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Abstract—Flavor perception results from the integration of at least odor and taste. Evidence for such integration
is that odors can have taste properties (odor-induced taste). Most brain areas involved in flavor perception are
high-level areas; however, primary gustatory and olfactory areas also show activations in response to a combi-
nation of odor and taste. While the regions involved in flavor perception are now quite well identified, the net-
work’s organization is not yet understood. Using a close to real salty soup model with electroencephalography
brain recording, we evaluated whether odor-induced saltiness enhancement would result in differences of ampli-
tude and/or latency in late cognitive P3 peak mostly and/or in P1 early sensory peak. Three target solutions were
created from the same base of green-pea soup: i) with a ‘‘usual” salt concentration (PPS2), ii) with ‘‘reduced” salt
(PPS1: �50%), and iii) with reduced salt and a ‘‘beef stock” odor (PPS1B). Sensory data showed that the beef odor
produced saltiness enhancement in PPS1B in comparison to PPS1. As the main EEG result, the late cognitive P3
peak was delayed by 25 ms in the odor-added solution PPS1B compared to PPS1. The odor alone did not explain
this peak amplitude and higher latency in the P3 peak. These results support the classical view that high-level
integratory areas process odor–taste interactions with potential top-down effects on primary sensory regions.
� 2020 IBRO. Published by Elsevier Ltd. All rights reserved.
Key words: Olfaction, Taste, Integration, Perception, Food, Electroencephalography.
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INTRODUCTION

We experience food as a unitary perception, which we

commonly call ‘‘taste”. This common ‘‘taste” is actually a

holistic perception of at least olfactory and gustatory

inputs, called ‘‘flavor perception”. Odor-induced taste

enhancement (OITE) is a phenomenon that derives

from the integration of taste and odor into flavor

perception. For example, it was shown that a strawberry

odor could increase the sweetness of a whipped-cream

with sucrose. This result was first highlighted by Frank

and Byram (1988). They also defined a fundamental prin-

ciple of OITE, namely that only congruent odors and

tastes would produce OITE, therefore pointing at the role

of experience in shaping OITE. Indeed congruent, famil-

iar, and complex flavor mixtures -which are more prone

to be perceived as configural units- are more effective in

producing OITE (Prescott et al., 2004; Small and

Prescott, 2005; Labbe et al., 2006). Several independent

labs have later replicated this finding and further demon-
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strated odor-induced taste enhancement of other tastes

(Frank and Byram, 1988; Schifferstein and Verlegh,

1996; Sakai et al., 2001; Djordjevic et al., 2004;

Prescott et al., 2004; Lawrence et al., 2009; Wang

et al., 2019). OITE is, therefore, a reliable phenomenon.

Other odor–taste interactions have also been established,

such as the taste-induced odor enhancement (i.e., the

reverse effect of OITE) (Lim et al., 2014; Linscott and

Lim, 2016). In our study and the discussion of the results,

we focused on the odor-induced saltiness enhancement

only.

Most studies on OITE used water with sugar or salt

and aroma, which produced non-ecologically relevant,

unfamiliar and likely unpleasant perceptions (Prescott

et al., 2004; Welge-Lüssen et al., 2005; Marshall et al.,

2006; Prescott and Murphy, 2009; Welge-Lussen et al.,

2009; Lim and Johnson, 2011, 2012; Seo et al., 2013).

To overcome this issue, one can use close-to-real food

models, which produce more familiar and holistic food

representations. It may also facilitate the OITE with

appropriate congruent aroma and smooth out significant

hedonic variations that could mask subtle integration

mechanisms (Prescott, 1999; Small, 2012; Mroczko-

Wazsowicz, 2016; Thomas-Danguin et al., 2016). Other

studies used more complex and familiar food models.
to The Brain Chronometry Of Flavor Perception. Neuroscience (2020), https://doi.org/10.1016/j.
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For example, ethyl 2-methyl butanoate was used in a fruit

juice to enhance sweet perception (Barba et al., 2018). In

another study, the authors used a sardine aroma to signif-

icantly enhance saltiness in a cheese model (Syarifuddin

et al., 2016). In the present study, we studied odor-

induced saltiness enhancement (OISE). A salty food

model has been designed from a green-pea soup base,

which was chosen for its composition with a negligible

quantity of salt and an easily identifiable odor component.

Five conditions with different salt and aroma quantities

were selected to produce OISE according to previous

results (Lawrence et al., 2009; Nasri et al., 2013). The first

condition was the soup added with a standard (usual)

level of salt (6.25 g/L), to record the most familiar level

of saltiness in this kind of product and to test whether

OISE could reinforce saltiness up to a ‘‘normal” saltiness

intensity. The second solution was 50% salt reduced. The

third condition, which is the target beverage, was reduced

in salt (50%) and supplemented with a ‘‘beef stock” odor

chosen for its potential to increase saltiness perception.

Finally, two controls were tested, the base soup alone

and the base soup with the odor component, to test the

effect of added odor in the food model.

Endogenous mechanisms produce OITE in the brain.

Several functional magnetic resonance imaging (fMRI)

studies have investigated brain areas involved in flavor

perception, leading to the identification of a relatively

consensual flavor network (Rolls and Baylis, 1994;

Rolls, 1997; De Araujo et al., 2003; Small and Prescott,

2005; Seo et al., 2013; Seubert et al., 2015). In these

studies, supra-additive activations for the odorant-

tastant mixture were found in high-level areas, in the orbi-

tofrontal cortex, the dorsal mid-insula, and the perirhinal

cortex (De Araujo et al., 2003; Seo et al., 2013; Small

et al., 2013; Seubert et al., 2015). However, odor–taste

convergence was also found in the primary gustatory cor-

tex, more precisely in the anterior insula and frontal oper-

culum (De Araujo et al., 2003; Seubert et al., 2015).

