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53 Abbreviations

54 ABCA1 ATP Binding Cassette Subfamily A Member 1

55 ADIPOQ Adiponectin

56 AGE Advanced Glycation Endproducts

57 APOA1 Apolipoprotein A1

58 APOB Apolipoprotein B

59 BAX BCL2 Associated X, Apoptosis Regulator

60 BCL2 BCL2 Apoptosis Regulator

61 CCL2 C-C Motif Chemokine Ligand 2

62 CEBPA CCAAT Enhancer Binding Protein Alpha

63 CRP C-Reactive Protein

64 CXCL8 C-X-C Motif Chemokine Ligand 8

65 EDN1 Endothelin 1

66 EGCG Epigallocatechin gallate

67 FOXC1 Forkhead Box C1

68 GATA2 GATA Binding Protein 2

69 GDF Growth Differentiation Factor

70 HIF Hypoxia Inducible Factor

71 HMOX1 Heme Oxygenase 1

72 IBD Inflammatory Bowel Disease

73 ICAM1 Intercellular Adhesion Molecule 1
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74 IL2 Interleukin 2

75 IL4 Interleukin 4

76 IL6 Interleukin 6

77 IL10 Interleukin 10

78 ITGAM Integrin Subunit Alpha M

79 ITGB1 Integrin Subunit Beta 1

80 JUN Jun Proto-Oncogene: AP-1 Transcription Factor Subunit

81 KEGG Kyoto Encyclopedia of Genes and Genomes

82 LDL Low Density Lipoprotein

83 LDLR Low Density Lipoprotein Receptor

84 LPL Lipoprotein Lipase

85 LPS Lipopolysaccharide

86 MAPK8 Mitogen-Activated Protein Kinase 8

87 miRNA MicroRNA

88 MMP9 Matrix Metallopeptidase 9

89 MT-CO3 Mitochondrially Encoded Cytochrome C Oxidase III

90 NAFLD Non-Alcoholic Fatty Liver Disease

91 NFKB1 Nuclear Factor Kappa B Subunit 1

92 NLRP3 NLR Family Pyrin Domain Containing 3

93 NOS2 Nitric Oxide Synthase 2

94 NOS3 Nitric Oxide Synthase 3
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95 PBMC Peripheral Blood Mononuclear Cell

96 PECAM1 Platelet and Endothelial Cell Adhesion Molecule 1

97 PPARA Peroxisome Proliferator Activated Receptor Alpha

98 PPARG Peroxisome Proliferator Activated Receptor Gamma

99 PPARs Peroxisome Proliferator Activated Receptors

100 PPI Protein-Protein Interaction

101 PTGS2 Prostaglandin-Endoperoxide Synthase 2

102 RAGE Receptor for AGE

103 RETN Resistin

104 ROCK1 Rho Associated Coiled-Coil Containing Protein Kinase 1

105 SELE Selectin E

106 SERPINE1 Serpin Family E Member 1

107 SP1 Sp1 Transcription Factor

108 SREBF1 Sterol Regulatory Element Binding Transcription Factor 1

109 STAT1 Signal Transducer and Activator of Transcription 1

110 STAT3 Signal Transducer and Activator of Transcription 3

111 TGF-beta Transforming Growth Factor Beta

112 TLDA Taqman Low Density Array

113 TLR4 Toll Like Receptor 4

114 TNF Tumor Necrosis Factor

115 TOLLIP Toll Interacting Protein
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118 YY1 Yin Yang 1 Transcription Factor
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134 Abstract: Flavanols intake positively influences several cardiometabolic risk factors in 

135 humans. However, the specific molecular mechanisms of action of flavanols, in terms of 

136 gene regulation, in the cell types relevant to cardiometabolic disease have never been 

137 systematically addressed. On this basis, we conducted a systematic literature review and a 

138 comprehensive bioinformatic analysis of genes which expression is affected by flavanols in 

139 cells defining the cardiometabolic health: hepatocytes, adipocytes, endothelial, smooth 

140 muscle and immune cells. A systematic literature search was performed using the following 

141 pre-defined criteria: treatment with pure compounds and metabolites (no extracts), at low 

142 concentrations that are close to their plasma concentrations. Differentially expressed genes 

143 were analyzed using bioinformatics tools to identify gene ontologies, networks, cellular 

144 pathways and interactions, as well as transcriptional and post-transcriptional regulators. The 

145 systematic literature search identified 54 differentially expressed genes at mRNA level in 

146 in vitro models of cardiometabolic disease exposed to flavanols and their metabolites. 

147 Global bioinformatic analysis revealed that these genes are predominantly involved in 

148 inflammation, leukocyte adhesion and transendothelial migration, and lipid metabolism. We 

149 observed that, although the investigated cells responded differentially to flavanol exposure, 

150 the involvement of anti-inflammatory responses is a common mechanism of flavanol action. 

151 We also identified potential transcriptional regulators of gene expression: transcriptional 

152 factors, such as GATA2, NFKB1, FOXC1 or PPARG, and post-transcriptional regulators: 

153 miRNAs, such as mir-335-5p, let-7b-5p, mir-26b-5p or mir-16-5p. In parallel, we analyzed 

154 the nutrigenomic effects of flavanols in intestinal cells and demonstrated their predominant 

155 involvement in the metabolism of circulating lipoproteins. In conclusion, the results of this 

156 systematic analysis of the nutrigenomic effects of flavanols provides a more comprehensive 

157 picture of their molecular mechanisms of action and will support the future setup of genetic 

158 studies to pave the way for individualized dietary recommendations.
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177 1. Introduction

178 Cardiometabolic disease is a cluster of metabolic dysfunctions including insulin 

179 resistance, impaired glucose tolerance, dyslipidemia, hypertension and central adiposity that, 

180 over time, may translate in type 2 diabetes and cardiovascular disease [1]. Unhealthy eating 

181 habits leading to overweight and obesity have been recognized as key determinants in the 

182 development of cardiometabolic disease [2]. Since dietary factors interfere with 

183 cardiometabolic disease progression in connection to individual genetic setting [3], the 

184 understanding of the impact of nutrients and bioactives on the complex networking of human 

185 genes has been long envisaged as a recommended research goal [4]. Even though this 

186 research focus has produced novel results to date, the recent application of bioinformatics 

187 and molecular biology tools to nutritional science has produced a large body of new exciting 

188 evidence on how food and food bioactives may interact with the genome to control health 

189 and wellness [5].

190

191 Among plant food bioactives, the most impressive advancements have been achieved in 

192 the field of polyphenols [6]. Polyphenols are secondary plant metabolites, which are 

193 classified into flavonoids and non-flavonoid compounds. The main subclasses of flavonoids 

194 include flavanols (flavan-3-ols), flavonols, flavones, flavanones, isoflavonoids, and 

195 anthocyanins [7]. Flavanols, the focus of our study, are among the most abundant 

196 polyphenols in the human diet [8] with main dietary sources in green tea, cocoa, apples and 

197 grapes. From a chemical point of view, flavanols represent a complex subclass of flavonoids, 

198 which encompass a variety of monomeric, oligomeric and polymeric compounds. The main 

199 monomeric forms include: (+)-catechin, (−)-epicatechin, (+)-gallocatechin, (−)-

200 epigallocatechin, (−)-epicatechin-3-O-gallate and (−)-epigallocatechin-3-O-gallate. 

201 Proanthocyanidins (also known as condensed tannins) are oligomers or polymers of 
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202 flavanols, whereas polymers composed exclusively of catechin or epicatechin are called 

203 procyanidins. In foods, flavanols exist predominantly as aglycones [9].

204

205 The metabolism of dietary flavanols in the human body includes series of biochemical 

206 transformations that involve both host-microbiome interactions in the large intestine and 

207 microbiome independent routes. Flavanol absorption largely depends on their 

208 physicochemical properties; monomers can be absorbed in the small intestine but most of 

209 ingested flavanols reach intact the large intestine [10,11]. In enterocytes, most of the absorbed 

210 monomers are subjected to initial phase II metabolism, which include conjugation reactions 

211 such as glucuronidation, sulfatation and methylation. Exception are (-)-epicatechin-3-O-

212 gallate and (-)-epigallocatechin-3-O-gallate [12], where 3-O-galloyl moiety is considered to 

213 interfere the enzymes of phase II metabolism [9], and as such they reach the circulation as 

214 parent compounds. Some of the phase II metabolites are transported back from the 

215 enterocytes to the intestinal lumen, whereas the others are transported to the liver, where their 

216 metabolism by phase II enzymes continues [13]. Since conjugation reactions facilitate the 

217 excretion of flavanol derivatives, the plasma concentrations and half-life of flavanol phase II 

218 metabolites result to be very low: their maximal plasma concentrations are usually found in 

219 the range of nanomolar to low micromolar [14], which are reached approximately two hours 

220 post-ingestion and followed by a rapid elimination [12]. A small number of dimeric 

221 compounds are also absorbed in the small intestine. Most of the ingested flavanols reach the 

222 large intestine where, together with the residual products of intestinal and liver phase II 

223 metabolism, they are catabolized by the microbiome. Small phenolic and aromatic acids, such 

224 as phenyl-γ-valerolactones, are generated through the biochemical transformations of 

225 flavanols by gut microbiota. These metabolites can be absorbed and further subjected to 

226 phase II metabolism before their elimination from the human body [9,15]. Therefore, besides 

227 epicatechin-3-O-gallate and (-)-epigallocatechin-3-O-gallate that appear in the systemic 
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228 circulation as parent compounds, several flavanol glucuronidated, sulfatated and methylated 

229 metabolites, and phenolic acids represent the most common forms traceable in the systemic 

230 circulation and are those that likely mediate the beneficial health effects of their parent 

231 compounds. These metabolites are chemically and, in many instances, functionally distinct 

232 from the parent dietary forms, and such features determine their biological effectiveness [16]. 

