

Non-targeted 13 C metabolite analysis demonstrates broad re-orchestration of leaf metabolism when gas exchange conditions vary

Cyril Abadie, Julie Lalande, Anis Limami, Guillaume Tcherkez

▶ To cite this version:

Cyril Abadie, Julie Lalande, Anis Limami, Guillaume Tcherkez. Non-targeted 13 C metabolite analysis demonstrates broad re-orchestration of leaf metabolism when gas exchange conditions vary. Plant, Cell and Environment, 2020, 44 (2), pp.445-457. 10.1111/pce.13940 . hal-03033342

HAL Id: hal-03033342 https://hal.inrae.fr/hal-03033342

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **ORIGINAL ARTICLE**

WILEY

Non-targeted ¹³C metabolite analysis demonstrates broad re-orchestration of leaf metabolism when gas exchange conditions vary

Cyril Abadie¹ | Julie Lalande¹ | Anis M. Limami¹ | Guillaume Tcherkez^{1,2}

¹Institut de Recherche en Horticulture et Semences, INRA d'Angers, Université d'Angers, Angers, France

²Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, Australia

Correspondence

Guillaume Tcherkez, Institut de Recherche en Horticulture et Semences, INRA d'Angers, Université d'Angers, 42 rue Georges Morel, 49070 Beaucouzé, Angers, France. Email: guillaume.tcherkez@anu.edu.au

Funding information

Conseil Régional des Pays de la Loire, Grant/ Award Number: Connect Talent Isoseed

Abstract

It is common practice to manipulate CO_2 and O_2 mole fraction during gas-exchange experiments to suppress or exacerbate photorespiration, or simply carry out CO_2 response curves. In doing so, it is implicitly assumed that metabolic pathways other than carboxylation and oxygenation are altered minimally. In the past few years, targeted metabolic analyses have shown that this assumption is incorrect, with changes in the tricarboxylic acid cycle, anaplerosis (phosphoenolpyruvate carboxylation), and nitrogen or sulphur assimilation. However, this problem has never been tackled systematically using non-targeted analyses to embrace all possible affected metabolic pathways. Here, we exploited combined NMR, GC-MS, and LC-MS data and conducted non-targeted analyses on sunflower leaves sampled at different $O_2/$ CO₂ ratios in a gas exchange system. The statistical analysis of nearly 4,500 metabolic features not only confirms previous findings on anaplerosis or S assimilation, but also reveals significant changes in branched chain amino acids, phenylpropanoid metabolism, or adenosine turn-over. Noteworthy, all of these pathways involve CO₂ assimilation or liberation and thus affect net CO₂ exchange. We conclude that manipulating CO_2 and O_2 mole fraction has a broad effect on metabolism, and this must be taken into account to better understand variations in carboxylation (anaplerotic fixation) or apparent day respiration.

KEYWORDS

day respiration, gas-exchange, isotopic labelling, metabolomics, photorespiration, photosynthesis

1 | INTRODUCTION

Net CO₂ assimilation is the result of carboxylation (v_c), CO₂ release by photorespiration (v_o/ ξ , where v_o is the oxygenation rate and ξ is a stoichiometric coefficient, very close to 2 [Abadie, Boex-Fontvieille, Carroll, & Tcherkez, 2016; Busch, 2020]) and CO₂ production by day respiration (R_d). In gas-exchange experiments, the balance between carboxylation and oxygenation is routinely manipulated using CO₂ and O₂ mole fraction, for example using high CO₂ or low O₂ (0.5 or 2%) to suppress photorespiration. In fact, the oxygenation-to-car boxylation ratio, v_o/v_c , linearly depends on the concentration ratio of dissolved gases at carboxylation sites, $[O_2]/[CO_2]$. It is commonly assumed that the impact of changing $[O_2]/[CO_2]$ on other pathways and in particular on R_d is negligible (von Caemmerer, 2013).

However, in the past few years, strong evidence has been provided that in the short term, CO_2 and O_2 mole fraction changes the flux through several metabolic pathways. In particular, at high photorespiration (low CO_2 or high O_2 condition), there is an increase in anaplerotic CO_2 fixation by phosphoeno/pyruvate carboxylase (PEPC) (Abadie & Tcherkez, 2019a). When photosynthesis is low, this

represents a substantial CO2 fixation flux, of up to 40% of total observed assimilation. In addition, high photorespiration is associated with enhanced activity of the tricarboxylic acid pathway, probably leading to an increase day respiratory rate R_d (Griffin & Turnbull, 2013; Tcherkez et al., 2008, 2012). It must be noted that in the previous sentence, the term "probably" has been used. In effect, the measurement of R_d is still technically challenging and the two common methods (Kok and Laisk methods) used to determine R_{d} have drawbacks (Atkin, Millar, Gardeström, & Day, 2000; Tcherkez et al., 2017): the Kok effect has recently been shown to involve specific metabolism and numerically, cannot simply be explained by a change in CO2 evolution (Gauthier, Saenz, Griffin, Way, & Tcherkez, 2020), meaning that Kok-derived estimates of R_{d} are not fully representative; the Laisk method requires changes in CO₂ mole fraction, thus it is not adapted to examine the effect of the gaseous environment. Conversely, at low O2 (2% O2 and below), leaves experience hypoxic metabolism leading to alanine accumulation, diverting pyruvate from mitochondrial oxidation thereby impacting on day respiration (Abadie, Blanchet, Carroll, & Tcherkez, 2017). Using the Kok method, it has been suggested that under 2% O_2 , R_d is $\approx 20\%$ lower than at 21% O₂ (Tcherkez, Mahe, et al., 2012).

In addition to changes in day respiration or PEPC activity, changing O_2/CO_2 conditions has been shown to alter the balance between sugar species (sucrose, glucose and fructose) (Abadie, Bathellier, & Tcherkez, 2018) and modifies the flux associated with N and S assimilation. In effect, high photorespiration stimulates N assimilation (Bloom, Burger, Asensio, & Cousins, 2010; Bloom, Burger, Kimball, & Pinter, 2014; Rachmilevitch, Cousins, & Bloom, 2004), probably because of the transient higher need in glutamate for glycine synthesis and accumulation when O_2/CO_2 increases. High photorespiration also stimulates sulphate reduction and S assimilation to methionine, partly because of the higher turn-over in C₁ units carried by tetrahydrofolate (THF) and the higher availability in serine (Abadie & Tcherkez, 2019b). However, protein synthesis increases with net photosynthesis (and thus when the CO_2 mole fraction increases and O_2 mole fraction decreases, except under hypoxia) via the stimulation of cytoplasmic translation initiation and this effect is most likely signalled by sugars rather than amino acid availability (Tcherkez et al., 2020).

Taken as a whole, O_2/CO_2 conditions affect not only primary products of photosynthesis and photorespiration, but also other metabolites, with potential impacts on apparent carboxylation and apparent day respiration. The overall effect of presumably most important non-photosynthetic and non-photorespiratory pathways during gas-exchange has been reviewed recently (Tcherkez & Limami, 2019). However, our current knowledge comes from targeted analyses on pathways that are anticipated to be most impacted by the carboxylation-to-oxygenation ratio. In other words, there is presently no systematic, non-targeted analysis of changes triggered by O_2/CO_2 conditions during gas-exchange. This lack of knowledge is problematic, in particular to understand the metabolic significance of variables of net photosynthesis such as R_d . In effect, R_d represents the nonphotorespiratory CO_2 evolution rate in the light and is ordinarily assumed to reflect decarboxylation by classical metabolic pathways: pyruvate dehydrogenation (by mitochondrial and chloroplastic pyruvate dehydrogenase complexes), cytosolic oxidative pentose phosphate pathway (and perhaps also in the chloroplast, [Preiser, Fisher, Banerjee, & Sharkey, 2019]) and the tricarboxylic acid pathway (Tcherkez, Boex-Fontvieille, Mahé, & Hodges, 2012). Having said that, minor pathways such as de novo amino acid synthesis could be accompanied by CO₂ release or require aspartate as a building block and thus CO₂ fixation by PEPC, and the flux in such pathways can vary with O₂/CO₂.

