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Intensive coffee production is accompanied by several environmental issues, including

soil degradation, biodiversity loss, and pollution due to the wide use of agrochemical

inputs and wastes generated by processing. In addition, climate change is expected to

decrease the suitability of cultivated areas while potentially increasing the distribution

and impact of pests and diseases. In this context, the coffee microbiota has been

increasingly studied over the past decades in order to improve the sustainability of the

coffee production. Therefore, coffee associated microorganisms have been isolated and

characterized in order to highlight their useful characteristics and study their potential

use as sustainable alternatives to agrochemical inputs. Indeed, several microorganisms

(including bacteria and fungi) are able to display plant growth-promoting capacities

and/or biocontrol abilities toward coffee pests and diseases. Despite that numerous

studies emphasized the potential of coffee-associated microorganisms under controlled

environments, the present review highlights the lack of confirmation of such beneficial

effects under field conditions. Nowadays, next-generation sequencing technologies

allow to study coffee associated microorganisms with a metabarcoding/metagenomic

approach. This strategy, which does not require cultivating microorganisms, now

provides a deeper insight in the coffee-associated microbial communities and their

implication not only in the coffee plant fitness but also in the quality of the final product.

The present review aims at (i) providing an extensive description of coffee microbiota

diversity both at the farming and processing levels, (ii) identifying the “coffee core

microbiota,” (iii) making an overview of microbiota ability to promote coffee plant growth

and to control its pests and diseases, and (iv) highlighting the microbiota potential to

improve coffee quality and waste management sustainability.

Keywords: wastes and by-products management, quality, biocontrol agent, plant growth promoting agents, core

microbiota, coffee microbiota
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INTRODUCTION

The coffee tree is a perennial plant belonging to the Rubiaceae
family. The Coffea genus consists of c.a. one hundred species,
but only Coffea arabica, C. canephora, and C. liberica are used
for beverage production, the two formers representing around
70 and 30% of the world production, respectively (Davis et al.,
2006; Vieira et al., 2006). Coffea arabica is native from the
Ethiopian’s highlands, between 1,300 and 2,000m above the
sea level, whereas the origin of C. canephora is more dispersed
across the African tropical areas below 1,000m (Wintgens, 2004).
Coffee is the second most consumed beverage after water and
the most traded tropical agricultural commodity (Mussatto et al.,
2011; FAO, 2018). Around 25 million smallholder producers,
especially in developing countries, rely on the coffee sector for
their livelihood (FAO, 2018; ICO, 2019a). By order of importance,
the main producing countries in 2018/2019 are Brazil, Vietnam,
Colombia, Indonesia, Honduras, Mexico, Guatemala, and Ivory
Coast (ICO, 2019b). Although the production and consumption
have followed fairly parallel increasing trends over the past 50
years (FAO, 2015), the coffee market is periodically characterized
by an oversupply in years of optimal environmental conditions
due to innovation in cultivation techniques and planting material
leading to a price decrease trend (Ponte, 2002; Bitzer et al.,
2008). Farmers that rely on a perennial crop such coffee for
their livelihood cannot either easily change their land use or
anticipate their income. Therefore, it is difficult for them to
adapt to fluctuations in market and environmental conditions
(Amamo, 2014; Schroth and Ruf, 2014).

In order to increase yield, the modernization of the coffee
production has heavily engaged in the use of new varieties,
the reduction of shade, and the increase of plant density and
agrochemical inputs (Perfecto et al., 1996). Nowadays, coffee
management strategies fall along an intensity continuum ranging
from natural or managed forests with coffee plants grown
under tree canopy, to trees artificially planted to provide shade
up to open sunlight plantation (Moguel and Toledo, 1999;
Rice, 1999; Gobbi, 2000; Jezeer et al., 2018; Otero-Jiménez
et al., 2018). Nevertheless, the intensive coffee systems result
in serious environmental contamination due to excessive use
of inputs (DaMatta, 2004), higher soil degradation (Ataroff and
Monasterio, 1997) and are linked with a loss of biodiversity
compared to traditional coffee systems (Perfecto et al., 1996;
Guillemot et al., 2018). After harvest, coffee cherries undergo
several processing steps aiming at removing all the external part
of the fruit in order to reduce the water content to a level
compatible with storage. To do so, three different processing
techniques (dry, semi-wet, and wet) are implemented depending
on the species, the country, and the farm size (Brando, 2004;
Cleves, 2004; Schwan et al., 2012). However, coffee processing
generates several by-products and wastes that can represent
source of environmental pollution (Chanakya and De Alwis,
2004; Haddis and Devi, 2008; Beyene et al., 2012; Awoke et al.,
2016). Finally, the coffee crop is already facing the climate change.
This will decrease the suitability of the cultivated areas (Bunn
et al., 2015; Ovalle-Rivera et al., 2015) and potentially increase

the distribution and the impact of pests and diseases (Ghini et al.,
2008; Jaramillo et al., 2011; Groenen, 2018).

The adverse effects of coffee cultivation and processing
on the environment highlight the importance of developing
sustainable solutions in order to maintain growers’ livelihood
while limiting the environmental impact in the climate change
context. Thus, the benefit of smart agronomical systems, such as
agroforestry, are increasingly highlighted (Méndez et al., 2010;
De Beenhouwer et al., 2013; Vaast et al., 2016; Sauvadet et al.,
2019; Gomes et al., 2020). Moreover, some high-technology
microbial inputs (biofertilizers and biopesticides) are prone to
increase the performances of such systems (reviewed in Singh
et al., 2016a,b). Indeed, it is now well-documented that some of
the microorganisms interacting with plants are directly beneficial
by promoting their growth or indirectly by acting as antagonist
of their pathogens (Compant et al., 2005; Olanrewaju et al.,
2017). Therefore, to address the challenges associated with a
sustainable crop management, research focused on the plant-
associated microbes has been increasingly developed during the
last decades (Berg et al., 2016; Compant et al., 2019; Arif et al.,
2020). Nowadays, there is a shift in the ways of understanding
the relationships between macroorganisms and microorganisms
leading to the “holobiont” concept (Rosenberg and Zilber-
Rosenberg, 2013; Bordenstein and Theis, 2015). According to
this concept, the plants can be considered as superorganisms
composed by the plant and associated microorganisms, the
latter acting as an entire component of the host fitness by
playing a role in the mineral nutrition, hormone balance, and
adaptation capacity to biotic and abiotic stresses (Lemanceau
et al., 2017; Simon et al., 2019). The development in this
research area that describes the microbial communities has been
accompanied with the use of specific terms such as “microbiome”
and “microbiota” whose definitions are still debated (Marchesi
and Ravel, 2015; Berg et al., 2020). In the present review, the term
microbiota refers to all microorganisms interacting in a specific
environment while the term microbiome encompasses their
structural elements, molecules (e.g., DNA, metabolites) as well as
the environmental conditions associated with the microbiota as
initially described by Whipps et al. (1988) and clarified by Berg
et al. (2020).

The use of microbes in the coffee farming and industry is
still poorly exploited despite its potential capacity to reduce
the amount of chemical inputs, improve coffee quality, and
increase the farmer income through sustainable certifications
(Mithöfer et al., 2017). Moreover, engineering the plant
microbiome/microbiota and taking it into account in the
new plant breeding strategies could represent some promising
approaches to sustainably maintain the productivity (Nogales
et al., 2016; Orozco-Mosqueda et al., 2018; Arif et al., 2020).
The present review intends to (i) describe the diversity of the
microorganisms that make up the coffee microbiota by focusing
on archaea, bacteria, and fungi, (ii) summarize the current
knowledge on the use of microorganisms to promote the coffee
plant growth as well as to control the pests and diseases, and (iii)
give an overview of their potential incorporation in the coffee
processing and by-products management.
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STRATEGIES USED TO STUDY THE
COFFEE MICROBIOTA

The first mention of the microorganisms associated with coffee
plants dates from the nineteenth century and the description of
the arbuscular mycorrhizal fungi (AMF) colonizing the roots of
C. arabica and C. liberica (Janse, 1897). Since then, two major
approaches have been used to describe the coffee microbiota
diversity in combination with numerous identification strategies
allowing to identify microorganisms at varying taxonomic levels
from the highest (e.g., kingdom and phylum) to the lowest (e.g.,
genus and species).

The first one is the culture-dependent approach involving the
isolation and the purification of the microorganisms. In that
case, some basic morphological identifications using staining and
microscopy were frequently employed to identify mycorrhizal
species (Caldeira et al., 1983; Bertolini et al., 2020) or filamentous
fungi (Mislivec et al., 1983; Casas-Junco et al., 2018). The
morphology was often combined with standard biochemical tests
such as those analyzing carbon sources utilization and enzymatic
assays to identify bacteria (Pederson and Breed, 1946; Teshome
et al., 2017) and fungi including yeasts (Agate and Bhat, 1966;
Ranjini and Raja, 2019). Some more complex biochemical tests
were sometimes applied to confirm the microorganisms’ identity
such as themultilocus enzyme electrophoresis (MLEE) in the case
of nitrogen-fixing (N-fixing) bacteria (Jimenez-Salgado et al.,
1997; Fuentes-Ramírez et al., 2001), the fatty acid methyl esters
gas chromatography (FAME-GC) for bacterial isolates (Vega
et al., 2005; Silva et al., 2012; Miguel et al., 2013), and the
matrix-assisted laser desorption ionization–time of flight–mass
spectrometry (MALDI-TOF-MS) for several bacteria and yeasts
(Martins et al., 2020).

Regarding the molecular-based methods, the DNA–DNA
reassociation study was one of the first molecular methods
employed by bacterial taxonomists to describe the relatedness
between bacterial species since the 1960s (Goris et al., 2007). Up
to now, it is still the gold standard to identify new species as
well as to discriminate bacterial isolates at the lowest taxonomic
levels such as species and strain (Stackebrandt and Goebel, 1994;
Janda and Abbott, 2007; Lagier et al., 2015). This method was
successfully employed to describe some N-fixing bacterial species
associated with coffee (Jimenez-Salgado et al., 1997; Estrada-
De Los Santos et al., 2001). With the development of the first-
generation sequencing technologies, DNA sequence comparisons
contributed in an unprecedented manner to the number of
identified microbial species (Rossi-Tamisier et al., 2015; Franco-
Duarte et al., 2019).

The amplification and sequencing of simple genetic markers
such as the rDNA gene repeats like the 16S rDNA of bacteria,
as well as the 18S or 26S/28S rDNA and the ITS of fungi,
have been extensively used (Sakiyama et al., 2001; Masoud
et al., 2004; Oliveira et al., 2013; Prates Júnior et al., 2019;
Martins et al., 2020). Sometimes, some housekeeping genes like
those coding the β-tubulin (Samson et al., 2004; De Almeida
et al., 2019) and TEF-1α factor (Mulaw et al., 2010, 2013) were
sequenced for fungal identifications. The combination of several

sequences in the multilocus sequence typing was also used to
increase the reliability of the identification (Peterson et al., 2005).
More recently, the whole-genome sequencing using the next-
generation sequencing (NGS) technology was also employed
to sequence the genome of a lactic acid bacterial strain of
Pediococcus acidilactici isolated during the coffee fermentation
(Muynarsk et al., 2019).

