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SUMMARY

Chromosome rearrangements and the way that they impact genetic differentiation and speciation have long

raised questions from evolutionary biologists. They are also a major concern for breeders because of their

bearing on chromosome recombination. Banana is a major crop that derives from inter(sub)specific

hybridizations between various once geographically isolated Musa species and subspecies. We sequenced

155 accessions, including banana cultivars and representatives of Musa diversity, and genotyped-by-se-

quencing 1059 individuals from 11 progenies. We precisely characterized six large reciprocal translocations

and showed that they emerged in different (sub)species of Musa acuminata, the main contributor to cur-

rently cultivated bananas. Most diploid and triploid cultivars analyzed were structurally heterozygous for 1

to 4 M. acuminata translocations, highlighting their complex origin. We showed that all translocations

induced a recombination reduction of variable intensity and extent depending on the translocations, involv-

ing only the breakpoint regions, a chromosome arm, or an entire chromosome. The translocated chromo-

somes were found preferentially transmitted in many cases. We explore and discuss the possible

mechanisms involved in this preferential transmission and its impact on translocation colonization.

Keywords: chromosome segregation, genome evolution, Musa, reciprocal translocation, recombination.

INTRODUCTION

Chromosomal rearrangements and their possible link

with lineage diversification and speciation have fasci-

nated evolutionary biologists for a long time (Faria and

Navarro, 2010; Kirkpatrick, 2010; Huang and Rieseberg,

2020). Many researchers have claimed that they play a

role in speciation by contributing to reproductive isola-

tion (White, 1978; Grant, 1981; Baker and Bickham, 1986;

King, 1993; Ostevik et al., 2020). Indeed, structurally

heterozygous hybrids are often unviable or have reduced

fertility (Lai et al., 2005; Stathos and Fishman, 2014;

Quach et al., 2016). Studies on inversions have shown, in

various species, that suppressed recombination induced

by inversion facilitated divergence and speciation. In the

case of Robertsonian fusions, evidence of fixation in

small island isolated populations through genetic drift

was reported (Britton-Davidian et al., 2000). Finally,

conflicting data and unresolved questions persist despite

over 100 years of research on the chromosome specia-

tion model, which led Carracedo et al. (2000) to propose

that various mechanisms may be involved depending on

the evolutionary history of each species. To date, most

evolutionary studies have been on inversions. Other

types of rearrangement have been explored to a lesser

extent.

Structural variations also complicate breeding because

they generally lead to reduced or no fertility and to a

recombination reduction (Tadmor et al., 1987; Quillet et al.,

1995; Ostberg et al., 2013), which hamper combining tar-

geted characters. Many crops are derived from or

improved through inter(sub)specific hybridizations (Mcfad-

den and Sears, 1946; Simmonds, 1962; Zamir, 2001; Wu

et al., 2014; Garsmeur et al., 2018; Flowers et al., 2019;
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Santos et al., 2019) between (sub)species potentially differ-

ing for structural variations.

Banana is a major crop derived from inter(sub)specific

hybridization between various species and subspecies of

the Musa genus. Musa acuminata (2n = 22, x = 500 Mb, A

genome) is involved in all cultivars and Musa balbisiana

(2n = 22, B genome), Musa schizocarpa (2n = 22, S gen-

ome) and Musa textilis (2n = 20, T genome) in some of

them (Simmonds and Shepherd, 1955; Carreel et al., 1994;

N�eme�ckov�a et al., 2018). Musa acuminata has been divided

into several subspecies, namely banksii, malaccensis, ze-

brina, burmannica, burmannicoides, siamea, microcarpa,

truncata, and errans (Simmonds, 1962; Perrier et al., 2009).

The subdivision of burmannica, burmannicoides, and si-

amea has been questioned recently because they clustered

together in molecular diversity studies (Perrier et al., 2009;

Martin et al., 2017; Dupouy et al., 2019; Martin et al., 2020).

They thus are referred to here as a single burmannica sub-

species. The subspecies status of ssp. errans, truncata and

microcarpa has been questioned by molecular genetic

studies (Carreel et al., 1994; Perrier et al., 2009; Sardos

et al., 2016a; Christelov�a et al., 2017; Dupouy et al., 2019;

Martin et al., 2020).

Musa species and subspecies diverged following geo-

graphical isolation in distinct Southeast Asian continental

regions and islands (Janssens et al., 2016). The current

domestication scenario for bananas suggests that humans

transported plant material during their migrations, which

led to contacts between these subspecies, probably during

the Holocene (Perrier et al., 2011). This resulted in the

emergence of inter(sub)specific hybrids with reduced fertil-

ity (Dodds and Simmonds, 1948; Faur�e, Bakry, et al., 1993;

Shepherd, 1999). Early farmers would then have selected

parthenocarpic diploid and triploid hybrids producing fruit

with high flesh and low seed content. Cultivars were classi-

fied, based on morphology and ploidy, into genomic

groups (‘AA’, ‘AAA’, ‘AB’, ‘AAB’, ‘ABB’, ‘AS’, ‘AT’, and

‘AAT’) to reflect the main species contributing to their gen-

omes (Simmonds and Shepherd, 1955). Current cultivars

have been vegetatively propagated for centuries or millen-

nia, resulting in subgroups of phenotypic somaclonal vari-

ants.

Recent analysis of the chromosome contribution of

these species and subspecies to several Musa cultivars

revealed complex inter(sub)specific chromosome mosaics

(Baurens et al., 2019; Cenci et al., 2020; Martin et al., 2020).

This suggests that the origin of cultivars is more complex

than previously assumed, with more hybridization steps

and more ancestral contributors. These results also

revealed a contribution from an unidentified ancestral

genetic group to cultivated bananas (Martin et al., 2020).

Several large chromosomal rearrangements were sus-

pected between M.acuminata subspecies. These suspi-

cions were based on cytogenetic studies showing that

chromosomal pairing at meiosis in M.acuminata is gener-

ally regular in bivalents within subspecies, but irregular

with some multivalents and univalents in inter(sub)specific

hybrids (Dodds, 1943; Dodds and Simmonds, 1948; Des-

sauw, 1987; Faur�e, Bakry, et al., 1993; Shepherd, 1999).