Regarding these fMRI results, two views exist i) one con-

sists in a hierarchical integration, starting with a parallel

unimodal encoding of odor and taste in their respective

cortices and further elaborated by higher-order unimodal

zones, before converging onto multisensory integrative

areas to form the flavor perception; ii) while the second

proposed that odor and taste are already integrated into

primary olfactory and gustatory cortices (Small and

Prescott, 2005; Verhagen and Engelen, 2006;

Verhagen, 2007; Prescott, 2012; Small et al., 2013).

To understand whether odor and taste already interact

in the primary cortices or later in higher cortices, we need

to study the chronometry of odor–taste integration and

interaction. Electroencephalography (EEG) is of

particular interest to gain insights into these questions. It

permits quantitative measures of global brain activations

with a resolution of milliseconds. Olfactory-gustatory

event-related potentials (ERPs) give access to the

chronometry of interactions between gustatory and

olfactory cortices. To do so, one should select

appropriate stimuli, which permit to isolate variables of

interest (e.g., real saltiness or induced saltiness). An
Please cite this article in press as: Sinding C et al. Odor-Induced Saltiness Enhancement: Insights In
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event-related potential (ERP) is a sequence of brain

components identified by the maximum amplitudes of a

series of positive and negative peaks, from P1 the

earliest to P3 the latest measurable. ERP reflects the

different steps of information processing in the cortex.

The peak amplitude and latency provide a quantitative

measure of the intensity and/or amount of neurons

discharging in a synchronized way in response to the

stimulus provided at t0. The early P1 peak mainly

occurs in primary sensory areas and represents the

processing of sensory and chemically related properties

of food. The late P3 peak occurs mostly in high

integratory and cognitive areas and illustrates

endogenous processing such as emotional, semantic,

decisional, and top-down mechanisms towards primary

regions.

While an extensive literature exists on food-related

visual event-related potentials (ERPs) (for review, see

Carbine et al., 2018), very few studies were based on

the senses directly involved in flavor perception: olfaction

and gustation. To the best of our knowledge, no EEG

studies showed the brain mechanisms of odor-induced

taste enhancement. However, Welge-Lüssen et al.

(2005), Welge-Lüssen et al. (2009) designed two studies

to show the effect of taste (sucrose or lemon pulp) on odor

(vanilla) or trigeminal perception (elicited by CO2) respec-

tively. In these studies, participants were sucking on a

taste dispenser when an odor was sent orthonasally

(Welge-Lüssen et al., 2005) or retronasally (Welge-

Lüssen et al., 2009) with an olfactometer. This moment

corresponded to the start of the ERP, which therefore

highlighted the odor processing modulated by the taste.

Although sensory results did not show odor or taste

enhancement, ERPs tended to higher amplitude and

reduced early and late peak latencies (P1 and P3), only

when the taste matched the odor. These two peaks repre-

sent the earliest and latest observable brain mechanisms

of the evoked potential measured with EEG. Therefore,

Welge-Lüssen’s studies showed that taste sped up the

processing of a congruent odor from the very first pro-

cessing mechanisms (P1 peak). Although these results

did not permit observing supra-additive effects for a flavor

mixture compared to its odorant-tastant components, they

were interestingly discussed in terms of priming. To

observe supra-additive effects, one should synchronously

stimulate the olfactory and gustatory cortices and com-

pare activation for the mixture to the single components.

Recent electrophysiological results in animal reconsid-

ered the classical view of late odor–taste integration.

They indeed showed activations in a region of the primary

olfactory cortex, i.e., the piriform cortex, in response to

sucrose (sweet taste), which the authors considered early

interactions (Maier et al., 2012, 2015; Maier, 2017).

These results, therefore, challenge the classical theory

of late brain interactions between odor and taste and sug-

gest that primary olfactory and gustatory areas may inter-

act as early as the primary EEG peaks such as P1 (100–

200 ms).

Therefore, we addressed the chronometry of the

integration of odor and taste into flavor perception, in
to The Brain Chronometry Of Flavor Perception. Neuroscience (2020), https://doi.org/10.1016/j.
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humans, by studying the chronometry of brain

mechanisms leading to OISE. The classical view, which

consisted of a hierarchical integration of flavor, from

primary gustatory and olfactory areas to secondary or

tertiary integratory cortices, has been further expanded

to explain OITE (Verhagen and Engelen, 2006;

Verhagen, 2007; Small, 2008; Prescott, 2012). Following

the integration of odor and taste into the flavor, top-down

feedback may control activations in gustatory areas pro-

ducing an increased endogenous perception of saltiness

intensity. Following this reasoning, the odor-induced salti-

ness enhancement should be observed only on the ERP’s

late components. Therefore, we hypothesized that differ-

ences of amplitude and/or latency could be observed

mostly on the latest peak of olfactory-gustatory ERP

(the late P3 peak) and not on the P1 peak involving brain

circuits responding to exogenous properties of the food

such as tastant concentration. In the study, we did not

address whether retronasal odor stimulation is necessary

for the supra-additivity of the flavor solution. Still, to avoid

any potential bias, we used only retronasal odor percep-

tion. Because of the presumed importance of oral referral

in flavor perception (Small, 2008; Spence, 2016), which is

supported by EEG results (Welge-Lüssen et al., 2009;

Masaoka et al., 2010), participants should be stimulated

in-mouth so that aromas could be perceived through the

retronasal route. However, the aroma perception is sup-

posed to be maximal when participants are swallowing.

A dedicated paradigm was designed to account for the

swallowing artifacts and the need for synchrony between

odor and taste perceptions.
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EXPERIMENTAL PROCEDURES

Participants

Twenty-one participants naı̈ve to olfactory and gustatory

testing were recruited (18–30 years old, 15 women).

