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Abstract

This paper analyses the concept of Pollution-generating Technologies (PgT).
Following the notion of output congestion, a suitable B-disposable as-
sumption is introduced. This approach aims to reveal any PgT in pro-
duction processes that are compatible with a minimal set of assumptions.
Thus, a more general class of PgT (convex and non-convex) is defined.
An empirical illustration is proposed to give an illustrative example of
the new B-disposal assumption with respect to convex and non-convex
non-parametric technologies.
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1 Introduction

Since the early nineties, researchers strive to model undesirable outputs using
non-parametric models (Tyteca, 1996; Zhou et al., 2008; Dakpo et al., 2016). In
general, several approaches are distinguished in the literature. Following Scheel
(2001), the proposed models can be classified into either direct or indirect ap-
proaches. The former consider the original output data and alter the technology
assumptions whereas the latter modify the value of the undesirable outputs.

The first approach was to treat bad outputs1 as inputs (Cropper and Oat-
tes, 1992; Reinhard et al., 2000; Hailu and Veeman, 2001; Sahoo et al., 2011;
Mahlberg et al., 2011). Through an illustrative example, Färe and Grosskopf
(2003) show that this method is inconsistent with physical laws. Following
Pethig (2003, 2006), this approach fails to satisfy the Materials Balance Prin-
ciple (MBP)2. Moreover, considering residual outputs as inputs comes down to
model the technology with an unbounded output set (Färe and Grosskopf, 2003;
Leleu, 2013). Thus, this model fails to satisfy the standard axioms of produc-
tion theory. Furthermore, it does not consider interactions among undesirable
production and inputs (Førsund, 2009). There also exists approaches that al-
ter the value of undesirable outputs to transform them into desirable outputs.
Several authors consider an additive inverse transformation3 (Koopmans, 1951),
and the translation invariance property (Ali and Seidford, 1990; Seidford and
Zhu, 2002), while others use a multiplicative inverse alteration (Golany and Roll,
1989). However, as mentioned in Färe and Grosskopf (2004), such approaches
are not consistent with physical laws since it considers strong disposal of out-
puts. Moreover, it is difficult to determine the suitable transformations of the
bad outputs (Scheel, 2001).

The second approach introduces additional production axioms to model resid-
ual outputs in production theory. Färe et al. (1989) suggest a model based upon
the concept of joint-production. This approach relies on the Weak (or ray) Dis-
posability (WD) axiom (Shepard, 1970) and the null jointness assumption. The
former means that desirable and undesirable outputs can only be simultaneously
decreased by a proportional factor. The latter highlights the pollution problem:
desirable production cannot be produced without bad outputs. Nevertheless,
models that consider these notions have several limits. First, they consider a
single abatement factor that reduces the production set. Hence, it conducts to
an artificial high number of efficient Decision Making Units (DMUs). Kuosma-
nen (2005) proposes to enhance them by introducing a non-uniform abatement

1Note that throughout this paper, we use equivalently the terms bad outputs, undesirable
outputs and residual outputs.

2More precisely, this approach fails to satisfy the first law of thermodynamics. This law
can be illustrated through the famous saying: ”Nothing is lost, nothing is created, everything
is transformed” Antoine Lavoisier (1743-1794).

3The additive inverse transformation consists to multiply each undesirable outputs by −1.
This approach exhibits the same technology set that considers undesirable outputs as inputs.
However, it alters the sign of bad outputs.
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factor to capture all feasible production plans.
Second, standard WD model does not exclude positive shadow prices for

residual outputs (Hailu and Veeman, 2001; Hailu, 2003). Rødseth (2013) ex-
amines this issue, and finds that positive prices may be appropriate in cases
where bads are recuperated by good outputs. Third, Kuosmanen and Podi-
novski (2009) show that conventional WD technologies are not necessary convex.
Podinovski and Kuosmanen (2011) suggest to model weak disposability under
relaxed convexity assumptions. Finally, Hampf and Rödseth (2015) show that
traditional WD model satisfies the MBP only if abatement activities are present.
Moreover, these authors show that this model fails to satisfy the second law of
thermodynamics4.

Among the above approaches, the literature in non-parametric environmen-
tal efficiency studies shows that WD models are extensively used. Some recent
papers assuming WD applied to numerous topics are proposed on leadings jour-
nals; see for instance Manello (2017), Shen et al. (2017), Falavigna et al. (2015),
Azad and Ancev (2014), Bilsel et al. (2014) or Picazo-Tadeo et al. (2005). Two
innovative approaches arose due to the limits associated with the WD model.
First, following Ayres and Kneese (1969), Lauwers and Van Huylenbroeck (2003),
Coelli et al. (2007) and Lauwers (2009), Rödseth (2017) presents two new ax-
ioms of polluting technology based upon the MBP and the entropy law. Second,
Murty et al. (2012) suggest an innovative By-Production (BP) technology con-
structed as an intersection of an intended-production technology and a residual-
generation technology. Murty (2015) extends this approach through a set of
axioms that corresponds to the properties of polluting technologies. Dakpo et
al. (2016) present a critical review of these recent developments.

This paper proposes to model PgT using an innovative B-disposal assump-
tion. This approach considers congested output set with a relaxed disposabil-
ity assumption (Briec et al., 2016). The new B-disposal assumption is a sort
of limited strong disposability. Hence, B-disposal technologies allow to define
congestion in the good outputs since the output set does not satisfy the usual
disposal assumption. It implies that it is not possible to reduce freely bad out-
puts; i.e. without any costs. The B-disposal assumption allows to reveal any
PgT compatible with a minimal set of assumptions. Moreover, it treats a more
general class of PgT satisfying both convex and non-convex assumptions. In-
deed, non-convexities often result from negative externalities (eg., pollution). To
characterize these technologies, we consider the Shephard output distance func-
tion (Shephard, 1953) that is dual to the revenue function (Shepard, 1953; Mc
Fadden, 1978). Since these technologies can satisfy both convex and non-convex
assumptions then, we define a test of the usual axiom of convexity5.

This note unfolds as follows. Section 2 presents the traditional technology.

4Following the second law of thermodynamics, polluting inputs cannot be totaly trans-
formed into good outputs. Then, the production process necessarily generates a minimal
amount of residual outputs if a positive amount of polluting inputs is used.

5See Dasgupta and Mäler (2003) for a discussion about economists’ convexities and nature’s
non-convexities.
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Furthermore, it introduces the new disposal assumption and the boundaries
for the residual outputs. Section 3 highlights the notions of output distance
function and revenue function on the new PgT technology. From a dual view-
point, we establish the duality result between the output distance function and
a revenue function allowing for negative prices. Thereafter, we show how to
detect B-disposability and we test the consistency with revenue maximization.
Section 4 defines both convex and non-convex non-parametric B-disposal PgT.
Introducing a generalisation of the B-disposal assumption, we establish relation
among the so-called BP approach and the B-disposal model. Section 5 suggests
non-parametric procedure to test convexity and disposability of the PgT. An
empirical illustration is proposed in section 6. Finally, Section 7 concludes.

2 Technology: Assumptions and Definitions

2.1 Technology Based upon Traditional Assumptions

Let us define the notation used in this paper. Rn
+ is the non-negative Euclidean

n-dimensional orthant. For all y, ν ∈ R
n
+ we denote y ≤ ν ⇐⇒ yi ≤ νi ∀i ∈ [n],

where [n] is the subset {1, ..., n}.
A production technology transforms inputs x = (x1, ..., xm) ∈ R

m
+ into out-

puts y = (y1, ..., yn) ∈ R
n
+. It can be characterized by the output correspondence

P : Rm
+ −→ 2R

n
+ where P (x) is the set of all outputs vectors that can be produced

from x:
P (x) = {y : y can be produced from x} . (2.1)

Throughout this paper, we assume that the output correspondence satisfies
the following regularity properties (see Hackman, 2008; Jacobsen, 1970; McFad-
den, 1978):

P1: P (0) = {0} and 0 ∈ P (x) for all x ∈ R
m
+ .

P2: P (x) is bounded above for all x ∈ R
m
+ .

P3: P (x) is closed for all x ∈ R
m
+ .