Similar suspicions were based on segregation distortions

and chromosomal co-segregation in genetic maps (Faur�e,

Noyer, et al., 1993; Hippolyte et al., 2010; D’Hont et al.,

2012; Mbanjo et al., 2012). Recently, three large structural

rearrangements in the form of reciprocal translocations

were precisely characterized within M.acuminata (Martin

et al., 2017; Dupouy et al., 2019). In addition, a reciprocal

translocation and an inversion were characterized between

M.acuminata and M.balbisiana (Baurens et al., 2019;
�Simon�ıkov�a et al., 2019).

Here, we report on the precise characterization of three

reciprocal translocations in Musa acuminata that added to

the three we reported previously. We analyzed the distribu-

tion of the six reciprocal translocations in 155 accessions

representative of wild Musa diversity and cultivated bana-

nas and identified in which (sub)species each rearrange-

ment emerged. We analyzed chromosome segregation in

1059 individuals from 11 progenies from structurally

heterozygous parents and revealed that translocation

induced a reduction of recombination of extent and inten-

sity that vary depending on rearrangements. In addition, in

many cases, we observed that the translocated structures

were preferentially transmitted. We discuss these results in

terms of genome evolution and breeding prospects.

RESULTS

Characterization of the reciprocal translocations

Eleven progenies involving 18 parental accessions were

genotyped-by-sequencing (Table 1). Genetic linkage

between single nucleotide polymorphism (SNP) markers

from each parent was calculated and projected on the

M.acuminata reference genome sequence (D’Hont et al.,

2012; Martin et al., 2016). Chromosomes from this refer-

ence genome produced with an accession of ssp. malac-

cencis have been proposed to correspond to the ancestral

chromosome architecture of M.acuminata (Shepherd,

1999; Martin et al., 2017; Dupouy et al., 2019) and thus are

referred to here as reference chromosomes.

For four accessions (Monyet, Zebrina and hybrids PM1

and PM2), genetic linkage between markers of reference

chromosomes 3 and 8 was observed (Figure S1a,b,c and

d) suggesting the presence of a reciprocal translocation

involving one arm of reference chromosome 3 (T3) and

one arm of reference chromosome 8 (T8). In accession

Monyet (Figure 1a and 1b), the linkage breaks around the

centromeric regions indicated that the accession is

homozygous for this 3/8 translocation. The linkage

involved markers from pericentromeric part of reference
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chromosome 8 and a distal part of reference chromosome

3. This showed that this reciprocal translocation is associ-

ated with the inversion of segment T3. The position of the

linkage breaks allowed us to locate the translocation break-

point between 15.4 and 17.3 Mb of reference chromosome

3 and between 16.1 and 23.5 Mb of reference chromosome

8. The linkage break position estimates were wide because

they were located in centromeric regions that have a high

number of repetitive sequences and, consequently, a low

number of SNPs suitable for genetic analysis. The second

accession Zebrina, although largely homozygous and thus

displaying a limited number of segregating markers,

showed a genetic linkage pattern suggesting that it was

homozygous for the 3/8 translocation (Figure S1b). Analy-

sis of its marker linkage pattern enabled us to refine the

position of the translocation breakpoint of chromosome 8

between 16.1 and 17.6 Mb. Close linkage between refer-

ence chromosomes 3 and 8 was also observed in the two

PM1 and PM2 hybrids, but without any linkage breaks,

indicating that PM1 and PM2 were structurally heterozy-

gous for the 3/8 reciprocal translocation (Figure S1c and

S1d). Chromosomes resulting from this 3/8 translocation

were named 3T8 and 8T3 (Figure 1b). Translocation 3/8

was also detected in the Khi Maeo accession through bac-

terial artificial chromosome-fluorescence in situ hybridiza-

tion (BAC-FISH), with BACs originating from reference

chromosomes 3 and 8 found together on one chromo-

some, whereas the other signals were found on two dis-

tinct chromosomes (Figure 2a).

In the Pisang Madu accession, genetic linkage was

observed between all markers of reference chromosome 1

and part of the markers of reference chromosome 7 (Fig-

ure 1c, Figure S1e and S1f) suggesting the presence of a

rearrangement involving reference chromosomes 1 and 7 at

the heterozygous state in this accession. FISH experiments

with BACs originating from reference chromosomes 1 and 7

revealed a reciprocal translocation with translocation break-

points located between 0.9 and 3.4 Mb on chromosome 1

and in the pericentromeric region for chromosome 7 (Fig-

ure 2b,c; Figure 1d). Chromosomes resulting from this 1/7

translocation were named 1T7 and 7T1.

In the Khae Phrae accession, genetic linkage patterns

suggested the presence of a reciprocal translocation at the

homozygous state involving one arm of reference chromo-

some 7 (T7) and one arm of reference chromosome 8 (T8)

(Figure 1e and f, Figure S1g). The linkage break positions

allowed us to locate the translocation breakpoint between

21.8 and 26.3 Mb of reference chromosome 7 and between

22.6 and 32.1 Mb of reference chromosome 8. In the Khae

Phrae (Figure 2d) and Long Tavoy accessions (Figure 2f),

BACs from reference chromosomes 7 and 8 were found on

the same chromosome through BAC-FISH, demonstrating

that both accessions were homozygous for this 7/8 translo-

cation. Chromosomes resulting from this 7/8 translocation

were named 7T8 and 8T7. The Khae Phrae and Long Tavoy

accessions were previously characterized as structurally

homozygous for the 2/8 translocation (Dupouy et al., 2019).

As a result of its strong homozygosity in some regions,

including those around the 2/8 translocation, this rear-

rangement could not be detected with genetic markers

from Khae Phrae (Figure S1g). The position of the 7/8

translocation breakpoint on chromosome 8 is much more

proximal than that of the 2/8 translocation breakpoint

(37.7 Mb) (Dupouy et al., 2019). This suggests that Khae

Phrae and Long Tavoy have both translocated structures

with chromosomes 2T8, 8T7, and 7T8T2 (Figure S2).