233 In particular, conjugated forms of flavonoids were shown to have a significantly lower 

234 capacity for donating hydrogens and scavenging free radicals compared to the parent 

235 compounds [17].

236

237 Growing evidence from cohort studies and randomized trials indicate that higher dietary 

238 intake of polyphenols reduces the risk of cardiovascular mortality [18] and positively 

239 influences some of the key cardiometabolic risk factors, such as blood glucose, blood lipids, 

240 blood pressure, endothelial dysfunction and arterial stiffness [19-21]. Despite the large body 

241 of clinical and experimental data [22], evidence regarding the role of polyphenols in 

242 cardiometabolic protection remains not entirely consistent. This inconsistency can be 

243 explained by differences in study designs and polyphenols tested [23,24]. However, recent 

244 findings are also pinpointing role of sex, age, gut microbiome, life-style but also genotype 

245 and more recently epigenetic variations as potential factors contributing to heterogeneity in 

246 the individual response to the consumption of polyphenols [25-27].

247

248 Although cardiovascular benefits of polyphenols have been in the past attributed to their 

249 antioxidant properties (as free radical scavengers) [28], this view was not in agreement with 

250 available knowledge about their bioavailability and in vivo metabolism [29]. Complementary 

251 evidence suggests that their protective activities may mainly occur through genomic effects, 

252 by interfering with the expression of genes [29]. Nutrigenomics can be defined as approach 

253 to elucidate the diet-gene interaction by assessing gene or protein expression and gene 
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254 regulation [30,31]. The capacity of polyphenols to modulate gene expression has been 

255 identified in different cell types and for different families of polyphenols. For example, in 

256 endothelial cells, flavanone metabolites have been shown to affect the expression of a number 

257 of genes related to atherogenesis and especially those involved in cell adhesion, cytoskeleton 

258 organization, inflammation, and chemotaxis [32]. Similarly, the exposure of endothelial cells 

259 to curcumin before applying a pro-inflammatory stress, induced positive changes in the 

260 expression of genes involved in the control of cytoskeleton and endothelial junction 

261 dynamics, and in the pro-inflammatory redox-sensitive transcription factor NF-kappa B [33]. 

262 In a complementary fashion, the adoption of untargeted approaches has shown that plasma 

263 epicatechin metabolites affect the expression of more than two hundred of genes, some of 

264 them involved in endothelial permeability and interaction with immune cells, thus 

265 demonstrating a multi-targeted mode of action for flavanols [34]. Together with in vitro 

266 investigations, nutrigenomic modifications of polyphenols have also been demonstrated in 

267 several in vivo models of cardiometabolic disease. Curcumin [35] and naringin [36] 

268 modulate, in an anti-atherogenic manner, the gene expression profile in the aorta of mice 

269 model of atherosclerosis. Naringin is also able to modulate the expression of genes related to 

270 lipid metabolism, inflammation and insulin signaling in the liver of mice fed a high-fat diet 

271 [37]. Finally, in rats, quercetin was shown to affect the expression of genes involved in fatty 

272 acids metabolism in lung tissue [38]. In humans, several studies have confirmed the capacity 

273 of many of these food bioactives, including flavanols [39] and flavanones [40] to exert 

274 nutrigenomic regulation. However, most nutrigenomic findings with polyphenols are from in 

275 vitro studies focusing on expression of few target genes (targeted approaches), and using 

276 non-physiologically relevant conditions, that is high concentrations of non-circulating 

277 compounds for long period of time, conditions that do not take into account the 

278 bioavailability and metabolism of polyphenols following their intake. For these reasons we 

279 decided to work only on studies that were performed in physiologically relevant conditions, 
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280 that is use of circulating forms and right concentrations, studies that provided findings that 

281 are possible to happen in vivo. Furthermore, several studies reported opposite effects 

282 depending on concentrations used, for example significant effect at physiologically relevant 

283 concentrations on prevention of monocyte adhesion to endothelial cells, which is not 

284 observable at higher concentrations [22].

285

286 On this background, experts involved in the COST POSITIVe network 

287 (https://www6.inrae.fr/cost-positive) [41] aimed to identify the most significant target genes 

288 and cellular pathways of flavanols underlying their cardiometabolic health properties by 

289 performing systematic bioinformatic analyses of available nutrigenomic data. To this aim, 

290 we conducted a systematic literature search for gene expressions modulated by flavanols in 

291 cellular models of cardiometabolic disease. We included hepatocytes, adipocytes, 

292 endothelial, smooth muscle and immune cells, selecting only studies adopting research 

293 protocols testing monomeric or dimeric compounds or related metabolites at concentrations 

294 in the range of those fund in the plasma after flavanol intake. The identified differentially 

295 expressed genes were then subjected to a comprehensive and integrative bioinformatic 

296 analysis among the different cell models to decipher and characterize key target genes and 

297 mechanisms of action of flavanols within a new, more holistic perspective. In parallel, we 

298 also analyzed the nutrigenomic effects of flavanols in intestinal cells exposed to high 

299 concentrations of extracts or oligomeric compounds, as occurring after the ingestion of 

300 flavanols rich sources. The results of these analyses will pave the way for the identification 

301 of genes and pathways underlying the health effects of flavanols. This knowledge will allow 

302 us to identify potential genes which polymorphisms can be investigated in humans with the 

303 aim to better explain some aspects of the inter-individual variability in response to 

304 consumption of flavanols. It will also guide the setup of future nutrigenetic studies aiming to 

Page 20 of 85Food & Function



305 identify flavanol responsive genotypes, whereby flavanol intake will be optimized to reduce 

306 the disease risk.

307

308 2. Methods

309 2.1. Data sources and search strategy

310 Literature searches were performed using two main scientific repositories, PubMed 

311 (https://www.ncbi.nlm.nih.gov/pubmed) and Web of Science 

312 (https://www.webofknowledge.com). Both databases were searched for all relevant studies 

313 published until January 23, 2018. Search terms included, as “plant food bioactives”, catechin 

314 OR epicatechin OR epigallocatechin OR procyanidin OR proanthocyanidin AND, as “cells”, 

315 endothelial OR endothelial cells OR endothelium OR pancreatic OR pancreatic cells OR 

316 adipose OR adipose cells OR adipocyte OR intestinal OR intestinal cells OR intestinal 

317 enteroendocrine cells OR monocytoid OR monocytoid cells OR monocytes OR macrophagic 

318 OR macrophagic cells OR macrophage OR hepatic OR hepatic cells OR liver cell OR 

319 hepatocyte OR smooth muscle cell OR muscle cells OR caco-2 OR PBMC AND, as 

320 “gene/gene expression”, gene expression OR miRNA OR transcript OR nutrigenomic OR 

321 TLDA OR microarray OR genomic OR mRNA.

322

323 2.2. Study selection and data extraction

324 To be eligible, the studies had to meet the following criteria: (1) published in English; 

325 (2) assess the effects of flavanols in in vitro cell models suitable to study cardiometabolic 

326 dysfunction, including endothelium, adipocytes, monocytes/macrophages, pancreatic, 

327 smooth muscle, hepatic and intestinal cells, as primary cells or cell lines; (3) show lack of 

328 toxicity at the tested concentrations; (4) evaluate data on gene expression in terms of mRNA 
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329 and miRNA modulation, but not proteins; (5) assess cardio-metabolic health outcomes. The 

330 exclusion criteria were the following: (1) treatment of the cells with bioactive compounds at 

331 concentrations higher than 10 µM (except for the intestinal cells); (2) studies performed using 

332 extracts (again with the exception of the intestinal cells); (3) redundant publications; (4) 

333 incomplete information; (5) insufficient or insignificant statistical analysis, (6) outcomes 

334 unrelated to the study objectives; (7) lack of appropriate controls; (8) studies in animal 

335 models, in humans and reviews. Also, we aimed to identify papers that showed an effect on 

336 cellular function together with changes in the expression of genes to associate genomic 

337 modifications with potential health impact. The initial lists of titles, as retrieved from 

338 PubMed and Web of Science, were merged by using EndNote X6 reference manager 

339 software, and duplicates were discarded. The resulting list of papers was screened twice, by 

340 two different co-authors, to identify those that fulfilled the predefined criteria. Data were 

341 extracted using a standardized template. The template was pilot-tested on a small subset of 

342 studies to identify and reduce misinterpretations. Extracted data from the eligible studies 

343 included: name of the first author, title, year of publication, accession number, cell type with 

344 detailed description, type of challenge, associated disease, cell function evaluated, bioactive 

345 compounds (if single or mixed; if pure or extract) and their concentrations, number of genes 

346 studied, number of differentially expressed genes, modulation (up/down), official gene 

347 symbols and full names of the differentially expressed genes, and species. Data were 

348 extracted only for those genes that were identified as modulated by flavanols exposure with 

349 a p-value <0.05. Extracted data were then further crosschecked by two co-authors; in case of 

350 doubts and/or disagreement, a third co-author was consulted.