The second methodology does not require cultivation of
the microorganisms. During its early development, it consisted
in pooling DNA extractions, amplifying some DNA markers
regions, and then sequencing them after some separation
techniques such as the denaturing gradient gel electrophoresis
(DGGE) or the cloning of single sequences. This procedure was
used to study the endophytes in coffee cherries (Oliveira et al.,
2013) and AMF (endophytic symbiotic fungi), colonizing the
roots (Mahdhi et al., 2017) as well as the bacteria and fungi
present during different coffee processing techniques (Vilela
et al., 2010; Feng et al., 2016).

Nowadays, the culturable-independent strategy is increasingly
used. The development of the NGS technologies also allows
performing metabarcoding analyses involving the amplification
and sequencing of specific marker genes to identify a whole
community in an environmental DNA sample without the need
of cloning or separation steps (Santos et al., 2020). For example,
De Beenhouwer et al. (2015a,b) were among the first to use
NGS in order to highlight the differences of AMF communities
across a gradient of coffee management intensity. Then, two
metabarcoding studies, describing the bacterial inhabitants of the
coffee rhizosphere under organic or conventional cropping, were
also performed (Caldwell et al., 2015; Rodríguez et al., 2020).
In a recent work, Lamelas et al. (2020) examined the bacterial
communities present in the C. arabica rhizosphere, in parasitic
root-knot nematodes (females and eggs) as well as in healthy
and nematode-infected coffee roots in order to determine the
specific microbial assemblages correlated with the infection by
Meloidogyne enterolobii and M. paranaensis. In another recent
study, a metabarcoding analysis also highlighted the influence
of edaphic and topographical factors on the bacterial and fungal
communities associated with both rhizosphere and cherries of
C. arabica (Veloso et al., 2020). Other authors also studied the
fungi associated with C. arabica leaves infected by Hemileia
vastatrix, the causal agent of the coffee leaf rust (CLR), with
the aim to identify some potential mycoparasites (James et al.,
2016). Recently, Fulthorpe et al. (2020) investigated both fungal
and bacterial endophytes in C. arabica roots across a climatic
gradient (temperature and humidity) in full sun and agroforestry
cropping systems in Costa Rica and Nicaragua. Futhermore, the
metabarcoding approach was also used to study the microbial
(bacteria and fungi) communities linked with several postharvest
processing steps and their impacts on coffee quality (De Bruyn
et al., 2017; De Oliveira Junqueira et al., 2019; Zhang et al., 2019b;
Elhalis et al., 2020a,b). Finally, the NGS approach involving the
random sequencing of the fragmented DNA extract (shotgun
sequencing) now allows to study the microbial diversity and to
predict associated genes’ function. This technique was used to
perform a metagenomic analysis and to decipher the functional

Frontiers in Sustainable Food Systems | www.frontiersin.org 3 December 2020 | Volume 4 | Article 607935

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Duong et al. Coffee Microbiota Review

characteristics of the microbial communities found during C.
arabica bean fermentation (Zhang et al., 2019a).

As usual, it is important to highlight that each approach
displays its own strengths and weaknesses. On the one hand, the
culture-dependent strategy allows isolating the microorganisms
and further characterizing their biochemical and functional
traits. However, it is laborious and time consuming with a
limited capacity to cover the whole diversity of microorganisms
because it is dependent of many parameters such as the
culture media employed. Indeed, the concept of “unculturable
microorganisms” was highlighted in the early twentieth century
with the finding that there was far less colony able to grow on
the medium than the number of cells observed by microscopy
(Amann, 1911 in Ghosh and Bhadury, 2019). Nevertheless,
this limit can now be bypassed with the use of various
culture media leading to the development of the “culturomics”
(Lagier et al., 2012).

On the other hand, the culture-independent approach is more
labor/cost effective in studying the diversity of microorganisms
as it allows identifying the uncultivable ones. This strategy can
also picture the relative abundance of the microorganisms in
metabarcoding studies and the potential function of associated
genes when the metagenomic strategy is used. Despite that
a bias can be introduced by the DNA extraction step when
studying the microbial relative abundance, the introduction of
an artificial community (mock) and the improvement of the
DNA extraction protocols can help to standardize the results
(Berg et al., 2020). Another constraint is the difficulty to reach
the lowest taxonomic levels because of the limited amplicons
length with the second-generation sequencers (Johnson et al.,
2019; De Corato, 2020; Santos et al., 2020). Indeed, most of
the metabarcoding studies related to coffee microorganisms’
diversity were performed with second-generation sequencing
platforms (Roche 454 and Illumina MiSeq) that allow sequencing
only a part (usually hypervariable regions) of markers such as
the 16S rDNA for bacteria and 18S rDNA for fungi or only
smaller markers such as the ITS for fungi (Caldwell et al.,
2015; De Beenhouwer et al., 2015a,b; De Bruyn et al., 2017;
De Oliveira Junqueira et al., 2019; Zhang et al., 2019a,b; Elhalis
et al., 2020a,b; Fulthorpe et al., 2020; Lamelas et al., 2020;
Rodríguez et al., 2020; Veloso et al., 2020). Moreover, it has
already been demonstrated for bacteria that the partial sequence
does not achieve the taxonomic resolution obtained with the full-
length 16S rDNA (Johnson et al., 2019). By contrast, the last
technologies (third and fourth generations) now allow generating
longer sequences compared to the advent of NGS, but this is
done at the expense of the quality due to a higher sequencing
error rate (Kulski, 2016; De Corato, 2020). Thus, James et al.
(2016) were the only ones to study the coffee microbiota using
a third-generation sequencing platform (PacBio) and concluded
that the error rate remained very low. However, the full capacity
of the platform remained unexploited as they sequenced only
the ITS1-5.8S-ITS2 region of rDNA (<1 kb). Finally, it is
important to have in mind that the data generated during
metabarcoding/metagenomic analyses need a both statistical and
bioinformatical treatment and the algorithms used still need to
be improved (Ghosh and Bhadury, 2019).

To conclude, it is worth noting that both culture-dependent
and independent approaches remain complementary. In other
words, it is of a great interest to decipher the microbial
diversity through metabarcoding/metagenomic analyses because
this allows a better understanding of the interactions between
coffee and microorganisms. Furthermore, the microbial diversity
is a relevant indicator of environmental changes. However,
it is necessary to isolate the microorganisms (e.g., to screen
beneficial capacities and also to develop some biotechnological
applications); hence, more efforts are certainly required to
develop the culturomics approaches with the coffee microbiota as
it has already been established to characterize the human (Lagier
et al., 2018) and plant microbiota (Sarhan et al., 2019).

COFFEE MICROBIOTA DIVERSITY

The main objective of the present review is to make an extensive
survey of the literature describing the microbiota associated
with coffee plants, including mainly the archaeal, bacterial,
and fungal kingdoms. The keywords used for database search
were Coffee, Coffea, microbiome, microbiota, archaea, bacteria,
fungi, yeast, endophytes, epiphyte, rhizosphere, plant growth
promotion, PGPR, PGPB, PGPF, and PGPM (plant growth
promoting rhizobacteria, bacteria, fungi, and microorganisms,
respectively), biocontrol, BCA (biocontrol agent), sustainable,
biological, postharvest, processing, fermentation, wastes, and by-
products. The databases screened were PubMed, Google Scholar,
Web of Science, and SciELO. In total, 234 publications were
found with identifications at least at the genus level and a well-
defined origin of the microorganisms (rhizosphere, episphere,
endosphere or associated with the cherries, beans, and wastes
during the postharvest processes). The full detailed dataset
describing the microorganisms’ origin (continent, country,
Coffea species, the type of colonization, the plant organs, the
type of postharvest processing), the identification strategies,
the thresholds used to filter the identifications, the accession
numbers (when available), and all the other analyses described in
the scientific articles and their potential applications are provided
in the Supplementary Table 1.

Then, the microbiota was further divided into two principal
components. The first one is the indigenous microbiota
composed of the microorganisms living in close association
with the coffee plants, in the soil at the vicinity of the roots
(rhizosphere), at the surface (episphere), and inside the plant
tissues (endosphere). The second component is related to the
postharvest microbiota that encompasses all the microorganisms
associated with the coffee cherries postharvest processing and its
by-products including the fermentation, the drying steps, and the
wastes (husks, pulps, and wastewater).

The indigenous and the postharvest coffee microbiota have
been relatively equally studied with 115 and 127 publications,
respectively (Table 1). To the best of our knowledge, the overall
coffee microbiota is covering 22 phyla, encompassing 129
orders, 607 genera, and 923 species mainly belonging to the
bacterial and fungal kingdoms. Indeed, only two archaeal phyla
(including four orders and five genera without any species
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TABLE 1 | Overview of the coffee microbiota with the numbers of phyla, orders, genera, species, and citations for the three kingdoms (archaea, bacteria, and fungi)

constituting the coffee microbiota (indigenous and postharvest).

Microbiota Kingdom Phylum Order Genus Species No. of citations

Indigenous Archaea 2 4 5 0 2

Bacteria 9 43 152 174 50

Fungi (AMF;yeasts) 4 (1;2) 53 (4;6) 248 (24;10) 380 (126;24) 72 (38;9)

Total number 15 100 405 554 115

Postharvest Bacteria 14 59 227 176 51

Fungi (yeasts) 4 (2) 34 (10) 119 (51) 270 (117) 105 (47)

Total 18 93 346 446 127

Total Archaea 2 4 5 0 2

Bacteria 15 67 279 265 97

Fungi (AMF;yeasts) 5 (1;2) 58 (4;11) 315 (24;53) 610 (126;133) 172 (38;54)

Total number 22 129 607 923 234

For the fungal kingdom, the detailed numbers of arbuscular mycorrhizal fungi (AMF) and yeasts are indicated between brackets.

identification) have been described (Supplementary Table 1).
This is not surprising since archaea were discovered relatively
recently in the microbiology history (Woese et al., 1978) and
remain quite difficult to cultivate (Song et al., 2019).

It is worth noting that our survey is a qualitative description
of the coffee microbiota diversity. However, we tried to (i) give
an insight into the relative abundances of the microorganisms
based on their occurrence frequency in the literature and (ii)
compare these results with the relative abundances identified
through metabarcoding studies (when available).

The Indigenous Coffee Microbiota
Many biotic and abiotic factors influence the plant microbiota
such as the soil physical–chemical characteristics (Fierer, 2017;
Tkacz et al., 2020), the plant compartment (rhizosphere,
episphere, and endosphere), and the organ studied (Compant
et al., 2019; Berg et al., 2020; Tkacz et al., 2020). Moreover,
the plant genotype is also believed to influence the microbial
community (Patel et al., 2015; Mina et al., 2020). However, it is
worth noting that most of the microorganisms associated with
coffee have been described in C. arabica across 170 scientific
articles while the remaining studies referred to C. canephora,
C. liberica, and C. congensis or did not specified the Coffea
species studied (Supplementary Table 1). Thereby, due to the
multifactorial influence on the microbiota, we decided to split
the indigenous microbiota in the following plant compartments,
namely, the rhizosphere, the episphere, and the endosphere.

The Coffee Rhizospheric Microbiota
The soil represents an underestimated reservoir of microbial
diversity for which a large part never been cultivated (Mendes
et al., 2013). Plants are able to influence the diversity of
microorganisms in their rhizosphere and to potentially select
from the soil the beneficial ones through the production of root
exudates (Hartmann et al., 2008; Mendes et al., 2013). As attested
by the increasing use of the term “plant growth-promoting

rhizobacteria” since its formulation by Kloepper and Schroth
(1978), the rhizosphere microorganisms represent a well-known
source of plant beneficial microorganisms able to improve the
acquisition of nutrients as well as the resistance to biotic and
abiotic stresses (Avis et al., 2008; De Zelicourt et al., 2013; Meena
et al., 2017).