Note that P1 imposes that there is no free lunch and that the null output
can always be produced. Moreover, P2 and P3 involve that P (x) is compact. In
addition to these axioms, there are three other assumptions that we sometimes
invoke on the output correspondence:

P4 : u ≥ x⇒ P (x) ⊆ P (u).
P5: ∀y ∈ P (x), 0 ≤ v ≤ y ⇒ v ∈ P (x).
P6: P (x) is a convex set for all x ∈ R

m
+ .

Assumption P6 postulates convexity of the output correspondence. This
is useful to provide a dual interpretation through the revenue function and in
empirical applications of, for instance, non-parametric technologies. Notice that
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under P1 and P6 if y ∈ P (x) then λy ∈ P (x), ∀λ ∈ [0, 1]. This implies the ray
(or weak) disposability of the outputs, while axioms P4 and P5 impose the more
traditional assumption of strong (or free) disposability of inputs and outputs.
Note that a convex, ray disposable technology satisfying P1 − P4 and P6 but
failing P5 is congested in the sense of Färe and Grosskopf (1983).6

Some subsets of the output set P (x) can be defined to measure efficiency.
Two subsets denoting production units on the boundary prove useful. For all
x ∈ R

m
+ , the efficient subset is defined by:

E(x) = {y ∈ P (x) : v ≥ y and v 6= y ⇒ v 6∈ P (x)}. (2.2)

The weak efficient subset is written as:

W (x) = {y ∈ P (x) : v > y ⇒ v 6∈ P (x)}. (2.3)

2.2 Disposal Assumption for Bad Outputs

Let B ⊂ [n], indexing the bad outputs of the technology. We introduce the
following symbol:

y ≥B v ⇐⇒

{

yj ≤ vj if j ∈ B
yj ≥ vj else

(2.4)

Moreover:

y >B v ⇐⇒

{

yj < vj if j ∈ B
yj > vj else

(2.5)

Obviously, if −y ≥B −v then y ≤B v. Notice that if B = ∅, then we retrieve
the standard vector inequality. Indeed, it means that the set of the residual
outputs is empty.

We can now define a new disposability assumption for the outputs.

Definition 2.1 Let P be an output correspondence satisfying P1-P4. For any

y ∈ R
n
+, the output set P (x) satisfies the B-disposal assumption if for all y∅, yB ∈

P (x), y ≤∅ y∅ and y ≤B yB implies that y ∈ P (x).

If B = ∅, then B-disposal assumption reduces to the standard free dispos-
ability assumption.

In this paper, the free disposal assumption is limited through the combina-
tion of it with a particular partial reversion of free disposal. The more the output
dimensions are subjected to these reversions, the more the free disposability as-
sumption gets limited and thus weakened. Indeed, Definition 2.1 implies that
the larger the bad output subset B is, the more difficult one can dispose outputs.
In general, these definitions can take account for cases where there is a simulta-
neous lack of free disposability in all dimensions. However, it is also possible to
define this lack independently in several dimensions.

6Kuosmanen (2003) shows that this traditional specification fails convexity, but a revised
specification is convex.
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Let us introduce the following convex cone:

KB =
{

y ∈ R
n : y ≥B 0

}

. (2.6)

This notation implies that K∅ = R
n
+. Definition 2.1 is illustrated in Figure 1

with B = {2}. For any y, if there is some yØ that classically dominates y and
some y2 that “{2}-dominates” y, then y ∈ P (x). For a given configuration of
observations, this allows to construct an output set that presents a lack of dis-
posability in the dimension of the residual outputs. In such a case, there exists
a lower bound on bad outputs that reflects cost disposability of the undesirable
production (Murty, 2010). For given values of inputs and desirable outputs, the
B-disposal production model is characterized by a unique production set with
both upper and lower bounds on residual outputs (Figure 1-2).

0

K{2}

y1

y2 = Bad Output

y{2}•

y∅•

y•
P (x)

Figure 1: Convex output set with B = {2}

To study this new disposal assumption from a dual standpoint, we introduce
the revenue function R : Rn × R

m
+ −→ R ∪ {−∞} defined by:

R(p, x) =

{

sup
y

{p.y : y ∈ P (x)} if P (x) 6= ∅

−∞ if P (x) = ∅
(2.7)

Notice that this definition allows to take into account negative prices which
are specifically linked to PgT.

The following propositions study the properties of the B-disposal assumption.

Proposition 2.2 Let P be an output correspondence satisfying P1-P4. For all
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x ∈ R
m
+ , P (x) satisfies the B-disposal assumption if and only if:

P (x) =
(

(P (x)− R
n
+) ∩ (P (x)−KB)

)

∩ R
n
+.

This proposition characterizes a B-disposal output set in terms of an inter-
section of convex cones (2.6). Remark that 2.2 is only based on the B-disposal
assumption and P1-P4. Therefore, the above proposition holds even if P (x) is
not convex (Figure 2).

0

K{2}

y1

y2 = Bad Output

y{2}•

y∅•

y
•

Pnc(x)

Figure 2: Non-convex output set with B = {2}

The following proposition extends the results of Proposition 2.2 to a con-
vex output correspondence. A dual characterization of the B-disposability is
proposed.

Proposition 2.3 Let P be an output correspondence satisfying P1-P4. More-

over, assume that P6 holds. For all x ∈ R
m
+ , P (x) satisfies the B-disposal

assumption if and only if

P (x) =
{

y ∈ R
n
+ : p.y ≤ R(p, x), p ∈ R

n
+ ∪KB

}

.

Intuitively stated, a convex output set satisfying B-disposability can be en-
veloped by a revenue function for proper prices. This result constitutes the basis
for the duality result developed in Section 3.

Now, we define a new notion of congestion in good outputs.

Definition 2.4 Let P be an output correspondence satisfying P1-P4 and let B
be a subset of [n]. For all x ∈ R

m
+ , P (x) is congested in the desirable outputs if

it fails strong disposability assumption but satisfies B-disposal assumption.
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This means that:

(P (x)− R
n
+) ∩ R

n
+ 6=

(

(P (x)− R
n
+) ∩ (P (x)−KB)

)

∩ R
n
+. (2.8)

Definition 2.4 provides a strict definition of congestion in good outputs. Re-
call that in such a case there exists a lower bound on bad outputs for given
values of inputs and good outputs. Thus, we have:

P (x) 6= (P (x)− R
n
+) ∩ R

n
+. (2.9)

In the following, for all price vector p ∈ R
n, we say that an output in P (x)

is p-optimal if it maximizes the revenue R(·, p). An output vector y ∈ P (x)
is interior, if y > 0. The next result establishes a characterization of the new
PgT.

Proposition 2.5 Let P be an output correspondence that satisfies P1-P4. As-

sume that P6 holds. P (x) is congested in the good outputs if and only if there

exists some interior pB-optimal output in P (x) with pB ∈ KB\Rn
+.

2.3 Boundaries for Bad Outputs

It remains an open question: how to detect undesirable outputs from the struc-
ture of the output correspondence? To answer this question, it is useful to in-
troduce the concept of bad frontier. Therefore, the following definition identifies
a subset that is not efficient, but that is a part of the boundary of a B-disposal
output correspondence.

Definition 2.6 Let P be an output correspondence satisfying P1-P4 and let

B ⊂ [n]. For all x ∈ R
m
+ , we call bad output efficient frontier the subset:

EB(x) = {y ∈ P (x) : v ≥B y and v 6= y ⇒ v 6∈ P (x)}.

We call bad output weakly efficient frontier the subset:

WB(x) = {y ∈ P (x) : v >B y ⇒ v 6∈ P (x)}.

It follows that E∅(x) = E(x) is the usual efficient subset of P (x). Moreover,
note that y ∈ EB(x) if and only if:

(P (x)\{y}) ∩ (y +KB) = ∅. (2.10)

Proposition 2.7 Let P be an output correspondence satisfying P1-P4. Assume

that P6 holds.

(a) The subsets EB(x) and WB(x) are closed.

(b) If the output set P (x) is congested in good outputs then, the subset EB(x)\E(x)
is non-empty and contains an interior point.

(c) Suppose that EB(x)\E(x) is non-empty and contains an interior point. More-

over, assume that P (x) satisfies the B-disposal assumption. Then, P (x) is con-
gested in good outputs.
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Remark 2.8 There exists output sets that are not congested in the good dimen-

sion and for which there exists a boundary point in EB(x)\E(x). For example

assume that P (x) is the cube defined by P (x) = {(y1, y2) ∈ R
2
+ : y1 ≤ 1, y2 ≤ 1}.