Data from 8 participants were discarded because of

their low number of epochs after artifact rejection (less

than 6 epochs in at least 2 stimulus conditions). The

stimulation of participants in-mouth during EEG

recording is tricky due to tongue and jaw movements

during stimulation, which induce many artifacts. Power

analysis (GPower) showed that 13 participants were

sufficient to have adequate power on the amplitude and

latencies of peaks (power = 0.82). Participants were

asked not to drink or eat, at least 1 h30 min before the

test sessions, to minimize food exposure. All

participants were right-handed (self-reported) and

normosmic (European Test of Olfactory Capabilities,

ETOC; Thomas-Danguin et al., 2003). The experimental

procedure was explained to each participant before

recruitment and again before each test session. Partici-

pants signed an informed consent form to participate in

the study. They received 10€ compensation for each hour

spent performing test sessions. The study was conducted

following the Helsinki Declaration and was validated by

the ethics committee CPP EST 1N�2016/62 (ID RCB:

2016-A01732-49).
Please cite this article in press as: Sinding C et al. Odor-Induced Saltiness Enhancement: Insights In
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Solutions

Three stock solutions were prepared: (1) the base

solution was a green-pea soup extracted from an

unsalted green-pea puree (Nestlé�, green pea

NaturNes). The puree was centrifuged at 15,000 RPM

for 20 min at 20 �C (rotor JLA 16–250, Beckman

Coulter), and the supernatant, which contained

everything but the non-soluble particles, was collected

and stored at �20 �C. (2) A salty solution was prepared

at 12.5 g/L NaCl in Evian� water (Danone, France). (3)

The aromatic solution (B) was prepared at 500 ppm of

Beef Bouillon Flavor (YF 555,768 CB, Firmenich) in

Evian water. Evian water was chosen because, in Dijon,

it is the bottled water perceived as the most neutral

(Teillet et al., 2010). Solutions 2 and 3 were prepared

24 h before the test and kept at 4 �C. The test’s day, the

base solution was defrosted in the microwave for 5 min-

utes (defrost position). All solutions were then heated at

35 �C (all tubes of the gustometer are water bath) in the

gustometer to match the buccal temperature, 1 h before

the test. Five target solutions were then mixed using the

gustometer: PP (50% base solution + 50% Evian Water),

PPB (50% base solution + 25% aromatic solution

+ 25% Evian water), PPS1 (50% base solution + 25%

salty solution + 25% Evian water), PPS1B (50% base

solution + 25% salty solution + 25% aromatic solution),

PPS2 (50% base solution + 50% salty solution). Evian

water, PP, and PPB contained negligible levels of salt

(maximum 0.25 g/L), which are lower than the standard

detection threshold in water (0.58 g/L) (Bartoshuk,

1974). Furthermore, B contained minimal salt (0.03 g/L).
Experimental procedure

The entire experiment took place in a ventilated air-

conditioned room (23 �C), dedicated to EEG recording,

with controlled light and acoustic insulation. The

procedure was planned over two sessions: 1) a training

session and 2) an EEG recording session, spaced by a

maximum of 8 days, to keep the training effective.
Training session

Before the training session, participants were tested for

their general olfactory abilities using the ETOC

(Thomas-Danguin et al., 2003). This test consists of an

odor supra-threshold detection task combined with an

identification task for 16 different odors using a 4-

alternatives forced-choice procedure (1 vial odorized

among 4, then 1 correct odor descriptor among 4). The

minimum score required to consider normal olfactory abil-

ities was 12 (out of 16). All participants succeeded in the

ETOC test.

The training session’s objective was twofold: 1) to

familiarize participants with the gustometer and the

testing room and 2) train participants to breathe with the

velum opened. Solutions were delivered with a GU002

gustometer (Burghart, Wedel, Germany). Initially, the

gustometer is designed to spray raw taste solutions on

the extended tongue; however, we delivered solutions

directly in the mouth to produce the retronasal
to The Brain Chronometry Of Flavor Perception. Neuroscience (2020), https://doi.org/10.1016/j.
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perception in the present study. To avoid movements that

could cause artifacts during EEG recordings, excess

solution and saliva were slowly and continuously

withdrawn from the mouth, and participants did not need

to swallow. A spray head was hand manufactured

specifically for each participant to fit the mouth cavity

(modification of the Burghart spray head and fixation on

a piece of a hygoformic� Orsing tubing). The solutions

were sprayed as a thin mist over a large part of the

tongue, permitting homogeneous taste perception over

the tongue and odorant diffusion. It also reduces

somatosensory and motor artifacts that may occur when

the participant has to drink from a glass or even when

drops are delivered on the tongue. Furthermore, a

salivary ejector head (hygoformic� Orsing) connected to

a peristaltic pump permitted removing excess solution

and saliva from the mouth to minimize swallowing

artifacts during EEG recordings. Participants kept both

tubes (external diameter: 4 mm) in the mouth by gently

clenching the teeth around them. Participants were

asked not to swallow during the sessions.

To trigger as much as possible odor and taste

perception in a synchronous way, we trained

participants during a dedicated session to inhale through

the mouth and exhale through the nose while

maintaining an open velum throughout the recording

session (free circulation of aromas to the nasal cavity).

The combination of in-mouth stimulation for retronasal

perception and the open-velum breathing favored the

passage of a maximum of odorant volatiles into the

nasal cavity. It allowed an increased synchronization

between odor and taste perception compared to velum

closed (Buettner et al., 2002; Bonny et al., 2017). The par-

ticipants were monitored with a breathing sensor (Bur-

ghart) coupled with an oscilloscope to receive feedback

on their breathing during training. They had to maintain

a constant amplitude and regular frequency of the sinu-

soid for 3 min. Finally, they were trained to maintain

breathing while receiving in-mouth stimulations with each

solution of interest (5 repeated stimulations for each

solution).