As an aid in clarifying this aspect, we exploited labelling and metabolomics data and used full datasets to conduct a non-targeted analvsis. Sunflower (Helianthus annuus L.) leaves were placed in a gasexchange system under different O_2/CO_2 conditions (with ¹³CO₂) and when in the photosynthetic steady state, were instant-frozen with liquid nitrogen spraying. Analyses were carried out by nuclear magnetic resonance, gas chromatography coupled to nominal mass spectrometry, and liquid chromatography coupled to exact mass spectrometry on the same samples. Sunflower was used as a model species here because it contains detectable levels of secondary metabolites (phenylpropanoids) and amino acid derivatives (such as metabolites of the leucine-isoleucine pathway), making the examination of multiple pathways relatively easy. In addition, leaves are sufficiently large to generate big samples and thus allow NMR analyses. The use of ¹³C-labelling allowed us to identify metabolite isotopologues that were turned-over using carbon coming from current photosynthesis. The statistical analysis (both univariate and multivariate) of O₂/CO₂ conditions was conducted on the different isotopologues taken separately, so as to differentiate effects on pool size and turn-over. Our results show that in addition to the abovecited effects (such as PEPC activity or S assimilation), O2/CO2 conditions impact on phenylpropanoids, branched chain and aspartate-derived amino acids, and adenosine turn-over.

2 | MATERIAL AND METHODS

2.1 | Plant material

Sunflower seeds (*Helianthus annuus*, var. XRQ) were directly sown in potting mix and transferred to 15 L pots after 2 weeks (filled with Martins potting mix). Plants were grown in the greenhouse under 24/18°C, 60/55% relative humidity, 16/8 h photoperiod (day/night), with natural light supplemented by Lucagrow 400 W sodium lamps (JB Lighting, Cheltenham, Australia). Plants were watered every 2 days supplemented once a week with 1.5 g/L nutrient solution Peters Professional Pot Plant Special (Everris, Netherlands) with an N/P₂O₅/K₂O composition of 15/11/29 (and a nitrogen balance nitrate/ammonium/ urea of 8.6/2.0/4.4). Plants were used for experiments 50 days after sowing. We used leaves of rank 5 to 7, which are the mature source leaves with maximum photosynthetic capacity at this developmental stage.

2.2 | Gas exchange and sampling

The overall design of the experiment is depicted in Figure S1. Plants used for gas-exchange and labelling were taken from the glasshouse at fixed time (4 hr after the onset of light) so as to avoid potential diel cycle effects. Gas-exchange under controlled O₂/CO₂ conditions and sampling was done as in (Abadie & Tcherkez, 2019a). Briefly, an adapted chamber was coupled to the LI-COR 6400-XT (LI-COR Biosciences, USA) and had soft transparent walls to allow instant sampling by liquid nitrogen spraying. Gas-exchange conditions were: 400 μ mol m⁻² s⁻¹ photosynthetically active radiation (PAR), 80% relative humidity, gas flow 35 L/h, and 21-23°C air temperature. Isotopic labelling was performed using ¹³CO₂ (Sigma-Aldrich, 99% ¹³C) for 2 hr after 1 hr of photosynthetic induction to reach the photosynthetic steady state. This time window (2 hr labelling) has been selected here to both allow sufficient labelling and avoid too high ¹³C-signal overlapping in NMR spectra (Abadie et al., 2018). For all O₂/CO₂ conditions, two series of experiments were done: with ¹³CO₂, and with natural CO2. The six O2/CO2 conditions presented here are (%/µmol/ mol, ordered by increasing carboxylation-to-oxygenation ratio): 100/380, 21/140, 21/380, 21/800, 2/380 and 0/380.

2.3 | Extraction and NMR isotopic analyses

Samples were extracted with perchloric acid in liquid nitrogen, and analysed by ¹³C-NMR as in Abadie, Lothier, Boex-Fontvieille, Carroll, & Tcherkez, 2017. The perchloric extract was neutralized, 10 and 20 µl were collected separately for LC-MS and GC-MS, respectively, and the rest was freeze-dried. LC-MS and GC-MS aliquots were frozen and spin-dried, respectively. ¹³C-NMR analyses were performed at 298 K (25°C) without tube spinning, using an inverse-gated pulse program (zgig) with 90° pulses for ¹³C (10 µs). Acquisition parameters were 1.3 s acquisition time, 114 k size of FID, and a relaxation delay (D1) of 15 s. 2,600 scans were done, representing about 10 hr analysis per sample. ¹³C-signals were normalized to the internal standard (maleate).

2.4 | LC-MS analyses

LC-MS analyses were carried out as in (Abadie & Tcherkez, 2019a), using a LC-MS UHPLC/Orbitrap (Dionex/Thermo) coupling. We used a ZIC-HILIC column (3.5 μ m, 200 Å, 150 \times 2.1 mm, Merck SeQuant) coupled with a ZIC-HILIC column guard (20 \times 2.1 mm, Merck SeQuant) at 30°C oven temperature. Samples were diluted 10 times in water/acetonitrile (vol:vol, 50:50) and an internal standard (trifluoromethyl phenylalanine, TFMP) was added to monitor the signal response of the LC-MS. For quantification, calibration curves with a mixture of standard amino acids (including TFMP) were done before, in the middle and after sample batches. Injection volume was 1 μ l and elution was done at a flow rate of 0.3 ml/min with a binary gradient. Mobile phase A was acetonitrile/water (vol:vol, 25:75) and mobile phase B was acetonitrile/water (vol:vol, 95:5) both with ammonium acetate (5 mM). The gradient applied was 72% B at 0 min down to 36% B at 13 min and maintained for 2 min, and then back to 72% B at 16 min (total run time of 21 min). MS analysis was done in positive mode using two different runs: full MS scan mode (to extract metabolic features) and all ion fragmentation (AIF). The latter allowed us to look at the isotopic enrichment in fragments or check molecule identity. In fact, exact mass LC–MS data give direct access to isotopic abundances since ¹³C isotopologues can be easily distinguished from ¹⁵N, ²H or ¹⁸O isotopologues and thus the %¹³C can be calculated.

2.5 | GC-MS analyses

GC-MS analyses were carried out as in (Abadie, Blanchet, et al., 2017), using gas chromatography coupled to mass spectrometry (GC-MS), via methanol: water extraction followed by derivatization with methoxylamine and *N*-methyl-*N*-(trimethylsilyl) trifluoroacet amide (MSTFA) in pyridine. Alkanes were used in each sample to compute the retention index. Signals were normalized by the internal standard (ribitol).

2.6 | Data extraction

In what follows, non-targeted analysis leads to the extraction and utilization (for statistics) of "features." This term (used broadly in metabolomics) refers to a trait that can be treated as an individual metabolic quantitative variable. In NMR, LC-MS and GC-MS a feature is a ¹³C-signal referred to by its chemical shift, an m/z + retention time couple, and an m/z + retention index couple, respectively.

NMR spectra were phased, background corrected and retrieved from TopSpin 4.0. They were then analysed using the NMRProcFlow web application (Jacob, Deborde, Lefebvre, Maucourt, & Moing, 2017) where baseline correction (qNMR/soft) was performed. The bin area method was used to segment spectra between 11 and 185 ppm using the intelligent variable size bucketing included in NMRProcFlow. Buckets corresponding to one metabolite were then grouped when possible, according to NMR signal assignment (that is, buckets were optimized to contain entire peaks and avoid peaks being split in two subsequent buckets). A total of 181 variables were thus retained for subsequent statistical analyses. Integrated regions were normalized by dividing their areas by that of the internal standard (maleate) and dry mass of the sample.

