Highlights

• Lactococcus lactis from environmental niches show high esterolytic activity • Higher metabolic diversity is seen in environmental versus dairy L. lactis strains • SGNH hydrolase family of esterases may be linked to high esterolytic activity

Abstract: Lactococcus lactis strains are widely used in the dairy industry in fermentation processes for production of cheese and fermented milks. However, the esterolytic activity of L. lactis is not generally considered high. For this reason, purified microbial lipases and esterases are often added in certain dairy processes to generate specific flavors in the final food product. This work demonstrates the superior esterolytic activity of a collection of L. lactis strains isolated from different environmental sources compared with that of dairyderived strains. It provides further evidence of the more diverse metabolic capabilities displayed by L. lactis strains from environmental sources compared to their domesticated dairy counterparts. Furthermore, the presence of a 1,287-bp gene encoding a 428-amino acid SGNH hydrolase in the high-esterolytic environmental strains suggests a possible link between superior esterolytic activity and the presence of the esterase from the SGNH hydrolase family.

L ipolysis is an important biochemical event for flavor diversifi- cation in dairy manufacture. The pathway generates free fatty acids, di-and monoglycerides, and glycerol, which contribute to the flavor profile of fermented dairy products and act as substrates for other highly flavored components [START_REF] Thierry | Lipolysis and Metabolism of Fatty Acids in Cheese[END_REF]. Many mold-ripened cheeses, such as blue cheese, undergo significant lipolytic activity through the actions of Penicillium roqueforti, whereby volatile and nonvolatile aroma compounds (mainly methyl ketones) are generated to provide unique flavors [START_REF] Collins | Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge[END_REF][START_REF] Martín | Blue Cheese[END_REF]. The key enzymes involved in this lipolytic process are lipases and esterases, which catalyze hydrolysis and synthesis of esters and triglycerides, contributing to flavor development [START_REF] Broadbent | Cheese flavor and the genomics of lactic acid bacteria[END_REF]. The free fatty acids released by these enzymes act as precursors for flavor compounds such as esters, methyl ketones, lactones, and secondary alcohols [START_REF] Thierry | Lipolysis and Metabolism of Fatty Acids in Cheese[END_REF][START_REF] Mcauliffe | Symposium review: Genomic investigations of flavor formation by dairy microbiota[END_REF].

Lactic acid bacteria, including Lactococcus lactis, are usually considered to have weak esterolytic activity compared with other bacterial species such as Flavobacterium, Acinetobacter, Propionibacterium, and Pseudomonas [START_REF] Collins | Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge[END_REF][START_REF] Thierry | Lipolysis and Metabolism of Fatty Acids in Cheese[END_REF]. However, L. lactis strains isolated from environmental (or nondairy) niches exhibit much greater diversity in their metabolic capabilities than their dairy counterparts [START_REF] Alemayehu | Characterization of plant-derived lactococci on the basis of their volatile compounds profile when grown in milk[END_REF][START_REF] Cavanagh | Assessment of wild non-dairy lactococcal strains for flavour diversification in a mini-Gouda type cheese model[END_REF]. Environmental lactococcal strains exhibit certain adaptation capabilities such as higher tolerance to salt and alkaline conditions, high glutamate dehydrogenase (GDH) activity, and diverse metabolization of carbohydrates, including sugars usually found in plant environments such as arabinose and xylose, which has been demonstrated to affect the production of flavor compounds in certain dairy processes [START_REF] Alemayehu | Characterization of plant-derived lactococci on the basis of their volatile compounds profile when grown in milk[END_REF][START_REF] Cavanagh | Assessment of wild non-dairy lactococcal strains for flavour diversification in a mini-Gouda type cheese model[END_REF][START_REF] Cavanagh | Evaluation of Lactococcus lactis isolates from nondairy sources with potential dairy applications reveals extensive phenotypegenotype disparity and implications for a revised species[END_REF]. Although no significant difference was found in lipase production by dairy and nondairy L. lactis in a previous study [START_REF] Nomura | Phenotypic and molecular characterization of Lactococcus lactis from milk and plants[END_REF], [START_REF] Kalbaza | Identification and major technological characteristics of Lactococcus and Lactobacillus strains isolated from "hamoum", an Algerian fermented wheat[END_REF] demonstrated higher lipolytic activity in nondairy L. lactis than in Lactobacillus strains.