EEG recording sessions

Participants started the EEG session by training again on

the opened-velum breathing technique (3 min opened-

velum breathing). EEG electrodes (Ag/AgCl) were fixed

on the head with a conductive paste (EC2 electrode

Cream, Natus�) after cleaning the skin (Everi, Spes

medical�). Five electrodes were fixed on Fz, Cz, C3,

C4, and Pz following a 10/20 system. Ground

electrodes were positioned on the mastoids and

reference electrodes on the ear lobes. One electrode

was fixed above the right eyebrow to record vertical

blinking artifacts. Impedance was kept below 30 kΏ.
Participants were not notified of the stimulation. They

received a flow of Evian water interrupted by air

(400 ms water followed by 400 ms air) to limit the

quantity of liquid in the mouth. Every 16 or 20 s, they

received a target stimulation (400 ms); brain activity was

recorded only for target stimulations (500 ms before and

1500 ms after the start of the stimulus). Air pressure
Please cite this article in press as: Sinding C et al. Odor-Induced Saltiness Enhancement: Insights In
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was fixed at 850 mbar. This design permitted fast

habituation to somatosensory stimuli (Plattig, 1989). Par-

ticipants were stimulated 40 times in a row for each of the

5 solutions. Every 20 pulses, a 2 minutes break was made

for the participants to relax. Solutions were presented in a

counterbalanced order. To maintain a relatively low level

of attention during the task, participants had to perform

a tracking task (keeping a dot inside a slowly moving

square). The game and the sensory evaluation question-

naire were displayed on a monitor (GustOlf custom-made

software, adapted from ‘‘Tracking performance” software,

from the Smell and Taste Clinic Dresden). The tracking

task stopped one second after the stimulation, and partic-

ipants were prompted to rate saltiness intensity after each

trial on an unstructured visual analog scale anchored on

the left with ‘‘low intensity” (corresponding to 0) and on

the right side of the scale with ‘‘high intensity” (corre-

sponding to 100). To control for noise, participants were

listening to ‘‘brown noise” through earphones. Brain activ-

ity was sampled at 1000 Hz using an EEG Burghart sys-

tem (OL026) (analog high pass filter 1st order:

0.072 Hz, analog low-pass filter 3rd order: 186 Hz). The

recording was triggered by the gustometer and started

500 ms before stimulation and ended 1500 ms after

stimulation.
Data analysis

Normality and homogeneity of variances were checked

with QQplot and residuals vs. fitted values plots.

Furthermore, the homogeneities of variances were

confirmed for all models tested (Levene test, p> 0.35).
Sensory data analysis

Saltiness intensity was rated for each of the forty

stimulations delivered during the EEG recording (R

software, R package: nlme (Pinheiro et al., 2015)). A first

linear mixed model tested the effect of repetitions to mea-

sure habituation to solution in the course of the recording

(repetitions*solutions, with participants as a random fac-

tor), no interaction between solutions and repetitions,

nor the main effect of repetitions were significant

(p< 0.05). Therefore, in a second model, the variability

of ratings across participants was modeled as a random

factor, and repetitions were nested within each partici-

pant, thus taking into account repeated measures, while

solutions were modeled as fixed factors. Finally, post-

hoc tests were performed, pairwise comparisons between

solutions were computed with a Tukey test, and p-values
were corrected for multiple testing with the false discovery

rate (FDR, pcorr < 0.05).
EEG preprocessing

Data were preprocessed in Letswave (open-source

MATLAB EEG signal processing toolbox NOCIONS,

Institute of Neuroscience, Université Catholique de

Louvain). They were first filtered (Butterworth, bandpass

filter: 0.01–30 Hz, filter order 4) and baseline corrected

[yi = xi-mean(bl)] using the 500 ms recorded before the

stimulation. Epochs contaminated by blinking artifacts
to The Brain Chronometry Of Flavor Perception. Neuroscience (2020), https://doi.org/10.1016/j.
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were removed (amplitude criteria >90 mV). Finally,

epochs with large alpha waves for most of the epoch

duration were visually rejected. The mean number of

epochs accepted was 21 ± 7. After computing the

mean across epochs for each participant, a Grand

Mean was calculated by weighting each participant’s

mean by the number of epochs accepted. This

weighting, suggested by Mouraux (2015), allowed taking

into account the number of epochs included in the individ-

ual means to reduce the noise effect on the Grand-Mean

and linear mixed models.
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EEG RESULTS ANALYSIS

Peak amplitudes and latencies were measured with

ERPlab implemented in the EEGlab toolbox from

MATLAB (Lopez-Calderon and Luck, 2014). We started

the definition of time windows from the literature using

gustatory ERPs for P1, which appeared between 120–

180 ms (Mizoguchi et al., 2002; Franken et al., 2011),

and on olfactory or gustatory ERPs for P3, which

appeared between 550–750 ms (Pause et al., 1996;

Welge-Lüssen et al., 2005; 2009;; Franken et al., 2011;

Huart et al., 2012). We used relatively small windows

(windows with a minimum of 100 ms and a maximum of

150 ms) to avoid overlaps between peaks. Local peak

amplitude was searched in each time window within aver-

ages of 10 points on each local peak side. Local peak

amplitude is defined as having a greater voltage than

the average of the n number points on either side (Luck,

2014). When no peak was found, the NA value (non-

applicable) was used. Time windows were checked and

adapted to have as few as possible NA values on Cz,

Fz, and Pz electrodes. Following these criteria, the P1

peak was analyzed within a 100–200 ms time window,

and the P3 peak was analyzed within a 560–710 ms time

window.