LC-MS data were automatically aligned and features (m/z + retention time couples) were extracted with Mzmine 2 (Pluskal et al., 2020). Briefly, the raw dataset (.raw) was first converted to the mzML format (using MSConvert) and imported to Mzmine 2. Data processing started with peak detection followed by extraction of ion chromatograms (EICs) using the module Chromatogram Builder (minimum highest intensity set at 10^4 and m/z tolerance at 10^{-4} g/mol) from automated data analysis pipeline (ADAP) (Myers, Sumner, Li,

S-WILFY

4____WILEY_■

Barnes, & Du, 2017). To detect peaks from EIC chromatograms, deconvolution was performed with the wavelets algorithm, then identified peaks were aligned using the ADAP module Join Aligner using a RT and m/z tolerance of 0.05 min and 10^{-4} g/mol, respectively. LC-MS data extraction generated 39,595 features. Those with more than 50% missing data (non-detected signal in more and 50% of samples) were discarded, reducing the number of used features to 3,860. Identification of m/z features (Table 1) was based on exact mass, fragments (when visible with AIF analysis), and the isotopic pattern at natural abundance (non-labelled samples), and comparison with authentic standards (for common metabolites). In particular, when identified compounds contained sulfur, we checked the isotopic pattern comprised a ³⁴S isotopologue at natural abundance (4.3%). When identifications were nevertheless ambiguous (several possibilities), possibilities found in PubChem (https://pubchem.ncbi.nlm.nih.gov) were filtered according to biological relevance (recognized occurrence in plants). When several possible identifications were still possible, they are listed in Table 1. with the letter "A."

GC-MS data were aligned and extracted (m/z + retention index couples) using Metabolome Express (Carroll, Badger, & Millar, 2010), generating 1,574 metabolic features. In the data presented in figures, GC-MS features that were simultaneously insignificant in univariate analysis and non-identified by Metabolome Express were discarded, so that 384 features were eventually used.

2.7 **Statistics**

Considering the very high number of metabolic features to be handled, it was necessary to carry out multivariate analyses to operate a dimensionality reduction in addition to classical univariate analyses. To explore the CO₂ and O₂ effect, univariate statistics were conducted with a two-way ANOVA, with one factor representing labelling (12 C or 13 C conditions) while the second factor was O_2/CO_2 . Statistical significance was considered when p < .05, p < .01 or using the Bonferroni threshold (to correct for the false discovery rate), as shown in figures. Multivariate statistics were carried out using orthogonal projection on latent structure (OPLS; with Simca, Umetrics) using labelling as a qualitative (binary) Y variable and O₂/ CO₂ as a quantitative Y variable, and metabolic features as predicting X variables. Before running the OPLS, a PCA was conducted to check the presence of outliers (samples outside the Hotelling's ellipse). The performance of the OPLS was assessed using the correlation coefficient between predicted and observed Y (R²), the cross-validated correlation coefficient (Q^2), the Q^2 intercept of the permutation test (that was checked to be negative), and the p value of testing the OPLS model against a random-error model (i.e., average \pm error) via a χ^2 test (this p value is referred to as P_{CV-ANOVA}) (Bylesjö et al., 2006; Eriksson, Trygg, & Wold, 2008). Univariate and multivariate analyses were combined using -log(p value) (univariate) plotted against the OPLS loading (pcorr) in a "volcano plot." In such a representation, best metabolic markers are at the extremity of the plot (upper left and upper right).

3 RESULTS

¹³C incorporation detected by NMR 3.1

As expected, the amount of CO₂ assimilated increased with the CO₂to- O_2 ratio, while under 0% O_2 (100% N_2) as a background gas, there was a slight decline in net assimilation due to hypoxia (Figure S2). Allocation to major ¹³C pools was analysed by NMR, which is effectively highly quantitative but rather insensitive. Individual ¹³C signals obtained from bucketing were treated as quantitative variable. Here, each feature represents a C-atom position characterized by a chemical shift. Some C-atom positions are represented by several points due to spin-spin interactions that generate multiplets. Figure 1 shows the volcano plot combining univariate and multivariate analyses. The multivariate analysis yielded significant OPLS model (P_{CV-ANOVA} = .028 for the O_2/CO_2 effect) that was both predictive (R^2 = .809) and robust $(Q^2 = .752)$. Unsurprisingly, most features that significantly responded negatively to the O₂-to-CO₂ ratio were C-atom positions in sugars (with, for example, a p value smaller than 10^{-9} for the C-2 atom position in β -fructose) while photorespiratory intermediates (glycine, serine, glycerate) were more labelled at low carboxylation (high O_2/CO_2).

Several C-atom positions in amino acids were also significantly related to O₂/CO₂, in alanine or (iso)leucine. Accordingly, an intermediate of leucine metabolism (oxoisovalerate) was more labelled at high O_2/CO_2 . The C-5 atom of methionine appears just above the threshold of p = .05, either negatively related (native methionine) or positively correlated (methionine sulfoxide) to O2/CO2 reflecting the complicated pattern of ¹³C-5 in methionine: on the one hand, high photosynthesis (low O₂/CO₂) increased ¹³C-labelling (¹³C input) but on the other hand, methionine biosynthesis was stimulated by photorespiratory conditions (high O2/CO2). As a matter of fact, another Catom position of methionine (C-2) and O-succinylhomoserine (C-3) appeared to be more labelled at high O_2/CO_2 . Interestingly, the ¹³Csignal of C-atom positions in several organic acids also appeared to be significantly higher at high O₂/CO₂: malate (C-1, C-3 and C-4), citrate (C-2/4) and isocitrate (C-3) and fumarate (C-1/4), with malate C-4 having the lowest p value (10⁻⁸). This strongly suggests an increase in both catabolism via the tricarboxylic acid pathway and bicarbonate fixation (onto C-4 of oxaloacetate and thus malate) when photorespiration is high. We also note that the ¹³C-signal of chlorogenate (caffeoylquinate) C-3/7 was significantly higher at high O_2/CO_2 .

3.2 Metabolic features observed by mass spectrometry

Volcano plots associated with GC-MS and LC-MS features are presented in Figures 2 and 3, respectively. Excellent correlation was observed between observed Y values and Y values predicted by the statistical OPLS model (Figure S3). Here, features represent molecular species (isotopologues of metabolites). The multivariate analysis with GC-MS features yielded a significant OPLS model (P_{CV-ANOVA} = .009 for the O_2/CO_2 effect) that was both predictive (R^2 = .906) and robust

WILEY-

TABLE 1 List of m/z ions observed in LC-MS and significant for the O₂/CO₂ effect (Bonferroni threshold, -log(p) > 4.88)