Three translocations that we previously described, one

involving chromosomes 1 and 4 (Martin et al., 2017), one

involving chromosomes 2 and 8 (Dupouy et al., 2019), and

one involving chromosomes 1 and 9 (Dupouy et al., 2019),

were also found in some parents of the studied progenies.

For four accessions (Pisang Lilin, PT-BA-00267, Malaccen-

sis nain, and PB1 hybrid), the genetic linkage patterns

observed between reference chromosomes 1 and 4 (Fig-

ure S1h, i, j and k) confirmed the presence of the 1/4 recip-

rocal translocation at homozygous state in Malaccensis

nain (Martin et al., 2017) and heterozygous state in Pisang

Lilin, PT-BA-00267 (Martin et al., 2017) and also showed

that PB1 hybrid was structurally heterozygous. Chromo-

somes with the translocated structure were named 1T4

and 4T1.

For four accessions (Calcutta 4, Pa Rayong, and hybrids

PC1 and BC1), the genetic linkage patterns observed

between reference chromosomes 1 and 9 and 2 and 8 (Fig-

ure S1l, m, n, o and p) showed the presence of the 1/9 and

2/8 reciprocal translocations at homozygous state in Pa

Rayong and Calcutta 4 accessions and heterozygous state

in PC1 and BC1 hybrids. In addition, BAC-FISH experiments

showed the presence of the 1/9 translocation at homozy-

gous state in Khae Phrae and Long Tavoy (Figure 2e and

2g). Chromosomes with the translocated structure were

named 1T9, 9T1, 2T8, and 8T2.

For the IDN 110 accession, the genetic linkage pattern

observed between reference chromosomes 1, 4, and 7 sug-

gested that this accession is structurally heterozygous for

both the 1/4 and 1/7 translocations (Figure S1q).

Finally, for Borneo and Galeo accessions, no genetic

linkage was observed between markers from distinct refer-

ence chromosomes despite the overall good distribution of

markers along the chromosomes (Figure S1r and s). This

suggested that these accessions were structurally homozy-

gous with the reference chromosome structure.

Translocated chromosome distribution in Musa

germplasm

To be able to trace the distinct translocated chromosome

structures in Musa germplasm, we developed a methodol-

ogy tailored to exploit SNP data from the 11 studied

© 2020 The Authors.
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progenies for identifying alleles specific to each chromo-

some structures (see Experimental procedures). These

diagnostic alleles were then searched in whole-genome

sequencing data from 155 accessions representative of

banana germplasm.

Among the 13 Musa and one Ensete species tested, the

six targeted translocated structures were only found in

M.acuminata and hybrids involving this species (Table S1).

We performed a factorial analysis with the 92M. acumi-

nata diploid accessions using a subset of 3979 SNP mark-

ers derived from whole-genome sequencing data to

highlight the distribution of each translocated chromo-

some in the M.acuminata diversity and to explore the sub-

species or genetic group from which it originated. The first

two axes explained 26 and 23%, respectively, of the diver-

sity, allowing us to separate the wild representatives of the

four main M.acuminata subspecies (i.e. banksii, zebrina,

malaccensis, and burmannica) (Figure 3, Figure S3). The

cultivars were in an intermediate or central position

between these subspecies, as expected from their intersub-

specific hybrid origin.

Among the three wild accessions identified as homozy-

gous for the 1/4 translocation, two were found within the

genetic group corresponding to ssp. malaccensis (Fig-

ure 3a), with the last one (Ambihy) being in a more inter-

mediate position toward the center.

The five wild accessions identified as homozygous for

translocations 7/8 and/or 2/8 and 1/9 were found within the

genetic group corresponding to ssp. burmannica, whereas

the four wild accessions identified as homozygous for the

3/8 translocation were found within the genetic group cor-

responding to ssp. zebrina (Figure 3b and 3c, Table S1,

Figure S3b and S3c). Accessions heterozygous for one or

more of all these translocations were mainly found among
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Figure 1. Characterization of reciprocal transloca-

tions through genetic analysis. (a, c, e) Dot-plots

with pairwise marker genetic linkage in the ana-

lyzed accession along the 11 Musa acuminata refer-

ence chromosomes (V2). Marker linkage is

represented by a color gradient from red (strong) to

dark blue (weak). Gray boxed arrows at the bottom

represent scaffolds from the V2M. acuminatarefer-

ence sequence. (a) Monyet accession, PCMo popu-

lation. (c) Pisang Madu accession, Magda

population. (e) Khae Phrae, PMK population. (b, d,

f) Schematic representation of the inferred chromo-

some structures. Gray hatched boxes indicate the

translocation breakpoint regions. Different green

and red lowercase letters refer to the position and

color of detection of the bacterial artificial chromo-

somes (BACs) used for BAC-fluorescence in situ

hybridization in Figure 2.
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cultivars or hybrids in central positions in the factorial

analysis.

No homozygous accessions were identified for the 1/7

translocation and most accessions heterozygous for this

1/7 translocation were cultivars or hybrids that were found

in a central position in the factorial analysis (Figure 3d,

Table S1, Figure S3d). One exception is the seedy Pisang

Serun 400 accession that clustered with ssp. malaccensis,

but had introgressions from other Musa origins.

Among the 52 M. acuminata diploid cultivars tested, 10

were structurally homozygous with reference chromosome

structure and the remaining were structurally heterozygous

for 1 to 4 translocations, with 34, 43, and 43% having the

1/4, 1/7, and 3/8 translocations, respectively, and 2, 4, and

2% having the 1/9, 2/8, and 7/8 translocations, respectively

(Table S1). The M.acuminata triploid cultivars tested were

structurally heterozygous for 1 to 3 translocations. Among

these 17 triploid cultivars, eight had the 1/4 translocation,

13 had the 1/7 translocation, and 14 had the 3/8 transloca-

tion, but none had 1/9, 2/8, or 7/8 translocations (Table S1).

Among the 21 interspecific hybrids tested involving

M.acuminata and M.balbisiana, the 1/4 translocation was

found in one of the two ‘AB’ cultivars, the 1/4, 1/7, and 3/8

translocations were found in five, one, and five of the 12

‘AAB’ cultivars, respectively and the 1/4 translocation in

one of the seven ‘ABB’ cultivars (Table S1).