Before peak analysis, following Luck

recommendations (Luck, 2014), data were filtered once

more using a mild low-pass filter (half amplitude cutoff

of 30 Hz, slope of 12 dB/octave). Finally, local peak ampli-

tude and latency were measured for each participant at

each electrode position. Data were analyzed with a linear

mixed model (R package: nlme, lme function (Pinheiro

et al., 2015)). The factor participant was modeled as a

random factor, while solutions and electrodes were mod-

eled as fixed factors. The interaction between solution

and electrodes was also tested to highlight electrodes that

may behave differently regarding solutions. The estima-

tion of variance components followed the method of

Restricted Maximum Likelihood (ReML) estimation. The

variance of the response variables (amplitude or latency)

measured on the peak of average ERP per participant

and condition were weighted by the number of epochs

accepted for each participant to reduce the impact of

noisy mean, to correspond to grand-average ERP.

Because no interactions between electrodes and solu-

tions were found (cf. Results), electrodes that did not sig-

nificantly differ were included in the models to highlight

global brain responses and restrict the analysis to major

effects. Only electrodes that did not vary from the elec-
Please cite this article in press as: Sinding C et al. Odor-Induced Saltiness Enhancement: Insights In
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trode with the highest amplitude were analyzed. Finally,

the effects of electrodes (used as a repeated measure)

and solutions were tested without the interaction effect.

Pairwise, Tukey’s tests for defined contrasts were com-

puted in cases of significant fixed effects. The contrasts

were PPS1B vs. PPS1, PPS1B vs. PPS2, PPS2 vs.

PPS1, PP vs. PPB, salted solutions vs. unsalted solu-

tions, solutions with beef stock aroma vs. solutions with-

out beef stock aroma. Pearson correlation was tested

between P3 amplitude and the saltiness intensity evalu-

ated for all participants and all conditions. Linear effects

and correlation were considered significant at p< 0.05.

Pairwise comparisons were FDR corrected for multiple

comparisons (pcorr < 0.05).
RESULTS

Sensory results

Intensity evaluations did not decrease in the course of the

40 repetitions (F [39, 2548] = 0.19, p= 1). Moreover, no

interaction between solutions and repetitions (F [156,

2388] = 0.74, p= 0.99), nor main effect of repetitions

(F [156, 2388] = 0.46, p= 0.99) was significant. These

results highlighted the lack of habituation to the different

solutions in the course of the 40 repetitions.

Saltiness intensity differed significantly between

solutions (F[4, 2076] = 939.21, p< 0.0001, sd random

effects = 18.18). Sensory results revealed a small odor-

induced saltiness enhancement (OISE) by the ‘‘beef

stock” aroma in the salt-reduced green-pea soup

(PPS1B). PPS1B (mean of intensity ratings of 40

repetitions across participants: M = 63.60, standard

error of the mean: SEM= 0.86) was perceived as

slightly more salty than PPS1 (M= 60.53, SEM= 0.96;

z= 2.72, pcorr = 0.007, estimate = 3.06, sd = 1.13,),

although not as salty as PPS2 (M= 72.80,

SEM= 0.81; z= 8.16, pcorr < 0.0001

estimate = 9.20, sd = 1.13). All salt-added solutions

(PPS1, PPS1B and PPS2) were perceived as more

salty than the control solutions (PP, M= 17.87,

SEM= 0.70, and PPB, M= 26.42, SEM= 1.05)

(pcorr < 0.00001). PPB was rated as more salty than

PP (z= 7.59, pcorr < 0.0001, estimate = 8.56,

sd = 1.13) which support the odor-induced salty taste of

the odor since no salt was added in this sample.
EEG results

No interaction was found between electrode position and

solution for any of the peaks (P1, P3) regarding amplitude

or latency (all comparisons: F [16, 282:288] < 1.06,

p> 0.39). Therefore, this interaction was never

included in the models. Because no interactions

occurred, electrodes that did not significantly differ were

included in the models to highlight global brain

responses and restrict the analysis to major effects. P3

and P1 peaks were analyzed to determine whether

odor-induced saltiness enhancement could be observed

in early and/or later brain processing (Fig. 1).
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Fig 1. Event-related potentials for all solutions and all electrodes.

The curves are Grand Mean weighted by the number of epochs finally

accepted for each participant (amplitude (mV) as a function of time

(ms) for each solution). The solutions were green-pea soup (PP), PP

with beef stock aroma (PPB), PP with a reduced level of salt (3.125 g/

L) (PPS1), PPS1 with beef stock aroma (PPS1B) and PP with a usual

level of salt (6.25 g/L) (PPS2). The five recorded electrodes are

shown (Cz, C3, C4, Fz and Pz). To improve graphical representation

of ERPs, grand means were filtered with a Butterworth low-pass filter

at 20 Hz and baseline was corrected.
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P1 peak

There was a significant effect of channel on amplitude (F

[4, 298] = 4.52, p= 0.002). Fz presented the highest P1

mean amplitude (M= 3.98, SEM= 0.33) and did not

significantly differ from Cz (z= 1.45, pcorr = 0.26) but

differed from Pz, C4 and C3 (for all comparisons:

p< 0.02). Therefore, Fz and Cz were included as

repeated measures in the following analyses.

There was no significant difference in the amplitude of

P1 between solutions (F [4, 98] = 1.22, p= 0.31, sd

random effects = 10.14) but the latency of P1 differed

(F[4, 98] = 3.31, p= 0.01, sd random

effects = 108.6029) (Fig. 2). P1 for PPS2 (M= 143

± 5 ms) appeared earlier than PPS1B (M= 164

± 4 ms) and PPB (M = 163 ± 5 ms). Indeed, P1 for

PPS2 appeared respectively 21 ms (z= �3.22,

p= 0.01, estimate = 21, sd = 6.45) and 20 ms

(z= �3.05, p= 0.01, estimate = 20, sd = 6.44) earlier

than PPS1B and PPB, which means that P1 for PPS2

appeared earlier than the two ‘‘aromatic” solutions (beef

stock odor). Latency did not differ between PPS1B,

PPS1, PPB and PP (p> 0.13, estimates < 13.6,

sd < 6.99).
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P3 peak

There was a significant effect of electrode position on the

amplitude of P3 peak (F [4, 287] = 2.45, p= 0.05). Cz

presented the highest mean amplitude of P3 (M= 5.03,

SEM= 0.53) and did not significantly differ from the Fz,

C4 and Pz electrodes (p> 0.75) but differed from C3

(z= 2.77, p= 0.05). Therefore, Cz, Fz, C4, and Pz

were included as repeated measures in the analysis.