In the present review, we recorded 34 publications related
to the coffee rhizospheric microbiota. Thirty-one used a
culture-dependent approach, and only three studies employed a
metabarcoding approach to describe the microorganisms in the
coffee rhizosphere (Caldwell et al., 2015; Lamelas et al., 2020;
Rodríguez et al., 2020). Based on this survey, we recorded that
the rhizosphere microbiota diversity covers 12 phyla, 40 orders,
98 genera, and 58 species with as the most studied kingdoms the
bacteria and fungi across 30 and 8 articles (Table 2).

The bacterial diversity is composed of eight phyla, 31
orders, 81 genera, and 42 species. The most encountered and
diversified phylum is the Proteobacteria with 45 genera
and 22 species described, with the Pseudomonas being
the most diversified and common genus with 11 species
identified across 14 publications. All studies that used
the NGS to describe the coffee rhizosphere prokaryotic
abundance and diversity also reported the dominance of
the Proteobacteria phylum and the Pseudomonas genus
(Caldwell et al., 2015; Lamelas et al., 2020; Rodríguez et al.,
2020). The remaining diversity is distributed among the
Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and
Verrucomicrobia phyla.

The fungal diversity comprises three phyla, eight orders, 16
genera, and 16 species, the Ascomycota phylum being the most
reported. Indeed, all the eight publications dealing with fungi in
the coffee rhizosphere described some members of this phylum
with 14 genera and 16 species identified. The most commonly
identified genera belonging to this phylum are by number
of citations Penicillium (6), Aspergillus (5), Fusarium (4), and
Trichoderma (3). Even though there is no metabarcoding analysis
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TABLE 2 | Rhizospheric archaea, bacteria, and fungi diversity including phyla, orders, and genera, as well as the numbers of species identified and citations.

Kingdom Phylum Order Genus No. of species No. of citations

Archaea Thaumarchaeota Nitrososphaerales Nitrososphaera 0 1

Bacteria Acidobacteria Acidobacteriales Edaphobacter 0 1

Bryobacterales Bryobacter 0 1

Candidatus Solibacter 0 1

Solibacter 0 1

Actinobacteria Acidothermales Acidothermus 0 1

Corynebacteriales Gordonia 1 2

Mycobacterium 0 1

Rhodococcus 1 1

Micrococcales Agromyces 0 1

Arthrobacter 0 1

Kocuria 0 1

Leifsonia 1 1

Micrococcus 0 1

Phycicoccus 0 1

Salinibacterium 0 1

Micromonosporales Salinispora 0 1

Propionibacteriales Aeromicrobium 0 1

Streptomycetales Streptomyces 0 1

Bacteroidetes Chitinophagales Filimonas 0 1

Flavobacteriales Chryseobacterium 0 3

Flavobacterium 0 4

Sphingobacteriales Pedobacter 0 1

Sphingobacterium 0 1

Firmicutes Bacillales Alicyclobacillus 0 1

Ammoniphilus 0 1

Bacillus 16 12

Brevibacillus 0 1

Lysinibacillus 0 1

Paenibacillus 0 2

Pasteuria 1 1

Terribacillus 0 1

Nitrospirae Nitrospirales Nitrospira 0 1

Planctomycetes Planctomycetales Planctomyces 0 1

Proteobacteria Aeromonadales Aeromonas 0 2

Burkholderiales Achromobacter 0 2

Acidovorax 0 1

Alcaligenes 0 2

Burkholderia 1 7

Comamonas 0 1

Janthinobacterium 0 1

Rhodoferax 0 1

Variovorax 0 1

Caulobacterales Caulobacter 0 1

Phenylobacterium 0 1

Cellvibrionales Cellvibrio 0 1

Chromatiales Rheinheimera 0 1

Enterobacterales Citrobacter 0 1

Enterobacter 1 2

Erwinia 1 2

(Continued)
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TABLE 2 | Continued

Kingdom Phylum Order Genus No. of species No. of citations

Bacteria Proteobacteria Enterobacterales Serratia 2 4

Shinella 0 1

Neisseriales Chromobacterium 0 2

Nevskiales Steroidobacter 0 2

Pasteurellales Pasteurella 0 2

Pseudomonadales Acinetobacter 0 3

Azotobacter 1 6

Chryseomonas 0 2

Pseudomonas 11 14

Rhizobiales Afipia 0 1

Agrobacterium 0 3

Beijerinckia 0 1

Bradyrhizobium 0 2

Devosia 0 1

Kaistia 0 1

Mesorhizobium 0 1

Methylotenera 0 1

Ochrobactrum 1 2

Pedomicrobium 0 1

Pseudolabrys 0 1

Rhodoplanes 0 2

Rhodospirillales Acetobacter 0 1

Azospirillum 0 2

Gluconacetobacter 3 3

Sphingomonadales Kaistobacter 0 1

Sphingobium 0 1

Sphingomonas 0 2

Vibrionales Vibrio 0 2

Xanthomonadales Stenotrophomonas 1 5

Verrucomicrobia Chthoniobacterales Candidatus Udaeobacter 0 1

Candidatus Xiphinematobacter 0 1

Verrucomicrobiales Luteolibacter 0 1

Fungi Ascomycota Chaetothyriales Cladophialophora 0 1

Cladosporiales Cladosporium 0 2

Eurotiales Aspergillus 1 5

Paecilomyces 1 1

Penicillium 2 6

Hypocreales Acremonium 0 2

Aschersonia 0 1

Cylindrocarpon 2 2

Fusarium 0 4

Trichoderma 10 3

Sordariales Chaetomium 0 2

Humicola 0 1

Basidiomycota Cantharellales Rhizoctonia 0 1

Mucoromycota Mucorales Mucor 0 1

(Yeasts) Ascomycota Saccharomycetales Candida 0 1

Saccharomyces 0 1

Archaea 1 1 1 0 1

Bacteria 8 31 81 42 30

Fungi (Yeasts) 3 (1) 8 (1) 16 (2) 16 (0) 8 (1)

Total number 12 40 98 58 34
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of the fungal community in the coffee rhizosphere, it has already
been reported for several other plant species that the rhizosphere
is dominated by fungi from the Ascomycota phylum (Wang et al.,
2017; Qiao et al., 2019; Schöps et al., 2020; Tkacz et al., 2020). By
contrast, the other fungal phyla are underrepresented with only
two isolates belonging to the Basidiomycota and Mucoromycota.

The Coffee Epiphytic Microbiota
In general, the plant epiphytic microbiota is composed of
a high diversity of microorganisms able to attach and live
on the surface of the above and belowground plant tissues
(Vorholt, 2012; Newman and Cragg, 2020). This microhabitat
requires a specific adaptation of the microorganisms to tolerate
the particular environment at the surface of the plant tissues
especially the leaves (Vorholt, 2012; Vandenkoornhuyse et al.,
2015). Furthermore, the episphere is somehow considered as a
boundary for the microorganisms limiting their establishment as
endophytes (Vandenkoornhuyse et al., 2015).

Despite the fact that the episphere represents a source
of plant beneficial microorganisms and bioactive compounds
(Vandenkoornhuyse et al., 2015; Newman and Cragg, 2020),
it is the least studied compartment of the indigenous coffee
microbiota with only 19 articles (Table 3). All the reviewed
studies used a culture-dependent approach to isolate the
microorganisms at the surface of several coffee tissues, mainly
from leaves (Vélez and Rosillo, 1995; Haddad et al., 2014) and
cherries (Agate and Bhat, 1966; Compri et al., 2016), but also
from roots (Velmourougane et al., 2000; Teshome et al., 2017)
and stems (Velmourougane et al., 2000; Waller and Masaba,
2006). Two metabarcoding studies could have pictures the
epiphytic communities at the surface of coffee leaves and cherries;
however, the authors extracted DNA from the crushed organs
making impossible to discriminate epiphytes from endophytes
(James et al., 2016; Veloso et al., 2020) (Supplementary Table 1).

The coffee epiphytic diversity is composed of seven phyla,
25 orders, 52 genera, and 42 species (Table 3). The fungal
kingdom is the most studied, encompassing 3 phyla, 15 orders,
34 genera, and 25 species. The most cited fungal phylum is the
Ascomycota followed by the Basidiomycota and Mucoromycota
and by citation number the genera Fusarium (6), Penicillium
(5), and Aspergillus (4). Regarding the bacterial kingdom, it
includes four phyla 10 orders, 18 genera, and 17 species, the
Proteobacteria phylum being the most cited and diversified
with 12 genera, 13 species and the Pseudomonas as the most
commonly isolated genus.

The Coffee Endophytic Microbiota
Endophytic microorganisms are characterized by their capacity
to colonize the internal part of the plant tissues without
causing any negative symptoms to their host (Wilson, 1995;
Hyde and Soytong, 2008). The endophytic lifestyle is therefore
characterized by microorganisms spending only a part up to their
entire life cycle within the plant tissues (Hardoim et al., 2015). It is
worth noting that some endophytes can be vertically transmitted
while other are characterized by diverse colonization patterns
(Saikkonen et al., 2004; Hardoim et al., 2015; Frank et al., 2017).
It is also believed that the internal colonization capacity allows

endophytes to be less affected by soil condition fluctuations and
by competition with other microorganisms (Santoyo et al., 2016).
In addition, endophytes were reported to display plethora of
activities that can be beneficial for the plants (Afzal et al., 2019;
White et al., 2019; Yan et al., 2019).

It must be stressed that more than half of the studies
related to coffee endophytes focused on AMF, which represent
a particular class of endophytic symbiotic fungi belonging to
the Mucoromycotina phylum and the Glomeromycotina sub-
phylum (Spatafora et al., 2016). They are qualified of mutualistic
obligate symbionts colonizing the plant roots while the external
mycelium is foraging the soil to transfer some water and
inorganic compounds (phosphorus, nitrogen, and other essential
nutrients) to their host in exchange of a carbon source (Genre
et al., 2020). Furthermore, their beneficial effects not only on the
plant nutrition but also on their tolerance to biotic and abiotic
stresses are now well-documented (Chen et al., 2018; Begum
et al., 2019).

The endosphere is the most studied compartment of the
indigenous coffee microbiota. We reviewed the content of 71
publications dealing with coffee endophytes, among which 65
employed a culture-dependent method to isolate bacterial and
fungal endophytes from various C. arabica, C. canephora, and
C. liberica tissues including cherries (Sakiyama et al., 2001; Vega
et al., 2008; Miguel et al., 2013), leaves (Santamaría and Bayman,
2005; Bongiorno et al., 2016), roots (Raviraja et al., 1996; Jimenez-
Salgado et al., 1997; Vega et al., 2006; Hoang et al., 2020; Duong
et al., 2021), seeds (Vega et al., 2006; Duong et al., 2021),
and stems (Vega et al., 2005, 2010). Basic culture-independent
strategies were used in three studies to identify archaea, bacteria,
and fungi including AMF inside the C. arabica roots and cherries
(Oliveira et al., 2013; Mahdhi et al., 2017; Prates Júnior et al.,
2019). Finally, three metabarcoding studies were also performed
to study the AMF, endophytic bacteria, and fungi associated with
C. arabica roots across some management and environmental
gradients (De Beenhouwer et al., 2015a,b; Fulthorpe et al., 2020).