Chromosomal recombination in structurally heterozygous

accessions

The recombination rate along chromosomes was calculated

for each diploid parent based on marker segregation in pro-

geny individuals, excluding aneuploid individuals (Figure 4,

Figure S4) (see below for aneuploid identification).

For accessions structurally heterozygous for the 1/4

translocation, no recombination was observed in the T1

fragment and the recombination rate was reduced in a

region of 4–5 Mb after the translocation breakpoint of chro-

mosome 1 (Figure 4, blue curve, Figure S4). Recombina-

tion was also reduced around the recombination

breakpoint of chromosome 4.

For accessions structurally heterozygous for the 1/9 and

2/8 translocations, no or very few recombinations were

observed in the translocated T2 segment, which was very

small in size (240 kb). A recombination reduction was

observed around translocation breakpoints of chromo-

somes 1, 8, and 9 (Figure 4, orange curve, Figure S4). Note
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(b) (c) Figure 2. Characterization of reciprocal transloca-

tions through cytogenetic analysis. Bacterial artifi-

cial chromosome (BAC)-fluorescence in situ

hybridization on chromosomes at metaphase.

Accession names are indicated on the pictures: (a)

Khi Maeo, (b and c) Pisang Madu, (d and e) Khae

Phrae, (f and g) Long Tavoy. Chromosomes were

counterstained using 40-6-diamidino-2-phenylindole

(shown in gray). Locations of the BAC on Musa

acuminata reference and translocated chromosome

structures are indicated in Figure 1; their names

and precise positions are provided in Table S3.

Arrows point to the detected reference and translo-

cated chromosome structures.

Figure 3. Translocation distributions in diploid Musa acuminata germ-

plasm. Factorial analysis was performed on 34 wild M. acuminata acces-

sions with projection of 58 diploid cultivars and hybrids along the synthetic

axes (the first two axes are represented). Accessions homozygous or

heterozygous for a translocation are represented by pink and purple dots,

respectively. (a) Translocation 1/4. (b) Translocations 1/9 and 2/8. Transloca-

tion 7/8 is indicated by hashed circles. (c) Translocation 3/8. (d) Transloca-

tion 1/7. Note that some dots are superposed; for more details, see

Figure S3.
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that recombination was suppressed in a region 1 Mb from

the translocation breakpoint of chromosome 2.

For accessions structurally heterozygous for the 3/8

translocation, recombination was highly reduced in the

inverted translocated segment T3 (Figure 4, red curve, Fig-

ure S4), with only one individual with a double recombina-

tion of 850 kb in the 158 individuals studied. However, no

recombination reduction was observed on chromosome 8.

For accessions structurally heterozygous for the 1/7

translocation, the recombination rate was highly reduced

for the entire chromosome 1 relative to structurally

homozygous accessions. This recombination reduction

was less pronounced in translocated segment T1 in which

rare recombinations were observed (Figure 4, purple

curve, Figure S4). No recombination reduction was

observed on chromosome 7.

Aneuploidy in progeny from structurally heterozygous

accessions

Analysis based on regular marker phase shifts and

sequence coverage (see Experimental procedures)

revealed 96 aneuploids out of the 1059 progeny individuals

studied (Table 1). Two triploids resulting from diploid par-

ents were also observed.

Among the aneuploid individuals, 78 were found in

diploid populations from which 74 (95%) involved chromo-

somes contributing to structural heterozygosity in the par-

ents. The presence and proportion of aneuploid individuals

varied depending on the translocation involved. No aneu-

ploid was observed in diploid progeny from a parent

heterozygous for the 3/8 translocation and very few (be-

tween 0 and 3.9%) from a parent heterozygous for the 1/4,

1/7, and 1/9 translocations. In progenies from diploid par-

ents heterozygous for the 2/8 translocation, aneuploids

represented 21–23% (Table 1, Table S2).

Analysis of these 74 aneuploids found in diploid popula-

tions through sequence coverage and in silico parental

chromosome painting showed that they could be classified

in three categories (Table 1): (i) 52 aneuploids were seg-

mental aneuploids with a euploid chromosome number

but a chromosome segment in one or three copies instead

of two. This aneuploidy resulted from a gamete that com-

bined a translocated structure and a reference structure for

only one of the chromosomes involved in a reciprocal

translocation. One exception in this category concerned a

particular individual that lacked a region from its Calcutta 4

homozygous parent at the start of chromosome 1; (ii) 17

aneuploid individuals had an additional chromosome and

one individual cumulated one additional chromosome and

a segmental aneuploidy; (iii) Five aneuploids had a com-

plex structure involving chromosome 1. Finally, the triploid

progeny (Pakid) from a diploid parent structurally heterozy-

gous for the 1/4 and 1/7 translocations and a tetraploid par-

ent structurally heterozygous for the 1/4 translocation

showed a high proportion of aneuploids (21%).

Bias in chromosomal segregation in progeny from

structurally heterozygous accessions

Segregation distortion along chromosomes was calculated

as the average proportion of euploid individuals deviating

from the expected segregation in each progeny. Depend-

ing on parental accessions, distinct chromosomes were

involved at various orders of magnitude (Figure S4). The

distorted segregations concerned structurally

Figure 4. Circos representing the impact of translo-

cations on recombination in structurally heterozy-

gous accessions. Highlighted regions indicate the

translocated chromosome segments for the 3/8

(red), 1/7 (purple), 1/4 (blue), and 1/9 and 2/8 (or-

ange) translocations. The curves represent the aver-

age recombination rate for heterozygous parents

for the 3/8 translocation (red), 1/7 translocation

(purple), 1/4 translocation (blue), and 1/9 and 2/8

translocations (orange). The green curve represents

structurally homozygous parents. The average

recombination rate, calculated as the number of

observed recombinations in 1-Mb windows divided

by the number of individuals with at least two

markers in these regions, was obtained from the

markers corrected matrix and by grouping all par-

ents structurally heterozygous for the same

structure. The inner circle represents theM.acumi-

natareference genome sequence V2, with black and

yellow boxes representing the successive scaffolds.
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heterozygous chromosomes, but not exclusively, and these

chromosomes were not always those that showed the

highest segregation distortion.