Then yB = (1, 0) ∈ E{1}\E. However, P (x) satisfies free disposability of unde-

sirable outputs.

Note that the bad frontier corresponds to the lower bound of the output set.
The bad frontier is of interest for policy makers and researchers to define global
(economic and environmental) recommendations.

3 Duality between Technology and Revenue Func-

tion Based on B-Disposability

Shephard (1953) introduced the so-called Shephard distance function in pro-
duction theory. This distance function characterises technology and provides a
useful tool in efficiency and productivity measurement.7 Moreover, it is always
feasible under P1-P3 and P6.

3.1 Distance Function and Revenue Function on PgT :

A Duality Result

The output distance function ψP : Rm+n
+ −→ R ∪ {+∞} is defined by:

ψP (x, y) =

{

inf{λ > 0 : 1
λ
y ∈ P (x)} if 1

λ
y ∈ P (x) for some λ > 0

+∞ otherwise
(3.1)

The above definition holds for a technology that satisfies the ray disposability
assumption.

Traditional duality result (Jacobsen, 1970; McFadden, 1978) allows to state
a duality result on an output set P (x) that satisfies the ray disposal assumption.
It establishes a connection between the revenue function and the output distance
function.

Proposition 3.1 Let P be an output correspondence satisfying P1-P6. We have

the following properties:

(a) For all (x, y) ∈ R
m+n
+

ψP (x, y) = sup
p≥0

{

p.y

R(p, x)
: R(p, x) 6= 0

}

. (3.2)

7See Russell (1985, 1987) for an axiomatic approach to the measurement of technical effi-
ciency.
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(b) Let p be a non-negative output price vector. We have:

R(p, x) = sup
y

{

p.y

ψP (x, y)
: y ∈ R

n
+

}

. (3.3)

A weaker duality result allows to state duality relationship between the rev-
enue function and the ray (or weak) disposable output distance function (Shep-
hard, 1974). In such a case, some (but not all) prices are allowed to be negative
(assumption P5 is dropped).8

Now, we extend the properties of the distance function allowing negative
orientations. Moreover, we prove that it is compatible with output sets satisfying
the B-disposal assumption.

Proposition 3.2 Let P be an output correspondence satisfying P1-P4 and P6.

Moreover, assume that P (x) satisfies the B-disposal assumption. We have the

following properties:

(a) For all (x, y) ∈ R
m+n
+ :

ψP (x, y) = sup
p∈KB∪Rn

+

{

p.y

R(p, x)
: R(p, x) 6= 0

}

. (3.4)

(b) Let p ∈ KB ∪ R
n
+ be an output price vector possibly having some negative

components. Then:

R(p, x) = sup
y

{

p.y

ψP (x, y)
: y ∈ R

n
+

}

. (3.5)

Property (a) extends the results of Shephard (1953) to an output corre-
spondence that may fail both strong and weak disposability assumptions. The
converse results expressing the revenue function with respect to the Shephard dis-
tance function is stated in (b). This duality result considerably weakens current
duality results imposing strong disposability. Otherwise stated, this proposition
shows that B-disposal of outputs is a necessary and sufficient condition allowing
the output Shephard distance function to characterize technology. Hence, tradi-
tional result based upon ray disposability of outputs to characterize technology
is substantially weakened.

This new duality result is illustrated in Figure 2. Since the first (good) output
is clearly congested, the second (bad) output receives a negative price. Thus,
the revenue function presents a positive rather than a negative slope.

In principle it is possible to relax the convexity assumption. Under non-
convexity, the duality result in Proposition 3.2 would only hold locally (similar
to the local duality result in, e.g., Briec, Kerstens and Vanden Eeckaut (2004)).

It should be clear by now that when the output set satisfies free disposal,
then it contains the output set that satisfies B-disposal assumption. However, the

8Also McFadden (1978) anticipates the use of negative prices and maintains that duality
results can be preserved under these circumstances.
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0

K{2}

y1

y2 = Bad Output

R(p, x)p.y

y
•

P (x)

Figure 3: Shephard distance function and duality with B = {2}

converse is not necessarily true. The same applies to weak disposal assumption:
an output set satisfying weak disposability assumption also contains the output
set that satisfies the B-disposal assumption. Nevertheless, the converse need not
be true.

3.2 Measurement of Bad Disposability

Now, we show relationship between special cases of the output distance function
introduced below and the congestion concept. Following Luenberger (1995), to
study this relationship from a dual viewpoint we introduce the adjusted price
correspondence p : Rm+n

+ −→ 2R
n

:

p(x, y) = arg min
p∈KB∪Rn

+

{

p.y

R(p, x)
: R(p, x) 6= 0

}

. (3.6)

Notice that if the minimum is not achieved, then p(x, y) = ∅. At points where
ψP (x, ·) is differentiable and applying the envelop theorem to 3.4 we obtain:

∇yψP (x, y) =
p(x, y)

R(p, x)
. (3.7)

Thus,

p(x, y) = ∇yψP (x, y)R(p, x) (3.8)

For the sake of simplicity, we introduce the following notation:

P ∅(x) = (P (x)−K∅) ∩ R
n
+ = (P (x)− R

n
+) ∩ R

n
+, (3.9)

PB(x) = (P (x)−KB) ∩ R
n
+, (3.10)
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P {∅,B}(x) = P ∅(x) ∩ PB(x) =
(

(P (x)− R
n
+) ∩ (P (x)−KB)

)

∩ R
n
+. (3.11)

In the next proposition, the impact of adding convexity to axioms P1− P4
is analyzed.

Proposition 3.3 Let P be an output correspondence satisfying P1-P4. More-

over, assume that P6 holds. For all x ∈ R
m
+ , we have the following properties:

(a) P (x) is congested in good outputs if and only if there exists some y ∈ P (x)
such that p(x, y) ⊂ KB\Rn

+.
(b) P (x) is congested in desirable outputs if and only if there exists some y ∈ P (x)
such that ψP ∅(x, y) < ψP {∅,B}(x, y).

In the following a procedure is proposed to measure congestion in good out-
puts9.

Definition 3.4 Let P be an output correspondence satisfying P1-P4. For all

production vector (x, y) ∈ T , we define the following ratio to measure congestion

in good outputs:

DCB(x, y) = ψP {∅,B}(x, y)/ψP ∅(x, y)

.

We can now state the following corollary for our congestion measure.

Corollary 3.5 Let P be an output correspondence satisfying P1-P4. Assume

moreover that for all x ∈ R
m
+ , P (x) satisfies the B-disposal assumption. Then,

there exists some y ∈ P (x) such that DCB(x, y) > 1 if and only if P (x) is

congested in desirable outputs.

This measure DCB(x, y) evaluates subvector congestion per subset B.

3.3 Testing for Consistency with Revenue Maximization

Suppose given data on input-output vectors (xz, yz) and output prices pz for all
z ∈ Z, where Z is an index set of natural number. Here we ask whether or
not there is a family of output sets P (x) that can make sense of this observed
behavior. It is possible to show that the existence of negative prices involves
congestion in the general sense defined in this contribution. Following Varian
(1984) we say that a family of output sets P (x) rationalizes the data if yz is a
solution of the program:

max
y

{pz.y : y ∈ P (xz)} (3.12)

9Since B-congested technologies satisfy the B-disposal assumption but fail strong dispos-
ability, the suggested test of congestion allows to measure the loss of good outputs due to a
lack of disposability in the residual outputs.
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for all z ∈ Z. Equivalently, a family of output sets P (x) rationalizes the data if
for all z ∈ Z and all y ∈ P (xz):

pz.yz ≥ pz.y. (3.13)

Assume that the output set is one-dimensional (n = 1). The main difference
with Varian’s (1984) Weak Axiom of Profit Maximization (WAPM) is that here
prices can be negative. This excludes the strong disposal (or negative monotonic)
property of the output set. Following Varian (1984) we assume that the family
of output sets is nested by the following assumption:

∀y ∈ P (x), x ≤ u implies that y ∈ P (u). (3.14)

In the following, we suppose that for all z

pz,j < 0 if j ∈ B and pz,j > 0 if j /∈ B (3.15)

The key idea of the following result is that if a collection of output sets P (x)
rationalizes the data, then it necessarily satisfies a B-disposal assumption and a
congestion assumption in the output dimension.