351

352 2.3. Bioinformatic analysis
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353 To identify gene ontologies of the differentially expressed genes extracted from in vitro 

354 studies, David database has been used (https://david.ncifcrf.gov) [42,43], and the identified 

355 gene ontologies were plotted in treemap plot using Revigo tool (http://revigo.irb.hr/) [44]. 

356 Gene network analyses were searched using a text-mining algorithm of MetaCore software 

357 from Clarivate Analytics (https://portal.genego.com). To identify pathways that are 

358 significantly associated with the genes, we used the web tool GeneTrail2 

359 (https://genetrail2.bioinf.uni-sb.de/) [45], version 1.6, as a platform to access Kyoto 

360 Encyclopedia of Genes and Genomes (KEGG) and BioCarta databases, using the following 

361 settings: over-representation analysis; null hypothesis (for p-value computation) – two-sided; 

362 method to adjust p-values – Benjamini-Yekutieli; significance level – 0.05. Interactions 

363 between functional groups of genes were searched using the online tool Metascape 

364 (http://metascape.org), using the option “Multiple Gene List” [46]. The network obtained was 

365 further visualized using Cytoscape platform for molecular interaction networks visualization 

366 (https://cytoscape.org/) [47]. Bioinformatic analysis on protein-protein interaction (PPI) 

367 between the proteins that are coded by the differentially expressed genes, including their 

368 neighboring proteins, was conducted using the database STRING, version 10.5 

369 (https://string-db.org/) [48]. For protein-protein interaction in adipocytes, hepatocytes, 

370 immune, smooth muscle and endothelial cells we applied the following settings: confidence; 

371 text-mining, experiments, databases, co-expression; high confidence – 0.700; no more than 

372 20 interactions in the first shell and no more than 20 interactions in the second shell, without 

373 clustering. STRING settings for the intestinal cells were the following: confidence; text-

374 mining, experiments, databases, co-expression; high confidence – 0.700; no more than 15 

375 interactions in the first shell and no more than 15 interactions in the second shell. The 

376 resulting protein network was organized in two clusters. For integrated functional analyses 

377 of identified genes and their associated transcription factors and potential miRNAs involved 

378 in their post-transcriptional regulation, we used OmicsNet online tool from MetaboAnalyst 
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379 (https://www.omicsnet.ca/faces/home.xhtml) [49,50]. miRNet 2.0 was used for identification 

380 of potential miRNAs (https://www.mirnet.ca). For identification of official names and 

381 symbols of flavanol modulated genes, we used GeneCards (https://www.genecards.org/) [51] 

382 and NCBI (https://www.ncbi.nlm.nih.gov/) databases.

383

384 3. Results

385 3.1. Literature search and characteristics of papers selected for bioinformatic analysis

386 The initial systematic search in PubMed and Web of Science using the pre-defined words 

387 identified more than 1500 publications. Publications that were out of scope or in duplicate 

388 were removed. The remaining 658 papers were distributed among the co-authors for 

389 screening. The screening based on title and abstract retrieved 79 papers as eligible for data 

390 extraction. Following a detailed analysis of the full text, 41 papers were considered for 

391 bioinformatic analysis (Table 1 and supplemental Table S1), that is in vitro studies in which 

392 cells have been exposed to flavanols (from tea, cocoa, apple or grape seed), at concentrations 

393 lower than 10 µM (intestinal cells were an exception), and for which expression of genes at 

394 mRNA level had been analyzed. The flow diagram of the literature search and data extraction 

395 is summarized in Figure 1.

396

397 The majority of the studies, 26 out of 41 (63.4%), were conducted on cells of human 

398 origin, and 15 (36.6%) of studies were conducted on rodent cells, 10 from mouse and 5 from 

399 rat. Out of 41 studies, 37 reported results from in vitro studies using different cell models 

400 related to cardiometabolic disease: adipocytes, hepatocytes, immune, smooth muscle, and 

401 endothelial cells, and 5 used intestinal cells (in one paper both hepatocytes and intestinal cells 

402 were used [52]). Although pancreatic cells were included in the search criteria, we were not 

403 able to identify any eligible study conducted on this type of cells. As shown in Table 1, within 
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404 the 37 papers, the majority of experiments were conducted on cells that were challenged with 

405 dysmetabolic or pro-inflammatory stimuli, while the others examined the effects of flavanols 

406 under resting (basal) conditions. Most of these studies were carried out on endothelial cells 

407 (37.8%), followed by immune cells (27%), adipocytes (13.5%), smooth muscle cells (13.5%), 

408 and finally hepatocytes (8.1%). About half of the studies were conducted using primary cells, 

409 while the others used cell lines. Flavanols that were used for treatment of the cells include 

410 monomers, such as catechin, epicatechin, epicatechin gallate, epigallocatechin and 

411 epigallocatechin gallate (EGCG), the dimer procyanidin B2, and various flavanol 

412 metabolites. As shown in Table 1, flavanol metabolites were analyzed only in a small number 

413 of studies. Concentrations of flavanols and their metabolites varied from 0.1 to 10 µmol/L, 

414 in average 5 µmol/L, and the cells were treated for a period from 3 hours to over 24 hours.

415

416 In experiments conducted on intestinal cells, Caco-2 cells were used as an exclusive cell 

417 model. In these experiments, cells were exposed to grape seed extract or oligomeric 

418 compounds, most often at high concentrations (Table 1), which is out of our pre-established 

419 inclusion criteria for the other cell types. However, because these experimental conditions 

420 resemble physiological conditions for the intestinal cells, these papers were included in our 

421 study, but the differentially expressed genes were analyzed separately.

422

423 3.2. Identification of differentially expressed genes in cell models of cardiometabolic 

424 disease

425 Most of the retrieved studies adopted a targeted approach, analyzing the expression of a 

426 selection of targeted genes at the mRNA level. Only two studies adopted an untargeted 

427 (holistic) approach, using microarray methods [22,53]. However, for these studies, only RT-

428 PCR data, used to validate microarray data, have been extracted and used for global 

429 systematic analysis.
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430

431 Detailed analysis of human and rodent cell models of cardiometabolic disease 

432 (adipocytes, hepatocytes, immune, smooth muscle, and endothelial cells) exposed to 

433 flavanols (monomers, dimers, or their metabolites) identified 92 differentially expressed 

434 genes at the mRNA level. An overview of data extracted from the papers reporting 

435 experiments on human and rodent cell models of cardiometabolic disease is given in Table 

436 1, while more detailed information can be found in the supplemental Table S1. We observed 

437 that some genes had been studied more frequently than others, which results in their more 

438 frequent identification as differentially expressed. For example, CCL2 has been identified as 

439 differentially expressed by flavanols in seven different studies, APOA1 in five experiments, 

440 TNF in four different studies, whereas MMP9, IL6, LDLR, APOB, ABCA1, PPARG and CRP 

441 were identified as differentially expressed three times each (Figure 2A). After removal of the 

442 duplicates, a total number of genes whose expression was modulated by flavanols was 54, 

443 which were subjected to bioinformatic processing. Of these 54 genes, 42 genes were 

444 identified as having expression modulated by flavanols using human cells, 14 in mouse cell 

445 models, and 3 in cells of rat origin (Figure 2B). The analysis of papers examining the effects 

446 of flavanols in intestinal cells identified 15 differentially expressed genes (Table 1 and 

447 supplemental Table S1), i.e., 14 genes after removal of one duplicate, which were analyzed 

448 through a separate bioinformatic analysis.

449

450 3.3. Global gene enrichment and functional annotation analysis of differentially expressed 

451 genes

452 In order to identify biological functions of the genes differentially expressed by flavanols 

453 in adipocytes, hepatocytes, immune, smooth muscle and endothelial cells, we first performed 

454 a global gene ontology analysis. As shown in Figure 3, the analysis suggests that these genes 
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455 are involved in the regulation of different biological processes, including cell signal 

456 transduction, biosynthesis, immune response, cell adhesion, and cell proliferation/death.