The transmission ratio of the translocated chromo-

somes versus the reference chromosomes was then calcu-

lated in each progeny, excluding aneuploids involving

translocated chromosomes. Translocated chromosomes

were found to be preferentially transmitted relative to the

reference chromosomes in 10 out of the 13 progenies ana-

lyzed (Table 1 and Table S2). For the 1/4 translocation,

translocated chromosomes were preferentially transmitted

in proportions of 71–98% in the three populations tested.

For the 1/9 translocation, this proportion was in the range

60–72% in the three populations tested. For the 2/8 translo-

cation, this preferential transmission concerned two popu-

lations (61 and 65%) out of the three tested. For the 1/7

translocation, preferential transmission (59%) was

observed in one of the two diploid populations tested.

However, the other population was very small (29 individ-

uals). For the 3/8 translocation, translocated chromosomes

were preferentially transmitted in one of the two popula-

tions tested (57%).

DISCUSSION

Translocations emerged in distinct wild Musa subspecies

with different geographical distributions

We characterized three large reciprocal translocations in

the M.acuminata species in addition to the three that we

reported previously (Martin et al., 2017; Dupouy et al.,

2019). Musa balbisiana has another reciprocal transloca-

tion involving chromosomes 1 and 3 and a large inversion

compared to the M.acuminata reference structure (Baurens

et al., 2019). No large structural variation was found in the

M.schizocarpa genome assembly compared to the

M.acuminata reference structure (Belser et al., 2018) (Fig-

ure 5).

The distribution of the six M. acuminata translocations

in 155 accessions representative of banana diversity,

including 53 diploid wild representatives and 102 diploid

and triploid cultivars or hybrids, revealed interesting fea-

tures. The distribution showed that the six translocations

were present only in M. acuminata and not in the other

Musa species tested, suggesting that they had emerged in

this species. These observations confirmed that the M.

acuminata reference sequence, which was generated from

a M.acuminata ssp. malaccensis accession, represents the

ancestral chromosome structure of M.acuminata, as sug-

gested by Dupouy et al. (2019). No large translocations

were found in ssp. banksii and most accessions from ssp.

malaccensis, suggesting that they had the ancestral struc-

ture. In addition, each translocation was found to be lim-

ited to a M.acuminata subspecies, supporting the

hypothesis that translocation 1/4 emerged in ssp. malac-

censis (Martin et al., 2017) and translocations 2/8 and 1/9 in

ssp. burmannica (Dupouy et al., 2019). In addition, our

results suggested that translocation 7/8 also emerged in

ssp. burmannica after the 1/9 and 2/8 translocation and

that translocation 3/8 emerged in ssp. zebrina. Most of

these translocations corresponded to independent events,

except for translocation 7/8 that involved the translocated

8T2 chromosome. The geographical distributions of each

translocation likely correspond to the distributions of these

subspecies that were each reported to be limited to one

continental region or island of Southeast Asia (Figure 5)

(Perrier et al., 2009).

The origin of translocation 1/7 could not be defined

because it was found only at the heterozygous state and

only in cultivars or hybrids. The sample we analyzed con-

tained representatives of all species and subspecies previ-

ously indicated as being involved in banana cultivars,

which suggested that this chromosome translocation

emerged in a so far uncharacterized Musa gene pool that

contributed to many M.acuminata cultivars. The
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distribution of this translocation in the cultivars analyzed

(including Pisang Madu and Cavendish) suggested that

this gene pool corresponds to the cryptic wild gene pool

hypothesized by Martin et al. (2020).

Shepherd (1999), in an elegant in-depth synthesis of

chromosome pairing configurations analyses in intersub-

specific hybrid accessions (Dodds, 1943; Dodds and Sim-

monds, 1948; Dessauw, 1987; Faur�e, Bakry, et al., 1993;

Shepherd, 1999), suggested the presence of nine to ten

translocations in M.acuminata distributed in seven to eight

translocation groups differing by one to four translocations

(Figure S5). Our results confirmed five of these transloca-

tion groups and allowed us to determine the chromo-

somes involved and the architectures of these

translocations while specifying their distributions. The 1/4

translocation corresponded to the ‘Northern Malayan’

group of Shepherd (1999), the 1/9 and 2/8 to the ‘Northern

1’ group, the 7/8 to the ‘Northern 2’ group and the 3/8 to

the ‘Javanese’ group. The ancestral ‘Standard’ group of

Shepherd corresponded to our ancestral structure. Interest-

ingly, chromosomal pairing observations (Shepherd, 1999)

combined with the new knowledge regarding the chromo-

somes involved, suggested that the remaining ‘East Africa’

group has a translocation involving chromosome 9 and

one of the four chromosomes 5, 6, 10, or 11 (Appendix S1).

A similar reasoning suggested that the ‘Malayan Highland’

group has a reciprocal translocation involving chromo-

some 1 and/or 4 and another chromosome. Meanwhile,

the 1/7 translocation may correspond to the eighth group

suggested by Shepherd; however, this hypothetical group

was based on only one structurally heterozygous cultivar

(Appendix S1).

Translocation distribution sheds light on banana cultivar

origins

Most cultivars analyzed here (70.5%) were structurally

heterozygous for 1 to 4M. acuminata translocations.

Translocations 1/4 and 3/8, which reflect the presence of

chromosomes from ssp. malaccensis and zebrina, were

found frequently in cultivars. This supports previous

hypotheses regarding the important contribution of both

subspecies to cultivars (Carreel et al., 2002; Perrier et al.,

2009; Perrier et al., 2011; Christelov�a et al., 2017). Con-

versely, translocations 1/9, 2/8, or 7/8, which reflect the

presence of chromosomes from ssp. burmannica, were

rarely found in cultivars, in accordance with the suspected

low contribution of this genetic group to cultivars (Carreel

et al., 1994; Perrier et al., 2011). The 1/7 translocated struc-

ture was found in many cultivated bananas, including

Cavendish banana which represents 50% of world banana

production. These data suggested that the so far uncharac-

terized wild Musa gene pool hypothesized by Martin et al.

(2020), from which this translocation probably emerged,

has contributed to many cultivars. This stresses the need

for new collecting campaigns to identify the corresponding

wild gene pool so that it could be used in banana breeding

programs.