In this study, we investigated the esterolytic activity of a group of 16 dairy and environmental L. lactis strains (Table 1). The dairy isolates were of the subspecies lactis, whereas all nondairy isolates, with the exception of DPC6853, were of the subspecies cremoris. However, we have shown in previous studies that environmental L. lactis strains that are genotypically subspecies cremoris behave phenotypically like dairy subspecies lactis [START_REF] Cavanagh | Evaluation of Lactococcus lactis isolates from nondairy sources with potential dairy applications reveals extensive phenotypegenotype disparity and implications for a revised species[END_REF]; therefore, we phenotypically compared the dairy subspecies lactis strains to the environmental subspecies cremoris strains. Cell extracts were prepared according to a method previously described [START_REF] Stefanovic | Genetic, enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavour diversification[END_REF] from overnight cultures grown in M17 (Oxoid, Basingstoke, UK) supplemented with 5 g/L lactose monohydrate (L-M17; VWR, Leuven, Belgium) for dairy strains or M17 supplemented with 5 g/L d(+)-glucose monohydrate (G-M17; VWR) for environmental strains. A quantitative esterase assay, relying on the principle of hydrolysis of p-nitrophenyl dodecanoate (Sigma-Aldrich, Arklow, Ireland) to dodecanoic acid and p-nitrophenyl (PNP) was used [START_REF] Bertuzzi | Modification of cheese flavour through the use of surface microbiota[END_REF]. Although both dairy and environmental strains showed esterase activity, there were clear differences between the 2 groups of strains in relation to the levels of esterase activity. The dairy strains showed activities in the range of 10 to 22 μmol of PNP/mg, with a mean of 18.5 μmol PNP/mg (Figure 1). However, environmental strains showed the greatest activity (range of 58-100 μmol of PNP/mg; mean of 78.5 μmol of PNP/mg), except for strain DPC6853, the activity of which was 17.5 μmol of PNP/mg. The environmental strain used as a reference in our study, KF147, shared high esterase activity with the environment-derived group of strains. The means of the 2 groups analyzed (dairy and environmental) differed significantly (P = 0.00003). Our findings further confirm the more variable metabolic activities of environmental L. lactis strains (Alemayehu

Superior esterolytic activity in environmental

Lactococcus lactis strains is linked to the presence of the SGNH hydrolase family of esterases Desirée Román Naranjo, 1,2 Michael Callanan, 2,3 Anne Thierry, 4 and Olivia McAuliffe 1,3 * et al., 2014; Cavanagh et al., 2014, 2015). Interestingly, one environmental strain, DPC6853, did not show this high esterolytic activity. This strain was the only one in our collection isolated from corn, and further investigation is required to determine whether there is a link between the observed activity and specific environmental conditions.