#	Index	m/z	RT (min)	p(corr)	VIP	-log(p)		Identification
1	3,980	369.158	3.003	-0.215	1.074	*		$^{13}C_1$ -N-valyladenosine.H ⁺
2	3,757	352.207	3.174	-0.070	0.950	15.955	A	N-lauroylglutamic acid.Na ⁺ Glucosylheliotridine.NH ₃ .NH ₄ ⁺
3	3,099	310.128	2.611	-0.168	2.044	15.477	A	Methionylmethionine sulfoxide-H ₂ O.Form.NH ₄ ⁺ N-citryl diaminobutyric acid.NH ₄ ⁺
4	2,626	282.144	3.881	0.028	0.617	15.353		$^{13}C_2$ -Glucosylvaline.H ⁺
5	924	168.065	3.682	-0.134	1.348	14.364		Methionine.H ₂ O.H ⁺
6	3,644	344.133	3.912	0.132	0.582	14.142	A	Glucosyltyrosine.H ⁺ Glucosylhydroxycinnamic acid.NH ₄ ⁺
7	3,134	312.111	3.355	-0.049	1.797	13.509		N -fructosylmethionine. H^+
8	1940	239.095	7.821	-0.798	2.406	10.752		$^{13}C_1$ -Fructosylglycine.H ⁺
9	8,245	372.189	4.690	0.360	2.930	9.214		$^{13}C_{12}$ -Sucrose.NH ₄ ⁺
10	2,294	262.128	3.879	0.102	1.010	8.944		Galactaric acid.2NH ₃ .NH ₄ ⁺
11	4,243	388.109	10.484	0.051	1.400	8.291		${}^{13}\text{C}_1\text{-}\text{Dihydroxycinnamoyl-pentosylglucosylflavanone.2H}^+$
12	1,124	183.129	1.458	-0.293	0.494	8.251		 ¹³C₂-Adipic acid.NH₃.NH₄⁺ ¹³C₂-Quinovosamine.NH₄⁺
13	185	90.055	5.321	0.616	1.788	8.198		Alanine.H ⁺
14	7,117	240.098	7.825	-0.628	2.234	6.698		¹³ C ₂ -Fructosylglycine
15	1,106	182.081	3.433	0.627	1.300	6.680		Tyrosine.H ⁺
16	572	136.076	3.432	0.620	1.288	6.567		$^{13}\text{C}_{4}\text{-}\delta$ aminolevulinic acid.H*
17	1,303	197.053	2.494	-0.477	1.400	6.322		Gluconic acid.H⁺
18	1,119	183.084	3.431	0.596	1.265	6.277		¹³ C ₁ -Tyrosine.H ⁺
19	3,226	317.208	1.245	-0.053	1.135	6.238	U	Unknown S-containing compound (probable formula $C_{16}H_{32}N_2S_2$)
20	10,845	337.196	1.973	-0.089	1.057	6.198	U	Unknown sugar derivative (probable formula $C_{14}H_{28}N_2O_7$)
21	10,328	261.048	3.554	-0.177	0.645	6.129		Deoxyxylulose 5-phosphate.NH ₃ .NH ₄ ⁺
22	877	164.071	2.035	-0.297	1.135	6.076		Aminocinnamic acid.H ⁺
23	4,536	411.362	1.272	-0.028	0.277	5.673	U	Unknown
24	2,554	278.149	3.157	-0.263	0.654	5.671	A	 ¹³C₂-Butylglucose.NH₃.NA⁺ ¹³C₂-Methylglucaric acid.2NH₃.NH₄⁺ ¹³C₂-Ketoheptulose.2NH₃.NH₄⁺
25	4,678	425.192	1.738	-0.264	0.481	5.620		$Glucosylresveratrol.NH_4^+$
26	5,799	588.158	9.955	-0.404	1.228	5.599	A	$^{13}C_2$ -Phosphocaffeoylpentoglucoside.NH4 ⁺ $^{13}C_2$ -Phosphoferuloylxyloglucan.NH4 ⁺
27	1,349	200.092	3.880	-0.153	1.271	5.377		Homovanillic acid.NH4 ⁺
28	4,539	412.145	2.816	-0.350	1.678	5.319	A	Dihydroquercetin.5H ₂ O.NH ₄ ⁺ Triacetylinosine.NH ₄ ⁺ Methylgalactoglucuronic acid.ACN.H ⁺
29	10,095	230.042	2.130	0.029	0.413	5.268		Sulfonoasparagine. NH_4^+
30	3,404	329.142	2.608	-0.238	1.675	5.198		¹³ C ₁ -O-glucosylcinnamic acid.NH ₄ ⁺
31	3,746	351.176	2.014	-0.204	2.020	4.905	A	Benzylglucose.NH ₃ .Form.NH ₄ ⁺ Hexitollysine.Na ⁺ (Aminoheptanoic acid) ₂ .H ⁺

Note: A positive (resp. negative) value of p(corr) indicates the ion of interest prevails under low (resp. high) O_2/CO_2 . When no isotope is mentioned, the compound shown refers to the monoisotopic (^{12}C) form. Formic acid is abbreviated "Form." Neutral losses are indicated with a minus sign (–). Combination with another molecule appears with a dot point (.). All *m*/z have been observed in positive ionization mode and appeared as $[M + H]^+$ ions or an adduct (in most cases, ammonium). For clarity, this table only shows 3 decimals for *m*/z (while the analysis at high resolution gave access to 5 decimals). The asterisk (*) indicate a non-computable *p* value (with ANOVA) due to the ion of interest disappearing specifically in one condition. "#" (left column) refers to the label in Figure 2. Letters "A" and "U" indicate features with several possible identifications or unknown (not identified) compounds, respectively. LC-MS features significant for the interaction effect (labelling $\times O_2/CO_2$) are listed in Table S2.

Abbreviations: p(corr), loading associated with labelling as a response variable in OPLS; RT, retention time; VIP, variable importance for the projection.

FIGURE 1 Volcano plot showing ¹³C-signals that vary significantly with gas exchange conditions using non-targeted ¹³C-NMR analysis. This figure plots the logarithm of the *p* value obtained in univariate analysis (two-way ANOVA, *y* axis) as a function of the weight obtained in multivariate analysis (O2PLS, *x*-axis). C-atom position associated with a significant interaction effect (labelling $\times O_2/CO_2$) appear in dark blue. C-atom positions are named after the abbreviation of the metabolite followed by the C-atom number (IUPAC numbering). Amino acids are abbreviated using their international three-letter code. Chlo, chrorogenate; Cit, citrate; aFru, α -fructose; bFru, β -fructose; Fum, fumarate; Gla, glycerate; aGlc, α -glucose; bGlc, β -glucose; lcit, isocitrate; KIV, oxoisovalerate; Lact, lactate; Mal, malate; Man, mannose; MetSox, methionine sulfoxide; OSH, *O*-succinylhomoserine; RF, raffinose fructosyl moiety; SF, sucrose fructosyl moiety; SG, sucrose glucosyl moiety. The symbol + indicates overlapping with other sugars: due to ¹³C-¹³C interactions, several C-atom positions overlap at the same chemical shift. Under such circumstances, labels indicated here refer to the prevalent sugar species at the chemical shift of interest. "Starch" refers to soluble amylopectin. Note that the two CH₃ groups in leucine are distinguishable by NMR due to heterotopicity; here they are numbered as Leu 5 and 6 [Colour figure can be viewed at wileyonlinelibrary.com]

($Q^2 = 0.734$). The OPLS model with LC–MS feature was, as expected, highly predictive but insignificant ($P_{CV-ANOVA} = .195$) due to the very high number of features which causes multivariate overfitting. Typically, when this effect was partly withdrawn by eliminating features with very low p_{corr} values (first quartile), the OPLS model was significant ($P_{CV-ANOVA} = .041$ for the O_2/CO_2 effect), highly predictive ($R^2 = .996$), and robust ($Q^2 = 0.536$).

As with NMR, most metabolic features found by GC–MS and significantly related to O_2/CO_2 were sugars ^{13}C -isotopologues, with many multiple labelled species (e.g., $^{13}C_6$ - and $^{13}C_7$ -sucrose). However, best features also included phosphorylated sugars (ribose 5-phosphate, glucose 6-phosphate and mannose 6-phosphate), disaccharides other than sucrose (cellobiose, maltose), myoinositol and raffinose. Interestingly, represented features were not only ^{13}C -isotopologues but also monoisotopic forms (^{12}C isotopologues) of mannose 6-phosphate, sucrose and maltose, demonstrating that both the ^{13}C -enrichment and pool size increased with net photosynthesis (in contrast to ^{12}C -galactinol, which decreased). Several amino acid isotopologues declined significantly with O_2/CO_2 such as valine, tyrosine, γ -aminobutyrate (GABA) and alanine. Here too, ^{12}C -isotopologues were represented, showing a decrease in pool size.

Interestingly, high O_2/CO_2 was associated with a higher ¹³C-labelling in quinate (increase in ¹³C₁-quinate, and decrease in ¹²C-quinate), a precursor of chlorogenate.

Significant metabolic features found by LC–MS were consistent with that found by GC–MS (Figure 3), with alanine, valine (or its glyco-sylated derivative), tyrosine and sucrose isotopologues being more prevalent at low O_2/CO_2 (the list of features significantly affected by the $^{12}C/^{13}C$ substitution is shown in Table S1, and the list of features significantly affected by O_2/CO_2 is provided in Table 1). Conversely, at high O_2/CO_2 , there was more methionine (and other metabolites of sulphur metabolism: *N*-fructosylmethionine, sulfonoasparagine), an intermediate of lysine metabolism (aminoadipate) and many phenylpropanoids (including glycosylated forms), as either ^{12}C or ^{13}C isotopologues.