Proposition 3.6 The following conditions are equivalent:

(a) There exists a family of nested output sets P (x) that rationalizes the data.

(b) If xk ≤ xz, then pz.yk ≤ pz.yz for all z, k ∈ Z.

(c) There exists a family of nontrivial closed, convex and nested output sets that

rationalizes the data and that satisfies congestion in the good outputs dimension.

An immediate consequence is that negative prices imply congestion of the
technology. Obviously, if all observed prices are nonnegative, then we have
B = ∅ for z ∈ Z and, because of B = ∅, we retrieve the Varian (1984) WAPM
result.

Notice that in principle it is possible to relax the convexity assumption (e.g.,
as in Briec, Kerstens and Vanden Eeckaut (2004)). Obviously, the same remarks
as those mentioned at the end of subsection 3.1 apply.

4 Bad Outputs on Non-Parametric Technolo-

gies

In this section we focus on convex and non-convex non-parametric technologies.
In particular we consider the so-called Data Envelopment Analysis (DEA) model
due to Banker, Charnes and Cooper (1984) and the Free Disposal Hull (FDH)
non-convex production model (Tulkens, 1993).
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4.1 Non-Parametric Convex and Non-Convex Technolo-

gies

We consider a set of DMUs A = {(xz, yz) : z ∈ Z} where Z is an index set of
natural number. We assume that the technology satisfy the Variable Returns
to Scale (VRS) assumption (Banker et al., 1984)10. In such case the production
technology is defined by:

T ∅,DEA =
{

(x, y) : x ≥
∑

z∈Z

µzxz , y ≤
∑

z∈Z

µzyz,
∑

z∈Z

µz = 1, µ ≥ 0
}

(4.1)

For any observed (x0, y0), the output correspondence is:

P ∅,DEA(x0) =
{

y : x0 ≥
∑

z∈Z

µzxz, y ≤
∑

z∈Z

µzyz,
∑

z∈Z

µz = 1, µ ≥ 0
}

To establish congestion of the output correspondence, we need to identify the
following subset:

PB,DEA(x0) =
{

y : x0 ≥
∑

z∈Z

θzxz , y ≤B
∑

z∈Z

θzyz,
∑

z∈Z

θz = 1, θ ≥ 0
}

(4.2)

We now have P {∅,B} (x0) = P ∅ (x0)∩P
B (x0) =

(

(

P (x0)− R
n
+

)

∩
(

P (x0)−KB
)

)

∩

R
n
+. Equivalently, we have:

P {∅,B},DEA (x0) = P ∅,DEA (x0) ∩ P
B,DEA (x0) (4.3)

The subset (4.2) allows to define the bad frontier of the PgT. The latter
corresponds to the lower bound of the output set. The upper bound is established
by the frontier of the subset P ∅,DEA(x0). Thus, we have

10Notice that if we assume that A contains the null input-output vector (0, 0) then axiom
P1 holds true. Equivalently, one can suppose a non-increasing returns to scale assumption
(Färe et al., 1983).
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P {∅,B},DEA(x0) =
{

y : x0 ≥
∑

z∈Z

θzxz , x0 ≥
∑

z∈Z

µzxz

y ≤B
∑

z∈Z

θzyz, y ≤
∑

z∈Z

µzyz

∑

z∈Z

θz =
∑

z∈Z

µz = 1, θ, µ ≥ 0
}

(4.4)

P {∅,B},DEA(x0) characterizes an overall convex PgT with both upper and
lower bounds on bad outputs for given values of desirable outputs and inputs.
We can now state the following result:

Proposition 4.1 The non-parametric convex output correspondence satisfies

the following properties.

(a) P {∅,B},DEA is convex;

(b) P {∅,B},DEA satisfies the B-disposal assumption;

(c) P {∅,B},DEA is a closed subset of Rn
+.

The above system of linear inequations (4.4) can be formulated:

P {∅,B},DEA(x0) =
{

y : x0,i ≥
∑

z∈Z

θzxz,i, i = 1, ..., m

x0,i ≥
∑

z∈Z

µzxz,i, i = 1, ..., m

yj ≥
∑

z∈Z

θzyz,j, j ∈ B

yj ≤
∑

z∈Z

θzyz,j, j /∈ B

yj ≤
∑

z∈Z

µzyz,j, j = 1, ..., n

∑

z∈Z

θz =
∑

z∈Z

µz = 1, θ, µ ≥ 0
}

(4.5)

Remark that, if θ = µ then, (4.5) shows non-disposability of undesirable outputs
(Kuosmanen, 2005). Following Leleu (2013), this representation is an incorrect
modeling of VRS assumption in traditional Shepard’s weakly disposable technol-
ogy. Nevertheless, this modeling has been widely implemented in the literature
(see for instance Picazo-Tadeo et al., 2005; Bilsel et al., 2014). This contribution
provides an innovative axiomatic characterization of the incorrect modeling of
VRS assumption in traditional Shepard’s weakly disposable technology.
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Furthermore, notice that if we consider a set of DMUs A
′
= {(xz, yz), (xz, 0) :

z ∈ Z}11 then, we find the correct way to linearize VRS Shepard’s weakly dispos-
able technology suggested in Kuosmanen (2005). Kuosmanen and Podinovski
(2009), show that this technology is the smallest convex extension of Shepard’s
weakly disposable technology. Following the initial work of Podinovski (2004),
they highlight that Kuosmanen’s technology is the correct minimum extrapo-
lation technology that verified the stated axioms. This modeling permits to
consider proper abatement factor for each observed activity. Through this ap-
proach, a dual interpretation of weak disposability is proposed in Kuosmanen
and Matin (2011)12. This paper provides an axiomatic characterization of the
Kuosmanen’s technology.

In the same vein, if we consider A
′

0 = {(xz, yz), (x0, 0) : z ∈ Z}11 then, we are
getting the correct way to linearize VRS Shepard’s weakly disposable technology
suggested in Leleu (2013). This modeling allows to define dual interpretation of
weak disposability assumption.

As mentioned previously (subsection 2.2), it is possible to introduce non-
convex B-disposal technologies. Let us consider the following individual produc-
tion possibility sets:

S∅(xz, yz) =
{

(x, y) ∈ R
n+m
+ : x ≥ xz , y ≤ yz

}

(4.6)

and
SB(xz, yz) =

{

(x, y) ∈ R
n+m
+ : x ≥ xz, y ≤

B yz

}

. (4.7)

Intersection of the non-convex unions of (4.6) and (4.7) allows to define FDH
non-convex PgT.

P {∅,B},DEA
nc (x) =

{

y : (x, y) ∈
(

∪z∈Z S
∅(xz, yz)

)

∩
(

∪z∈Z S
B(xz , yz)

)

}

. (4.8)

Note that VRS assumption is imposed in the above FDH non-convex produc-
tion model. Other returns to scale assumption can be introduced adding specific
scaling parameter in (4.6) and (4.7). More precisely,

S∅,δ(xz, yz) =
{

(x, y) ∈ R
n+m
+ : x ≥ δxz, y ≤ δyz

}

(4.9)

and
SB,δ(xz , yz) =

{

(x, y) ∈ R
n+m
+ : x ≥ δxz, y ≤B δyz

}

. (4.10)

With δ ≥ 0 (CRS assumption), δ ∈ [0, 1] (NIRS assumption) or δ ≥ 1 (NDRS
assumption).

11In such a case axiom P1 holds true.
12Kuosmanen and Matin (2011) introduce the concept of ”limited liability condition” to

provide a dual interpretation of the weak disposability. If the maximum profit is not positive
and smaller than the sunk costs of inputs the ”limited liability condition” is not satisfied. In
such a case, it is optimal to stop the production activity.
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Following Briec et al. (2004), we can define a consolidated B-disposal PgT
as follows:

P
{∅,B},DEA

Ω,∆ (x) =
{

y : x ≥ δ
∑

z∈Z

θzxz, x ≥ δ
∑

z∈Z

µzxz

y ≤B δ
∑

z∈Z

θzyz, y ≤ δ
∑

z∈Z

µzyz

θ, µ ∈ Ω, δ ∈ ∆
}

.