Among the main cultivars, only the cooking-type banana

cultivars, which are interspecific cultivars (‘AAB’ and

‘ABB’), have not inherited translocated chromosomes from

M.acuminata. This is in line with the fact that their A gen-

ome is related to ssp. banksii, which has the ancestral

structure (Hippolyte et al., 2012), and suggested that their

origin is less complex than most other cultivars. In

East-African-Banana ‘AAA’, which are considered to be

mixed-type (cooking and dessert), the presence of the 3/8

translocated chromosome in two copies, originating from

ssp. zebrina, is in line with the suspected major contribu-

tion of ssp. zebrina to this subgroup (Hippolyte et al.,

2012). Conversely, triploid cultivars with the most translo-

cations (1/4, 1/7, and 3/8) are dessert-type banana cultivars,

including the world top ranking subgroup Cavendish and

its predecessor Gros Michel. This translocation pattern

agrees with the very complex origin of the Cavendish sub-

group (Martin et al., 2020) and with its suspected parents

(Raboin et al., 2005; Hippolyte et al., 2012). The Figue des-

sert-type subgroup includes the sole intensively grown

diploid cultivars, which are among the few diploid ‘AA’

cultivars that have three translocations. Finally, the combi-

nation of several chromosomal structures in many inter-

specific and inter(sub)specific cultivars (diploid and

triploid) suggested that cultivated banana origins are more

complex than previously assumed, with multiple hybridiza-

tion steps as recently proposed (De Langhe et al., 2010;

Baurens et al., 2019; Martin et al., 2020).

Impact of reciprocal translocations on genetic analysis and

breeding

Our results showed that reciprocal translocations in struc-

turally heterozygous parents generated (i) a reduction or

absence of recombination; (ii) a bias in chromosome seg-

regation in several cases; and (iii) genetic linkage between

the four chromosome regions involved in the transloca-

tions. The reduction or absence of recombination would

prevent precise localization of the genomic interval con-

taining a targeted gene or quantitative trait locus (QTL),

particularly when it concerns a large chromosome seg-

ment (case of translocations 1/4 and 3/8) or an entire chro-

mosome (case of translocation 1/7). In addition, genetic

linkage between the four chromosome regions involved in

the reciprocal translocations would generate multiple QTL

intervals on both chromosomes, again resulting in impre-

cise localization of the region involved in the targeted

traits. These phenomena would also impact GWAS (i.e.

genome-wide association study) analysis by generating a

strong population structure.

Information on the genetic determinism of traits in bana-

nas is starting to be reported (Sardos et al., 2016b; Nyine
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et al., 2019) but is still lagging far behind other crops. Once

known, this information could be combined with informa-

tion regarding chromosome structure to help design

breeding strategies. If recombination between alleles from

genes located on the same chromosome is targeted, then

parents structurally homozygous for these chromosomes

or chromosome regions should be chosen or developed.

Conversely, structurally heterozygous parents could be

used or developed to fix genetic combinations on certain

chromosomes.

In this context, the information that we have provided

on 155 accessions regarding their chromosome structures

(Table S1) will be very useful when designing genetic

determinism studies for important agronomic traits and

breeding strategies. Banana breeding programs are partic-

ularly hard to manage as a result of the low hybrid fertility

rates, as well as the large size of banana plants, requiring

large fields for selection trials. Improving their efficiency is

of high priority considering the current global outbreak of

Fusarium tropical race 4 (TR4) that is seriously endanger-

ing this crop (Dita et al., 2020) and given the massive use

of pesticides to control other diseases (de Lapeyre de Bel-

laire et al., 2010).

Reciprocal translocations and Musa evolution

In M.acuminata, we characterized six large reciprocal

translocations and detected no other types of large struc-

tural variations. This showed that reciprocal translocations

are the most frequent type of large chromosomal rear-

rangements in this species.

In the diploid progenies that we studied, not all chromo-

somal combinations were found, suggesting a reduction of

fitness of heterozygous individuals as a result of gametic

and possibly zygotic selection. Indeed, because of translo-

cations, some chromosome combinations lead to unbal-

anced gametes with a missing chromosome segment

(Martin et al., 2017). This situation appears to be lethal for

gametes in most cases, except when it involves segment

T2 (e.g. in the case of translocation 2/8). This exception is

likely a result of the very small size of this segment

(240 kb) that encompass only 36 predicted protein coding

gene models. In the sole triploid population that we ana-

lyzed, more aneuploids were observed because the

absence of a chromosome or chromosome segment in a

polyploid context may be offset by another copy, as previ-

ously proposed (Birchler, 2013; Baurens et al., 2019). It is

important to note that embryo rescue has been applied in

banana breeding and in the progenies that we analyzed. In

the absence of this process, the number of descendants

per progeny is very low, except for wild crosses within

subspecies. Crosses between subspecies may induce

endosperm formation problems, which would warrant

investigation. Vegetative multiplication, which is a prime

propagation mode in Musa species, may be a factor that

could allow the colonization of rearrangements even if

they induce a reduction of fertility in heterozygous individ-

uals.

Most of these translocations were limited in their distri-

bution in wild material to a subspecies or a subset within a

subspecies (Figure 5). Some of them were found in all the

accessions we tested, from a subspecies and may thus be

fixed. Others were only found in some accessions within a

subspecies, and so they are not fixed at the subspecies

scale and may have emerged more recently. Because

many M.acuminata subspecies are isolated from each

other and may have been even more restricted in their dis-

tribution and number in past climatic cycles, genetic drift

may be one factor that contributed to the fixation of these

translocations.

Interestingly, in many progenies, we showed a chromo-

some transmission bias that favored the translocated chro-

mosomes. This bias in translocated structure transmission

was not observed in all progeny and its intensity was vari-

able. This may be a result of the phylogenomic context of

those translocations. To allow colonization of a transloca-

tion, it could be assumed that this bias would be efficient

in the phylogenomic context in which the translocation

emerged, but might not be efficient in other phylogenomic

settings. In addition, the factors causing this bias may be

selected during colonization of the translocation but may

gradually disappear when the translocation is fixed in the

population.