3.3 | Isotopic forms of selected metabolites

As expected, the $\%^{13}$ C in photorespiratory intermediates serine and glycine increased as O₂/CO₂ increased, with a progressive decline in the ¹²C-isotopologue (Figure S4). It is worth noting that the ¹³C₃

FIGURE 2 Volcano plot showing features that vary significantly with gas exchange conditions using non-targeted GC–MS analysis. This figure plots the logarithm of the *p* value obtained in univariate analysis (two-way ANOVA, *y* axis) as a function of the weight obtained in multivariate analysis (O2PLS, *x*-axis). Features associated with a significant interaction effect (labelling $\times O_2/CO_2$) appear in dark blue. The red arrow points to valine, which is further discussed in main text. Amino acids are abbreviated using the international three-letter code. Numbers next to metabolites names refer to different analytes (different silylated derivatives). Ala, alanine; GABA, γ -aminobutyrate; Glc, glucose; Gly, glycine; Malt, maltose; Myo, myoinositol; Oct, octacosane; Raf, raffinose; Ser, serine; Suc, sucrose; Tlac, threonolactone; Tyr, tyrosine; UknD, unknown disaccharide (sucrose isomer to be determined); Val, valine [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Metabolites affected by O_2/CO_2 and detected by LC–MS. Volcano plot showing *m/z* features that vary significantly with gas exchange conditions using non-targeted LC–MS analysis. This figure plots the logarithm of the *p* value obtained in univariate analysis (two-way ANOVA, *y* axis) as a function of the weight obtained in multivariate analysis (O2PLS, *x*-axis). *m/z* associated with a significant interaction effect (labelling × O_2/CO_2) appear in dark blue. For each feature, the isotopologue is indicated (number of ¹³C atoms). Monoisotopic ions (with no heavy isotopic substitution) are indicated as ^{«12}C." Number refers to the compound number in Tables 1 and S2 (where the exact mass and adduct forms are indicated). ALA, δ-aminolevulinic acid; CDAB, citryldiaminobutyrate; DCPGF, dihydroxycinnamoyl pentosylglucosyl flavanone. The symbol (A) indicates several possibilities for identification (see tables) [Colour figure can be viewed at wileyonlinelibrary.com]

WILEY

WII FY_Plant, Cell &

isotopologue of serine was not maximal at the highest O_2/CO_2 (100% O_2 as background gas) because of the low $^{13}\mathrm{C}$ input by photosynthesis.

Since O_2/CO_2 impacted on branched chain amino acids, phenylpropanoids and sulphur assimilation, we looked more closely at the isotopic distribution in valine, phenylalanine and methionine (Figure 4). Valine appeared to be minimally labelled under 100% O_2 as a background gas (Figure 4b). There were also clear changes in the isotopic pattern. The ¹³C₁-isotopologue always represented between 5 and 6%, reflecting ¹³C natural abundance (1.1% × number of C-atoms, here, 5) (Figure 4c). When valine was labelled, this was mostly due to the occurrence of the completely labelled isotopologue, ¹³C₅-valine, demonstrating that acetyl-CoA and pyruvate used to synthesize valine were maximally labelled. The isotopic pattern was very different in phenylalanine compared to valine. In fact, the two prevalent isotopologues were ${}^{13}C_3$ and ${}^{13}C_9$ -phenylalanine (except at high O₂/CO₂ where phenylalanine was minimally labelled) (Figure 4f). Since phenylalanine C-atoms come from two PEP and one erythrose 4-phosphate (E4P) molecule, it shows that the two most common situations were ${}^{13}C_3$ -PEP + ${}^{12}C$ -PEP + ${}^{12}C$ -E4P (${}^{13}C_3$) and 2 × ${}^{13}C_3$ -PEP + ${}^{13}C_4$ -E4P (${}^{13}C_9$). In other words, it suggests the involvement of two pools of shikimate, one being strongly labelled, while the other was minimally labelled. This dual origin persisted regardless of O₂/CO₂ except under 100% O₂ (Figure 4f).

In the case of methionine, there was a very clear predominance of the $^{13}C_1$ -isotopologue (20–30%), far above natural abundance (1.1% × 5) (Figure 4i), demonstrating the strong labelling in methyl-THF

FIGURE 4 Isotopic pattern in selected amino acids of sunflower leaves labelled with ${}^{13}CO_2$: (a-c) valine, (d and f) phenylalanine and (g-i) methionine. (a,d,g) Chemical structure of amino acids showing their metabolic origin. "Photosynthesis" refers to the Calvin cycle that generates pentose phosphates. Me-THF, methyl-tetrahydrofolate; OAA, oxaloacetate; PEPC, phospho*enol*pyruvate carboxylase; TPP, thiamine pyrophosphate. (b,e,h) ${}^{13}C$ percentage from full MS (and for methionine, also fragmentation analysis). Letters stand for statistical classes (p < .05, ANOVA). (c,f,i) Isotopologue distribution showing that the isotopic pattern is far from being statistical, with a very high proportion of ${}^{13}C_5$ isotopologues (valine), both ${}^{13}C_3$ and ${}^{13}C_9$ isotopologues (phenylalanine) and ${}^{13}C_1$ isotopologue (methionine) [Colour figure can be viewed at wileyonlinelibrary.com]

ALC: NOT

9

WILEY_

from which the CH₃ group attached to the S-atom comes. The use of LC-MS fragments that do not comprise the CH₃ group allowed us to compute by subtraction the $\%^{13}$ C in the non-methyl atoms of methionine. The C-atoms coming from aspartate were effectively much less labelled than the methyl group (Figure 4h,i).

In addition, of particular interest is the isotope composition in adenosine which is among the most significant labelled compounds

and is neither an amino acid nor a sugar (Table S1). In addition, the ${}^{13}C_1$ isotopologue of valyladenosine was the most significant LC-MS feature associated with the O₂/CO₂ effect (Table 1 and Figure 3). There were no significant changes in the adenosine pool size (Figure 5b); however, its $%^{13}$ C varied significantly, with the lowest value at low O₂/CO₂ that is, with 0% O₂ as a background gas (Figure 5c). The isotopic pattern was far from being statistical, with a

FIGURE 5 Isotopic pattern in adenosine of sunflower leaves labelled with ¹³CO₂. (a) Chemical structure of adenosine and origin of C-atoms. Here, "formyl" refers to formyl-tetrahydrofolate. The term "photosynthesis" refers to the Calvin cycle that forms pentoses. (b) Relative content in adenosine. The red line indicates the relative average across all conditions, fixed at 1. There is no significant difference between conditions. (c) ¹³C percentage of whole molecule (obtained from full MS analysis) and of the adenine moiety (obtained from fragmentation) and the ribose moiety (calculated from mass balance). (d) Average mole fraction of isotopologues (across all O_2/CO_2 conditions) of adenosine (black dots) and comparison with purely statistical ¹³C distribution with a one-¹³C probability of 0.011 (natural abundance, red)), 0.02 (blue) or 0.03 (green). The arrow points towards the remarkably high fraction associated with the $^{13}C_5$ isotopologue. (e) Isotopologue distribution (mole fraction) in the adenine moiety of adenosine. Arrows point to the high proportion of fully labelled $(^{13}C_5)$ adenine molecules. Data shown are $M \pm SD$ (n = 3). OPPP, oxidative pentose phosphate pathway [Colour figure can be viewed at wileyonlinelibrary.com]

WII FY_Plant, Cell 8

high proportion of the ${}^{13}C_5$ isotopologue, simply reflecting the high ${}^{13}C$ labelling in the ribosyl moiety (Figure 5d, arrow). The isotope composition of the adenine moiety was then examined precisely using the associated fragment in LC–MS AIF analysis. The isotopic pattern was not statistical, with a high contribution of the ${}^{13}C_5$ isotopologue at 380 and 800 µmol/mol CO₂ in 21% O₂ (Figure 5e). Interestingly, this isotopologue remained relatively important even at high O₂/CO₂ (100% O₂) while it nearly disappeared at low O₂/CO₂ (0% O₂), suggesting that the allocation of ${}^{13}C$ to adenosine biosynthesis was very small when photorespiration was suppressed.