Where Ω ∈ {Ωc,Ωnc}, with Ωc =
{

(θ, µ) :
∑

z∈Z θz =
∑

z∈Z µz = 1, θ, µ ≥ 0
}

and Ωnc =
{

(θ, µ) :
∑

z∈Z θz =
∑

z∈Z µz = 1, θ, µ ∈ {0, 1}
}

. Moreover, ∆ ∈
{

{δ : δ = 1}; {δ : δ ≥ 0}; {δ : δ ∈ [0, 1]}; {δ : δ ≥ 1}
}

allows to consider several
returns to scale assumptions (ie, VRS, CRS, NIRS and NDRS).

Furthermore, since the B-disposal technology is defined as an intersection of
sub-technologies, we can introduce a hybrid (convex and non convex) PgT as
follows:

P
{∅,B},DEA

h−,∆ (x) =
{

y : x ≥ δ
∑

z∈Z

θzxz, x ≥ δ
∑

z∈Z

µzxz

y ≤B δ
∑

z∈Z

θzyz, y ≤ δ
∑

z∈Z

µzyz

θ ∈ Ωnc, µ ∈ Ωc, δ ∈ ∆
}

. (4.11)

In (4.11), upper bound of the output set presents convexity whereas non-
convexity applies to the bad frontier (Figure 4). In such a case, the hybrid PgT
corresponds to the intersection of the convex union of (4.9) and the non-convex
union of (4.10).

P
{∅,B},DEA

h−,∆ (x) =
{

y : (x, y) ∈ Co
(

∪z∈Z S
∅,δ(xz , yz)

)

∩
(

∪z∈Z S
B,δ(xz, yz)

)

}

.

(4.12)

4.2 By-production technology and generalised B-disposal

assumption

In the previous section, the B-disposability corresponds to the cost disposability
assumption of Murty et al. (2012). However, the B-disposal assumption is
applied to the costly disposal hull of the technology rather than to the technology
itself. The Murty et al.’s (2012) model is more general because it does not assume
the strong disposability assumption on the input side. This approach considers
a partition of inputs into polluting and no-polluting ones such that, the former
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Figure 4: A hybrid output set with B = {2}

satisfies costly disposability assumption. In the previous sections, we focus on
the output side and do not fix an a priori input partition (i.e., polluting versus
no-polluting). However, all this framework could be extended to a general case
considering the B-disposal assumption both in inputs and outputs sides.

We first present the notation used to define a generalised version of the B-
disposal assumption. Let B = {Bin, Bout} ⊂ [m] × [n], indexing the inputs
generating pollution and the bad outputs of the technology. We assume that
there are polluting and no-polluting inputs such that x = (xp, xnp). Let T a
production technology satisfying the following regularity properties:

T1: (0, 0) ∈ T , (0, y) ∈ T ⇒ y = 0.
T2: T (y) = {(u, v) ∈ T : v ≤ y} is bounded for all y ∈ R

n
+.

T3: T is closed.
T4: ∀(x, y) ∈ T ∧ ∀(u, v) ∈ R

m
+ × R

n
+ if (x,−y) ≤ (u,−v) then (u, v) ∈ T .

The assumptions T1−T3 are equivalent to P1−P3. T4 imposes traditional
assumption of strong disposability of inputs and outputs.

Definition 4.2 Let T a production technology satisfying T1-T3. For any (x, y) ∈
R

m
+ ×R

n
+, the technology T satisfies the generalised B-disposal assumption if for

all (x∅, y∅), (xB, yB) ∈ T , (−x, y) ≤∅ (−x∅, y∅) and (−x, y) ≤B (−xB, yB) im-

plies that (x, y) ∈ T .

Where, B = {Bin, Bout} ⊂ [m] × [n] indexes the inputs generating pollution
and the bad outputs of the technology. If B = ∅, then the generalised B-disposal
assumption reduces to the standard free disposability assumption (T4).
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Proposition 4.3 Let T be a technology satisfying T1-T3. For all (x, y) ∈ R
m
+ ×

R
n
+, T satisfies the generalised B-disposal assumption if and only if:

T =
(

(

T + (Rm
+ × (−R

n
+))

)

∩
(

T + (KBin × (−KBout))
)

)

∩ (Rm
+ × R

n
+).

Note that proposition 4.3 holds true even if the technology is not convex. For
simplicity, we introduce the following notations:

T ∅ =
(

T + (Rm
+ × (−R

n
+))

)

∩ (Rm
+ × R

n
+), (4.13)

TB =
(

T + (KBin × (−KBout))
)

∩ (Rm
+ × R

n
+), (4.14)

T {∅,B} = T ∅∩TB =
(

(

T+(Rm
+×(−R

n
+))

)

∩
(

T+(KBin×(−KBout))
)

)

∩(Rm
+×R

n
+).

(4.15)
We assume that the technology satisfies Variable Returns to Scale (VRS)

assumption (Banker et al., 1984). To establish generalised congestion of polluting
inputs and desirable outputs, we need to identify the following subset:

TB,DEA =
{

(x, y) : x ≥Bin

∑

z∈Z

θzxz, y ≤Bout
∑

z∈Z

θzyz,
∑

z∈Z

θz = 1, θ ≥ 0
}

(4.16)

Now, we can state:

T {∅,B},DEA = T ∅,DEA ∩ TB,DEA (4.17)

Thus, we have

T {∅,B},DEA =
{

(x, y) : x ≥
∑

z∈Z

µzxz , x ≥Bin

∑

z∈Z

θzxz

y ≤
∑

z∈Z

µzyz, y ≤
Bout

∑

z∈Z

θzyz

∑

z∈Z

θz =
∑

z∈Z

µz = 1, θ, µ ≥ 0
}

T {∅,B},DEA defines an overall PgT with a lower bound on bad outputs and an
upper bound on polluting inputs. This kind of PgT allows to identify simulta-
neously congestion in the dimensions of polluting input and good output (see
Appendix B).

Following the Murty et al.’s (2012) words, TB,DEA reflects nature’s resid-
ual generation. T ∅,DEA allows to capture the intended-production activities of
firms. The intersection of TB,DEA and T ∅,DEA defines a generalised B-disposal
PgT. Note that the subsets TB,DEA and T ∅,DEA consider both polluting and no-
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polluting inputs. Then, intended and unintended outputs depend on the same
set of inputs (Försund, 2016).

The above system of linear inequations can be rewritten as follows:

T {∅,B},DEA =
{

(x, y) : xi ≤
∑

z∈Z

θzxz,i, i ∈ Bin

xi ≥
∑

z∈Z

θzxz,i, i /∈ Bin

xi ≥
∑

z∈Z

µzxz,i, i = 1, ..., m

yj ≥
∑

z∈Z

θzyz,j, j ∈ Bout

yj ≤
∑

z∈Z

θzyz,j, j /∈ Bout

yj ≤
∑

z∈Z

µzyz,j, j = 1, ..., n

∑

z∈Z

µz = 1,
∑

z∈Z

θz = 1, µ ≥ 0, θ ≥ 0
}

(4.18)

The above PgT (4.18) does not consider abatement outputs, but obviously it
is straightforward to introduce such outputs. We just have to insert the following
constraint: yj ≥

∑

z∈Z θzyz,j, j ∈ B′
out. Where, B = {Bin, Bout, B

′
out} ⊂ [m] ×

[n] indexes the inputs generating pollution, the bad outputs and the abatement
outputs of the technology. Now, consider the following constraints:

∑

z∈Z

θzxz,i =
∑

z∈Z

µzxz,i, i /∈ Bin (4.19)

and

∑

z∈Z

θzyz,j =
∑

z∈Z

µzyz,j, j /∈ Bout, (4.20)

Note that if we suppose the independence of T ∅,DEA from {yj}j∈Bout
and if we

add the constraints (4.19) and (4.20) to (4.18) then, the PgT corresponds to the
by-production technology of Murty et al. (2012)13.

Let us consider the following individual production possibility set:

SBin,Bout(xz, yz) =
{

(x, y) ∈ R
n+m
+ : x ≥Bin xz, y ≤Bout yz

}

. (4.21)

13If dependence contraints are considered then, we retrieve the extension of the by-
production technology suggested by Dakpo (2016).
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Following axioms T1 − T3, we can introduce FDH non-convex PgT as an
intersection of the non-convex unions of (4.6) and (4.21):

T {∅,B},DEA
nc =

{

(x, y) : (x, y) ∈
(

∪z∈Z S
∅(xz, yz)

)

∩
(

∪z∈Z S
Bin,Bout(xz , yz)

)

}

.