The coffee endophytic microbiota encompasses 12 phyla,
70 orders, 241 genera, and 350 species (Table 4). Fungi are
the most studied microorganisms with a total 55 articles (38
related to AMF), followed by bacteria and archaea with 18
and 1 studies, respectively. The fungal kingdom is composed
of four phyla, 39 orders, 149 genera, and 253 species. In
terms of citations for the filamentous fungi and the yeasts,
the Ascomycota phylum is by far the most studied with 18
citations, followed by the Basidiomycota (4), the Cryptomycota
(1), and the Mucoromycota (1). This is also the case in terms
of richness with 102 genera and 88 species belonging to the
Ascomycota while the Basidiomycota phylum is represented by
only 21 genera with two species identified. Finally, only one genus
is reported for both the Cryptomycota and the Mucoromycota
phyla with no species identified. In the Ascomycota phylum,
the most cited genera by number of citations are Cladosporium
(9), Colletotrichum (9), Aspergillus (6), Penicillium (6), Fusarium
(6), and Trichoderma (6). It is noteworthy that Fulthorpe et al.
(2020) also reported using a metabarcoding approach these
genera in coffee roots from all the sites that they studied across
a gradient of temperature and humidity. In the same study,
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TABLE 3 | Epiphytic bacteria and fungi diversity including phyla, orders, and genera, as well as the numbers of species identified and citations.

Kingdom Phylum Order Genus No. of species No. of citations

Bacteria Actinobacteria Micrococcales Curtobacterium 1 1

Kocuria 1 1

Streptomycetales Streptomyces 0 1

Bacteroidetes Flavobacteriales Flavobacterium 0 2

Firmicutes Bacillales Bacillus 2 4

Lactobacillales Streptococcus 0 1

Proteobacteria Burkholderiales Burkholderia 2 2

Enterobacterales Cedecea 1 1

Citrobacter 1 1

Enterobacter 2 2

Pantoea 1 1

Proteus 0 1

Serratia 1 1

Yersinia 1 1

Pseudomonadales Pseudomonas 1 5

Rhodospirillales Gluconacetobacter 2 1

Xanthomonadales Stenotrophomonas 1 1

Xanthomonas 0 1

Fungi Ascomycota Botryosphaeriales Botryosphaeria 0 1

Guignardia 1 1

Cladosporiales Cladosporium 1 2

Diaporthales Phomopsis 0 1

Eurotiales Aspergillus 3 4

Penicillium 0 5

Glomerellales Colletotrichum 3 2

Hypocreales Beauveria 1 1

Calcarisporium 2 2

Cylindrocarpon 0 1

Fusarium 1 6

Lecanicillium 0 1

Simplicillium 1 2

Trichoderma 0 2

Verticillium 1 3

Ophiostomatales Sporothrix 1 2

Pleosporales Alternaria 1 1

Bipolaris 0 1

Drechslera 0 1

Epicoccum 0 1

Exserohilum 0 1

Phoma 0 1

Trichosphaeriales Nigrospora 0 2

Xylariales Pestalotia 0 1

Xylaria 0 1

Basidiomycota Cantharellales Rhizoctonia 0 1

Mucoromycota Mucorales Mucor 0 3

Rhizopus 0 1

(Yeasts) Ascomycota Pleosporales Torula 0 1

Saccharomycetales Candida 4 2

Saccharomyces 3 3

(Continued)
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TABLE 3 | Continued

Kingdom Phylum Order Genus No. of species No. of citations

(Yeasts) Ascomycota Saccharomycetales Torulopsis 1 1

Schizosaccharomycetales Schizosaccharomyces 0 1

Basidiomycota Sporidiobolales Rhodotorula 1 2

Bacteria 4 10 18 17 9

Fungi (Yeasts) 3

(2)

15

(4)

34

(6)

25

(9)

13

(4)

Total 7 25 52 42 19

these authors also highlighted that the genera Cladosporium
and Penicillium represented more than 40 and 10% of all the
fungal sequences, respectively. When focusing only on AMF, the
most cited genera are Acaulospora (34), Gigaspora (30), Glomus
(29), Claroideoglomus (18), Rhizophagus (18) Scutellospora (15),
Ambispora (13), Funneliformis (12), Sclerocystis (11), Paraglomus
(11), Archaeospora (10), and Entrophospora (10). The genera
Glomus andAcaulospora are also the most diversified with 26 and
23 different species, respectively (see also Supplementary Table 2

for the complete list of species). Moreover, several metabarcoding
studies also reported as dominant AMF associated with coffee
the generaGlomus,Acaulospora, andArchaeospora under various
management and environmental conditions (De Beenhouwer
et al., 2015a,b; Fulthorpe et al., 2020).

Finally, the coffee endophytic bacteria diversity is composed
of seven phyla, 28 orders, 88 genera, and 134 species. The most
common bacterial phyla are the Firmicutes, Proteobacteria, and
Actinobacteria with 15, 15, and 12 mentions in the literature,
respectively. These phyla are also the most diversified with
42 genera and 61 species for the Proteobacteria, 28 genera
and 39 species for the Actinobacteria, and 8 genera and 31
species for the Firmicutes. The most encountered genera in
terms of number of citations are Bacillus (14), Enterobacter (8),
Cedecea (6), Paenibacillus (6), Pseudomonas (6), and Pantoea
(5). In addition, the authors of the only metabarcoding analysis
dealing with endophytic bacteria also reported as dominant the
genera Pantoea, Enterobacter, and Pseudomonas with a relative
abundance of 17, 12, and 4% of all the bacterial sequences
obtained from all the studied locations across a climatic gradient
(Fulthorpe et al., 2020).

The Microbiota Associated With Coffee
Postharvest Processes
Before discussing the microbiota associated with postharvest
treatments, it is important to have in mind the various processes
commonly used in coffee (reviewed in Brando, 2004; Cleves,
2004; Schwan et al., 2012). Independently of the Coffea species,
all postharvest technics aim to remove all the external part
of the cherries (exocarp, mesocarp, and endocarp) in order to
produce green coffee beans to be commercialized. To do so,
dry, semi-wet, and wet processes are implemented. The first
one consists in drying the whole cherries and to mechanically
remove the external parts (hulling) to obtain the green coffee

beans. The two other methods involve the removal of the
exocarp (skin) and a part of the mesocarp (pulp) of the fresh
cherries leaving the beans with a remaining part of the mesocarp
(mucilage). In the semidry process, the beans are then dried
before the hulling (dry fermentation) while in the wet processing
the mucilage layer is removed by a fermentation step in tanks
(wet fermentation) before being dried and hulled. In the final
steps, the coffee endocarp (“parchment” or “husk”) is removed
to obtain the green coffee bean enveloped in its spermoderm
(“silverskin”). Whatever the method used, it is well-known that
the microorganisms play important roles during the postharvest
processes, especially by degrading the mucilage layer during the
fermentation (Agate and Bhat, 1966) but also by influencing
either positively (Elhalis et al., 2020a) or negatively (Ndayambaje
et al., 2019) the organoleptic quality of the final product as well
as its safety with respect to the presence of mycotoxins (Urbano
et al., 2001).

These are the reasons why the postharvest microbiota has
been extensively studied in order to describe the diversity of
microorganisms associated with the dry (Pasin et al., 2011;
Evangelista et al., 2014) the semidry (Van Pee and Castelein,
1971; Silva et al., 2013) and the wet processes (Pederson and
Breed, 1946; De Oliveira Junqueira et al., 2019). Furthermore,
microorganisms associated with the beans during the storage
(Mislivec et al., 1983; Ndayambaje et al., 2019) and with the
wastes and by-products were also studied (Aquiahuatl et al., 1988;
Pires et al., 2017; Oumer and Abate, 2018). These researches
were conducted in order to better understand the role of the
microbial component of the coffee processing and to develop
some biotechnological applications to improve coffee quality as
well as the wastes management sustainability.

Among the 127 publications related to the microbiota
present after the harvest, most of them were performed using
basic culture-dependent and independent methods. However,
seven studies used NGS to perform some metabarcoding (one
metagenomic) analyses of the bacterial and fungal communities
associated with coffee fermentation (De Bruyn et al., 2017; De
Carvalho Neto et al., 2018; De Oliveira Junqueira et al., 2019;
Zhang et al., 2019a,b; Elhalis et al., 2020a,b).

Based on the survey of these studies, we can notice that
the coffee postharvest microbiota is constituted by 18 phyla, 93
orders, 346 genera, and 446 species belonging to the bacterial
and fungal kingdoms (Table 5). The fungi (including yeast) are
the most studied microorganisms associated with the coffee
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TABLE 4 | Endophytic archaea bacteria and fungi diversity including phyla, orders, and genera, as well as the numbers of species identified and citations.

Kingdom Phylum Order Genus No. of species No. of citations

Archaea Euryarchaeota Halobacteriales Halobacterium 0 1

Halococcus 0 1

Haloferacales Haloferax 0 1

Methanobacteriales Methanobrevibacter 0 1

Bacteria Acidobacteria Acidobacteriales Acidipila 0 1

Acidobacterium 0 1

Edaphobacter 0 1

Granulicella 0 1

Actinobacteria Corynebacteriales Corynebacterium 1 1

Gordonia 0 1

Mycobacterium 3 3

Mycolicibacterium 1 1

Nocardia 5 2

Rhodococcus 1 1

Frankiales Frankia 0 1

Micrococcales Arthrobacter 2 2

Brachybacterium 1 1

Brevibacterium 1 1

Cellulomonas 3 2

Clavibacter 1 2

Curtobacterium 3 2

Humibacter 0 1

Janibacter 1 1

Kocuria 4 4

Leifsonia 1 1

Microbacterium 1 4

Micrococcus 4 2

Sinomonas 2 1

Nakamurellales Nakamurella 0 1

Pseudonocardiales Amycolatopsis 0 1

Kutzneria 0 1

Lechevalieria 1 1

Solirubrobacterales Solirubrobacter 0 1

Streptomycetales Kitasatospora 2 1

Streptomyces 1 2

Streptosporangiales Actinoallomurus 0 1

Bacteroidetes Cytophagales Cytophaga 1 1

Flavobacteriales Chryseobacterium 2 2

Chloroflexi Ktedonobacterales Ktedonobacter 0 1

Thermosporothrix 0 1

Firmicutes Bacillales Bacillus 23 14

Brevibacillus 1 3

Lysinibacillus 1 1

Ornithinibacillus 0 1

Paenibacillus 4 6

Staphylococcus 1 2

Virgibacillus 0 1

Lactobacillales Lactobacillus 1 1

Planctomycetes Gemmatales Gemmata 0 1

Pirellulales Blastopirellula 0 1

(Continued)
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TABLE 4 | Continued