To determine a possible genetic link to the high esterolytic activity observed in the environmental strains, comparative genome analysis was performed on available genome sequences of the environmental strain set (Table 1). The genome data were analyzed using the Artemis 16.0.0 genome browser [START_REF] Carver | ACT: the Artemis comparison tool[END_REF] and the BLASTP web server (Madden et al., 1996), using default parameters. Analysis of the draft genome of strain DPC6855, isolated from grass, revealed the presence of one open reading frame (FIB60_02895) related to esterolytic activity, which encodes the predicted product SGNH/GDSL hydrolase family protein (Figure 2A). Subsequent analysis of the genomes available for 3 other environmental strains in our collection also revealed the presence of this 1,287-bp gene encoding the 428-AA SGNH/GDSL hydrolase in DPC6856 and DPC6860. Examination of the literature revealed that the SGNH-hydrolase family is a recently classified subgroup of the GDSL group of esterase and lipase enzymes that possess multifunctional properties such as regiospecificity and broad substrate specificity [START_REF] Akoh | GDSL family of serine esterases/lipases[END_REF]. A conserved XynE-like domain is associated with the SGNH hydrolase subfamily and has the consensus AA sequence of Ser-Gly-Asn-His (SGNH) found in the active site. This motif provides a catalytic mechanism different from the classical GxSxG motif-containing hydrolases, such as the lack of nucleophile elbow and the presence of a flexible active site [START_REF] Akoh | GDSL family of serine esterases/lipases[END_REF][START_REF] Reina | Isolation, characterization, and localization of AgaSGNH cDNA: A new SGNH-motif plant hydrolase specific to Agave americana L. leaf epidermis[END_REF][START_REF] Oh | Carboxylic ester hydrolases in bacteria: Active site, structure, function and application[END_REF]. The SGNH hydrolase encoded by FIB60_02895 is related to the putative arylesterase/acylhydrolase encoded by the xynE gene located in a xylanase gene cluster in the rumen microbe Prevotella bryantii [START_REF] Miyazaki | Involvement of the multidomain regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii B(1)4[END_REF].

Interestingly, this gene was not found in any of the publicly available genomes of L. lactis strains from dairy sources, or indeed, the genome of strain DPC6853 from corn, which displayed lower levels of esterase activity than the other environmental strains. The presence of the gene was confirmed in other environmental strains for which genome sequence information is publicly available, such as L. lactis ssp. lactis NCDO 2118 (isolated from frozen peas; [START_REF] Oliveira | Genome sequence of Lactococcus lactis ssp. lactis NCDO 2118, a GABA-producing strain[END_REF] and L. lactis ssp. cremoris KW2 (isolated from fermented corn; [START_REF] Kelly | Interaction between the genomes of Lactococcus lactis and phages of the P335 species[END_REF]. Indeed, 2 loci encoding SGNH/GDSL hydrolase proteins were identified in strain KF147. The first is LLKF_RS02565, which encodes a GDSL family lipase. This 858-bp gene encodes a 286-AA protein and contains an Ypmr_like conserved domain. The second is a 1,286-bp gene (LLKF_0950) that encodes a 428-AA predicted protein product with 98% similarity to that found in DPC6855, DPC6856, and DPC6860 and described as a SGNH hydrolase superfamily protein, also related to esterolytic activity.

To determine the presence of the gene encoding SGNH hydrolase in the strains used in this study where whole-genome sequences are not yet available, we designed a set of primers, SGNH-F (5′-TGAGTGGTACGGCCTTTCGC-3′) and SGNH-R (5′-GAAAATAATCAATCAAGCACATACAT-3′), to amplify the partial gene sequence. No amplification product was detected in any of the dairy strains tested, whereas the 994-bp product was detected in all environmental strains except for the corn-derived strain with low esterase activity (DPC6853; Figure 2B). Subsequent sequencing of the amplified products revealed 100% identity to the gene found in DPC6855. Thus, except for the corn-derived DPC6853, all 7 environmental isolates in this study possessed the SGNH hydrolase gene, whereas it was not detected in any of the tested dairy strains using these PCR conditions. This correlates with our phenotypic analysis because the dairy strains showed low esterase activity compared with the environmental strains (<22 vs. ~80 μmol of PNP/mg, respectively), confirming a link between the presence of the FIB60_02895 gene and higher esterase activity.

In conclusion, this work provides further evidence of more diverse genotypic and phenotypic traits in L. lactis strains from environmental sources compared with their dairy counterparts. An SGNH hydrolase protein was identified that is potentially related to the higher esterase activity observed in these strains, and work is currently ongoing to associate the role of this gene with the functionality observed. Alternative knockout methods are being tested because the traditional knockout by double recombination has proven ineffective in this case. In addition, the metabolite profiles and the ability of these environmental strains to hydrolyze milk glycerides compared with the less-active dairy strains are being examined. These strains represent potential options for in situ production of lipolytic enzymes in dairy processing.
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Figure 1 .