A significant difference was found on the amplitude of

P3 peak between solutions (F [4, 204] = 18.52,

p< 0.0001, sd random effects = 12.76). PPS1, PPS1B

and PPS2 induced significantly larger P3 peaks than PP

and PPB (contrast between unsalted and salted

solutions, z= 8.443, pcorr < 0.0001, estimate = 9.02,

sd = 1.07, Fig. 3A). A weak but significant positive

correlation was found between saltiness intensity ratings

and P3 peak amplitude (z= 3.05, p= 0.002,

tau = 0.26) (Fig. 4). The P3 peak amplitudes for PP

and PPB did not differ from a null amplitude

(pcorr > 0.39, estimates < 0.16, sd < 0.55). There was

no difference of P3 amplitude between PPS1, PPS1B

and PPS2 (pcorr > 0.30, estimates < 0.69, sd < 0.56).

There was a significant difference on latency of P3

between the tested solutions (F[2, 102] = 9.05,

p= 0.0003, sd random effects = 152.85). The P3 peak

appeared later for PPS1B (M= 662 ± 6 ms) compared

to PPS1 (M = 637 ± 5 ms, z= 3.93, pcorr = 0.0003,

estimate = 26.3, sd = 6.70) and to PPS2 (M= 642

± 4 ms, z= �3.24, pcorr = 0.002, estimate = 20.58,

sd = 6.36) (Fig. 3B). In summary, the P3 peak was

significantly different from zero amplitude only for the

solutions PPS1, PPS1B and PPS2. The P3 peak, in

response to PPS1B, was delayed of 25 ms and 20 ms

compared with PPS1 and PPS2 respectively. Finally,

the amplitude of the P3 peak increased as a function of

the saltiness intensity rated.
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Fig 2. P1 peak amplitude and latency. Weighted mean P1 amplitudes (A) and latencies (B) (±CI95%)

for electrodes Fz and Cz for each solution: green-pea soup (PP), PP with beef stock aroma (PPB), PP

with a reduced level of salt (3.125 g/L) (PPS1), PPS1 with beef stock aroma (PPS1B) and PP with a

usual level of salt (6.25 g/L) (PPS2).

Fig 3. P3 peak amplitude and latency. Weighted mean P3 peak amplitudes (A) and latencies (B)
(±CI95%) for electrodes Fz, Cz, C4, and Pz for each solution: green-pea soup (PP), PP with beef stock

aroma (PPB), PP with a reduced level of salt (3.125 g/L) (PPS1), PPS1 with beef stock aroma (PPS1B)

and PP with a usual level of salt (6.25 g/L) (PPS2). A P3 peak was not found for PP and PPB.

Therefore, mean latencies were calculated only for PPS1B, PPS1, and PPS2.
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DISCUSSION

The objective of the study was to

highlight the brain chronometry

of odor–taste integration using

OISE. Our hypothesis, based on

the classical view of odor–taste

integration, was that differences

of amplitude and/or latencies

between solutions with and

without OISE would be observed

on the late P3 peak of olfactory-

gustatory ERP, but no difference

would appear on the early P1

peak. The sensory results

showed a significant OISE using

the ‘‘beef stock” aroma (PPS1B

vs. PPS1) in the green pea

soup. The ERP results showed

an increased latency on the P3

peak with the same solutions

(PPS1B vs. PPS1). No

difference in amplitude or latency

was observed on the P1 peak

between PPS1B and PPS1.

Therefore, our results support

the hypothesis of late brain

integration in the high cognitive

areas as proposed in the

classical view of flavor

perception (Verhagen and

Engelen, 2006; Verhagen, 2007;

Small, 2008; Prescott, 2012).

The ERPs measured in our

study mainly reflect the gustatory

component (specifically the

saltiness processing) of the

solutions, and its modulation by

the olfactory component. Indeed

the grand-averages showed

ERPs with proper peaks, well-

differentiated from noise, for the

salted solutions and small ones

for the control solutions apart

from the P1 peak (Fig. 2). These

control solutions (PP and PPB)

were mainly odorant and had a

poor taste. Furthermore, as the

P3 peak correlated to the

saltiness intensity (Fig. 4), it also

supports that the ERPs

represent mainly the gustatory

brain activations and their

modulation by the olfactory

component. Therefore, any

effect observed on P1 or P3

peaks will be either explained by

the concentrations of salt or by

the modulation of the gustatory

processing by the olfactory one

(i.e., odor-induced saltiness

enhancement). This modulation
Perception. Neuroscience (2020), https://doi.org/10.1016/j.
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Fig 4. Correlation between the mean saltiness intensity ratings and the amplitude (mV) of the P3 peak

at the Cz electrode. Each data point is the evaluation of one solution evaluated 40 times by one

participant (13 participants and 5 solutions). The amplitude of the P3 peak increased as a function of

the saltiness intensity. Kendall correlation: z= 3.05, p= 0.002, tau = 0.26.
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can either intervene early in the processing by direct

interactions between primary olfactory and gustatory

areas (emerging view) or occur later in the processing

through top-down pathways (classical view). Because

the modulation observed appeared on the P3 peak and

not on P1, the results confirmed OISE’s classical view.