457

458 Aiming to deepen the identification of biological processes in which these genes are 

459 involved in, we performed gene network analysis using a text-mining approach. We used the 

460 list of differentially expressed genes identified in different studies to construct gene-gene 

461 networks. The networks were grouped in clusters representing specific biological processes, 

462 which are presented in the pie slice (Figure 4). As shown in Figure 4, flavanol modulated 

463 genes are involved in processes regulating inflammation, immune response, cell adhesion, 

464 apoptosis and cell signaling. Within the inflammation network cluster are pathways that 

465 include IL-2, 4, 6 signaling, chemotaxis, or IL-10 anti-inflammatory response. Within the 

466 signal transduction network cluster are pathways involved in insulin signaling, nitric oxide 

467 signaling or TGF-beta, GDF and activin signaling. The cell adhesion network cluster includes 

468 processes regulating cell junctions, integrin-mediated cell-matrix adhesion, leucocyte 

469 chemotaxis, or platelet-endothelium-leucocyte interactions. Overall, this analysis suggests 

470 that flavanols can modulate the expression of genes identified from different cell models of 

471 cardiometabolic disease that are collectively implicated in the regulation of inflammation, 

472 cell adhesion and metabolic processes.

473

474 To further investigate the functional role of flavanol modulated genes, we aimed to 

475 search for cellular pathways in which these genes are involved using the online platform 

476 GeneTrail2, which allows accesses to KEGG and BioCarta databases. Of 54 genes that were 

477 found differentially expressed at mRNA level in adipocytes, hepatocytes, immune, smooth 

478 muscle and endothelial cells, 53 genes were mapped in GeneTrail2, whereas MT-CO3 failed 

479 the identification. The enquiring of KEGG database revealed that the differentially expressed 

480 genes are placed within pathways related to both cellular processes and human diseases. 
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481 Among the top pathways related to cellular processes are those involved in cell signaling and 

482 endothelial cell permeability, including cell adhesion, regulation of cytoskeleton 

483 organization, or focal adhesion (Figure 5). The top five KEGG pathways related to cellular 

484 processes are all involved in cell signaling and include “TNF signaling pathway”, which 

485 encompasses eleven differentially expressed genes (CCL2, EDN1, ICAM1, IL6, JUN, MMP9, 

486 NFKB1, PTGS2, SELE, TNF and VCAM1), “NF-kappa B signaling pathway” encompassing 

487 eight genes (BCL2, CXCL8, ICAM1, NFKB1, PTGS2, TLR4, TNF and VCAM1), “HIF-1 

488 signaling pathway”, also with eight genes (BCL2, EDN1, HMOX1, IL6, NFKB1, NOS2, 

489 SERPINE1 and TLR4), “Toll-like receptor signaling pathway” with seven genes (CXCL8, 

490 IL6, JUN, NFKB1, TLR4, TNF and TOLLIP) and “NOD-like receptor signaling pathway” 

491 with six genes (CCL2, CXCL8, IL6, NFKB1, NLRP3 and TNF). Among pathways related to 

492 regulation of the endothelial cell permeability, the highest number of encompassed genes 

493 modulated by flavanols have been found in “leukocyte transendothelial migration” (six 

494 genes: ICAM1, ITGAM, ITGB1, MMP9, ROCK1 and VCAM1) and “cell adhesion molecules” 

495 (five genes: ICAM1, ITGAM, ITGB1, SELE and VCAM1). Among top KEGG pathways 

496 related to human diseases, infectious diseases were predominant, but non-alcoholic fatty liver 

497 disease (NAFLD), which is a consequence of complex metabolic dysfunctions, was also 

498 present encompassing nine genes (ADIPOQ, BAX, CEBPA, CXCL8, IL6, JUN, NFKB1, 

499 SREBF1 and TNF).

500

501 Accordingly, the enquiring of BioCarta database returned pathways involved in 

502 inflammation, lipid metabolism and cell signaling (Figure 5). Top BioCarta pathways related 

503 to inflammation include “cells and molecules involved in local acute inflammatory 

504 response”, which encompasses six differentially expressed genes (CXCL8, ICAM1, IL6, 

505 ITGB1, TNF and VCAM1), “monocyte and its surface molecules”, encompassing four genes 

506 (ICAM1, ITGAM, ITGB1 and SELE), “adhesion and diapedesis of granulocytes” (CXCL8, 
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507 ICAM1, ITGAM and TNF), and “adhesion and diapedesis of lymphocytes” (CXCL8, ICAM1, 

508 ITGB1 and VCAM1), also encompassing four genes each. Top BioCarta pathways related to 

509 lipid metabolism are the following: “visceral fat deposits and the metabolic syndrome”, 

510 encompassing five genes (ADIPOQ, LPL, PPARG, RETN and TNF), “mechanism of gene 

511 regulation by PPARA”, encompassing six genes (APOA1, JUN, LPL, NOS2, PTGS2 and 

512 TNF) and “LDL pathway during atherogenesis”, with four genes (CCL2, IL6, LDLR and 

513 LPL).

514 Together with the identification of cellular pathways in which the genes are involved in, to 

515 facilitate their biological interpretation, we also performed network meta-analysis of 

516 interactions between functional groups of genes using text-mining approach implemented in 

517 the Metascape online tool. This analysis reveals not only the list of functions of the genes but 

518 also functional interaction between them in different cellular processes. This analysis has 

519 been performed using the option “Multiple Gene List”, that is lists of genes identified as 

520 modulated by flavanols in different cell types: adipocytes, smooth muscle cells, immune 

521 cells, endothelial cells and hepatocytes, allowing us to identify which functions are specific 

522 to which cell types. Global analysis has shown that flavanol modulated genes are involved in 

523 processes regulating lipid metabolism, inflammatory response, cellular response to TNF, 

524 AGE-RAGE pathway in diabetes, or regulation of binding. Some of the functions are 

525 common to all cell types studied, such as inflammatory response and cellular response to 

526 TNF. Functions such as steroid metabolic response are more specific to hepatocytes, or HIF-1 

527 signaling to endothelial cells (Figure 6). These analyses showed that exposure of cells to 

528 flavanols could modulate different cellular processes that are interacted at the cellular level.

529

530 For analysis of functional links between proteins coded by the differentially expressed 

531 genes extracted from the literature and their neighboring proteins, we used the database 

532 STRING. All 54 differentially expressed genes were identified as valid by STRING software. 
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533 The network obtained consists of 94 nodes (proteins) having 515 edges (interactions) with 

534 PPI enrichment value <1.0e-16 (Figure 7). Notably, some of the proteins have more 

535 interactions with other proteins within the network than others, indicating their key role in 

536 the cellular response to flavanols. For example, TNF, IL6, JUN, TLR, NFKB1, and MAPK8 

537 are on the top of the list with ≥ 30 interactions (Table 2).

538

539 3.4. Transcriptional and post-transcriptional regulation of gene expression by flavanols

540 Our next step of analyses aimed to identify potential transcriptional and post-

541 transcriptional regulators involved in the observed modulation of gene expression by 

542 flavanols. Expression of genes can be regulated at the transcriptional level by the activity of 

543 transcription factors or post-transcriptionally by non-coding RNAs such as miRNAs. Using 

544 the bioinformatics tool OmicsNet, we first searched for protein-protein interactions followed 

545 by the evaluation of potential transcription factors and then potential miRNAs that could bind 

546 to mRNA of the identified protein-protein network to exert post-transcriptional regulations. 

547 Top 20 transcription factors and miRNAs, with the highest number of interactions in 

548 adipocytes, hepatocytes, immune, smooth muscle and endothelial cells are presented in Table 

549 3. Among the most significant transcription factors identified are GATA2, NFKB1, FOXC1, 

550 or PPARG. The miRNAs identified to interact with flavanol modulated genes identified are 

551 mir-335-5p, let-7b-5p, mir-26b-5p or mir-16-5p. Visualization of the interaction between the 

552 proteins of protein-protein interaction network with miRNAs and transcription factors is 

553 presented in a 3-layer 3D mode in Figure 8. These analyses showed a “dense” interaction 

554 between proteins and the regulatory elements, with each miRNA being able to regulate 

555 several proteins and one protein being potentially regulated by several miRNAs. The same is 

556 observed for transcription factors. This analysis revealed potential regulators of gene 

557 expression whose activity or level might be affected by flavanols, which determines the 

558 observed nutrigenomic modifications.
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559

560 3.5. Nutrigenomic effects of flavanols in intestinal cells

561 Fifteen differentially expressed genes have been identified in the intestinal cells, i.e., 14 

562 different genes, after removal of one duplicate (Table S1; Table 1). Bioinformatic analysis 

563 demonstrated that these genes are most significantly associated with “PPAR signaling 

564 pathway”, which encompasses seven of 14 differentially expressed genes, and the 

565 “adipocytokine signaling pathway”, encompassing four of 14 genes. Other KEGG pathways 

566 that are significantly related to the differentially expressed genes in the intestinal cells include 

567 “fat digestion and absorption”, “fatty acid degradation”, “fatty acid metabolism”, “bile 

568 secretion” and “peroxisome”, all of them encompassing 3 different genes, as well as “vitamin 

569 digestion and absorption”, encompassing two genes. The enquiring of BioCarta database 

570 revealed only “mechanism of gene regulation by peroxisome proliferators via PPARA” 

571 (Figure 9A). By analyzing the protein-protein interactions using the STRING database, two 

572 protein clusters were identified for the intestinal cells. One of them includes proteins that are 

573 mostly involved in the metabolism of circulating lipoproteins. Proteins that belong to this 

574 cluster are shown in red. The second cluster is connected to the previous one through NOS2 

575 and NOS3 and covers mainly proteins that are involved in calcium signaling. Proteins that 

576 belong to this cluster are shown in green (Figure 9B). Proteins that have the highest number 

577 of interactions within the clusters are lipoprotein lipase, apolipoproteins, and calmodulins 

578 (Table S2).