4 | DISCUSSION

The overall metabolic impact of changing CO_2 and O_2 conditions during gas exchange has never been described precisely using comprehensive metabolic analyses. Here, we provide the first non-targeted isotope-assisted analysis to find the most important metabolic changes, beyond carboxylation and oxygenation. The most visible changes we found were associated with PEPC activity, sulphur assimilation and phenylpropanoids (stimulated at high photorespiration), branched chain and tyrosine synthesis (stimulated at high photosynthesis). The effect of hypoxia on leaf alanine metabolism has been previously discussed (Abadie, Blanchet, et al., 2017) and will not be commented further here. In what follows, we discuss the possible rationale for metabolic modifications (in particular in relation to photorespiration) and potential consequences for gas exchange measurements themselves (in particular for day respiration).

4.1 | Reconfiguration of amino acid metabolism

One of the most significant impact of O_2/CO_2 conditions was the enhancement of methionine metabolism, with not only an increase in the methionine pool (Tables 1, 2, & Figure 3a) but also a higher ¹³C allocation to methionine sulfoxide and O-succinylhomoserine at high O_2/CO_2 (Figure 1). Interestingly, the ¹³C enrichment in methionine was much more pronounced in the C-5 atom, that is, the methyl group attached to S, which comes from C₁ metabolism. By contrast, the ¹³C enrichment in other C-atoms was small, showing that the allocation of ¹³C-aspartate to methionine de novo synthesis was modest. The considerable ¹³C enrichment in C-5 at high photorespiration despite the low ¹³C input (low net assimilation) demonstrates the critical role of photorespiration-derived methyl-THF in providing the C1 unit to convert homocysteine to methionine (the final step of methionine synthesis) (Hanson & Roje, 2001). Similar results have been obtained recently also on sunflower leaves (Abadie & Tcherkez, 2019b), where the effect of photorespiratory conditions on methionine was further shown with ³³S-labelling to be accompanied by an increase in sulphate reduction and assimilation. Taken as a whole, this shows the stimulation of sulphur metabolism at high O₂/CO₂. This effect is here further supported by the significant effect on sulphur-containing metabolites other than methionine, such as *N*-fructosyl methionine, and sulfonoasparagine (Table 1, Figure 3).

More generally, our data support the view that aspartate metabolism as a whole is stimulated by high O₂/CO₂ conditions, as suggested by the significantly higher ¹³C-signal in aspartate itself (Figure 1) and nicotinamide (Figure 3) and the clear stimulation of PEPC activity (which generates oxaloacetate; discussed below). In addition, our results suggest a higher flux in lysine metabolism (synthesis + degradation), which starts from aspartate and leads to aminoadipate (and then 2-oxoglutarate) via aminopimelate and lysine. Here, we found an increase in the pool of aminoadipate (Figure 3). Interestingly, the involvement of the lysine bypass has also been demonstrated in Arabidopsis mutants affected in isocitrate dehydrogenase (NADP and NAD dependent) activity (Boex-Fontvieille, Gauthier, Gilard, Hodges, & Tcherkez, 2013). Such a similarity perhaps reflects the higher redox poise in the mitochondrion at high photorespiration rates due to high NADH generation by glycine-to-serine conversion. That is, under such circumstances, the lysine bypass would be up-regulated to play the role of an alternative pathway to supplement 2-oxogluratate generation.

Another clear effect of O_2/CO_2 conditions is the modification of phenylpropanoids metabolism. In fact, while there was an increase in 13 C- and 12 C-tyrosine signals at high photosynthesis (low O₂/CO₂), there was an increase in non-aminated derivatives at high photorespiration (high O_2/CO_2) such as chlorogenate and its precursor guinate (¹³C-isotopologue, while the ¹²C-isotopologue decreased thus demonstrating an enhanced turn-over) (Figure 3), and other metabolites of this family such as phosphocaffeoylpentoglucoside, homovanillate and amino- and glucosyl-cinnamate (Table 1). In other words, the metabolic partitioning of the aromatic precursor arogenate appears to change depending on O₂/CO₂: at high O₂/CO₂, the synthesis of secondary metabolites via phenylalanine is favoured while at low O₂/ CO₂, tyrosine synthesis is favoured. It is worth noting that phenylalanine itself was not amongst significant features (Figures 1-3) suggesting that it played the role of an intermediate that did not accumulate (while its isotopic enrichment can be very high, up to \approx 40%, Figure 4). In addition, the isotopic pattern found in phenylalanine was quite surprising, in that the two predominant isotopologues were ${}^{13}C_3$ and ¹³C₉, strongly suggesting that phenylalanine synthesis could remobilize non-labelled shikimate and therefore, there were two pools of shikimate in the cell (chloroplastic and extra-chloroplastic). Alternatively, there could be some de novo shikimate synthesis from non-labelled precursors (PEP, E4P) in the cytosol. In both cases, nonlabelled shikimate has to be imported into the chloroplast (Maeda & Dudareva, 2012). The utilization of shikimate appeared to be enhanced at high O₂/CO₂ (Figure 4f). The rationale of the phenylalanine derivatives vs. tyrosine balance when O₂/CO₂ conditions change is not clear. Promoting secondary metabolites (coming from phenylalanine) over tyrosine has some advantages at high photorespiration: First, it liberates ammonium (via phenylalanine ammonia lyase, PAL) which is then available for the GS-GOGAT cycle and can thus feed the photorespiratory cycle with glutamate. Second, since PAL is cytosolic (as well as other enzymes of caffeate synthesis), it eventually

and the last state

Metabolic pathway	Summarized reaction	Consequences on net CO ₂ exchange
Anaplerosis	$PEP + \textbf{HCO}_3^- \to oxaloacetate$	Consumes HCO ₃ ⁻
Hypoxic metabolism (alanine production + GABA shunt)	$\text{Pyruvate} + \text{Glu} \rightarrow \text{Ala} + \text{SSA} + \text{CO}_2$	CO ₂ production via GABA synthesis (but pyruvate abstraction from catabolism)
Aspartate metabolism	$\begin{array}{l} Asp + 2 \; ATP \to Thr + 2 \; ADP + 2 \; Pi \\ Asp + Cys + Me\text{-}THF + 2 \; ATP \to Met + 2 \\ ADP + 2 \; Pi + pyruvate \\ Asp + pyruvate + Glu \to \mathbf{CO}_2 + 2OG + Lys, \\ and \; Lys + 2OG \to \mathbf{CO}_2 + 2 \; Glu \end{array}$	Consumes HCO_3^- (via asp synthesis); Cys synthesis utilizes photorespiratory Ser; CO_2 production during Lys metabolism (but pyruvate abstraction from catabolism)
Adenosine synthesis	Ribose 5-P + 2 Fo-THF + 6 ATP + 2 Gln + Gly + HCO_3^- + Asp \rightarrow adenosine +2 THF + 7 Pi + 5 ADP + AMP + 2 Glu + fumarate	Consumes 2 HCO ₃ [–] (one of them via asp synthesis)
Branched chain amino acid synthesis	2 Pyruvate + Glu \rightarrow Val + CO ₂ + 2OG Pyruvate + Thr + Glu \rightarrow Ile + CO ₂ + 2OG 3 Pyruvate + Glu \rightarrow Leu + 2 CO ₂ + 2OG	CO ₂ production (but pyruvate abstraction from catabolism)
Phenylpropanoid metabolism	2 PEP + erythrose 4-P + Glu + ATP \rightarrow Phe (or Tyr) + 2OG + 4 Pi + ADP + CO₂	CO ₂ production and PEP abstraction from anaplerotic activity

TABLE 2 Overall chemical equations of metabolic phenomena mentioned in Figure 6, showing the potential impact on CO₂ exchange, via the fixation or production of CO₂ (or bicarbonate in the case of PEPC)

Note: For simplicity, redox equivalents (NADPH, NADH) are not mentioned here. Amino acids are abbreviated using the international three-letter code. Abbreviations: 2OG, 2-oxoglutarate; PEP, phosphoenolpyruvate; SSA, succinic semialdehyde; THF, tetrahydrofolate.

FIGURE 6 Summary of metabolic pathways affected by gas exchange O₂/CO₂ conditions in sunflower leaves [Colour figure can be viewed at wileyonlinelibrary.com]

leads to a net export of redox power from the chloroplast, whereas tyrosine synthesis generates NADPH in the chloroplast. Third, phenylpropanoids can play the role of antioxidants and this may be beneficial at high photorespiration (Mhamdi, Kerchev, Willems, Noctor, & Van Breusegem, 2017; Noctor & Mhamdi, 2017). In particular, lignin precursors (hydroxycinnamate family members) can participate in quenching radical ROS via monodehydroascorbate reductase (Sakihama, Ji, Sano, Asada, & Yamasaki, 2000).