(4.22)
Then, a consolidated generalised B-disposal technologies can be suggested as

follows:

T
{∅,B},DEA

Ω,∆ =
{

(x, y) : xi ≤ δ
∑

z∈Z

θzxz,i, i ∈ Bin

xi ≥ δ
∑

z∈Z

θzxz,i, i /∈ Bin

xi ≥ δ
∑

z∈Z

µzxz,i, i = 1, ..., m

yj ≥ δ
∑

z∈Z

θzyz,j, j ∈ Bout

yj ≤ δ
∑

z∈Z

θzyz,j, j /∈ Bout

yj ≤ δ
∑

z∈Z

µzyz,j, j = 1, ..., n

θ, µ ∈ Ω, δ ∈ ∆
}

(4.23)

Adding the constraints (4.19), (4.20) and the independence of T ∅,DEA
nc from

{yj}j∈Bout
in (4.23), we can introduce a non-convex version of the by-production

technology. A hybrid (convex and non-convex) version of (4.23) is defined as,

T
{∅,B},DEA

h−,∆ =
{

(x, y) : xi ≤ δ
∑

z∈Z

θzxz,i, i ∈ Bin

xi ≥ δ
∑

z∈Z

θzxz,i, i /∈ Bin

xi ≥ δ
∑

z∈Z

µzxz,i, i = 1, ..., m

yj ≥ δ
∑

z∈Z

θzyz,j, j ∈ Bout

yj ≤ δ
∑

z∈Z

θzyz,j, j /∈ Bout

yj ≤ δ
∑

z∈Z

µzyz,j, j = 1, ..., n

θ ∈ Ωnc, µ ∈ Ωc, δ ∈ ∆
}

(4.24)
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T
{∅,B},DEA

h−,∆ presents non convexity on the lower bound of undesirable outputs
and on the upper bound of polluting inputs (see Figure 11 and 12 in Appendix
B). Thus,

T
{∅,B},DEA

h−,∆ =
{

(x, y) : (x, y) ∈ Co
(

∪z∈ZS
∅,δ(xz, yz)

)

∩
(

∪z∈ZS
Bin,Bout,δ(xz, yz)

)

}

.

(4.25)

Where SBin,Bout,δ(xz, yz) =
{

(x, y) ∈ R
n+m
+ : x ≥Bin δxz, y ≤Bout δyz

}

with

δ ∈ ∆. This class of PgT allows to consider possible non-convexity in the
nature’s residual sub-technology (Dasgupta and Mäler, 2003).

5 Non-Parametric Test: Disposability and Con-

vexity

5.1 Non-Parametric Test of Congestion in Good Outputs

To test congestion in good outputs we need to be able to compute a distance
function with respect to the output set. In Figure 5, congestion in desirable
outputs can be detected at points A, C and D.

6

-

.................................

P {∅,B},DEA(x0)

0

y2 = Bad Output

y1

A
A′

D

D′
C

C′′ C′

Figure 5: A non-parametric test of disposability with B = {2}.

From the specification of convex non-parametric technologies, it is quite
straightforward to derive the following mathematical program14:

14Remark that, if θ = µ then ψP{∅,B},DEA(x0, y0) can be implemented based on the set of
DMUs A, A

′

or A
′

0.
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ψP {∅,B},DEA(x0, y0) = inf λ

s.t. x0,i ≥
∑

z∈Z

θzxz,i, i = 1, ..., m

x0,i ≥
∑

z∈Z

µzxz,i, i = 1, ..., m

1

λ
y0,j ≥

∑

z∈Z

θzyz,j, j ∈ B

1

λ
y0,j ≤

∑

z∈Z

θzyz,j, j /∈ B

1

λ
y0,j ≤

∑

z∈Z

µzyz,j, j = 1, ..., n

∑

z∈Z

θz =
∑

z∈Z

µz = 1, θ, µ ≥ 0

The above program has 2(m+n) + 1+Card(B) constraints, where Card(B)
is the number of B elements. When the technology is DEA convex, then the
solution is obtained by solving a linear program. To measure congestion in good
outputs we need to compute ψP {∅,B},DEA(x0, y0)/ψP ∅,DEA(x0, y0)15. In the same
way ψP ∅,DEA(x0, y0) can be computed as follows:

ψP ∅,DEA(x0, y0) = inf λ

s.t. x0,i ≥
∑

z∈Z

θzxz,i, i = 1, ..., m

1

λ
y0,j ≤

∑

z∈Z

θzyz,j, j = 1, ..., n

∑

z∈Z

θz = 1, θ ≥ 0

Remark that following (4.3) we have :

ψP {∅,B},DEA(x0, y0) = max {ψP ∅,DEA(x0, y0);ψPB,DEA(x0, y0)} . (5.1)

15Replacing the VRS DEA technologies by CRS technologies and assuming that θ = µ then,
the test of congestion in good outputs is equivalent to that in Färe et al. (1989) (not paying
attention to the choice of distance function).
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Where,

ψPB,DEA(x0, y0) = inf λ

s.t. x0,i ≥
∑

z∈Z

θzxz,i, i = 1, ..., m

1

λ
y0,j ≥

∑

z∈Z

θzyz,j, j ∈ B

1

λ
y0,j ≤

∑

z∈Z

θzyz,j, j /∈ B

∑

z∈Z

θz = 1, θ ≥ 0

5.2 Non-Parametric Test of Convexity

In this subsection, we suggest to test convexity of the new B-disposal technolo-
gies. First, we propose a global test of convexity (Figure 6).

0

K{2}

y1

y2 = Bad Output

a
•

b•

Figure 6: A global non-parametric test of convexity with B = {2}.

Figure 6 shows non-convexity of the B-disposal technology at points a and
b. Point a allows to test convexity on the bad frontier of the PgT. Reversely,
point b permits to compute a test of convexity on the upper bound of B-disposal
technology. In order to implement this test, we have to compute an output
distance function with respect to the non-convex output set.
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ψ
P

{∅,B},DEA
nc

(x, y) =

{

inf{λ > 0 : 1
λ
y ∈ P

{∅,B},DEA
nc (x)} if 1

λ
y ∈ P

{∅,B},DEA
nc (x) for some λ > 0

+∞ otherwise
(5.2)

Following (4.8), we propose to use the enumerative principle to compute
ψ
P

{∅,B},DEA
nc

(

x, y
)

(Briec et al., 2004).

Proposition 5.1 ψ
P

{∅,B},DEA
nc

(x, y) on non-convex B-disposal technologies is de-

fined as follows:

ψ
P

{∅,B},DEA
nc

(x, y|S∅(xz,yz)∩SB(xz ,yz))
−1 =

{

min(yz
y
) if max

j∈B
(
yz,j
yj

) ≤ min(yz
y
)

1 else

Note that VRS assumption is imposed in proposition 5.1. Other returns to
scale assumption can be introduced adding specific scaling parameter (see (4.9)
and (4.10)). Conventional CRS assumption can be considered as follows:

Proposition 5.2 ψ
P

{∅,B},DEA
nc

(x, y) on CRS non-convex B-disposal technologies is as

follows:

ψ
P

{∅,B},DEA
nc,crs

(x, y|S∅,δ(xz ,yz)∩SB,δ(xz ,yz))
−1 =

{

min( x
xz
)min(yz

y
) if max

j∈B
(
yz,j
yj

) ≤ min(yz
y
)

1 else

Notice that it is possible to compute a specific test of convexity (Figure 7).
This test is of particular interest when we want to test separately convexity of the
upper or of the lower bound of the PgT. Recall that this test is an immediate
consequence of the B-disposal assumption definition (an intersection of sub-
technologies).

We compute the following ratios to test global (CTB
g ) and specific (CTB

h )
convexity of the B-disposal PgT:

CTB
g =

ψ
P

{∅,B},DEA
nc

ψP {∅,B},DEA

and

CTB
h =

ψ
P

{∅,B},DEA

h

ψP {∅,B},DEA

.
When CTB

g > 1 then, B-disposal PgT presents global non-convexity. Remark

that, if CTB
g > 1 and ψP {∅,B},DEA = ψP ∅,DEA (ie., DCB = 1) then, the upper

bound of the B-disposal PgT presents non-convexity (ie., CTB
h+ > 1). Reversely,

if CTB
g > 1 and ψP {∅,B},DEA > ψP ∅,DEA (ie., DCB > 1) then, the lower bound of

B-disposal PgT shows non-convexity (ie., CTB
h− > 1).
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Figure 7: A specific non-parametric test of convexity with B = {2}.

