = (x, y) ∈ R n+m + : x ≥ B in δx z , y ≤ Bout δy z with δ ∈ ∆. This class of PgT allows to consider possible non-convexity in the nature's residual sub-technology [START_REF] Dasgupta | The Economics of Non-Convex Ecosystems: Introduction[END_REF].

5 Non-Parametric Test: Disposability and Convexity

Non-Parametric Test of Congestion in Good Outputs

To test congestion in good outputs we need to be able to compute a distance function with respect to the output set. In Figure 5, congestion in desirable outputs can be detected at points A, C and D. From the specification of convex non-parametric technologies, it is quite straightforward to derive the following mathematical program 14 :

14 Remark that, if θ = µ then ψ P {∅,B},DEA (x 0 , y 0 ) can be implemented based on the set of DMUs

A, A ′ or A ′ 0 . ψ P {∅,B},DEA (x 0 , y 0 ) = inf λ s.t. x 0,i ≥ z∈Z θ z x z,i , i = 1, ..., m x 0,i ≥ z∈Z µ z x z,i , i = 1, ..., m 1 λ y 0,j ≥ z∈Z θ z y z,j , j ∈ B 1 λ y 0,j ≤ z∈Z θ z y z,j , j / ∈ B 1 λ y 0,j ≤ z∈Z µ z y z,j , j = 1, ..., n z∈Z θ z = z∈Z µ z = 1, θ, µ ≥ 0
The above program has 2(m + n) + 1 + Card(B) constraints, where Card(B) is the number of B elements. When the technology is DEA convex, then the solution is obtained by solving a linear program. To measure congestion in good outputs we need to compute ψ P {∅,B},DEA (x 0 , y 0 )/ψ P ∅,DEA (x 0 , y 0 )15 . In the same way ψ P ∅,DEA (x 0 , y 0 ) can be computed as follows:

ψ P ∅,DEA (x 0 , y 0 ) = inf λ s.t. x 0,i ≥ z∈Z θ z x z,i , i = 1, ..., m 1 λ y 0,j ≤ z∈Z θ z y z,j , j = 1, ..., n z∈Z θ z = 1, θ ≥ 0
Remark that following (4.3) we have :

ψ P {∅,B},DEA (x 0 , y 0 ) = max {ψ P ∅,DEA (x 0 , y 0 ); ψ P B,DEA (x 0 , y 0 )} . (5.1)
Where,

ψ P B,DEA (x 0 , y 0 ) = inf λ s.t. x 0,i ≥ z∈Z θ z x z,i , i = 1, ..., m 1 λ y 0,j ≥ z∈Z θ z y z,j , j ∈ B 1 λ y 0,j ≤ z∈Z θ z y z,j , j / ∈ B z∈Z θ z = 1, θ ≥ 0

Non-Parametric Test of Convexity

In this subsection, we suggest to test convexity of the new B-disposal technologies. First, we propose a global test of convexity (Figure 6). x, y [START_REF] Briec | Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity[END_REF].

Proposition 5.1 ψ P {∅,B},DEA nc (x, y) on non-convex B-disposal technologies is defined as follows:

ψ P {∅,B},DEA nc (x, y| S ∅ (xz,yz)∩S B (xz,yz) ) -1 = min( yz y ) if max j∈B ( y z,j y j ) ≤ min( yz y ) 1 else
Note that VRS assumption is imposed in proposition 5.1. Other returns to scale assumption can be introduced adding specific scaling parameter (see (4.9) and (4.10)). Conventional CRS assumption can be considered as follows:

Proposition 5.2 ψ P {∅,B},DEA nc (x, y) on CRS non-convex B-disposal technologies is as follows:

ψ P {∅,B},DEA nc,crs (x, y| S ∅,δ (xz,yz)∩S B,δ (xz,yz) ) -1 = min( x xz ) min( yz y ) if max j∈B ( y z,j y j ) ≤ min( yz y ) 1 else
Notice that it is possible to compute a specific test of convexity (Figure 7). This test is of particular interest when we want to test separately convexity of the upper or of the lower bound of the PgT. Recall that this test is an immediate consequence of the B-disposal assumption definition (an intersection of subtechnologies).

We compute the following ratios to test global (CT 

Empirical illustration

This empirical part gives an illustrative example of the B-disposability. In such a case, the efficiency measures are estimated under B-disposal, weak disposal and strong disposal assumptions 16 .

Data

A sample of 13 representative French airports is considered over the period 2007-2011. We implement the new B-disposal assumption on both convex and nonconvex non-parametric technologies. The dataset comes from several reports and documents of the Ministère de l'écologie, du Développement durable et de l' Énergie (http://www.developpement-durable.gouv.fr). Two inputs are selected: (i) number of employees of each airport and (ii) operational costs of each airport. These inputs permit to produce different outputs. Thus, we consider one desirable output, (iii) number of passengers from all airlines ; and one undesirable output represented by (iv) CO 2 emissions evaluated at each airport. This bad output is measured by using the TARMAAC (Traitements et Analyses des Rejets éMis dans l'Atmosphère par l'Aviation Civile) tool of the Direction générale de l'Aviation civile (DGAC) 17 . Table 1 presents the descriptive statistics of the variables used in this study.