Kingdom Phylum Order Genus No. of species No. of citations

Bacteria Proteobacteria Aeromonadales Aeromonas 1 1

Burkholderiales Alcaligenes 1 1

Burkholderia 7 4

Caballeronia 1 1

Comamonas 1 1

Herbaspirillum 1 1

Hydrogenophaga 1 1

Janthinobacterium 0 1

Pandoraea 1 2

Paraburkholderia 2 1

Ralstonia 0 1

Variovorax 1 1

Enterobacterales Cedecea 1 6

Citrobacter 0 2

Enterobacter 4 8

Erwinia 0 2

Escherichia 3 4

Klebsiella 4 3

Kluyvera 1 2

Pantoea 2 5

Pectobacterium 1 1

Salmonella 2 2

Serratia 1 2

Shigella 1 1

Neisseriales Chromobacterium 0 1

Nevskiales Steroidobacter 0 1

Nitrosomonadales Nitrosovibrio 0 1

Pseudomonadales Acinetobacter 4 4

Pseudomonas 9 6

Rhizobiales Agrobacterium 1 1

Bradyrhizobium 1 2

Methylobacterium 2 2

Ochrobactrum 0 2

Rhizobium 2 2

Rhodobacterales Paracoccus 1 1

Rhodospirillales Azospirillum 0 1

Gluconacetobacter 1 1

Saccharibacter 0 1

Sphingomonadales Sphingobium 1 1

Sphingomonas 0 1

Xanthomonadales Luteibacter 1 1

Stenotrophomonas 1 3

Fungi Ascomycota Botryosphaeriales Botryosphaeria 0 2

Diplodia 0 1

Guignardia 2 4

Lasiodiplodia 1 1

Macrophomina 0 2

Microdiplodia 0 1

Chaetosphaeriales Codinaeopsis 0 1

Chaetothyriales Coniosporium 0 1

(Continued)
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TABLE 4 | Continued

Kingdom Phylum Order Genus No. of species No. of citations

Fungi Ascomycota Chaetothyriales Exophiala 0 1

Knufia 0 1

Cladosporiales Cladosporium 5 9

Diaporthales Diaporthe 2 2

Ophiognomonia 0 1

Phomopsis 2 5

Dothideales Aureobasidium 1 1

Eurotiales Aspergillus 9 6

Emericella 1 1

Neosartorya 0 1

Paecilomyces 2 5

Penicillium 17 6

Talaromyces 1 1

Glomerellales Brunneochlamydosporium 0 1

Chordomyces 0 1

Colletotrichum 5 9

Glomerella 2 3

Musidium 0 1

Plectosphaerella 0 2

Helotiales Cryptosporiopsis 1 1

Hypocreales Acremonium 1 2

Beauveria 2 5

Bionectria 0 1

Clonostachys 2 3

Cylindrocarpon 0 1

Engyodontium 0 1

Fusarium 3 6

Isaria 0 1

Lecanicillium 1 1

Myrothecium 1 1

Sarocladium 1 1

Trichoderma 6 6

Verticillium 0 1

Xenomyrothecium 0 1

Incertae_sedis Phyllosticta 1 1

Triscelophorus 3 1

Magnaporthales Pseudohalonectria 1 1

Microascales Microascus 0 1

Parascedosporium 0 1

Petriella 0 1

Pseudallescheria 1 1

Mycosphaerellales Acrodontium 0 1

Cercospora 0 2

Mycocentrospora 0 1

Mycosphaerella 0 4

Staninwardia 0 1

Onygenales Lacazia 1 1

Pezizales Conoplea 0 1

Pleosporales Acrocalymma 0 1

Alternaria 2 3

Ascochyta 0 1

(Continued)
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TABLE 4 | Continued

Kingdom Phylum Order Genus No. of species No. of citations

Fungi Ascomycota Pleosporales Bipolaris 0 1

Camarosporium 0 1

Crassiparies 1 1

Dokmaia 0 1

Drechslera 1 1

Epicoccum 1 2

Leptosphaeria 0 1

Leptosphaerulina 0 1

Microsphaeropsis 0 1

Neodidymella 0 1

Neopyrenochaeta 0 1

Neosetophoma 0 1

Nigrograna 0 1

Paraconiothyrium 0 2

Paraphaeosphaeria 0 1

Periconia 0 1

Phaeosphaeria 0 1

Phoma 3 3

Rhizopycnis 0 2

Roussoella 0 1

Stagonospora 0 1

Stagonosporopsis 0 2

Sordariales Chaetomium 0 1

Lunulospora 1 1

Trichosphaeriales Khuskia 1 1

Nigrospora 0 1

Xylariales Biscogniauxia 0 1

Daldinia 0 1

Hansfordia 0 1

Hypoxylon 0 2

Idriella 0 1

Leptosillia 0 1

Libertella 0 1

Lopadostoma 0 1

Muscodor 1 1

Nemania 0 1

Nodulisporium 1 2

Pestalotia 0 1

Pestalotiopsis 1 3

Phialemoniopsis 0 1

Pseudobeltrania 0 1

Rosellinia 0 1

Xylaria 0 5

Basidiomycota Agaricales Clitocybe 0 1

Marasmius 0 1

Mycena 0 1

Schizophyllum 0 2

Auriculariales Exidiopsis 0 1

Entylomatales Tilletiopsis 0 1

Exobasidiales Meira 0 1

Hymenochaetales Fuscoporia 0 1

(Continued)
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TABLE 4 | Continued

Kingdom Phylum Order Genus No. of species No. of citations

Fungi Basidiomycota Incertae_sedis Peniophora 0 1

Microstromatales Jaminaea 0 1

Polyporales Irpex 0 1

Phlebiopsis 0 1

Trametes 0 1

Russulales Stereum 0 1

Tilletiales Tilletia 0 1

Trechisporales Sistotremastrum 1 1

Trechispora 0 1

Ustilaginales Pseudozyma 0 1

Cryptomycota Rozellida Paramicrosporidium 0 1

Mucoromycota Mucorales Gongronella 0 1

(AMF) Mucoromycota Archaeosporales Ambispora 6 13

Archaeospora 3 10

Diversisporales Acaulospora 23 34

Cetraspora 4 7

Dentiscutata 4 9

Diversispora 3 4

Entrophospora 1 10

Gigaspora 5 30

Otospora 1 1

Pacispora 1 1

Racocetra 3 5

Redeckera 1 1

Scutellospora 5 15

Sieverdingia 1 4

Claroideoglomus 5 18

Dominikia 1 1

Funneliformis 8 12

Glomus 26 29

Oehlia 1 3

Rhizoglomus 1 2

Rhizophagus 9 18

Sclerocystis 6 11

Septoglomus 3 5

Paraglomerales Paraglomus 5 11

(Yeasts) Basidiomycota Sporidiobolales Rhodotorula 1 1

Sporobolomyces 0 1

Tremellales Cryptococcus 0 2

Archaea 1 3 4 0 1

Bacteria 7 28 88 134 18

Fungi

(AMF;Yeasts)

4

(1;1)

39

(4;2)

149

(24;3)

216

(126;1)

55

(38;3)

Total 12 70 241 350 71

postharvest steps with 105 references. This kingdom includes
four phyla, 34 orders, 119 genera, and 270 species. In terms of
citations, the most encountered fungal phyla are the Ascomycota
(105), Mucoromycota (23), and Basidiomycota (19) and at the
genus level the Aspergillus (67), Penicillium (45), Fusarium (37),

Cladosporium (29), Mucor (16), and Rhizopus (16) focusing on
filamentous fungi. Indeed, the presence of filamentous fungi has
been extensively studied due to the presence of mycotoxins such
the ochratoxins and aflatoxins (Joosten et al., 2001; Rezende
et al., 2013). It is worth noting that all these toxigenic fungi
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TABLE 5 | Postharvest bacteria and fungi diversity including phyla, orders, and

genera, as well as the numbers of species identified and citations.

Kingdom Phylum Order Genus No. of

species

No. of

citations

Bacteria Acidobacteria Acidobacteriales Koribacter 0 1

Actinobacteria Actinomycetales Actinomyces 0 1

Actinopolysporales Actinopolyspora 0 1

Bifidobacteriales Bifidobacterium 0 1

Corynebacteriales Corynebacterium 2 3

Mycobacterium 0 1

Nocardia 2 1

Rhodococcus 1 3

Williamsia 0 1

Geodermatophilales Geodermatophilus 0 1

Incertae_sedis Actinobacterium 0 1

Kineosporiales Kineococcus 0 1

Kineosporia 0 1

Micrococcales Arsenicicoccus 0 1

Arthrobacter 4 7

Brachybacterium 0 2

Brevibacterium 0 3

Cellulomonas 0 2

Cellulosimicrobium 2 3

Cryocola 0 1

Curtobacterium 1 3

Dermabacter 0 1

Kocuria 0 2

Lysinimonas 1 1

Microbacterium 5 4

Micrococcus 2 2

Pseudoclavibacter 0 1

Rathayibacter 0 1

Rothia 0 1

Salana 0 1

Salinibacterium 0 1

Terracoccus 0 1

Micromonosporales Actinoplanes 0 1

Pilimelia 0 1

Propionibacteriales Aeromicrobium 0 1

Nocardioides 0 2

Pseudonocardiales Actinomycetospora 0 1

Pseudonocardia 0 2

Solirubrobacterales Patulibacter 0 1

Streptomycetales Streptomyces 1 4

Streptosporangiales Actinoallomurus 0 1

Sphaerisporangium 0 1

Armatimonadetes Fimbriimonadales Fimbriimonas 0 2

Bacteroidetes Bacteroidales Bacteroides 0 1

Dysgonomonas 0 1

Paludibacter 0 1

Parabacteroides 0 1

Prevotella 0 2

Chitinophagales Chitinophaga 0 1

Flavisolibacter 0 1

Niabella 0 1

Sediminibacterium 0 1

Segetibacter 0 1

Cytophagales Dyadobacter 0 1

Emticicia 0 1

Hymenobacter 0 2

Larkinella 0 1

Leadbetterella 0 1

(Continued)

TABLE 5 | Continued

Kingdom Phylum Order Genus No. of

species

No. of

citations

Bacteria Bacteroidetes Cytophagales Rudanella 0 1

Spirosoma 0 2

Flavobacteriales Blattabacterium 0 1

Capnocytophaga 0 1

Chryseobacterium 3 4

Flavobacterium 1 4

Fluviicola 0 1

Wautersiella 0 1

Sphingobacteriales Olivibacter 0 1

Pedobacter 0 2

Sphingobacterium 1 3

Chlamydiae Parachlamydiales Protochlamydia 0 1

Rhabdochlamydia 0 1

Cyanobacteria Nostocales Anabaena 0 1

Oscillatoriales Arthrospira 0 2

Spirulinales Halospirulina 0 1

Deinococcus-

Thermus

Deinococcales Deinococcus 0 1

Truepera 0 1

Firmicutes Bacillales Alicyclobacillus 0 1

Ammoniphilus 0 1

Bacillus 9 21

Brevibacillus 1 1

Brochothrix 0 1

Domibacillus 0 1

Exiguobacterium 0 1

Kurthia 0 1

Lysinibacillus 0 2

Paenibacillus 1 3

Pusillimonas 0 1

Rummeliibacillus 0 1

Saccharibacillus 0 2

Staphylococcus 3 4

Clostridiales Blautia 0 1

Clostridium 0 5

Coprococcus 0 1

Dorea 0 1

Faecalibacterium 0 1

Oscillospira 0 1

Ruminococcus 0 1

Erysipelotrichales Turicibacter 0 1

Lactobacillales Enterococcus 2 8

Fructobacillus 0 3

Lactobacillus 6 18

Lactococcus 2 10

Leuconostoc 5 20

Oenococcus 0 1

Pediococcus 2 6

Streptococcus 2 2

Weissella 4 9

Fusobacteria Fusobacteriales Fusobacterium 0 1

GemmatimonadetesGemmatimonadales Gemmatimonas 0 1

Nitrospirae Nitrospirales Nitrospira 0 1

Planctomycetes Gemmatales Gemmata 0 1

Planctomycetales Planctomyces 0 2

Proteobacteria Aeromonadales Aeromonas 1 3

Alteromonadales Idiomarina 0 1

Marinobacter 0 1

Bdellovibrionales Bdellovibrio 0 2

Burkholderiales Achromobacter 0 1

(Continued)
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TABLE 5 | Continued