Various types of mechanisms favoring the colonization

of structural rearrangements have been reported (Brown

and O’Neill, 2010). Among those factors, the reduction of

gene flow as a result of suppression of recombination

could lead to the accumulation of incompatibility alleles or

genes that confer adaptive advantages. This has been

reported particularly in chromosome inversion cases (Kirk-

patrick, 2010; Huang and Rieseberg, 2020). However,

because major recombination reductions were only associ-

ated with some of the translocations we described, this

may not be the main factor involved here. Rearrangements

may also cause an increased expression of genes previ-

ously epigenetically silenced by a position effect near the

centromere or other large blocks of heterochromatin (Dern-

burg et al., 1996). Interestingly, in amniotes, Larkin et al.

(2009) showed that regions maintained collinear during

evolution are enriched in genes involved in fundamental

development processes and biological organization, and

that regions often involved in the rearrangement break-

points are enriched in genes associated with adaptive func-

tions. This suggested that these breakpoint regions are

hotspots of evolutionary activity where genes are created,

amplified, and destroyed by a variety of molecular mecha-

nisms.

Segregation distortions were observed in several proge-

nies in regions not involved in structural variations,
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suggesting that allelic incompatibilities exist between

Musa accessions. In populations with one parent in com-

mon, because these segregation distortions did not always

involve the same regions, it could be hypothesized that

they at least partly resulted from zygotic selection. This

type of incompatibility, when located in these translocated

regions, could contribute to the fixation of some transloca-

tions. Meiotic drive mechanisms (Buckler et al., 1999) could

also be involved in the preferential transmission of translo-

cated chromosomes and would be worthy of investigation.

Finally, it could be envisaged that translocations regu-

larly occur in M.acuminata and that most of them are elim-

inated except those that are preferentially transmitted and

could thus colonize the population.

EXPERIMENTAL PROCEDURES

Plant material and sequencing

Eleven progenies from 18 distinct parents, comprising 29 to 177
individuals and representing 1059 individuals in total, were ana-
lyzed (Table 1). Ten progenies were diploid and one was triploid.
They were produced at the CIRAD research station in Guadeloupe
(French West Indies). Borli and AFPTBA00267 populations have
already been described in Hippolyte et al. (2010) and Martin et al.
(2017), respectively. All populations, except AFPTBA00267, were
genotyped-by-sequencing (GBS), with a library made at the GPTR
platform (https://www.gptr-lr-genotypage.com) using PstI and
MseI restriction enzymes and sequencing performed on the GeT-
PlaGe platform (https://get.genotoul.fr) or Genoscope (http://www.
genoscope.cns.fr) using an Illumina HiSeq sequencer (Illumina,
San Diego, CA, USA). Raw sequence reads were demultiplexed
using GBSX, version 1.2 (Herten et al., 2015). Adaptors were
removed and reads were quality trimmed using the CUTADAPT pro-
gram (Martin, 2011).

In total, 155 accessions, most of which were M.acuminata
accessions along with 21 from other species, obtained from the
Musa CRB Plantes tropicales collection in Guadeloupe (http://crb-
tropicaux.com/Portail) or the International Transit Center (ITC) in
Belgium (https://www.bioversityinternational.org/banana-geneba
nk), were analyzed (Table S1). Total DNA was sequenced using
the Illumina HiSeq 4000 platform at Genoscope.

BAC-FISH

Chromosome preparations and in situ hybridization were per-
formed as described in D’Hont et al. (2000) with modifications.
BAC clones (Table S3) from accession DH-Pahang (D’Hont et al.,
2012; http://banana-genome.cirad.fr) were labeled by random
priming with biotin-14-dUTP (Invitrogen; Thermo Fisher Scientific,
Waltham, MA, USA) or Alexa 488-5-dUTP (Life Technologies;
Thermo Fisher Scientific). Chromosome preparations were incu-
bated in RNAse A (100 ng µl–1) and pepsin (100 mg ml–1) in 0.01 M

HCl and fixed with paraformaldehyde (4%). Biotinylated probes
were immunodetected by Texas Red avidin DCS (Vector Laborato-
ries, Burlingame, CA, USA) and the signal was amplified with
biotinylated antiavidin D (Vector Laboratories). Fluorescence
images were captured using a cooled high-resolution black and
white CCD camera (ORCA; Hamamatsu, Hamamatsu City, Japan)
fitted on a DMRXA2 fluorescence microscope (Leica Microsys-
tems, Wetzlar, Germany) and analysed using VOLOCITY (Perkin
Elmer, Waltham, MA, USA).

Variant calling and vcf filtration

Variant calling was performed using the M.acuminata reference
sequence V2 (Martin et al., 2016). Two separate vcf files were
obtained: one with all segregating population individuals and a
second with the 155 banana diversity representatives. Variant call-
ing was performed using the vcfhunter toolbox (https://github.c
om/SouthGreenPlatform/VcfHunter) (Garsmeur et al., 2018) as
described in Baurens et al. (2019). Only bi-allelic sites with no
indels were selected for the analyses.

Segregating marker selection and phasing

For each population, a sub-vcf was generated and filtered, according
to the data point coverage, allele frequency, and missing data, using
the ‘vcfFilter.1.0.py’ script of the vcfhunter toolbox, as described in
Baurens et al. (2019). Segregating markers were selected according
to their segregation ratio in the progeny (1:1 for bi-parental cross or
1:2:1 for selfing) using the ‘vcf2popNew.1.0.py’ script of the vcfhun-
ter toolbox. For each parent, the marker phase was determined
using JOINMAP, version 4.1 (https://www.kyazma.nl/index.php/JoinMa
p). A new coding matrix was generated by arbitrarily reversing the
marker coding of one phase (i.e. JOINMAP coding ‘nn’ and ‘np’ markers
of Phase 1 were converted to ‘np’ and ‘nn’, respectively). This matrix
manipulation allowed us to assign the same code to each parental
haplotype and to easily visualize individual recombinations along
reference chromosomes (Martin et al., 2016).