 O_2/CO_2 also impacted on branched chain amino acids, with an increase in the ^{13}C -signal of (glycosyl)valine, leucine, isoleucine, as well as an increase in ^{12}C -valine with net photosynthesis (Figures 1–4). The relatively high signal of the $^{13}\text{C}_5$ -isotopologue of valine shows clearly that de novo synthesis took place from $^{13}\text{C}_3$ -pyruvate (in the chloroplast). It is worth noting that isoleucine

synthesis also involves threonine as a building block and this probably explains why threonine was not among significantly decreased metabolites at low O_2/CO_2 despite the general down-regulation of aspartate metabolism under such conditions.

4.2 | Catabolism and CO₂ production

Nearly all of the pathways that were found to vary with O_2/CO_2 are associated with CO_2 production or fixation (Figure 6 & Table 2). First, we found a stimulation of PEPC activity at high O_2/CO_2 (with a strong ¹³C signal in malate C-4, Figure 1). As a result, bicarbonate fixation increased and providing the HCO_3^-/CO_2 equilibrium was maintained, this must have translated into higher apparent carboxylation rate. The

Wh fy

WILFY_Plant, Cell

numerical impact of PEPC-catalysed fixation on v_c has been examined previously (Abadie & Tcherkez, 2019a). PEPC activity is essential to sustain aspartate synthesis in leaves, and aspartate metabolism is in turn stimulated at high photorespiration (see previous section). While methionine synthesis does not lead to CO₂ production, the lysine bypass from aspartate to 2-oxoglutarate generates two CO₂. Phenylalanine, tyrosine, and branched chain amino acid synthesis also produces CO₂ (Table 2).

Interestingly, adenosine synthesis, which is one of the highest significant features upon ¹³CO₂ labelling (and its N-bound valine derivative has the highest p value for the O_2/CO_2 effect), involves bicarbonate fixation. The ¹³C-enrichment in the adenine moiety is bell-shaped, with a maximal value under standard conditions (Figure 5). This pattern likely comes from both a source effect (where precursors, glycine and C₁ units, are maximally labelled at high photorespiration) and a down-regulation of adenine turn-over at high photosynthesis (as demonstrated by the lower %¹³C in the ribose moiety (Figure 5) despite its higher ¹³C-signal (Figure 2)). Taken as a whole, adenosine de novo synthesis increased at high photorespiration and this must have increased the apparent carboxylation rate. The significance of this effect on the AMP, ADP or ATP pool size (collectively referred to as AXP) as O_2/CO_2 varies would require further analysis. De novo synthesis of purine bases is believed to take place not only in plastids but also in mitochondria while the "salvage pathway" is cytosolic (Zrenner, Stitt, Sonnewald, & Boldt, 2006). An increase in AXP turn-over could thus be useful to either (a) balance the cytosolic energetic charge ratio (ATP/AXP) or (b) adjust the capacity of ATP generation by the mitochondrion when photorespiratory NADH production increases and tends to increase the ATP/ADP ratio ((Bykova, Keerberg, Pärnik, Bauwe, & Gardeström, 2005; Gardeström & Wigge, 1988) but see (Yin, Dietz, & Heber, 1990)).

The net effect of changing O_2/CO_2 conditions on metabolic CO_2 efflux and how it contributes to R_d is not known with precision. In fact, our study did not include time series or steady-state isotopic labelling (which is not attainable), therefore numerical flux calculations were not possible. If we neglect temporal changes in pool sizes (and thus assume that pool sizes were constant), the %¹³C values (along with external calibration) suggest that branched chain amino acid, phenylalanine + tyrosine and adenosine synthesis represent an apparent 13C allocation within 0.02-0.05, 0.02-0.04 and 0.005-- $0.02 \ \mu mol \ m^{-2} \ s^{-1}$, respectively. Such values are small compared to photosynthesis under standard conditions (21% O₂, 380 µmol mol⁻¹ CO₂) but are not negligible when compared with net photosynthesis at low CO₂ or high O₂, or with day respiration (about 0.5 μ mol m⁻² s⁻¹). In fact, it represents a total CO₂ efflux of up to $0.1 \ \mu mol \ m^{-2} \ s^{-1}$, that is, up to 20% of average day respiration rate. In addition, this multiplicity of metabolic pathways associated with CO₂ exchange must be kept in mind when gas exchange measurements are carried out. That is, the generic term "day respiration" encompasses various metabolic pathways and although "classical" decarboxylation (pyruvate dehydrogenase, tricarboxylic acid pathway) likely prevails in total CO₂ efflux, variations in R_d with environmental conditions can also be partly explained by changes in minor decarboxylating pathways.

In addition, when net assimilation is low, alternative carboxylation pathways (PEPC, base synthesis) cannot be neglected. PEPC activity has been shown to be up to 1.8 μ mol m⁻² s⁻¹ at high photorespiration, which is not negligible compared to net photosynthesis and implies a significant correction in calculations to compute carboxylation (v_c) and oxygenation (v_o) rates (Abadie & Tcherkez, 2019a). This situation is likely to occur when low CO₂ mole fraction is used, for example during day respiration determination with the Laisk method.

4.3 | Perspectives

Overall, the present study highlights the multiple metabolic changes that accompany the manipulation of CO₂ and O₂ mole fraction in gas exchange systems. Of course, we recognize that our experimental system was destructive and required instant sampling at each O2/CO2 condition of interest. It would be better to have experimental means to monitor metabolism in vivo in a non-destructive manner, so as to appreciate its contribution to non-photosynthetic and nonphotorespiratory CO₂ exchange. Unfortunately, there is presently little opportunity to do so since the most adapted technique for metabolic measurements in vivo, namely NMR, is currently not adaptable to ¹³C analysis on flat, air-filled organs like intact leaves. We also recognize that molecular mechanisms underlying the metabolic changes described here would require further analyses. In Arabidopsis rosettes, the change in (phosphoenol)pyruvate metabolism with O2/CO2 has been shown to correlate to phosphorylation of, for example, PEPC (Abadie et al., 2016) and in sunflower, the modification of S metabolism has been suggested to be caused by a source effect (in particular serine availability), redox properties (oxidative situation at high photorespiration) and changes in metabolic effector concentration (such as O-acetylserine) (Abadie & Tcherkez, 2019b). Future studies are warranted to examine more closely rapid post-translational modifications of enzymes as well as absolute quantitation of metabolic effectors or hormones (such as ethylene) to provide more insight on mechanistic aspects.

ACKNOWLEDGMENT

The authors thank the technical support by the Joint Mass Spectrometry Facility at ANU and Dr. Adam Carroll for advices in LC-MS data alignment and extraction. The authors acknowledge the financial contribution of the Région Pays de la Loire and Angers Loire Métropole via the research grant Connect Talent Isoseed.

ORCID

Anis M. Limami https://orcid.org/0000-0002-9985-2363 Guillaume Tcherkez https://orcid.org/0000-0002-3339-956X

REFERENCES

- Abadie, C., Bathellier, C., & Tcherkez, G. (2018). Carbon allocation to major metabolites in illuminated leaves is not just proportional to photosynthesis when gaseous conditions (CO₂ and O₂) vary. *New Phytologist*, 218, 94–106.
- Abadie, C., Blanchet, S., Carroll, A., & Tcherkez, G. (2017). Metabolomics analysis of post-photosynthetic effects of gaseous O₂ on primary metabolism in illuminated leaves. *Functional Plant Biology*, 44, 929–940.