Kingdom Phylum Order Genus No. of

species

No. of

citations

Bacteria Proteobacteria Burkholderiales Burkholderia 1 3

Comamonas 0 2

Hylemonella 0 1

Janthinobacterium 1 3

Lautropia 0 1

Paucibacter 0 1

Pigmentiphaga 0 1

Polaromonas 0 1

Polynucleobacter 0 1

Rubrivivax 0 1

Campylobacterales Arcobacter 0 1

Campylobacter 0 1

Cardiobacteriales Cardiobacterium 0 1

Caulobacterales Brevundimonas 0 1

Phenylobacterium 0 2

Cellvibrionales Cellvibrio 0 1

Enterobacterales Bandoniozyma 2 1

Buttiauxella 1 1

Cedecea 0 1

Citrobacter 3 8

Cronobacter 1 1

Enterobacter 9 18

Erwinia 5 11

Escherichia 2 7

Ewingella 1 1

Hafnia 1 3

Klebsiella 5 16

Kluyvera 2 1

Kosakonia 1 1

Leminorella 1 1

Pantoea 8 12

Pectobacterium 0 2

Plesiomonas 0 1

Proteus 2 3

Rahnella 1 2

Raoultella 0 1

Rosenbergiella 0 1

Salmonella 3 6

Serratia 4 11

Shigella 1 1

Tatumella 2 6

Trabulsiella 0 1

Yersinia 2 4

Legionellales Legionella 0 1

Methylococcales Crenothrix 0 1

Myxococcales Nannocystis 0 1

Neisseriales Chromobacterium 1 1

Eikenella 0 1

Neisseria 0 1

Nevskiales Steroidobacter 0 1

Nitrosomonadales Thiobacillus 0 1

Pasteurellales Aggregatibacter 0 1

Pasteurella 1 1

Pseudomonadales Acinetobacter 4 10

Moraxella 1 2

Pseudomonas 18 17

Rhizobiales Agrobacterium 1 3

Alsobacter 0 1

Aminobacter 0 1

Beijerinckia 0 2

(Continued)

TABLE 5 | Continued

Kingdom Phylum Order Genus No. of

species

No. of

citations

Bacteria Proteobacteria Rhizobiales Bosea 0 1

Devosia 0 1

Hyphomicrobium 0 1

Kaistia 0 1

Labrys 0 1

Mesorhizobium 0 1

Methylobacterium 0 5

Methylocella 0 1

Methylocystis 0 1

Methylopila 0 1

Methylosinus 0 1

Mycoplana 0 2

Neorhizobium 0 2

Ochrobactrum 1 4

Parvibaculum 0 2

Pedomicrobium 0 1

Rhizobium 0 2

Rhodoplanes 0 2

Xanthobacter 0 1

Rhodobacterales Falsirhodobacter 0 1

Oceanicaulis 0 1

Paracoccus 0 1

Rhodobaca 0 1

Rhodobacter 0 1

Rubellimicrobium 0 1

Rhodospirillales Acetobacter 13 7

Asaia 0 1

Azospirillum 0 2

Gluconacetobacter 1 2

Gluconobacter 8 8

Inquilinus 0 1

Kozakia 1 2

Rhodospirillum 0 1

Roseococcus 0 1

Roseomonas 0 1

Rickettsiales Wolbachia 0 1

Sphingomonadales Blastomonas 0 1

Kaistobacter 0 1

Novosphingobium 0 3

Sphingobium 0 2

Sphingomonas 1 6

Sphingopyxis 0 1

Xanthomonadales Dokdonella 0 1

Dyella 1 2

Luteibacter 0 1

Luteimonas 0 2

Stenotrophomonas 0 2

Xanthomonas 1 1

Verrucomicrobia Chthoniobacterales Chthoniobacter 0 1

Candidatus
Xiphinematobacter

0 1

Fungi Ascomycota Botryosphaeriales Microdiplodia 1 1

Capnodiales Antennariella 1 1

Capnodium 0 1

Chaetothyriales Strelitziana 0 1

Cladosporiales Cladosporium 11 29

Dothideales Aureobasidium 0 1

Eurotiales Aspergillus 48 67

Byssochlamys 1 2

Eurotium 2 8

(Continued)
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TABLE 5 | Continued

Kingdom Phylum Order Genus No. of

species

No. of

citations

Fungi Ascomycota Eurotiales Paecilomyces 0 3

Penicillium 39 45

Talaromyces 1 5

Glomerellales Colletotrichum 3 3

Plectosphaerella 1 1

Helotiales Articulospora 0 2

Botrytis 1 2

Cadophora 1 1

Monilia 0 1

Hypocreales Acremonium 0 5

Beauveria 2 2

Cylindrocarpon 1 2

Fusariella 0 1

Fusarium 18 37

Gibberella 2 4

Myrothecium 1 1

Sarocladium 1 1

Stachybotrys 0 1

Trichoderma 1 4

Microascales Microascus 0 1

Scopulariopsis 1 2

Mycosphaerellales Cercospora 0 3

Neodevriesia 0 1

Zymoseptoria 0 1

Onygenales Chrysosporium 0 1

Orbiliales Arthrobotrys 0 1

Pleosporales Alternaria 1 4

Drechslera 0 1

Epicoccum 0 1

Leptosphaerulina 1 1

Phaeosphaeria 0 1

Phoma 0 2

Pyrenochaeta 0 1

Pyrenochaetopsis 0 2

Setophoma 0 1

Stemphylium 0 1

Ulocladium 0 1

Saccharomycetales Eremothecium 0 1

Sordariales Neurospora 1 1

Trichosphaeriales Nigrospora 1 2

Xylariales Pestalotia 0 1

Pestalotiopsis 0 1

Basidiomycota Agaricostilbales Bensingtonia 0 1

Cantharellales Rhizoctonia 0 1

Leucosporidiales Leucosporidiella 0 1

Malasseziales Malassezia 0 1

Tremellales Fellomyces 1 1

Hannaella 1 4

Rhynchogastrema 0 1

Vishniacozyma 2 3

Ustilaginales Pseudozyma 0 1

Wallemiales Wallemia 1 3

Mucoromycota Mucorales Absidia 1 4

Circinella 0 1

Lichtheimia 1 1

Mucor 2 16

Rhizopus 2 16

Syncephalastrum 1 3

Zoopagomycota Zoopagales Syncephalis 0 1

(Continued)

TABLE 5 | Continued

Kingdom Phylum Order Genus No. of

species

No. of

citations

(Yeasts) Ascomycota Saccharomycetales Arxula 1 2

Barnettozyma 1 1

Blastobotrys 2 2

Brettanomyces 0 1

Candida 32 26

Citeromyces 1 1

Clavispora 1 1

Cyberlindnera 1 2

Debaryomyces 1 10

Dekkera 1 1

Dipodascus 1 2

Geotrichum 3 8

Hanseniaspora 4 16

Hyphopichia 1 3

Issatchenkia 0 1

Kazachstania 2 3

Kloeckera 1 3

Kluyveromyces 2 5

Kodamaea 1 2

Lachancea 2 2

Lodderomyces 1 1

Meyerozyma 3 12

Ogataea 1 1

Pichia 13 28

Saccharomyces 3 21

Saccharomycopsis 3 3

Saturnispora 1 1

Schwanniomyces 1 3

Sporopachydermia 1 1

Starmerella 1 3

Torulaspora 1 15

Wickerhamomyces 4 13

Williopsis 1 1

Yarrowia 1 1

Zygotorulaspora 0 1

SchizosaccharomycetalesSchizosaccharomyces1 3

Basidiomycota Cystofilobasidiales Cystofilobasidium 2 6

Filobasidiales Naganishia 0 1

Holtermanniales Holtermannia 1 2

Incertae_sedis Trichosporonoides 1 2

Leucosporidiales Leucosporidium 0 1

Sporidiobolales Rhodosporidium 1 1

Rhodotorula 7 9

Sporidiobolus 1 3

Sporobolomyces 2 3

Tremellales Bullera 1 1

Cryptococcus 4 7

Papiliotrema 2 4

Sirobasidium 0 1

Trichosporonales Apiotrichum 1 1

Cutaneotrichosporon 0 1

Bacteria 14 59 227 176 51

Fungi (yeasts) 4

(2)

34

(10)

119

(51)

270

(117)

105

(47)

Total 18 93 346 446 127

belong to the Ascomycota phylum, the Eurotiales order, and
the genera Aspergillus, Byssochlamys, and Penicillium with 23
toxigenic species identified to date (Supplementary Table 3).
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FIGURE 1 | Venn diagrams of the archaea and bacteria (blue), and fungi (red)

shared between endophytic, epiphytic, and rhizospheric compartments of the

indigenous coffee microbiota. (A) At the genus level and (B) at the species

level.

Regarding yeasts, the most cited genera are Pichia (28), Candida
(26), Saccharomyces (21), Hanseniaspora (16), Torulaspora (15),
Wickerhamomyces (13), Meyerozyma (12), and Debaryomyces
(10). Furthermore, the yeast genera Pichia and Candida are also
reported to be the dominant genera in term of relative abundance
during the coffee fermentation across all the metabarcoding
studies (De Bruyn et al., 2017; De Oliveira Junqueira et al., 2019;
Zhang et al., 2019b; Elhalis et al., 2020a,b).

Regarding the bacterial kingdom, it contains 14 phyla,
59 orders, 227 genera, and 176 species described across
51 publications. In matter of recurrence in the literature,
the most cited are the Firmicutes (38), Proteobacteria (33),
Actinobacteria (14), and the Bacteroidetes (7) at the phylum
level and the Bacillus (21), Leuconostoc (20), Lactobacillus
(18), Enterobacter (18), Pseudomonas (17), Klebsiella (16)
Pantoea (12), Erwinia (11), Serratia (11), Lactococcus (10),
and Acinetobacter (10) at the genus level. These findings are
in accordance with the relative abundances registered using
metabarcoding/metagenomic approach. Indeed, in such studies
the lactic acid bacteria (LAB), especially from the genus
Leuconostoc, and acetic acid bacteria (AAB) are often reported
to be the dominant bacteria during the fermentation along
with other bacterial genera (e.g., Bacillus, Erwinia, Pseudomonas)
belonging to the Firmicutes and Proteobacteria phyla (De
Bruyn et al., 2017; De Carvalho Neto et al., 2018; De Oliveira
Junqueira et al., 2019; Zhang et al., 2019a,b; Elhalis et al.,
2020a,b). Thus, a total of 22 species of AAB belonging to
the genera Acetobacter, Gluconacetobacter, Gluconobacter, and
Kozakia, as well as 23 species of LAB from the Bifidobacterium,
Bacillus, Clostridium, Enterococcus, Lactobacillus, Lactococcus,
Leuconostoc, Pediococcus, Streptococcus, and Weissella genera
have been described during the coffee postharvest steps (see also
Supplementary Table 4 for the complete list of species).

The Core Coffee Microbiota Related to
Specific Functional Roles
The plant “core microbiota” can be described at different
taxonomic, spatial, and temporal levels and is likely to

FIGURE 2 | Venn diagrams of the archaea and bacteria (blue), and fungi (red)

shared between at least one compartment of the indigenous coffee microbiota

and the postharvest coffee microbiota. (A) At the genus level and (B) at the

species level.