6 Empirical illustration

This empirical part gives an illustrative example of the B-disposability. In such
a case, the efficiency measures are estimated under B-disposal, weak disposal
and strong disposal assumptions16.

6.1 Data

A sample of 13 representative French airports is considered over the period 2007-
2011. We implement the new B-disposal assumption on both convex and non-
convex non-parametric technologies. The dataset comes from several reports
and documents of the Ministère de l’écologie, du Développement durable et
de l’Énergie (http://www.developpement-durable.gouv.fr). Two inputs are se-
lected: (i) number of employees of each airport and (ii) operational costs of each
airport. These inputs permit to produce different outputs. Thus, we consider
one desirable output, (iii) number of passengers from all airlines ; and one un-
desirable output represented by (iv) CO2 emissions evaluated at each airport.
This bad output is measured by using the TARMAAC (Traitements et Analyses
des Rejets éMis dans l’Atmosphère par l’Aviation Civile) tool of the Direction
générale de l’Aviation civile (DGAC)17.

Table 1 presents the descriptive statistics of the variables used in this study.

16Some articles explore the consistency between the selected model and the variables (see
for instance, Halkos and Polemis (2018)). Thus, it could be investigated in further research
for the case of the B-disposability assumption.

17Abad and Ravelojaona (2017) use a part of this panel data.
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Table 1: Characteristics of inputs and outputs
Variables Min Max Mean St. Dev.

Inputs

Employees (quantity) 67 3813 738 1166
Operational costs (Keuros) 15614 1112248 187521 329679

Good Output

Passengers (quantity) 1014704 60970551 10328725 15646444

Bad Output

CO2 emissions (millions of tons) 13 896 136 222

6.2 Results

Table 2 presents the weak disposable and the B-disposable Shephard distance
functions. It is shown that the B-disposal efficiency scores relies on the esti-
mation of efficiency measures with regard to both lower and upper bounds of
the output set. The maximum between the efficiency scores with respect to
both lower and upper bounds yields the B-disposable efficiency scores. This is
not surprisingly since the B-disposal output set is defined as an intersection of
two subsets. Hence, this gives indications on the projection path of inefficient
DMUs. It appears that the weak disposal efficiency scores are equivalent to
the B-disposal ones. This strengthens the statement that a production tech-
nology satisfying a weak disposal assumption satisfies a B-disposal assumption.
However, recall that the converse is not necessarily true.

Table 3 presents Shephard output distance function projected respectively
upon a convex strong disposal technology (column 2), a convex B-disposal tech-
nology (column 3) and a non-convex B-disposal technology (column 4). Columns
5 and 6 propose respectively a measure of congestion in good outputs and a test
of global convexity. Column 7 identifies the part of the technology where outputs
are projected through the Shephard distance function (ie., lower or upper bound
of the technology). Furthermore we precise if the projection concerns a convex
(C) or a non-convex (NC) part of the technology. Column 8 indicates if good
outputs are congested (Cong) or not congested (N Cong). Readers can see that
the B-disposal model allows to identify congestion in good outputs (DCB > 1).
In such a case, the production technology is bounded from below. Moreover, this
model permits to identify possible non-convexity of the technology (CTB

g > 1).
This table shows that for each time period, more DMUs are efficient with re-
spect to a B-disposable convex technology rather than under a strong disposable
technology. Besides, we can note that the B-disposable non-convex technology
presents more efficient DMUs than the B-disposable convex technology. Indeed,
non-convexity restrict the production set. Then, the following embedding holds:

P {∅,B},DEA
nc (x) ⊆ P

{∅,B},DEA

h (x) ⊆ P {∅,B},DEA(x) ⊆ P ∅,DEA(x).

Remark that this is an empirical example. However, following Pérez et al.
(2017) it could be interesting to compare and to explore the limitation of each
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model through an empirical application.

Airport Shep. WD Shep. BD

Upper bound Lower bound Max
2007

Ble-Mulhouse 0.7804 0.7754 0.7804 0.7804
Beauvais 1 0.6569 1 1
Bordeaux-Mrignac 1 1 1 1
Lille 0.6419 0.6419 0.5881 0.6419
Lyon-Saint Exupry 0.8818 0.8818 0.7640 0.8818
Marseille-Provence 0.9506 0.9491 0.9506 0.9506
Montpellier-Mditerrane 0.8927 0.7503 0.8927 0.8927
Nantes-Atlantique 0.8713 0.8713 0.8379 0.8713
Nice-Cte d’azur 0.9930 0.9930 0.8941 0.9930
Paris CDG 0.7627 0.7627 0.6463 0.7627
Paris ORY 0.5023 0.3397 0.5023 0.5023
Strasbourg-Entzheim 1 1 0.7744 1
Toulouse-Blagnac 1 1 1 1

2008
Ble-Mulhouse 0.7581 0.7579 0.7581 0.7581
Beauvais 1 0.6112 1 1
Bordeaux-Mrignac 1 1 1 1
Lille 0.6944 0.6944 0.6257 0.6944
Lyon-Saint Exupry 0.9086 0.9086 0.8115 0.9086
Marseille-Provence 0.9237 0.9237 0.8814 0.9237
Montpellier-Mditerrane 0.8793 0.7354 0.8793 0.8793
Nantes-Atlantique 0.9433 0.9433 0.8869 0.9433
Nice-Cte d’azur 0.9749 0.9749 0.8681 0.9749
Paris CDG 0.8213 0.8213 0.6946 0.8213
Paris ORY 0.4767 0.3563 0.4767 0.4767
Strasbourg-Entzheim 0.8689 0.8689 0.5817 0.8689
Toulouse-Blagnac 1 1 1 1

2009
Ble-Mulhouse 0.8369 0.8369 0.7363 0.8369
Beauvais 1 0.8037 1 1
Bordeaux-Mrignac 1 1 1 1
Lille 0.7731 0.7731 0.7712 0.7731
Lyon-Saint Exupry 0.9226 0.9226 0.8325 0.9226
Marseille-Provence 1 1 0.9875 1
Montpellier-Mditerrane 0.7980 0.7548 0.7980 0.7980
Nantes-Atlantique 0.9987 0.9987 0.9117 0.9987
Nice-Cte d’azur 0.9685 0.9685 0.9047 0.9685
Paris CDG 0.8302 0.8302 0.7144 0.8302
Paris ORY 0.4697 0.3751 0.4697 0.4697
Strasbourg-Entzheim 0.8738 0.8738 0.5790 0.8738
Toulouse-Blagnac 1 1 1 1

2010
Ble-Mulhouse 0.8353 0.8353 0.7746 0.8353
Beauvais 1 0.7980 1 1
Bordeaux-Mrignac 1 1 1 1
Lille 0.8812 0.7758 0.8812 0.8812
Lyon-Saint Exupry 0.8663 0.8663 0.8274 0.8663
Marseille-Provence 1 1 1 1
Montpellier-Mditerrane 0.7597 0.7200 0.7597 0.7597
Nantes-Atlantique 0.9497 0.9497 0.8960 0.9497
Nice-Cte d’azur 0.9176 0.9176 0.8451 0.9176
Paris CDG 0.8011 0.8011 0.7003 0.8011
Paris ORY 0.4439 0.3713 0.4439 0.4439
Strasbourg-Entzheim 0.8097 0.8097 0.5815 0.8097
Toulouse-Blagnac 0.9793 0.9793 0.9708 0.9793

2011
Ble-Mulhouse 0.8839 0.8210 0.8839 0.8839
Beauvais 1 0.7718 1 1
Bordeaux-Mrignac 1 1 1 1
Lille 0.7707 0.7034 0.7707 0.7707
Lyon-Saint Exupry 0.8215 0.8070 0.8215 0.8215
Marseille-Provence 0.9534 0.9485 0.9534 0.9534
Montpellier-Mditerrane 0.7151 0.6885 0.7151 0.7151
Nantes-Atlantique 0.9300 0.9300 0.8738 0.9300
Nice-Cte d’azur 0.9234 0.9234 0.8254 0.9234
Paris CDG 0.8012 0.8012 0.7082 0.8012
Paris ORY 0.4640 0.3880 0.4640 0.4640
Strasbourg-Entzheim 0.7448 0.7448 0.5887 0.7448
Toulouse-Blagnac 1 1 1 1