16 Some articles explore the consistency between the selected model and the variables (see for instance, [START_REF] Halkos | The impact of economic growth on environmental efficiency of the electricity sector: A hybrid window DEA methodology for the USA[END_REF]). Thus, it could be investigated in further research for the case of the B-disposability assumption. 

Results

Table 2 presents the weak disposable and the B-disposable Shephard distance functions. It is shown that the B-disposal efficiency scores relies on the estimation of efficiency measures with regard to both lower and upper bounds of the output set. The maximum between the efficiency scores with respect to both lower and upper bounds yields the B-disposable efficiency scores. This is not surprisingly since the B-disposal output set is defined as an intersection of two subsets. Hence, this gives indications on the projection path of inefficient DMUs. It appears that the weak disposal efficiency scores are equivalent to the B-disposal ones. This strengthens the statement that a production technology satisfying a weak disposal assumption satisfies a B-disposal assumption. However, recall that the converse is not necessarily true. Table 3 presents Shephard output distance function projected respectively upon a convex strong disposal technology (column 2), a convex B-disposal technology (column 3) and a non-convex B-disposal technology (column 4). Columns 5 and 6 propose respectively a measure of congestion in good outputs and a test of global convexity. Column 7 identifies the part of the technology where outputs are projected through the Shephard distance function (ie., lower or upper bound of the technology). Furthermore we precise if the projection concerns a convex (C) or a non-convex (NC) part of the technology. Column 8 indicates if good outputs are congested (Cong) or not congested (N Cong). Readers can see that the B-disposal model allows to identify congestion in good outputs (DC B > 1). In such a case, the production technology is bounded from below. Moreover, this model permits to identify possible non-convexity of the technology (CT B g > 1). This table shows that for each time period, more DMUs are efficient with respect to a B-disposable convex technology rather than under a strong disposable technology. Besides, we can note that the B-disposable non-convex technology presents more efficient DMUs than the B-disposable convex technology. Indeed, non-convexity restrict the production set. Then, the following embedding holds:

P {∅,B},DEA nc (x) ⊆ P {∅,B},DEA h (x) ⊆ P {∅,B},DEA (x) ⊆ P ∅,DEA (x).
Remark that this is an empirical example. However, following [START_REF] Pérez | Energy and GHG emission efficiency in the Chilean manufacturing industry: Sectoral and regional analysis by DEA and Malmquist indexes[END_REF] it could be interesting to compare and to explore the limitation of each 

Concluding Comments

This paper introduces the new B-disposal assumption that is a limited strong disposability. Along this line, a class of PgT satisfying both convex and non-convex axioms, is proposed. Moreover, we characterize these technologies with the Shephard output distance function. The duality result between the distance function and the revenue function allows to consider possible ngative shadow prices. In such a case, assuming weak disposability of outputs is not necessary to provide duality results. Through a non-parametric approach, we provide an innovative axiomatic characterization of the incorrect modeling of the VRS assumption in traditional Shephard's weakly disposable technology. Thus, we retrieve the linearization proposed by [START_REF] Kuosmanen | Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs[END_REF] and [START_REF] Leleu | Shadow pricing of undesirable outputs in nonparametric analysis[END_REF]. Furthermore, we show that a B-disposable technology can be rewritten as the by-production technology of [START_REF] Murty | On Modeling Pollutiongenerating Technologies[END_REF] and we extend it to non-convex case. Finally, we propose to test congestion in good outputs and the convexity of B-disposal PgT which allows to suggest a procedure to characterize the structure of the technology.

We can highlight one limitation of this paper. Indeed, we focus on the output distance function and its dual relation with the revenue function. The duality result, the new measure of congestion in good outputs and the test of convexity of the B-disposal technology can also be defined using the so-called directional distance function [START_REF] Luenberger | Benefit Function and Duality[END_REF][START_REF] Luenberger | Microeconomic Theory[END_REF]Chambers et al., 1996;[START_REF] Chambers | Aggregate Productivity Measures[END_REF]. Moreover, input and/or graph orientation could be explored. Futhermore, following [START_REF] Pedraja-Chaparro | On the quality of data envelopment analysis model[END_REF], the quality of the model under B-disposal assumption could be analyzed. These could be the topic of future research.
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 1 Figure 1: Convex output set with B = {2}
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 2 Figure 2: Non-convex output set with B = {2}
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 5 Figure 5: A non-parametric test of disposability with B = {2}.
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 6 Figure 6: A global non-parametric test of convexity with B = {2}.