579

580 Transcriptional and post-transcriptional regulation of flavanol modulated genes in the 

581 intestinal cells was also analyzed using the bioinformatics tool OmicsNet. This analysis 

582 revealed that master regulators of proteins that belong to the protein-protein interaction 

583 network emerging from the differentially expressed genes extracted from the literature 
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584 include SP1, NFKB1, STAT3, PPARG or STAT1 among the transcription factors, and mir-

585 335-5p, mir-26b-5p, mir-16-5p, mir-124-3p or mir-92a-3p among the miRNAs. A 3-Layer 

586 3D presentation of this regulatory network is given in Figure 9C.

587

588 4. Discussion

589 Facing an unprecedented increase of cardiometabolic, neurodegenerative and other non-

590 communicable diseases, contemporary science strives to find effective strategies for their 

591 prevention and treatment. In this context, there is a growing body of scientific evidence about 

592 the role of diet in general, as well as of various food constituents, including bioactives, as 

593 important modulators of the cardiometabolic risk. In this review, we have systematically 

594 examined the effects of flavanols in terms of modulation of gene expressions relevant to the 

595 pathogenesis of cardiometabolic disease and identified potential pleiotropic pathways and 

596 cellular and molecular mechanisms underlying their protective actions.

597

598 Living in the era of personalized medicine, we are witnessing an enhanced awareness of 

599 the need for a personalized approach to dietary recommendations. This applies to the general 

600 population in terms of good health preservation, and secondary prevention in patients with 

601 various non-communicable diseases. As recently reviewed, variability in the cardiometabolic 

602 response to consumption of plant food bioactives, including polyphenols, is considered as 

603 one major cause of inconsistency in the results of human intervention studies [26]. This 

604 variability is determined by a number of factors, among which a central role is ascribed to 

605 the genetic variability beside to gut microbiome composition and functionality, sex, age, 

606 lifestyle and various comorbidities (overweight and obesity, diabetes, hypertension, 

607 dyslipidemia, etc.). Aiming to take the pioneering step towards the ultimate goal - identify 

608 genetic variants in the human population underlying the individual metabolic response to the 
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609 consumption of dietary flavanols - we conducted this systematic literature search to identify 

610 target genes involved in the protective effect of these compounds and which polymorphism 

611 expressions may explain the inter-individual variability in response to flavanols 

612 consumption. This is the first-ever systematic analysis of nutrigenomic data about the effects 

613 of flavanols in cell models relevant for cardiometabolic health. In order to provide 

614 physiologically relevant data, we applied rigorous criteria for inclusion/exclusion of the 

615 studies, resulting in the retrieval of relatively small number of relevant papers and 

616 differentially expressed genes.

617

618 The complex pathogenesis of cardiometabolic disease development, in terms of many 

619 different cell types and cellular processes involved, makes the choice of relevant in vitro 

620 models to be assessed rather challenging. Indeed, one single cell model would not be able to 

621 replicate the entire pathogenesis of the disease and/or may not be sufficient to intercept the 

622 therapeutic potential of a given product. Rather, taking into account different cell models, 

623 evaluated together, was needed to cover the wide spectrum of different cellular processes. 

624 Thus, to obtain comprehensive assessment of the genomic effects of flavanols, we extracted 

625 gene expression data from intestinal cells besides to five cell types known for their major 

626 contribution in cardiometabolic dysfunction, such as adipocytes, hepatocytes, endothelial 

627 cells, immune cells and smooth muscle cells. We examined results from cells exposed to 

628 flavanols in the presence or absence of dysmetabolic and/or pro-inflammatory stimuli (such 

629 as lipopolysaccharide (LPS), glucose or cytokines), classically used to better simulate the in 

630 vivo dysmetabolic conditions, and processed the gene dataset retrieved by integrated 

631 functional analysis tools. The assessment of the flavanol effects in these cell models of 

632 cardiometabolic disease allow circumventing several important confounding factors inherent 

633 to in vivo studies, such as age, diet, use of drugs, and chronobiological variations. For this 

634 reason, cell models are useful to unveil all those metabolic alterations induced by a treatment 
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635 with flavanol that might not be revealed in studies using animal models or human subjects, 

636 due to biological sample complexity. Notwithstanding, these in vitro models present some 

637 limitations, particularly the fact that cultured cells fail to reproduce the complex cell-cell and 

638 cell-matrix interactions recognized as a key determinant in the definition of the final cell 

639 homeostasis. In the attempt to interpret the data extracted in a more complex cell networking 

640 and circumvent the use of monotype cell models, data were also subjected to an integrated 

641 bioinformatic analysis among different cell models. Nevertheless, the findings obtained from 

642 these in vitro studies need confirmation and validation in animal models and human studies.

643

644 To understand the biological role of the differentially expressed genes extracted from the 

645 literature, they were subjected to a global bioinformatic analysis. By integrating the relatively 

646 small amount of data scattered across different cell models on the one hand, and applying the 

647 powerful bioinformatics tools driven by a large amount of information on the other, we have 

648 been able to obtain a broader and more complex insight into the molecular effects of flavanols 

649 on the cardiometabolic health. This strategy allowed us to overcome the limitation of the 

650 targeted-approach (i.e., analysis of a selected, limited and predefined target genes) featuring 

651 most of the studies selected. The global analysis using the bioinformatics tools allowed us to 

652 identify, quantify and describe their role in the cellular functions. Furthermore, by integrating 

653 data from different cell types, the derived model could mimic, to some extent, the whole 

654 organism, which is particularly important for the cardiometabolic disease where several 

655 organs and tissues are implicated, connected with complex causal links.

656

657 This systematic review has identified 37 in vitro studies with 54 different genes up- or 

658 down-regulated by flavanol exposure in adipocytes, hepatocytes, immune, smooth muscle, 

659 and endothelial cells. Global bioinformatic analysis of differentially expressed genes 

660 extracted from literature has demonstrated that flavanols primarily modulate different 
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661 pathogenic aspects of cardiometabolic disease particularly processes of inflammation, cell 

662 adhesion and transendothelial migration, or lipid metabolism (Figure 10). 

663

664 Low-grade inflammation is a risk factor that induces endothelial dysfunction in medium- 

665 and large-sized arterial blood vessels [54]. Dysfunctional endothelium is characterized by an 

666 increased permeability to atherogenic lipoproteins [54] and circulating immune cells [55]. 

667 Under such conditions, endothelial cells increase the expression of leukocyte adhesion 

668 molecules on their surface [55]. In particular, ICAM1 and VCAM1, along with a plethora of 

669 adhesion molecules and ligands, play major roles in the process of adhesion and 

670 transendothelial migration of circulating monocytes, which includes a series of complex 

671 sequential events, such as capture, slow rolling, firm adhesion, adhesion strengthening, 

672 intraluminal crawling and finally, the transendothelial migration [55]. Flavanols have been 

673 shown to decrease the expression of leukocyte adhesion biomarkers in humans [56], as well 

674 as the leukocyte rolling over endothelium in an animal model of inflammation [34]. However, 

675 a more in-depth analysis of molecular mechanisms underlying the protective effects of 

676 flavanols on the arterial endothelium has been made only recently, demonstrating a high level 

677 of modulation of pathways defining cell adhesion and transendothelial migration [34]. 

678 Concordantly, we also identified several regulators of cell adhesion, such as the “platelet-

679 endothelium-leucocyte interaction” and “cell adhesion molecules”, including ICAM1, 

680 ITGAM, ITGB1, SELE and VCAM1 genes as primarily affected by flavanols. The interaction 

681 between immune and endothelial cells requires the attraction of immune cells to endothelium. 

682 This process is regulated by several chemokines, which are involved in “leucocyte 

683 chemotaxis” and “chemokine signaling” pathways. In line with previous results, these 

684 pathways have also been recognized to be affected by flavanols. Upon adhesion to 

685 endothelium, immune cells migrate in sub-endothelial space, predominantly following 

686 paracellular routes [55]. Paracellular transendothelial migration requires the reorganization 
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687 of endothelial cytoskeleton, which is mediated by several genes, including ROCK1 [57]. 