FIGURE 3 | Venn diagrams of the archaea and bacteria (blue), and fungi (red)

shared between continents. (A) At the genus level and (B) at the species level.

contain highly competitive plant colonizers representing choice
candidates for functional studies (Vandenkoornhuyse et al., 2015;
Müller et al., 2016). Furthermore, it is hypothesized that the “core
microbiota” is the result of a coevolution process in which the
microbes have been selected to achieve essential functions for
their hosts (Lemanceau et al., 2017; Compant et al., 2019).

In the framework of this review, we defined the “core coffee
microbiota” corresponding to the microbial taxa (at genus and
species levels) shared between (i) indigenous coffee microbiota
plant compartments, namely, the rhizosphere, episphere, and
endosphere (Figure 1; see also Supplementary Table 5 for the
complete list of genera and species in each partitions), (ii) at least
one indigenous coffee microbiota compartment and postharvest
coffee microbiota (Figure 2; see also Supplementary Table 6 for
the complete list of genera and species in each partitions), (iii)
the continents (Figure 3; see also Supplementary Table 7 for
the complete list of genera and species in each partitions), and
(iv) all indigenous coffee microbiota plant compartments across
all continents (Figure 4; see also Supplementary Table 8 for the
complete list of genera and species in each partitions).

Considering the taxa shared between the rhizosphere,
endosphere, and episphere, a total of 10 bacterial genera (Bacillus,
Burkholderia, Citrobacter, Enterobacter, Gluconacetobacter,
Kocuria, Pseudomonas, Serratia, Stenotrophomonas, and
Streptomyces) and three species (B. subtilis, P. putida,
S. maltophilia), as well as six fungal genera (Aspergillus,
Cladosporium, Cylindrocarpon, Fusarium, Penicillium,
and Trichoderma), and one species (A. niger), are able to
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FIGURE 4 | Venn diagrams of the bacteria (blue), and fungi (red) shared

between all compartments of the indigenous coffee microbiota across all

continents. (A) At the genus level and (B) at the species level.

colonize all the coffee plant compartments (Figure 1; see also
Supplementary Table 5). These microorganisms can therefore
be considered as those presenting the highest competitiveness
to colonize and survive in the coffee rhizosphere but also at the
surface and inside coffee plant tissues/organs.

Regarding the microorganisms associated both to coffee
plants in the field and during coffee processing, we highlighted
92 genera (32% of the total) and 37 species (12% of
the total) for bacteria, as well as 52 genera (17% of the
total) and 40 species (7% of the total) for the fungi,
shared between the postharvest microbiota and at least one
indigenous coffee microbiota compartment (Figure 2; see also
Supplementary Table 6). Furthermore, 135 bacterial and 67
fungal genera, as well as 139 bacterial and 230 fungal
species, were found only in the postharvest microbiota and
are therefore introduced during the processing steps. These
observations are particularly relevant regarding toxigenic fungi
because among the 23 species found during postharvest
processing, only 10 are member of indigenous microbiota.
Indeed, the species A. flavus and A. ochraceus are also
present as epiphytes while A. sclerotiorum, A. versicolor, A.
westerdijkiae, P. crustosum, P. olsonii, and P. oxalicum as
endophytes (Supplementary Table 3). Finally, A. niger and P.
brevicompactum are present in all coffee plant compartments.
Therefore, the presence of the other 13 toxigenic species could
be avoided by taking stricter hygiene measures in the processing
facilities and thus reducing the losses associated with fungal
toxins contaminations.

Concerning the diversity between the coffee growing
continents, 11 bacterial genera (Bacillus, Citrobacter,
Enterobacter, Enterococcus, Erwinia, Klebsiella, Leuconostoc,
Pantoea, Pseudomonas, Serratia, and Stenotrophomonas)
and eighth species (B. megaterium, B. subtilis, E. cloacae,
K. pneumoniae, L. mesenteroides, P. agglomerans, P.
fluorescens, and S. maltophilia), together with 10 fungal
genera (Aspergillus, Candida, Cladosporium, Fusarium,
Hanseniaspora, Penicillium, Pichia, Rhodotorula, Torulaspora,
and Wickerhamomyces) and six species (A. westerdijkiae, H.
uvarum, P. brevicompactum, P. citrinum, R. mucilaginosa,
and W. anomalus), are shared all across the coffee
world (Figure 3; see also Supplementary Table 7).

Thus, these microbial taxa, which are ubiquitous across
continents, are able to adapt themselves to various
environmental conditions.

Finally, a total of six bacterial genera (Bacillus, Citrobacter,
Enterobacter, Pseudomonas, Serratia, and Stenotrophomonas) and
two species (B. subtilis and S. maltophilia), as well as four fungal
genera (Aspergillus, Cladosporium, Fusarium, and Penicillium),
are present in all coffee plant compartments across all continents
(Figure 4; see also Supplementary Table 8).

To summarize, the coffee microbiota contains some
microorganisms that are either some competitive coffee
plant colonizers or able to adapt themselves to various
environmental conditions, and sometimes both. Therefore,
these microorganisms should be further studied in order
to exploit their capacities for the development of new
biotechnological applications.

Biotechnological Applications of the
Coffee Microbiota
Potential Uses as Plant Growth Promoting Agents
Coffee-associated microorganisms have been extensively studied
for their potential use as plant-growth promoting agents
including rhizospheric bacteria and fungi (Jimenez-Salgado et al.,
1997; Posada et al., 2013; Kejela et al., 2016; Perea Rojas et al.,
2019), epiphytic bacteria (Estrada-De Los Santos et al., 2001;
Teshome et al., 2017), endophytic bacteria (Jimenez-Salgado
et al., 1997; Silva et al., 2012) and AMF (Caldeira et al., 1983;
Perea Rojas et al., 2019).

The microorganisms’ capacity to promote the plant growth
is often linked with the improvement of the plant mineral
nutrition or the regulation of the plant hormonal balance
(Egamberdieva et al., 2017; Kudoyarova et al., 2019; Aeron
et al., 2020). Since nitrogen, phosphorus, and iron are among
the most limiting nutrients for plants, the use of N-fixing,
phosphorus-solubilizing (P-solubilizing), and siderophore-
producing microorganisms could represent a sustainable
strategy to reduce the reliance on chemical fertilizers (Vitousek
et al., 2002; Scavino and Pedraza, 2013; Alori et al., 2017;
Pahari et al., 2017; Prabhu et al., 2019; Smercina et al.,
2019).

Thus, in vitro screenings were often used to highlight
the microbiota potential capacity to improve the coffee plant
nutrition. For example, the ability to fix the atmospheric nitrogen
was demonstrated for some bacterial species associated with
C. arabica roots belonging to the genera Gluconacetobacter
(Jimenez-Salgado et al., 1997; Fuentes-Ramírez et al., 2001),
Burkholderia (Estrada-De Los Santos et al., 2001), Azotobacter,
Leifsonia, and Stenotrophomonas (Wedhastri et al., 2012).
Another valuable microbial process is the improvement of
nutrient availability. To this end, the capacity to solubilize the
phosphorus has been demonstrated not only for numerous
bacterial species associated with C. arabica, C. canephora, and C.
liberica roots and seeds, belonging to the genera Acinetobacter,
Aeromonas, Alcaligenes, Arthrobacter, Bacillus, Brachybacterium,
Burkholderia, Caballeronia, Cellulomonas, Chromobacterium,
Chryseobacterium, Chryseomonas, Citrobacter, Curtobacterium,
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Enterobacter, Gordonia, Kocuria, Luteibacter,Mycolicibacterium,
Nocardia, Paenibacillus, Paraburkholderia, Pasteurella,
Pseudomonas, Rhodococcus, Sphingomonas, Staphylococcus,
Stenotrophomonas, and Vibrio (Baon et al., 2012; Muleta et al.,
2013; Teshome et al., 2017; Duong et al., 2021) and also for some
fungi from the genera Aspergillus, Chaetomium, Cladosporium,
Cylindrocarpon, Fusarium, Humicola, Paecilomyces, and
Penicillium (Posada et al., 2013; Perea Rojas et al., 2019). Another
capacity is the iron mobilization through the production of
siderophores as displayed by the bacterial genera Acinetobacter,
Bacillus, Burkholderia, Caballeronia, Cellulomonas, Enterobacter,
Escherichia, Luteibacter, Mycolicibacterium, Paraburkholderia,
Lechevalieria, Mycobacterium, Pseudomonas, Nocardia,
Paenibacillus, and Rhizobium associated with roots, leaves
and seeds of C. arabica, C. canephora, and C. liberica (Silva
et al., 2012; Kejela et al., 2016; Duong et al., 2021). Finally,
the production of phytohormones (e.g., auxins) or regulators
(e.g., the ACC deaminase enzyme able to lower ethylene
level) was established for some members of the genera
Bacillus, Brachybacterium, Burkholderia, Erwinia, Escherichia,
Kocuria, Luteibacter, Methylobacterium, Mycobacterium,
Mycolicibacterium, Nocardia, Ochrobactrum, Paenibacillus,
Paracoccus, Pseudomonas, Rhizobium, Serratia, Sinomonas, and
Sphingobium (Muleta et al., 2009; Baon et al., 2012; Silva et al.,
2012; Kejela et al., 2016; Duong et al., 2021).

Even though highlighting some plant growth-promoting
capacities in vitro represents a tool to select some potential
beneficial microorganisms, the most important step to support
the use of microorganisms in coffee production is the validation
of the effects on the plants. Therefore, several in planta
experiments under various controlled conditions (nursery,
greenhouse, and phytotron) were performed to confirm the
growth-promoting effect of the microorganisms. For example,
Chattopadhyay et al. (2006) and Wedhastri et al. (2012)
demonstrated the capacity of some N-fixing bacteria to promote
the growth and the nutrient acquisition of C. canephora
seedlings. Baon et al. (2012) and Cisneros-Rojas et al. (2017)
also highlighted the increase in biomass of C. arabica and
C. canephora seedlings after the inoculation of P-solubilizing
bacteria. Furthermore, Medina et al. (2003) carried out some
C. arabica seed inoculations with an N-fixing bacterial strain
alone or in combination with some P-solubilizing bacteria
and they were able to demonstrate a plant height increase of
33% with the co-inoculation. By testing numerous endophytic
isolates (bacteria and fungi), Silva et al. (2012) showed that
only 6 bacterial strains out of 234 isolates tested significantly
promoted the growth of C. arabica seedlings while some
isolates even had a deleterious effect. Trying to understand the
mechanisms involved, the authors further characterized the most
the efficient strains and demonstrated their ability to solubilize
phosphorus, as well as to produce auxins and siderophores.
This result underlines the interest to perform some preliminary
beneficial capacity screenings before undertaking further larger
experiments with the coffee plants.

The majority of other in planta experiments in controlled
condition were focused on AMF. Several authors were able
to demonstrate the positive effect of these symbiotic fungi

on the growth of C. arabica seedlings and their nutrient
acquisition including nitrogen, phosphorus, potassium, calcium,
magnesium, and manganese (Caldeira et al., 1983; Vaast and
Zasoski, 1992; Siqueira et al., 1995; Vaast et al., 1997b; Osorio
et al., 2002). Other authors also emphasized the potential of
the AMF co-inoculation with other plant growth-promoting
microorganisms. Indeed, Pérez et al. (2002) observed an
increased AMF colonization of C. canephora seedlings when
combined with N-fixing bacteria. Moreover, González et al.
(2004) underlined a consistent increase of the AMF effects on
height and foliar area of C. arabica seedlings when N-fixing
bacteria were applied simultaneously with the mycorrhizal fungi.
Recently, Perea Rojas et al. (2019) confirmed the positive effect
of AMF on C. arabica seedling growth and showed an improved
efficiency by the addition of P-solubilizing fungi with a significant
increase of the phosphorus content in the leaves.