Figure 6

 6 Figure6shows non-convexity of the B-disposal technology at points a and b. Point a allows to test convexity on the bad frontier of the PgT. Reversely, point b permits to compute a test of convexity on the upper bound of B-disposal technology. In order to implement this test, we have to compute an output distance function with respect to the non-convex output set.
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 7 Figure 7: A specific non-parametric test of convexity with B = {2}.
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  [START_REF] Abad | Exponential environmental productivity index and indicators[END_REF] use a part of this panel data.

  P {∅,B},DEA = ψ P ∅,DEA (ie., DC B = 1) then, the upper bound of the B-disposal PgT presents non-convexity (ie., CT B h + > 1). Reversely, if CT B g > 1 and ψ P {∅,B},DEA > ψ P ∅,DEA (ie., DC B > 1) then, the lower bound of B-disposal PgT shows non-convexity (ie., CT B h -> 1).

			B g ) and specific (CT B h )
	convexity of the B-disposal PgT:	
		CT B g =	ψ P {∅,B},DEA nc ψ P {∅,B},DEA
	and		
	.	CT B h =	ψ P {∅,B},DEA h ψ P {∅,B},DEA
	When CT B g > 1 then, B-disposal PgT presents global non-convexity. Remark
	that, if CT B g > 1 and ψ		

Table 1 :

 1 Characteristics of inputs and outputs

	Variables	Min	Max	Mean	St. Dev.
			Inputs	
	Employees (quantity)	67	3813	738	1166
	Operational costs (Keuros)	15614	1112248	187521	329679
			Good Output	
	Passengers (quantity) 1014704 60970551 10328725 15646444
			Bad Output	
	CO 2 emissions (millions of tons)	13	896	136	222

Table 3 :

 3 Tests of congestion in good outputs and of convexityThe combination of the measures of congestion and convexity offer informations about the structure of the technology. Table 3 summarizes the conditions of technology characterization. Upper bound (C), Good outputs (N Cong) Lower bound (C), Good outputs (Cong) CT B g > 1 Upper bound (NC), Good outputs (N Cong) Lower bound (NC), Good outputs (Cong)

	DC B = 1	DC B > 1
	CT B g = 1	

Table 4 :

 4 Characterization of the technology

Note that throughout this paper, we use equivalently the terms bad outputs, undesirable outputs and residual outputs.

More precisely, this approach fails to satisfy the first law of thermodynamics. This law can be illustrated through the famous saying: "Nothing is lost, nothing is created, everything is transformed" Antoine Lavoisier (1743-1794).

The additive inverse transformation consists to multiply each undesirable outputs by -1. This approach exhibits the same technology set that considers undesirable outputs as inputs. However, it alters the sign of bad outputs.

Following the second law of thermodynamics, polluting inputs cannot be totaly transformed into good outputs. Then, the production process necessarily generates a minimal amount of residual outputs if a positive amount of polluting inputs is used.

5 See[START_REF] Dasgupta | The Economics of Non-Convex Ecosystems: Introduction[END_REF] for a discussion about economists' convexities and nature's non-convexities.

[START_REF] Kuosmanen | Duality Theory of Non-convex Technologies[END_REF] shows that this traditional specification fails convexity, but a revised specification is convex.

See Russell (1985[START_REF] Russell | On the Axiomatic Approach to the Measurement of Technical Efficiency[END_REF] for an axiomatic approach to the measurement of technical efficiency.

R(p, x) = supy

Also[START_REF] Mcfadden | Cost, Revenue and Profit Functions[END_REF] anticipates the use of negative prices and maintains that duality results can be preserved under these circumstances.

Since B-congested technologies satisfy the B-disposal assumption but fail strong disposability, the suggested test of congestion allows to measure the loss of good outputs due to a lack of disposability in the residual outputs.

Notice that if we assume that A contains the null input-output vector (0, 0) then axiom P1 holds true. Equivalently, one can suppose a non-increasing returns to scale assumption(Färe et al., 1983).

In such a case axiom P1 holds true.

[START_REF] Kuosmanen | Duality of Weakly Disposable[END_REF] introduce the concept of "limited liability condition" to provide a dual interpretation of the weak disposability. If the maximum profit is not positive and smaller than the sunk costs of inputs the "limited liability condition" is not satisfied. In such a case, it is optimal to stop the production activity.

If dependence contraints are considered then, we retrieve the extension of the byproduction technology suggested by[START_REF] Dakpo | On modeling pollution-generating technologies: a new formulation of the by-production approach[END_REF].

Replacing the VRS DEA technologies by CRS technologies and assuming that θ = µ then, the test of congestion in good outputs is equivalent to that in[START_REF] Färe | Multilateral productivity comparisons when some outputs are undesirable: A non parametric approach[END_REF] (not paying attention to the choice of distance function).
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