688 Interestingly, our bioinformatic analyses identified pathways and gene networks regulating 

689 the monocyte transmigration, such as “leukocyte transendothelial migration pathway”, 

690 “regulation of actin cytoskeleton”, “focal adhesion” or “cell junctions”. “Leukocyte 

691 transendothelial migration pathway” exhibited the highest statistical significance among the 

692 pathways defining the endothelial cell function and include the following genes extracted 

693 from in vitro studies: ICAM1, ITGAM, ITGB1, MMP9, ROCK1 and VCAM1. Concordantly, 

694 bioinformatic analysis of protein-protein interactions of extracted genes that are placed in the 

695 modulated cellular pathways responsible for endothelial cell function, demonstrated that 

696 TNF, MAPK8 and NFKB1 are central to the network of protein-protein interactions, also 

697 revealing the role of inflammation as a common underlying mechanism of cardiometabolic 

698 disease. Taken together, these systematic bioinformatic analyses showed that regulation of 

699 endothelium by flavanols is one of the key molecular mechanisms of these bioactives 

700 underlying their health properties. Genes regulating this function present potential candidates 

701 for further analyses of their importance for the inter-individual variability in response to 

702 consumption of dietary flavanols.

703

704 The enquiring of BioCarta database identified pathways linked to lipid metabolism 

705 including “visceral fat deposits and the metabolic syndrome”, “mechanism of gene regulation 

706 by peroxisome proliferators via PPARA” and “LDL pathway during atherogenesis”. It is well 

707 known that adipose tissue exerts immune-metabolic functions. Besides functioning as an 

708 energy storage tissue (storing energy in the form of lipid) and controlling the lipid 

709 mobilization and distribution in the body, it acts as an active endocrine organ by releasing a 

710 cluster of active molecules, named adipokines with autocrine and paracrine functions and 

711 modulating a range of metabolic pathways [58]. It is now widely recognized that adipose 

712 tissue dysfunction, as in terms of adipose hypertrophy and deregulated release of adipokines, 
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713 plays a prominent role in the development of obesity and its related disorders such as insulin 

714 resistance or cardiovascular disease [59]. Visceral fat accumulation, linked with levels of 

715 some adipokines, induces chronic inflammation and metabolic disorders, including glucose 

716 intolerance, hyperlipidemia, and arterial hypertension. Together, these conditions contribute 

717 to a diagnosis of metabolic syndrome, directly associated with the onset of cardiovascular 

718 disease [60]. Our data suggest that flavanols significantly interfere with the pathway related 

719 to “visceral fat deposits and the metabolic syndrome” regulating the expression of five 

720 interesting genes within this pathway: PPARG, LPL, TNF, RETN and ADIPOQ. Several 

721 epidemiological and experimental studies have shown robust hypolipidemic and anti-

722 obesogenic effects by flavanols [61,62]. Regulation of peroxisome proliferator-activated 

723 receptors (PPARs) activity and expression by these compounds has been largely suggested 

724 as the primary mechanism of hypolipidemic and anti-obesogenic effects exerted by most 

725 flavanols [63]. PPARs are nuclear hormone receptors that function as transcription factors 

726 [64]. Up to now, three PPARs have been identified, PPARA, D/B, and G with different tissue 

727 distribution and pharmacological ligand activation profile [64]. Among them, PPARG is 

728 abundantly expressed in adipose tissue and muscle cells whereas it mediates the expression 

729 of genes associated with adipogenesis and insulin sensitivity [65], thus making it a molecular 

730 target of choice for the development of therapeutic treatments of both synthetic and natural 

731 origin.

732

733 Bioinformatic analyses of the extracted nutrigenomic data were not focused only to gene 

734 ontology analysis and identification of cellular pathways significantly associated to 

735 differentially expressed genes, but also to the gene network analyses, analysis of interactions 

736 between functional groups of genes and protein-protein interactions. Furthermore, we have 

737 also taken a step forward by analyzing the transcriptional (transcription factors) and post-

738 transcriptional (miRNAs) regulation of differentially expressed genes. Among the most 
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739 significant transcription factors identified, we recognized PPARG and GATA2. Previous 

740 studies demonstrated that in addition to its role in hematopoietic stem cell development [66], 

741 GATA2 also has an important role in mediating cardiovascular disease development [67]. It 

742 is abundantly expressed in vascular endothelial cells and regulates endothelial-specific genes, 

743 such as VCAM1, P-selectin and PECAM1, involved in endothelial activation and dysfunction 

744 that can lead to development of atherosclerosis and cardiovascular disease [67]. It has also 

745 been observed that inactivation of GATA2 decreases the expression of cell adhesion 

746 molecules, and that it plays an essential role in endothelial cell activation by acting together 

747 with NF-kappa B, which is a critical factor in the molecular pathogenesis of atherosclerosis 

748 [67]. Our results, suggesting a role for flavanols in modulating GATA2, reveal a new potential 

749 regulatory site for flavanol effects. The PPARs modulate several biological processes that 

750 are perturbed in obesity, including inflammation, lipid and glucose metabolism and overall 

751 energy homeostasis. PPARs agonists have some efficacy in reducing cardiovascular risk in 

752 patients with type 2 diabetes who also have pro-atherogenic dyslipidemia [68]. Use of PPARs 

753 agonists, such as aleglitazar, was shown to improve insulin sensitivity, glucose control and 

754 lipid levels in people with type 2 diabetes [69]. Interestingly, two studies have suggested that 

755 polyphenols could act as PPARs agonists and prevent risk factors for obesity-related 

756 metabolic disorders and cardiovascular disease, such as polyphenols from plum [70] or grape 

757 seeds [71]. Together with these 2 transcription factors, our systematic bioinformatic analyses 

758 also identified other ones that present key players in the genomic response to flavanol intake, 

759 like YY1, FOXC1 or NFKB1.

760

761 Along with the identification of transcriptional regulators, we also searched for potential 

762 post-transcriptional regulators, particularly miRNAs. miRNAs are endogenous small non-

763 coding RNAs that can interact with mRNAs, in this way exerting post-transcriptional 

764 regulation activities [72]. It has been shown that they play an important role in the regulation 
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765 of lipid metabolism, endothelial function, and consequently, in the development of chronic 

766 diseases such as cardiometabolic disorders [72] or cancer. Our bioinformatic analysis 

767 identified the mir-335-5p as the most significant miRNAs affected by flavanols. It has been 

768 shown that mir-335-5p plays a role in regulating endothelial function [73], insulin secretion 

769 and diabetes development [74], and in suppressing lower extremity deep venous thrombosis 

770 [75]. Concordantly to our results, in mouse models of atherosclerosis catechins, hesperidin, 

771 quercetin, curcumin, or anthocyanins were shown to modulate the expression of this miRNA 

772 [76]. Among the other miRNAs identified by our bioinformatic analysis, there is the mir-16-

773 5p. mir-16-5p has been interestingly suggested to be associated with insulin sensitivity and 

774 cardiometabolic risk factors in humans [77]. Capacity of polyphenols to regulate the 

775 expression of this miRNA has been described in a few studies, such as with epigallocatechin 

776 gallate and quercetin [78,79]. For let-7b-5p or mir-193b-3p, no role has been reported before 

777 in regulation of cardiometabolic disorders, whereas mir-26b-5p is involved in the regulation 

778 of inflammation in myocardial infarction [80]. Taken together, this systematic analysis of 

779 genomic data of flavanols related to cardiometabolic effects revealed potential transcriptional 

780 and post-transcriptional regulators involved in the genomic modifications of flavanols and 

781 therefore novel mechanisms of action and key players in the observed effects.

782

783 Conducting this systematic bioinformatic analysis of published nutrigenomic data about 

784 the effects of flavanols in cellular models of relevance for cardiometabolic health, such as 

785 adipocytes, hepatocytes, immune, smooth muscle and endothelial cells, we demonstrated that 

786 only in a small number of studies that were identified as eligible for inclusion in our analysis, 

787 the cells were treated with flavanol metabolites (Table 1). Given the growing scientific 

788 evidence that flavanol phase II and gut microbiota metabolites represent the main circulating 

789 forms of the majority of these bioactives and mediate the effects of their parent compounds 

790 at cellular level [9], this finding identifies a major gap in the literature limiting the power of 
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791 the available in vitro studies to demonstrate the true molecular effects of flavanols. This gap 

792 in the literature should be addressed in future.

793

794 Intestinal cells are not only mediators of macro- and micronutrients absorption, but they 

795 also exhibit various functions that may affect the cardiometabolic health. By synthesizing 

796 triglycerides [129] and apolipoproteins [52], intestinal cells actively contribute to the 

797 regulation of plasma lipoprotein pools. Noteworthy, an increased atherogenic risk features 

798 patients with inflammatory bowel disease (IBD) [81]. A recent literature review has indeed 

799 suggested that patients with IBD may be at an increased risk of cardiovascular diseases 

800 [82,83]. Several studies have shown that chronic systemic inflammation in IBD can lead to 

801 endothelial dysfunction and increased platelet activation, conditions preceding the 

802 development of atherosclerotic vascular disease [84] or favoring its clinical manifestations. 