- Abadie, C., Boex-Fontvieille, E. R., Carroll, A. J., & Tcherkez, G. (2016). In vivo stoichiometry of photorespiratory metabolism. *Nature Plants*, 2, 1–4.
- Abadie, C., Lothier, J., Boex-Fontvieille, E., Carroll, A. J., & Tcherkez, G. (2017). Direct assessment of the metabolic origin of carbon atoms in glutamate from illuminated leaves using ¹³C-NMR. *New Phytologist*: In press, 216, 1079–1089.
- Abadie, C., Mainguet, S., Davanture, M., Hodges, M., Zivy, M., & Tcherkez, G. (2016). Concerted changes in the phosphoproteome and metabolome under different CO₂/O₂ gaseous conditions in Arabidopsis rosettes. Plant and Cell Physiology, 57, 1544–1556.
- Abadie, C., & Tcherkez, G. (2019a). In vivo phosphoenolpyruvate carboxylase activity is controlled by CO₂ and O₂ mole fractions and represents a major flux at high photorespiration rates. *New Phytologist*, 221, 1843–1852.
- Abadie, C., & Tcherkez, G. (2019b). Plant sulphur metabolism is stimulated by photorespiration. *Nature Communications Biology*, *2*, 1–7.
- Atkin, O. K., Millar, A. H., Gardeström, P., & Day, D. A. (2000). Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants. In *Photosynthesis and respiration* (pp. 153–175). Amsterdam: Springer Netherlands.
- Bloom, A., Burger, M., Kimball, B., & Pinter, P. (2014). Nitrate assimilation is inhibited by elevated CO₂ in field-grown wheat. *Nature Climate Change*, 4, 477–480.
- Bloom, A. J., Burger, M., Asensio, J. S. R., & Cousins, A. B. (2010). Carbon dioxide enrichment inhibits nitrate assimilation in wheat and *Arabidopsis. Science*, 328, 899–903.
- Boex-Fontvieille, E. R., Gauthier, P. P., Gilard, F., Hodges, M., & Tcherkez, G. (2013). A new anaplerotic respiratory pathway involving lysine biosynthesis in isocitrate dehydrogenase-deficient *Arabidopsis* mutants. *New Phytologist*, 199, 673–682.
- Busch, F. A. (2020). Photorespiration in the context of rubisco biochemistry, CO₂ diffusion and metabolism. *The Plant Journal*, 101, 919–939.
- Bykova, N. V., Keerberg, O., Pärnik, T., Bauwe, H., & Gardeström, P. (2005). Interaction between photorespiration and respiration in transgenic potato plants with antisense reduction in glycine decarboxylase. *Planta*, 222, 130–140.
- Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. *Journal of Chemometrics: A Journal of the Chemometrics Society*, 20, 341–351.
- Carroll, A. J., Badger, M. R., & Millar, A. H. (2010). The MetabolomeExpress project: Enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets. BMC Bioinformatics, 11, 376.
- Eriksson, L., Trygg, J., & Wold, S. (2008). CV-ANOVA for significance testing of PLS and OPLS® models. *Journal of Chemometrics: A Journal of* the Chemometrics Society, 22, 594–600.
- Gardeström, P., & Wigge, B. (1988). Influence of photorespiration on ATP/ADP ratios in the chloroplasts, mitochondria, and cytosol, studied by rapid fractionation of barley (*Hordeum vulgare*) protoplasts. *Plant Physiology*, 88, 69–76.
- Gauthier, P. P., Saenz, N., Griffin, K. L., Way, D., & Tcherkez, G. (2020). Is the Kok effect a respiratory phenomenon? Metabolic insight using ¹³C labeling in *Helianthus annuus* leaves. *New Phytologist*: In press, 228, 1243–1255.
- Griffin, K., & Turnbull, M. (2013). Light saturated RuBP oxygenation by rubisco is a robust predictor of light inhibition of respiration in *Triticum* aestivum L. Plant Biology, 15, 769–775.
- Hanson, A. D., & Roje, S. (2001). One-carbon metabolism in higher plants. Annual Review of Plant Biology, 52, 119–137.
- Jacob, D., Deborde, C., Lefebvre, M., Maucourt, M., & Moing, A. (2017). NMRProcFlow: A graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics. *Metabolomics*, 13, 36.
- Maeda, H., & Dudareva, N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 63, 73–105.
- Mhamdi, A., Kerchev, P. I., Willems, P., Noctor, G., & Van Breusegem, F. (2017). Measurement of transcripts associated with photorespiration

and related redox signaling. In A. Fernie, H. Bauwe, & A. Weber (Eds.), *Photorespiration* (pp. 17–29). New York, NY: Springer Humana Press.

S-WILEY

- Myers, O. D., Sumner, S. J., Li, S., Barnes, S., & Du, X. (2017). One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: New algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. *Analytical Chemistry*, 89, 8696–8703.
- Noctor, G., & Mhamdi, A. (2017). Climate change, CO₂, and defense: The metabolic, redox, and signaling perspectives. *Trends in Plant Science*, 22, 857–870.
- Pluskal, T., Korf, A., Smirnov, A., Schmid, R., Fallon, T. R., Du, X., & Weng, J.-K. (2020). Metabolomics data analysis using MZmine. In R. Winkler (Ed.), *Processing metabolomics and proteomics data with open software* (pp. 232–254). London: Royal Society of Chemistry.
- Preiser, A. L., Fisher, N., Banerjee, A., & Sharkey, T. D. (2019). Plastidic glucose-6-phosphate dehydrogenases are regulated to maintain activity in the light. *Biochemical Journal*, 476, 1539–1551.
- Rachmilevitch, S., Cousins, A. B., & Bloom, A. J. (2004). Nitrate assimilation in plant shoots depends on photorespiration. *Proceedings of the National Academy of Sciences of the USA*, 101, 11506–11510.
- Sakihama, Y., Ji, M., Sano, S., Asada, K., & Yamasaki, H. (2000). Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase. *Biochemical and Biophysical Research Communications*, 279, 949–954.
- Tcherkez, G., Bligny, R., Gout, E., Mahé, A., Hodges, M., & Cornic, G. (2008). Respiratory metabolism of illuminated leaves depends on CO₂ and O₂ conditions. Proceedings of the National Academy of Sciences of the USA, 105, 797–802.
- Tcherkez, G., Boex-Fontvieille, E., Mahé, A., & Hodges, M. (2012). Respiratory carbon fluxes in leaves. *Current Opinion in Plant Biology*, 15, 308–314.
- Tcherkez, G., Carroll, A., Abadie, C., Mainguet, S., Davanture, M., & Zivy, M. (2020). Protein synthesis increases with photosynthesis via the stimulation of translation initiation. *Plant Science*, 291, 110352.
- Tcherkez, G., Gauthier, P., Buckley, T. N., Busch, F. A., Barbour, M. M., Bruhn, D., ... Cornic, G. (2017). Leaf day respiration: Low CO₂ flux but high significance for metabolism and carbon balance. *New Phytologist*, 216, 986–1001.
- Tcherkez, G., & Limami, A. M. (2019). Net photosynthetic CO_2 assimilation: More than just CO_2 and O_2 reduction cycles. New Phytologist, 223, 520–529.
- Tcherkez, G., Mahe, A., Guerard, F., Boex-Fontvieille, E. R. A., Gout, E., Lamothe, M., ... Bligny, R. (2012). Short-term effects of CO₂ and O₂ on citrate metabolism in illuminated leaves. *Plant Cell and Environment*, 35, 2208–2220.
- von Caemmerer, S. (2013). Steady-state models of photosynthesis. *Plant Cell and Environment*, *36*, 1617–1630.
- Yin, Z.-H., Dietz, K.-J., & Heber, U. (1990). Light-dependent pH changes in leaves of C₃ plants: III. Effect of inhibitors of photosynthesis and of the developmental state of the photosynthetic apparatus on cytosolic and vacuolar pH changes. *Planta*, 182, 262–269.
- Zrenner, R., Stitt, M., Sonnewald, U., & Boldt, R. (2006). Pyrimidine and purine biosynthesis and degradation in plants. *Annual Review of Plant Biology*, 57, 805–836.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Abadie C, Lalande J, Limami AM, Tcherkez G. Non-targeted ¹³C metabolite analysis demonstrates broad re-orchestration of leaf metabolism when gas exchange conditions vary. *Plant Cell Environ*. 2020;1–13. https://doi.org/10.1111/pce.13940