We observed a higher salty taste intensity in PPB

compared to PP. However, the effect in PPB likely

implied an odor-induced saltiness perception (OISP),

but no enhancement (OISE) as salt was not present in

the solution. Because gustatory responses mainly drive

the ERPs here, although we observed a perceptual

difference between PP and PPB (OISP), we did not

observe brain correlates of such sensory response. It

could be that OISP and OISE involve different brain

circuits or that the number of neurons involved by the

OISP may not be sufficient to be visible in ERP, on the

contrary to OISE. The sensory effects may seem

contradictory, but the low range of salt concentration

may explain this result. The OISE effect is statistically

significant in the PPS1B solution, but the OISE

appeared small and lower than the OISP (Fig. 1). The

enhancement of salty taste induced by an odor is

usually observed in the range of 10 to 30% (Lawrence

et al., 2009). In the present study, the percentage of

enhancement (5%) might have been flattened because

of the evaluation of no-salt-added samples (PP and

PPB) in the sample set. Indeed, these two samples’ salti-

ness intensity was likely low compared to the three other

salt-containing samples, which could have reduced the

discrimination between PPS1, PPS1B, and PPS2. This
Please cite this article in press as: Sinding C et al. Odor-Induced Saltiness Enhancement: Insights Into The Brain Chronometry Of Flavor P
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hypothesis is supported by the

unexpected small difference

between PPS1 and PPS2 that

contained double salt.

One could think that rating

saltiness intensity only at the end

of each epoch recording would

involve a dumping effect. A

dumping effect occurs when ‘‘a

salient attribute is not included

on a ballot; the opinion about

that aspect of the product may

then be displaced onto another,

sometimes inappropriate scale.

In other words, if consumers are

not given a rating scale in which

they can voice some important

opinion about a product, they will

’dump’ this perception onto some

other available rating scale or

question” (Clark and Lawless,

1994). Dumping is usually consid-

ered as a bias in sensory rating

because it could lead to perceived

intensity overrating. However,

several recent studies reconsider

the dumping effect not as bias

but as a proof of odor–taste inte-

gration, because flavor perception

is by nature configural (Prescott,

2012; Onuma et al., 2018). There-
728
fore, when participants have no clue about the elements

(odor and taste), the configuration (flavor) is attended,

and the OITE occurs. The configural perception is a typi-

cal integratory perception described in the significant con-

tribution of the ‘‘unique cue theory” (Rescorla, 1972,

1973). This theory was further developed by Pearce

(2002) and finally demonstrated in the context of odor-

odor and odor–taste configural perceptions (Le Berre

et al., 2008, 2010; Sinding et al., 2011; White et al., 2020).

P1 peak

P1 peak, in chemosensory studies (70–302 ms), is

associated to brain circuits responding to exogenous

properties of the food such as tastant concentration

(Funakoshi and Kawamura, 1971; Kobayakawa et al.,

1999, 2007; Mizoguchi et al., 2002; Ohla et al., 2010).

Here, we did not find early changes in the brain process-

ing of PPS1B compared to PPS1 when considering ampli-

tude or latencies of the P1 peak. Therefore, no effect

possibly linked to OISE could be observed on the P1 peak

amplitude. We found a delay on the P1 peak, between

PPS2 vs. PPS1B and PPB. These contrasts could not

account for the OISE phenomenon, which would suppose

a difference between PPS1 and PPS1B. Both PPS1B and

PPB solutions contained a ‘‘beef stock aroma” and were

delayed compared to the most salted solution PPS2. This

polarization of the two types of solutions (high salt solution

vs. high odorant solutions) regarding their P1 latencies

could highlight the differential processing between salient

gustatory solution (PPS2) and salient olfactory solutions
erception. Neuroscience (2020), https://doi.org/10.1016/j.

https://doi.org/10.1016/j.neuroscience.2020.10.029
https://doi.org/10.1016/j.neuroscience.2020.10.029


729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

C. Sinding et al. / Neuroscience xxx (2020) xxx–xxx 9

NSC 19946 No. of Pages 12

17 November 2020
(PPB and PPS1B). In the literature, it is reported that

olfactory ERPs have a later P1 peak than gustatory

ERP. In studies that showed a P1 peak in response to

olfactory stimulation, this peak appeared between 200–

280 ms (Tateyama et al., 1998; Iannilli et al., 2013), while

it appeared at 120–140 ms for gustatory stimulation

(Mizoguchi et al., 2002; Ohla et al., 2009, 2010;

Jacquin-Piques et al., 2015).

Significant differences in P1 amplitude regarding salt

concentration in PP, PPS1, and PPS2 were not found,

although these solutions were perceived as significantly

different. This result is inconsistent with Kobayakawa

and colleagues (Kobayakawa et al., 1996, 1999, 2008).

It is generally assumed that P1 amplitude is related to tas-

tant concentration. Three studies from two independent

labs showed that P1 latency is more likely to reflect a

change in tastant concentration, with lower latencies for

higher concentrations (Funakoshi and Kawamura, 1971;

Kobal, 1985; Tateyama et al., 1998). In our study, the

solution with the highest concentration of salt (PPS2)

was processed with the lowest latency, but the result is

not significant. Altogether, these results could be

explained by the concentrations of salt used in our study,

which are not sufficiently extreme to show the expected

latency difference. Studies that tackle the brain peaks

associated with the perception of tastant concentrations

use steps of concentrations 5 times larger than those

used in our study. In Kobayakawa et al. (2008), differ-

ences of P1 amplitude were observed between 100 mM

(5.84 g/L) and 1 M (58.4 g/L), or between 30 mM

(1.752 g/L) and 300 (17.52 g/L), but not between

100 mM and 300 mM. In our study, salt concentrations

were in line with a usual soup that is 6.25 g/L for PPS2

and 3 g/L for PPS1 (soup with reduced-salt level). Likely,

the low, but food relevant, salt concentrations used in our

study could explain why we did not observe significant dif-

ferences in either amplitude or latency for P1 peak as a

function of salt levels.