 1 Figure 1. Esterase activity [expressed in μmol of p-nitrophenyl (PNP)/mg of cell-free extracts] of dairy and environmental Lactococcus lactis strains on the substrate p-nitrophenyl dodecanoate. The concentration of p-nitrophenyl released was determined from a standard curve obtained for a set of standards of p-nitrophenyl phosphate (0-500 nmol; Sigma-Aldrich, St. Louis, MO). The concentration of protein in each sample was calculated using the Qubit Protein assay kit (ThermoFisher Scientific, Waltham, MA). Experimental results from the different groups (dairy and environmental) were statistically examined by running a t-test (2 samples assuming equal variances) in Excel (Microsoft Corp., Redmond, WA) with an α value of 0.05. Error bars represent SD of 3 independent experiments. SeeTable 1 for sources of strains.
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  Figure 2. (A) Graphical representation of FIB60_02895 gene locus encoding SGNH hydrolase protein and surrounding genes [FIB60_02890 (glycosyl hydrolase) and glf (UDP-galactopyranose mutase)] from the draft genome sequence of Lactococcus lactis DPC6855 isolated from grass. Also shown are the locations of the SGNH_Forward and SGNH_Reverse primers used to generate the 994-bp product in the PCR-based assay. The predicted SGNH hydrolase protein isshown, revealing the location of the conserved domain "Xyn_E-like" as well as the catalytic triad site and oxyanion hole found within the enzyme. Graphic was generated using SnapGene software (Insightful Science; snapgene.com). (B) PCR-based detection of the SGNH gene in the dairy and environmental strain sets. A 1% agarose gel was used and HyperLadder 1 kb (Bioline, London, UK) was used as the molecular weight marker. The dairy strains are represented in lanes 1 to 6: DPC141 (1), DPC155 (2), DPC176 (3), DPC220 (4), DPC266 (5), DPC420 (6), and the environmental strains are represented in lanes 7 to 15: KF147 (7), DPC6853 (8), DPC6854 (9), DPC6855 (10), DPC6856 (11), DPC6857 (12), DPC6858 (13), DPC6859 (14), DPC6860 (15). See Table1for sources of strains.

  

Table 1 .

 1 Lactococcus lactis strains used in this study

	DPC 1 code	Species/subspecies (ssp.)	Isolation source	Source or reference 1	Accession no.
	Dairy				
	141	L. lactis ssp. lactis	Mixed-strain starter culture	DPC CC	
	155	L. lactis ssp. lactis	Mixed-strain starter culture	DPC CC	
	176	L. lactis ssp. lactis biovar diacetylactis	Mixed-strain starter culture	DPC CC	
	220	L. lactis ssp. lactis biovar diacetylactis	Mixed-strain starter culture	DPC CC	
	260	L. lactis ssp. lactis	Mixed-strain starter culture	DPC CC	
	266	L. lactis ssp. lactis	Mixed-strain starter culture	DPC CC	
	420	L. lactis ssp. lactis	Mixed-strain starter culture	DPC CC	
	Nondairy				
	6853	L. lactis ssp. lactis	Corn	Cavanagh et al. (2015); DPC CC	LAVD00000000.1
	6854	L. lactis ssp. cremoris	Grass	DPC CC	
	6855	L. lactis ssp. cremoris	Grass	Roman Naranjo et al. (2019); DPC	VERW00000000.1
				CC	
	6856	L. lactis ssp. cremoris	Bovine rumen	Cavanagh et al. (2015); DPC CC	LAVW00000000.1
	6857	L. lactis ssp. cremoris	Grass	DPC CC	
	6858	L. lactis ssp. cremoris	Grass	DPC CC	
	6859	L. lactis ssp. cremoris	Grass	DPC CC	
	6860	L. lactis ssp. cremoris	Grass	Cavanagh et al. (2015); DPC CC	LAVX00000000.1
	KF147	L. lactis ssp. cremoris	Mung bean sprouts	Siezen et al. (2010)	CP001834

1 DPC CC = Teagasc DPC Culture Collection housed at the Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
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