803 High levels of tumor necrosis factor (TNF), C-reactive protein (CRP) and vascular 

804 endothelial growth factor (VEGF) are characteristic of IBD and may therefore contribute to 

805 endothelial dysfunction and atherogenesis [85]. Furthermore, in both cardiovascular disease 

806 and IBD pro-inflammatory angiogenesis is recognized as a common trait sustaining both 

807 atherosclerotic plaque growth and intestinal inflammation [86-88]. Finally, during IBD 

808 flares, the adhesion of circulating monocytes to the intestinal microvascular endothelial cells, 

809 as well as their infiltration and transformation into macrophages occurs, in tight analogy with 

810 what happens in the early phases of arterial atherosclerosis [89]. Results of our bioinformatic 

811 analysis suggest that flavanols may reduce cardiovascular risk also affecting the intestinal 

812 homeostasis. For example, our data suggest that flavanols affect the expression of genes 

813 involved in PPAR signaling pathway. Beside to adipose tissue and muscle cells, PPARG is 

814 also abundantly expressed in colonic epithelial cells whereas it seems to play important anti-

815 inflammatory and anti-carcinogenic effects [90]. In experimental animal model of IBD, the 

816 activation of PPARG by synthetic agonist rosiglitazone was shown to reduce the expression 
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817 of inflammatory genes by interfering with the activation of NF-kappa B transcription factor 

818 [91]. Several experimental evidences suggest that dietary polyphenols possess both 

819 protective and therapeutic effects in the management of IBD [92]. However, further 

820 preclinical and clinical studies are needed in order to understand the efficacy of dietary 

821 polyphenols in IBD patients.

822

823 Although cellular models do not reflect the variability across individuals within 

824 population, in this work, by integrating the mechanistic in vitro data, we gain insights on 

825 which genes or proteins are of major importance in mediating the anti-inflammatory and 

826 vasoprotective effects of flavanols. Our integrative bioinformatic meta-analyses of the 

827 existing genomic data from the literature allow us to better identify molecular mechanisms 

828 underlying cardiometabolic health properties of flavanols and identify major molecular 

829 pathways and target genes involved. Nevertheless, from the data here presented, as well as 

830 from the data in the literature, there is no doubt that TNF and IL6 are among the key gene 

831 players in mediating flavanol anti-inflammatory activity, since their polymorphisms have 

832 already been associated with lifestyle dependent cardiometabolic risk factors [93]. Our data 

833 confirm and suggest the need to systematically investigate flavanol effects in relation to TNF 

834 and IL6 polymorphic expressions. Deeper analyses of our data and the data from the literature 

835 may also identify other potential key target genes and polymorphisms that are worth further 

836 studying in the context of inter-individual variability of the effects of flavanols on 

837 cardiometabolic health. In conclusion, integrative biology approaches allow to identify 

838 potential key players of flavanols involved in cardiometabolic disease prevention associated 

839 to gene-protein-miRNA networks, which can be exploited for personalized nutritional 

840 recommendations in cardiometabolic disease prevention.

841

842
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843 Figure legends

844

845 Figure 1. Data collection flowchart. For search criteria, see Methods section.

846

847 Figure 2. A) Number of genes repeated in studies conducted on adipocytes, hepatocytes, 

848 immune, smooth muscle and endothelial cells exposed to flavanols. B) Number of 

849 differentially expressed genes extracted from the studies on adipocytes, hepatocytes, 

850 immune, smooth muscle and endothelial cells exposed to flavanols.

851

852 Figure 3. Gene ontology for adipocytes, hepatocytes, immune, smooth muscle and 

853 endothelial cells exposed to flavanols. Each rectangle is a single cluster representative, and 

854 they are joined into ‘superclusters’ of related terms, represented with different colors. Size of 

855 the rectangles reflects the p-value of the GO.

856

857 Figure 4. Gene network pie chart for adipocytes, hepatocytes, immune, smooth muscle 

858 and endothelial cells exposed to flavanols.

859

860 Figure 5. BioCarta and KEGG pathways related to cellular processes in adipocytes, 

861 hepatocytes, immune, smooth muscle and endothelial cells exposed to flavanols. *: 

862 KEGG; **: BioCarta.

863

864 Figure 6. Functional enrichment and interactome meta-analysis based on gene lists for 

865 different cell types exposed to flavanols. Enrichment network visualization of the results 
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866 from the lists of genes identified for adipocytes, smooth muscle cells, immune cells, 

867 endothelial cells and hepatocytes. Nodes are functional groups represented by pie charts 

868 indicating their associations with each cell type. Cluster labels were added manually. Color 

869 code represents the identities of gene lists (adipocytes: red, endothelial cells: blue, 

870 hepatocytes: green, immune cells: violet) and size of each color is proportional to the 

871 percentage of the genes from different types of cells.

872

873 Figure 7. Protein-protein interactions in adipocytes, hepatocytes, immune, smooth 

874 muscle and endothelial cells exposed to flavanols. Colored nodes: query proteins and first 

875 shell of interactors; white nodes: second shell of interactors; filled nodes: some 3D structure 

876 is known or predicted; empty nodes: proteins of unknown 3D structure.

877

878 Figure 8. Regulation of protein-protein interaction network by transcription factors 

879 and miRNAs in adipocytes, hepatocytes, immune, smooth muscle and endothelial cells 

880 exposed to flavanols.

881

882 Figure 9. A) KEGG and BioCarta (marked with *) pathways for the intestinal cells 

883 exposed to flavanols. B) Protein-protein interactions for the intestinal cells exposed to 

884 flavanols. Protein network is organized in two clusters: in red – proteins that are mostly 

885 involved in the metabolism of circulating lipoproteins; in green – proteins that are 

886 mainly involved in calcium signaling. C) Regulation of protein-protein interaction 

887 network by transcription factors and miRNAs in the intestinal cells exposed to 

888 flavanols.

889
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890 Figure 10. Summary of identified differentially expressed genes modulated by flavanol 

891 and related to cardiometabolic health.
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1438 Table 1. Overview of data extraction for cell models exposed to different flavanols or flavanol metabolites at 
1439 physiological concentrations.

Flavanol tested Concentration Challenge Differentially expressed genes; p<0.05 Reference
Adipocytes

EGCG 10 µM adipogenic cocktail CEBPA, PPARG [94]
Epicatechin 0.5 – 10 µM TNF IL6, CCL2, RETN, TNF [95]

EGCG 1 – 5 µM dexamethasone ADIPOQ, RETN [96]
Catechin 10 µM adipogenic cocktail ADIPOQ, FABP4, LPL, PPARG [97]

EGCG 1 µM adipogenic cocktail CFD [98]
Endothelial cells

EGCG 10 µM
phorbol-12-myristate-13-

acetate
CCL2 [99]

Catechin 0.1 – 10 µM no challenge SERPINE1 [100]
Catechin 10 µM homocysteine NRF1, TFAM, MT-CO3 [101]

EGCG 2.5 – 10 µM no challenge EDN1, HMOX1 [102]
EGCG 10 µM no challenge EDN1 [103]

EGCG 0.5 – 10 µM
vascular endothelial 

growth factor
CXCL8 [104]

EGCG 10 µM TNF CCL2 [105]
EGCG 10 µM no challenge ICAM1, CCL2 [106]

EGCG 10 µM TNF
ICAM1, VCAM1, CCL2, BCL2, BAX, 

CASP9
[107]

Procyanidin B2 1 – 2 µM LPS and ATP NLRP3 [108]
EGCG 10 µM glucose VCAM1 [109]
EGCG 10 µM no challenge PIM1 [110]

Epicatechin,
Flavanol metabolites

1 – 10 µM
0.4 – 7.8 µM

no challenge ARG2 [111]
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Flavanol metabolites 1 µM TNF
CALD1, TJP1, ARHGEF7, CASK, 

NFKB1, SELE, CCL2, ITGB1, ROCK1
[22]

Hepatocytes
Epicatechin,

Catechin,
Procyanidin B2

0.1 – 10 µM no challenge
APOA1, APOB, LDLR, ABCA1, 

SREBF1, SCARB1, SCAP
[52]

Epicatechin,
Flavanol metabolites

10 µM no challenge APOA1, FOXA2 [112]

EGCG 1 – 10 µM angiotensin II AGTR1, PPARG [113]
Immune cells

EGCG 3 – 10 µM
phorbol-12-myristate-13-

acetate
S1PR2 [114]

EGCG 3 µM
phorbol-12-myristate-13-

acetate
MMP9, PTGS2 [115]

Epicatechin 2 µg/mL LPS NOS2, PTGS2 [116]
Epicatechin gallate 3 µM no challenge ITGAM [117]

Catechin 10 µM LPS IL6, TNF [118]

EGCG 10 µM
phorbol-12-myristate-13-

acetate
MMP9, BSG [119]

EGCG 2.5 µM no challenge TOLLIP [120]
EGCG,

(-)-epigallocatechin-3-O-(3-O-
methyl)-gallate

5 µM
1 µM

no challenge;
palmitic acid

RNF216,
TNF

[121]

EGCG 1 µM LPS MMP9, CCL2 [122]

EGCG 1 µM
LPS;

no challenge
TNF, IL6,

TLR4, TOLLIP
[53]

Smooth muscle cells
EGCG 0.1 – 10 µM no challenge TIMP2 [123]

Page 67 of 85 Food & Function



Nutrients 2020, 12, x FOR PEER REVIEW 61 of 64

EGCG 10 µM
basic fibroblast growth 

factor
JUN [124]

EGCG
3 – 10 µM
1 – 10 µM

IL-6;
angiotensin II

CRP [125]

EGCG 3 – 10 µM endothelin 1 CRP [126]
Epigallocatechin 10 µM serum JUN [127]

Intestinal cells
Hexameric procyanidins 20 µM TNF NOS2 [128]

Grape seed extract
100 mg/L

25 – 100 mg/L

fasted state medium;
postprandial state 

medium

ACSL5, ACSL3, FABP2, PPARA, 
CPT1A

[129]

Cinnamtannin A2 1 – 10 µM no challenge APOA1, APOB [52]
Grape seed extract 100 mg/L no challenge DPP4 [130]

Grape seed extract 20 – 100 mg/L chenodeoxycholic acid
SLC10A2, FABP6, FGF19, SLC51A, 

SLC51B
[131]

1440
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1441 Table 2. Proteins with the highest number of interactions within the network (≥ 
1442 15).