Marker linkage and segregation analysis

Selected markers from each parent of each population were used
to calculate simple matching pairwise dissimilarities (correspond-
ing to the observed recombination frequency between pairs of
markers) and marker segregation distortions [calculated as –log10

(P-value of chi-squared test)]. These statistics were used to gener-
ate dot-plots showing marker genetic linkage and segregation dis-
tortions along reference chromosomes. These analyses were
performed using the ‘RecombCalculatorDDose.py’ and ‘Draw_-
dot_plot.py’ scripts of the vcfhunter toolbox.

Aneuploid identification

The presence of aneuploids was investigated for all progeny indi-
viduals and for each chromosome class via two complementary
approaches:

i Individuals showing unexpected parental marker distribution
patterns along chromosomes were analyzed. Regions with
both phases of one parent (i.e. the two haplotypes of a single
parent) or lacking both haplotypes of the parent were identified.
In these regions, all markers were heterozygous when both
haplotypes of one parent were present and homozygous for all
markers when both haplotypes of one parent were absent. Indi-
viduals showing these patterns were classified as aneuploid.

ii To detect aneuploids resulting from haplotype doubling (un-
detectable with the first approach), sequence coverage was
calculated and plotted along the chromosomes using ‘vcf2-
cov.py’ (included in the vcfhunter toolbox) for each progeny
individual. The obtained graphical sequence coverage repre-
sentation allowed us to identify aneuploid individuals with
complete or partial chromosome gain (increased sequence
coverage) or loss (decreased sequence coverage).

Marker correction and chromosomal recombination rate

Missing data, sequencing errors, and aneuploidy generate false
recombination breakpoints and lead to overestimation of the
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recombination rate. Aneuploid individuals were discarded and
marker correction using the ‘GBS_corrector.py’ tool of scaffhunter
(Martin et al., 2016) was applied following an iterative approach:
(i) To prevent bias associated with distinct marker numbers in
populations during correction, a subset of one marker every
100 kb was selected for each parental marker file. (ii) For each mar-
ker per individual, the central marker was corrected to the consen-
sus of its two surrounding markers (i.e. no double recombination
in a 200-kb window). (iii) Then, correction was applied with the
four surrounding markers (i.e. one or two markers could not gen-
erate double recombination in a 400-kb window). (iv) A last polish-
ing step with manual correction was applied to convert missing
data at recombination breakpoints with the marker code of the pre-
ceding marker and to convert blocks of less than four markers con-
sidered as errors and corrected with the surrounding marker codes
(i.e. no double recombinations allowed in a 400-kb window).

The recombination rate was then calculated on corrected mark-
ers using the ‘CaReRa.py’ script (included in the vcfhunter tool-
box). This script calculates, for each individual, the number and
location of parental haplotype shifts corresponding to recombina-
tion events. These values were then used to calculate an average
recombination number observed in the population in a 1-Mb win-
dow corresponding to the recombination rate. The type of cross
was taken into account for this calculation (i.e. in case of selfing,
the observed recombination rate was divided by two because the
observed recombination is the result of two independent meiosis
of the same parent). The results were visualized with CIRCOS (Krzy-
winski et al., 2009).

Tracing chromosome structures in progenies and Musa

diversity

Two distinct approaches were developed to trace the distinct chro-
mosome structures in progenies and Musa germplasm.

First, taking advantage of the absence of recombination
observed in some of the translocated regions, it was possible to
identify haplotypes corresponding to these regions (i.e. segment
T1 for translocations 1/4, most of chromosome 1 for transloca-
tions 1/7, segment T3 for translocations 3/8). Parental haplotypes
for structurally heterozygous chromosomes were constructed
using the ‘VcfAndCarto2haplo.py’ script of the vcfhunter toolbox,
from the phased matrix of markers. Haplotypes in the non-recom-
bining regions were compared in two parental accessions that
shared the same translocated chromosome structure (i.e. ‘PB1’
and ‘Pisang Lilin’ for the 1/4 translocation, ‘Pisang Madu’ and ‘IDN
110’ for the 1/7 translocation, ‘PM1’ and ‘PM2’ for the 3/8 translo-
cation) aiming to identify haplotypes corresponding to the translo-
cated chromosomes and then searched for corresponding specific
alleles in individuals (Figure S6) using the ‘HaploProp.py’ script
(added to vcfhunter toolbox).

This first approach could not be applied for 1/9 and 2/8 transloca-
tions because the involved chromosomes recombine. A second
approach based on in silico chromosome painting was performed
in the BCM, PCMo, and PCZ progenies heterozygous for 1/9 and 2/8
translocations transmitted by the ‘Calcutta 4’ parent (Table S2)
using the ‘vcf2allPropAndCov.py’ script (Baurens et al., 2019) to
identify the origin of chromosome segments surrounding break-
points. Individuals of ‘Calcutta 4’ origin around translocation break-
points would thus have the translocated chromosomes (Figure S7).
No incongruences were observed when both approaches were
applied to other populations (PMK, PMP, and PBC) (Table S2).

Specific alleles obtained from the first approach were used to
trace 1/4, 1/7, and 3/8 chromosome structures in Musa diversity
using a tailored methodology (see Methods S1, Figures S8 and

S9). Similarly, the second approach was used to trace the 1/9, 2/8,
and 7/8 chromosome structures in Musa diversity using a tailored
methodology (see Methods S1, Figure S10, Table S4).

Distribution of distinct chromosome structures in Musa

diversity

A subset of 3979 markers, corresponding to the 3092 polymor-
phous SNPs published in Dupouy et al. (2019) and including 144,
367, and 384 additional markers specific to 1/4, 1/7, and 3/8
translocated structures, respectively, was selected from the vcf
obtained from the diversity dataset. This subset was used to cal-
culate a dissimilarity matrix on M.acuminata diploid accessions
using the ‘vcf2dis.1.0.py’ script (added to the vcfhunter toolbox)
as described in Martin et al. (2017) and Dupouy et al. (2019). The
dissimilarity index was calculated as the proportion of unmatch-
ing alleles. The dissimilarity matrix was used to perform a facto-
rial analysis using R, version 3.2.4 (http://www.r-project.org).
Because the cultivar accessions originated from the wild banana
genepools, a factorial analysis was performed with the 34 wild
accessions. The 58 cultivar accessions were then projected along
the synthetic axes.
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