P3 latency might be a marker of odor-induced taste
enhancement

P3 peak might be linked to cognitive processing diversity,

including emotions integration, attention allocation, and

working memory, which have in common their

endogenous origin. Furthermore, the P3 peak is elicited

by multiple intracerebral generators revealing its

integratory component (Picton, 1992; Li et al., 2015). In

our study, the P3 peak was significantly delayed by

20 ms or more in response to PPS1B compared to

PPS1 and PPS2. Moreover, the brain processing of

PPB did not present a significant P3 peak; therefore, we

could exclude an impact of the odor component on P3,

and we could then directly compare PPS1B to PPS1

and PPS2. We can also exclude an earlier origin of this

delay, as no significant delay was present at the early

stages of brain processing (only 7 ms separated P1 peaks

for PPS1B compared with PPS1). Although the interpreta-

tion of latencies, in terms of neuronal activity, is challeng-

ing, we might consider this delay as evidence for a higher

number of synapses involved in processing the sensory

information for solutions presenting an odor-induced taste
Please cite this article in press as: Sinding C et al. Odor-Induced Saltiness Enhancement: Insights In
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enhancement (for review, see Woodman, 2010). This

result would comply with the classical view of flavor inte-

gration proposed by Verhagen (Verhagen and Engelen,

2006; Verhagen, 2007). In this theory, inspired by visual

studies, downstream areas activate heteromodal integra-

tion areas that then loop back to the primary sensory

areas to form a refined activation pattern. The activation

of these associative areas, and the back projections to

primary gustatory regions, may explain the higher latency

observed for the odor-induced taste enhancement solu-

tion. Heteromodal multisensory processing areas, such

as the superior temporal sulcus (Calvert, 2001; Calvert

and Thesen, 2004), were found to be activated between

518–730 ms after food odor stimulation, with magnetoen-

cephalography (MEG) (Kettenmann et al., 1997). This

timing is consistent with the latency of the P3 peak iden-

tified in the present study.
P3 peak amplitude might be a marker of conscious
perception of the saltiness intensity

An intriguing result is that the amplitude of the P3 peak

was significantly different from the null amplitude only in

solutions with added-salt. Furthermore, looking at

individual results, we found a small but significant

correlation of this peak amplitude with salty taste

intensity ratings. Several explanations may account for

these results and may rely on different cognitive steps

involved in the intensity rating task. These steps may be

decomposed: i) non-conscious salt concentration

processing, ii) conscious representation of saltiness

intensity, and iii) evaluation of/decision on saltiness

intensity. The difference in P3 amplitude did not

correspond to the first step, as we did not find a

significant difference in amplitude between PPS1 and

PPS2. These results could be linked to the evaluation/

decision on saltiness intensity rating, which occurred at

least 320 ms after the P3 peak. As the participants were

likely expecting to evaluate the saltiness intensity after

each stimulation, the P3 peak could reflect their

anticipatory evaluation. However, in this case, P3 would

have also been observed for PP and PPB solutions.

Finally, suppose these results are neither linked to ‘‘the

non-conscious salt concentration representation” nor ‘‘to

the evaluation/decision on the saltiness intensity”. In

that case, it could be an intermediate state: ‘‘a

conscious representation of the saltiness intensity”.

Notably, the expectancy of the intensity scale could

favor the conscious representation of the saltiness

intensity. This late conscious perception has been

shown in visual attentional blink studies (Sergent et al.,

2005). This task permitted us to decipher the peaks

involved in non-conscious processing versus conscious

one. Although such results were not yet shown in taste

sensory modality, we suggest that P3 might represent

the conscious perception of the saltiness intensity.
The classical view of odor–taste integration
supported by our results

Overall, our results support the odor–taste integration

theoretical framework proposed by Verhagen (Verhagen
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and Engelen, 2006; Verhagen, 2007), Prescott (2012),

and Small (Small, 2008). In this framework, the integra-

tion of odor and taste occurs in high-level brain areas

(OFC, perirhinal, and dorsal mid insula), as brain correla-

tions of odor-induced saltiness enhancement were found

only at the later stages of brain processing. More recently,

Small and colleagues (Small et al., 2013) proposed an

emerging model of odor–taste integration relying on ani-

mal studies and fMRI human studies (De Araujo et al.,

2003; Maier et al., 2012, 2015; Seubert et al., 2015;

Maier, 2017). They showed early interactions between

primary olfactory and gustatory regions. They proposed:

i) a densely connected system between olfactory and

gustatory areas and ii) that flavor might be already inte-

grated into primary chemosensory cortices. Although

our study did not refute the dense connections between

primary olfactory and gustatory cortices, it did not show

early modulation in response to odor and taste presented

together. However, we cannot completely exclude that

our EEG design was not powered enough to detect early

changes.

Our results provide the first insight into the brain

chronometry of odor–taste integration, focusing on salty

flavor. We found that olfactory-gustatory interactions

mainly occur in the late brain processing of sensory

information carried by a close-to-real food solution. We

have developed an adequate stimulation method to

understand the chronometry of odor–taste integration in

the flavor system. Other converging results on similar

questions would be necessary to comprehend flavor

perception and underlying brain mechanisms further.

The enhancing effect was small in our solution, likely

due to the type of evaluation (intensity scales) and

context (during EEG recording). Therefore, our results’

reproducibility should be tested with a more reliable

sensory evaluation method and several food models.

Due to the long recording time, we could neither test

several solutions presenting an odor-induced taste

enhancement nor control solutions without such an

effect. A study comparing enhancing and non-enhancing

aroma would be of interest.
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