Symbol Name Number of 
interactions

TNF Tumor necrosis factor 40
IL6 Interleukin-6 39
JUN Transcription factor AP-1 37

TLR4 Toll-like receptor 4 30
NFKB1 Nuclear factor NF-kappa-B p105 subunit 30
MAPK8 Mitogen-activated protein kinase 8 30

IL8 Interleukin-8 26
CCL2 C-C motif chemokine 2 24
MMP9 Matrix metalloproteinase-9 23
PPARG Peroxisome proliferator-activated receptor gamma 22
BCL2 Apoptosis regulator Bcl-2 22
MMP2 72 kDa type IV collagenase 21
CYCS Cytochrome c 21
FOS Proto-oncogene c-Fos 21

ICAM1 Intercellular adhesion molecule 1 20
CRP C-reactive protein 19

PTGS2 Prostaglandin G/H synthase 2 19
ADIPOQ Adiponectin 19
CASP3 Caspase-3 18
NOS3 Nitric oxide synthase, endothelial 17

BCL2L1 Bcl-2-like protein 1 17

MYD88 Myeloid differentiation primary response protein 
MyD88 16

XIAP E3 ubiquitin-protein ligase XIAP 16
VCAM1 Vascular cell adhesion protein 1 16

BAX Apoptosis regulator BAX 15
EDN1 Endothelin-1 15

ITGAM Integrin alpha-M 15

1443

1444

1445

1446

1447

1448
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1449 Table 3: Top 20 transcription factors and miRNAs that regulate the protein-protein 

1450 interaction network in adipocytes, hepatocytes, immune, smooth muscle and endothelial cells 

1451 exposed to flavanols.

   

Symbol Name Number of hits

Transcription factor

FOXC1 Forkhead box protein C1 362
GATA2 Endothelial transcription factor GATA-2 266

YY1 Transcriptional repressor protein YY1 186
E2F1 Transcription factor E2F1 160

FOXL1 Forkhead box protein L1 149
USF2 Upstream stimulatory factor 2 141
RELA Transcription factor p65 138

PPARG Peroxisome proliferator-activated receptor gamma 137
NFKB1 Nuclear factor NF-kappa-B p105 subunit 136
CREB1 Cyclic AMP-responsive element-binding protein 1 134

TFAP2A Transcription factor AP-2-alpha 131
TP53 Cellular tumor antigen p53 127
NFIC Nuclear factor 1 C-type 123

POU2F2 POU domain, class 2, transcription factor 2 115
SRF Serum response factor 115

HINFP Histone H4 transcription factor 114
JUN Transcription factor AP-1 113

SREBF1 Sterol regulatory element-binding protein 1 106
STAT3 Signal transducer and activator of transcription 3 106
MEF2A Myocyte-specific enhancer factor 2A 92

micro RNA

mir-335-5p microRNA-335-5p 105
mir-16-5p microRNA-16-5p 83
mir-124-3p microRNA-124-3p 80
mir-26b-5p microRNA-26b-5p 79
mir-17-5p microRNA-17-5p 77
let-7b-5p let-7b-5p 74

mir-155-5p microRNA-155-5p 70
mir-92a-3p microRNA-92a-3p 70
mir-93-5p microRNA-93-5p 66
mir-20a-5p microRNA-20a-5p 64

mir-106b-5p microRNA-106b-5p 61
mir-1-3p microRNA-1-3p 53
let-7c-5p let-7c-5p 52
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mir-193b-3p microRNA-193b-3p 51
mir-20b-5p microRNA-20b-5p 51
mir-34a-5p microRNA-34a-5p 51
mir-615-3p microRNA-615-3p 50
mir-218-5p microRNA-218-5p 49
mir-519d-3p microRNA-519d-3p 49
mir-21-5p microRNA-21-5p 48

106

1452

1453

1454

1455
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Figure 1. Data collection flowchart. For search criteria, see Methods section.
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Figure 2A. Number of genes repeated in studies conducted on adipocytes, hepatocytes, 
immune, smooth muscle and endothelial cells exposed to flavanols.
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Figure 2B. Number of differentially expressed genes extracted from the studies on 
adipocytes, hepatocytes, immune, smooth muscle and endothelial cells exposed to 
flavanols.
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Figure 3. Gene ontology for adipocytes, hepatocytes, immune, smooth muscle and 
endothelial cells exposed to flavanols. Each rectangle is a single cluster representative, 
and they are joined into ‘superclusters’ of related terms, represented with different colors. 
Size of the rectangles reflects the p-value of the GO.
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Figure 4. Gene network pie chart for adipocytes, hepatocytes, immune, smooth muscle 
and endothelial cells exposed to flavanols.
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Figure 5. BioCarta and KEGG pathways related to cellular processes in adipocytes, 
hepatocytes, immune, smooth muscle and endothelial cells exposed to flavanols. *: 
KEGG; **: BioCarta.
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Figure 6. Functional enrichment and interactome meta-analysis based on gene lists for 
different cell types exposed to flavanols. Enrichment network visualization of the results 
from the lists of genes identified for adipocytes, smooth muscle cells, immune cells, 
endothelial cells and hepatocytes. Nodes are functional groups represented by pie charts 
indicating their associations with each cell type. Cluster labels were added manually. 
Color code represents the identities of gene lists (adipocytes: red, endothelial cells: blue, 
hepatocytes: green, immune cells: violet) and size of each color is proportional to the 
percentage of the genes from different types of cells.
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Figure 7. Protein-protein interactions in adipocytes, hepatocytes, immune, smooth 
muscle and endothelial cells exposed to flavanols. Colored nodes: query proteins and first 
shell of interactors; white nodes: second shell of interactors; filled nodes: some 3D 
structure is known or predicted; empty nodes: proteins of unknown 3D structure.
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Figure 8. Regulation of protein-protein interaction network by transcription factors and 
miRNAs in adipocytes, hepatocytes, immune, smooth muscle and endothelial cells 
exposed to flavanols.
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Figure 9A. KEGG and BioCarta (marked with *) pathways for the intestinal cells 
exposed to flavanols.

Page 81 of 85 Food & Function



Figure 9B. Protein-protein interactions for the intestinal cells exposed to flavanols. 
Protein network is organized in two clusters: in red – proteins that are mostly involved in 
the metabolism of circulating lipoproteins; in green – proteins that are mainly involved in 
calcium signaling.
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Figure 9C. Regulation of protein-protein interaction network by transcription factors and 
miRNAs in the intestinal cells exposed to flavanols.
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Figure 10. Summary of identified differentially expressed genes modulated by flavanol 
and related to cardiometabolic health.
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Table S2: Proteins with the highest number of interactions within the network (≥ 7), for the 

intestinal cells.

Gene symbol Name Number of interactions

LPL Lipoprotein lipase 16

APOA1 Apolipoprotein A-I 13

APOA2 Apolipoprotein A-II 12

APOB Apolipoprotein B-100 11

APOE Apolipoprotein E 10

APOC3 Apolipoprotein C-III 10

NCOA1 Nuclear receptor coactivator 1 10

ABCA1 ATP-binding cassette sub-family A member 1 9

CETP Cholesteryl ester transfer protein 9

LDLR Low-density lipoprotein receptor 9

PPARA Peroxisome proliferator-activated receptor 

alpha

9

LPA Apolipoprotein(a) 8

CPT1A Carnitine O-palmitoyltransferase 1, liver 

isoform

7

CALM3 Calmodulin-3 15

CALM1 Calmodulin-1 15

CALM2 Calmodulin-2 15

SCN5A Sodium channel protein type 5 subunit alpha 11

CAMK2B Calcium/calmodulin-dependent protein kinase 

type II subunit beta

10

NOS3 Nitric oxide synthase, endothelial 10

CAMK2G Calcium/calmodulin-dependent protein kinase 

type II subunit gamma

8
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CAMK2A Calcium/calmodulin-dependent protein kinase 

type II subunit alpha

8

CAMK2D Calcium/calmodulin-dependent protein kinase 

type II subunit delta

8
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