Table 2: Weak disposable and B-disposable Shephard distance functions
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Airport Shep. SDc Shep. BDc Shep. BDnc DCB CTB
g Bound Good

Upper Lower
2007

Bâle-Mulhouse 0.7754 0.7804 0.8075 1.0064 1.0348 - NC Cong
Beauvais 0.6569 1 1 1.5224 1 - C Cong
Bordeaux-Mérignac 1 1 1 1 1 C - N Cong
Lille 0.6419 0.6419 0.6419 1 1 C - N Cong
Lyon-Saint Exupéry 0.8818 0.8818 0.9127 1 1.0350 NC - N Cong
Marseille-Provence 0.9491 0.9506 0.9993 1.0016 1.0512 - NC Cong
Montpellier-Méditerranée 0.7503 0.8927 1 1.1898 1.1202 - NC Cong
Nantes-Atlantique 0.8713 0.8713 0.8753 1 1.0047 NC - N Cong
Nice-Côte d’azur 0.9930 0.9930 1 1 1.0071 NC - N Cong
Paris CDG 0.7627 0.7627 0.7627 1 1 C - N Cong
Paris ORY 0.3397 0.5023 1 1.4788 1.9908 - NC Cong
Strasbourg-Entzheim 1 1 1 1 1 C - N Cong
Toulouse-Blagnac 1 1 1 1 1 C - N Cong

2008
Bâle-Mulhouse 0.7579 0.7581 0.8178 1.0002 1.0787 - NC Cong
Beauvais 0.6112 1 1 1.6360 1 - C Cong
Bordeaux-Mérignac 1 1 1 1 1 C - N Cong
Lille 0.6944 0.6944 0.6944 1 1 C - N Cong
Lyon-Saint Exupéry 0.9086 0.9086 0.9267 1 1.0200 NC - N Cong
Marseille-Provence 0.9237 0.9237 0.9237 1 1 C - N Cong
Montpellier-Méditerranée 0.7354 0.8793 1 1.1957 1.1372 - NC Cong
Nantes-Atlantique 0.9433 0.9433 0.9433 1 1 C - N Cong
Nice-Côte d’azur 0.9749 0.9749 0.9785 1 1.0037 NC - N Cong
Paris CDG 0.8213 0.8213 0.8213 1 1 C - N Cong
Paris ORY 0.3563 0.4767 1 1.3379 2.0979 - NC Cong
Strasbourg-Entzheim 0.8689 0.8689 0.8741 1 1.0060 NC - N Cong
Toulouse-Blagnac 1 1 1 1 1 C - N Cong

2009
Bâle-Mulhouse 0.8369 0.8369 0.8457 1 1.0105 NC - N Cong
Beauvais 0.8037 1 1 1.2442 1 - C Cong
Bordeaux-Mérignac 1 1 1 1 1 C - N Cong
Lille 0.7731 0.7731 0.7754 1 1.0030 NC - N Cong
Lyon-Saint Exupéry 0.9226 0.9226 0.9354 1 1.0140 NC - N Cong
Marseille-Provence 1 1 1 1 1 C - N Cong
Montpellier-Méditerranée 0.7548 0.7980 1 1.0573 1.2531 - NC Cong
Nantes-Atlantique 0.9987 0.9987 0.9987 1 1 C - N Cong
Nice-Côte d’azur 0.9685 0.9685 0.9750 1 1.0067 NC - N Cong
Paris CDG 0.8302 0.8302 0.8302 1 1 C - N Cong
Paris ORY 0.3751 0.4697 1 1.2522 2.1290 - NC Cong
Strasbourg-Entzheim 0.8738 0.8738 0.8808 1 1.0080 NC - N Cong
Toulouse-Blagnac 1 1 1 1 1 C - N Cong

2010
Bâle-Mulhouse 0.8353 0.8353 0.8415 1 1.0074 NC - N Cong
Beauvais 0.7980 1 1 1.2531 1 - C Cong
Bordeaux-Mérignac 1 1 1 1 1 C - N Cong
Lille 0.7758 0.8812 1 1.1358 1.1348 - NC Cong
Lyon-Saint Exupéry 0.8663 0.8663 0.8708 1 1.0052 NC - N Cong
Marseille-Provence 1 1 1 1 1 C - N Cong
Montpellier-Méditerranée 0.7200 0.7597 1 1.0552 1.3163 - NC Cong
Nantes-Atlantique 0.9497 0.9497 0.9497 1 1 C - N Cong
Nice-Côte d’azur 0.9176 0.9176 0.9236 1 1.0066 NC - N Cong
Paris CDG 0.8011 0.8011 0.8011 1 1 C - N Cong
Paris ORY 0.3713 0.4439 0.8764 1.1954 1.9743 - NC Cong
Strasbourg-Entzheim 0.8097 0.8097 0.8097 1 1 C - N Cong
Toulouse-Blagnac 0.9793 0.9793 0.9793 1 1 C - N Cong

2011
Bâle-Mulhouse 0.8210 0.8839 1 1.0767 1.1313 - NC Cong
Beauvais 0.7718 1 1 1.2956 1 - C Cong
Bordeaux-Mérignac 1 1 1 1 1 C - N Cong
Lille 0.7034 0.7707 1 1.0957 1.2974 - NC Cong
Lyon-Saint Exupéry 0.8070 0.8215 1 1.0180 1.2172 - NC Cong
Marseille-Provence 0.9485 0.9534 1 1.0052 1.0488 - NC Cong
Montpellier-Méditerranée 0.6885 0.7151 0.9118 1.0387 1.2752 - NC Cong
Nantes-Atlantique 0.9300 0.9300 0.9300 1 1 C - N Cong
Nice-Côte d’azur 0.9234 0.9234 0.9741 1 1.0549 NC - N Cong
Paris CDG 0.8012 0.8012 0.8012 1 1 C - N Cong
Paris ORY 0.3880 0.4640 0.8639 1.1960 1.8619 - NC Cong
Strasbourg-Entzheim 0.7448 0.7448 0.7870 1 1.0567 NC - N Cong
Toulouse-Blagnac 1 1 1 1 1 C - N Cong

Table 3: Tests of congestion in good outputs and of convexity

The combination of the measures of congestion and convexity offer informa-
tions about the structure of the technology. Table 3 summarizes the conditions
of technology characterization.
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DC
B = 1 DC

B > 1
CT

B
g = 1 Upper bound (C), Good outputs (N Cong) Lower bound (C), Good outputs (Cong)

CT
B
g > 1 Upper bound (NC), Good outputs (N Cong) Lower bound (NC), Good outputs (Cong)

Table 4: Characterization of the technology

7 Concluding Comments

This paper introduces the new B-disposal assumption that is a limited strong dis-
posability. Along this line, a class of PgT satisfying both convex and non-convex
axioms, is proposed. Moreover, we characterize these technologies with the Shep-
hard output distance function. The duality result between the distance function
and the revenue function allows to consider possible ngative shadow prices. In
such a case, assuming weak disposability of outputs is not necessary to provide
duality results. Through a non-parametric approach, we provide an innovative
axiomatic characterization of the incorrect modeling of the VRS assumption
in traditional Shephard’s weakly disposable technology. Thus, we retrieve the
linearization proposed by Kuosmanen (2005) and Leleu (2013). Furthermore,
we show that a B-disposable technology can be rewritten as the by-production
technology of Murty et al. (2012) and we extend it to non-convex case. Finally,
we propose to test congestion in good outputs and the convexity of B-disposal
PgT which allows to suggest a procedure to characterize the structure of the
technology.

We can highlight one limitation of this paper. Indeed, we focus on the output
distance function and its dual relation with the revenue function. The duality
result, the new measure of congestion in good outputs and the test of convexity
of the B-disposal technology can also be defined using the so-called directional
distance function (Luenberger, 1992, 1995; Chambers et al., 1996; Chambers
and Pope, 1996). Moreover, input and/or graph orientation could be explored.
Futhermore, following Pedraja-Chaparro et al. (1999), the quality of the model
under B-disposal assumption could be analyzed. These could be the topic of
future research.
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