The last step toward the development of sustainable
alternatives to chemical fertilizers is the confirmation of
the results obtained in controlled conditions in situ. Field
experiments were exclusively conducted with AMF so far.
Siqueira et al. (1993) were among the first authors to study the
effect of mycorrhiza during 3 years in the field by inoculating
different AMF strains (alone or in combination) on C. arabica
seedlings under greenhouse conditions before to transfer the
plants in the field. At the transplantation, the authors reported
that most of the treatments were able to increase the plant
biomasses and nutrient content (P and Cu) and after 6 months
all the treatments increased the survival rate, stem diameter, and
height of the plants. Finally, when superphosphate was applied
some treatments also increased the yield with a mean increase of
74% with the most efficient one.

These beneficial effects of AMF were confirmed by several
other studies. Indeed Colozzi-Filho et al. (1994) and Trejo
et al. (2011) also observed an increase in C. arabica vegetative
growth and nutrition (P, K, and Cu) under controlled conditions
after the inoculation of different AMF isolates. These effects
were maintained after the field transplantation along with
an improvement of survival and first yield (up to 100% for
some treatments). Siqueira et al. (1998) performed a 6-year
field study during which they also confirmed the beneficial
effect of AMF inoculation during the early development of
coffee seedlings. However, after 26 months in the field the
differences between the inoculated and control plants started to
decrease and became insignificant during the following years.
This finding was explained by the fact that the non-inoculated
plants started to be colonized by indigenous mycorrhizal fungi
after the transplantation. Therefore, the authors suggested that
the AMF inoculation is really relevant only to increase the initial
development of coffee seedlings and the first productions.

These findings also highlighted the need to further
characterize the coffee-associated microorganisms especially
under field conditions in order to develop some efficient
microbiota-based alternatives to conventional fertilizers.

Potential Uses as Biocontrol Agents
Microorganisms colonizing several coffee plant compartments
have been examined for their potential use as biocontrol agents
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including bacteria and fungi isolated from the rhizosphere
(Mulaw et al., 2010; Kejela et al., 2016), the episphere (Haddad
et al., 2014; Leong et al., 2014), and the endosphere (Silva et al.,
2012; Hoang et al., 2020; Duong et al., 2021).

As for the plant growth-promoting agents, several in
vitro screenings of potential biocontrol capacities were
employed. For example, it was successfully demonstrated
that numerous bacterial isolates (from the genera: Acinetobacter,
Aeromonas, Alcaligenes, Bacillus, Brachybacterium, Brevibacillus,
Burkholderia, Cedecea, Caballeronia, Cellulomonas,
Chromobacterium, Chryseobacterium, Chryseomonas,
Curtobacterium, Enterobacter, Erwinia, Escherichia,
Flavobacterium, Herbaspirillum, Kitasatospora, Lechevalieria,
Leifsonia, Luteibacter, Microbacterium, Micrococcus,
Mycobacterium, Mycolicibacterium, Nocardia, Ochrobactrum,
Paenibacillus, Paraburkholderia, Pasteurella, Pectobacterium,
Pseudomonas, Rhizobium, Salmonella, Serratia, Sinomonas,
Streptomyces, and Vibrio) were able to produce some enzymes
including chitinases, gelatinases, lipases, and proteases (Muleta
et al., 2009; Tiru et al., 2013; Kejela et al., 2016; Asyiah et al.,
2018; Hoang et al., 2020; Duong et al., 2021) as well as some
other active compounds like HCN and siderophores (Muleta
et al., 2007; Silva et al., 2012; Tiru et al., 2013; Duong et al., 2021),
already known to be involved in the biocontrol mechanisms
(Compant et al., 2005; Saraf et al., 2014; Köhl et al., 2019).

Another approach that was extensively employed to highlight
the biocontrol capacity of bacterial and fungal isolates involved
the confrontation of the pathogen either directly with the
antagonist (dual culture method) or with the compounds
secreted in the culture medium (agar diffusion method). This
strategy was successfully employed to demonstrate the ability
of some biocontrol agents to inhibit the development of some
of the major coffee diseases such as the CLR caused by the
fungal pathogen H. vastatrix (Shiomi et al., 2006; Bettiol et al.,
2007; Silva et al., 2008, 2012; Daivasikamani and Rajanaika,
2009; Haddad et al., 2013) or the coffee wilt disease (CWD)
also known as tracheomycosis caused by the fungal pathogen
Gibberella xylarioides (Muleta et al., 2007; Mulaw et al., 2010,
2013; Tiru et al., 2013). This methodology was also used to reveal
the microorganisms biocontrol potential toward numerous
other phytopathogens including Alternaria alternata, A. solani,
Ambrosiella macrospora, Botrytis cinereal, Colletotrichum
gloeosporioides, C. coffeicola, Fusarium oxysporum, F. solani,
F. verticillioides, Glomerella sp., Macrophomina phaseolina,
Myrothecium roridum, Pestalotia longisetula, Phoma sp.,
Phytophthora capsici, P. meadii, Pythium aphanidermatum,
Rhizoctonia solani, and Sclerotinia sclerotiorum (Nair et al.,
2002; Mulaw et al., 2013; Bongiorno et al., 2016; Kejela
et al., 2016; Monteiro et al., 2017; Ranjini and Raja, 2019;
Hoang et al., 2020; Duong et al., 2021) but also some pests
such as the coffee berry borer Hypothenemus hampei (Vega
et al., 2008), the root knot nematode Meloidogyne incognita
(Mekete et al., 2009; Hoang et al., 2020), the burrowing
nematode Radopholus duriophilus, and the root lesion nematode
Pratylenchus coffeae (Duong et al., 2021), as well as some
toxigenic fungi including Aspergillus carbonarius, A. flavus,
A. niger, A. ochraceus, and A. westerdijkiae (Masoud and

Kaltoft, 2006; Ramos et al., 2010; Djossou et al., 2011; Leong
et al., 2014; De Melo Pereira et al., 2015a; De Almeida et al.,
2019).

Several in planta experiments on C. arabica grown under
controlled conditions (growth chamber and greenhouse)
confirmed the capacity of several bacterial antagonists to
decrease the spore germination, the disease severity, and the
sporulation of H. vastatrix (Shiomi et al., 2006; Bettiol et al.,
2007; Silva et al., 2008, 2012; Haddad et al., 2013, 2014; Culliao
and Barcelo, 2015). Some authors underlined the fact that the
treatment was more efficient when applied before the pathogen
inoculation (Shiomi et al., 2006; Silva et al., 2012; Haddad et al.,
2014), and other studies also demonstrated that the simultaneous
applications of some bacterial isolates were as efficient as copper
hydroxide in reducing CLR severity (Haddad et al., 2013).

In another greenhouse studies, Tiru et al. (2013) corroborated
the in vitro results obtained with some G. xylarioides (CWD)
antagonists. They showed that depending on the isolate and
timing of application (before, after, or simultaneously), the
inoculation of the biocontrol agents was able to significantly
control the pathogen with a reduction of the disease severity
comprised between 40 and 82.4%.

Nematode control capacity was also confirmed in planta.
Indeed, Asyiah et al. (2018) demonstrated that a bacterial
endophyte isolate was able to inhibit the penetration of the
migratory endoparasitic nematode, P. coffeae, in the roots of C.
arabica seedlings. Moreover, Vaast et al. (1997a) demonstrated
that the inoculation of C. arabica seedlings with AMF 4 months
before introducing P. coffeae significantly improved the tolerance
to nematodes compared to the control without AMF. Finally,
Mekete et al. (2009) confirmed the results obtained in vitro on
tomato seedlings and showed that the inoculation of several
bacterial endophytes significantly reduced the number of egg
masses and galls caused by the root knot nematodeM. incognita.

The only in situ experiments were conducted in order to
test some microbial antagonists against H. vastatrix (CLR)
under the field conditions. Vélez and Rosillo (1995) evaluated
the efficiency of an isolate of the fungus Verticillium lecanii
by spraying the antagonist 48 h before the inoculation of
CLR spores. They noticed a delayed latent period (5 days),
but the biocontrol agent failed to display a significant
protecting effect although the number of lesions was reduced
compared to the controls. More recently, Daivasikamani and
Rajanaika (2009) tested some bacterial isolates as prevention
treatment over a 2-year period and compared the results to
those obtained with a copper-based (Bordeaux mixture) and
a systemic fungicide (Triadimefon). By taking the average
of the 2 years, the authors highlighted that the two best
biocontrol agents were able to decrease the disease incidence
by 36% with B. subtilis and 28% with P. fluorescens. However,
the chemical fungicides were still more efficient with a
mean disease incidence reduction of 44% with the Bordeaux
mixture and 64% with Triadimefon. In another study, Haddad
et al. (2009) assessed the efficiency of two bacterial isolates
(Bacillus sp. and Pseudomonas sp.) compared to copper
hydroxide in controlling CLR. Depending on the rate and
time of application, the Bacillus isolate was as efficient as
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the copper-based fungicide in reducing the disease incidence
and severity.

Another interesting way to control CLR was explored with
the use fungal hyper-parasites. Indeed, the pathogenicity of
fungal mycoparasites toward H. vastatrix has already been
demonstrated on infected leaves (Carrion and Ruiz-Belin, 1988;
Gómez-De La Cruz et al., 2017). The identification of CLR fungal
hyper-parasites is therefore of prime interest and has already
been done with a standard microbiological procedure (Carrion
and Rico-Gray, 2002) as well as by a comparative metabarcoding
analysis of the fungal communities associated with healthy and
diseased coffee leaves (James et al., 2016).

Finally, the AMF abundance, diversity, and root colonization
in C. arabica infested or not with H. vastatrix in the field
were compared. Some authors reported a higher mycorrhizal
colonization and spore density as well as the prevalence of
some AMF genera in healthy plants, therefore highlighting the
potential implication of mycorrhizal fungi in CLR tolerance
(Monroy et al., 2019).

Together, these results emphasized the potential use of
microbes as biocontrol agents that might be as efficient as the
chemical pesticides and fungicides in controlling some of the
major coffee pests and diseases.

Potential to Improve the Quality and the By-product

Management
The quality of the coffee is not only influenced by several
parameters during the production such as the plant genotype,
environmental conditions, cultivation techniques and the
associated microbiota (Toledo et al., 2016; Martins et al., 2020),
but also by the type of postharvest processing (Gonzalez-Rios
et al., 2007b; Lee et al., 2015; Poltronieri and Rossi, 2016), the
storage conditions (Bucheli et al., 1998; Urbano et al., 2001;
Geremew et al., 2016), and the roasting and brewing methods
(Gonzalez-Rios et al., 2007a; Frost et al., 2020; Hu et al., 2020).

The involvement and potential use of microorganisms to
improve the coffee quality is being increasingly studied. For
example, the coffee undergoing the wet processing is often
associated with a higher cup quality and it is now established
that several groups of microorganisms especially the acetic acid
bacteria (AAB), the lactic acid bacteria (LAB), and the yeasts
are involved in the improvement of the quality by producing
several metabolites, organic acids, and volatile compounds (De
Bruyn et al., 2017; De Oliveira Junqueira et al., 2019; Zhang
et al., 2019a,b; Elhalis et al., 2020b). In a recent study, Elhalis
et al. (2020a) inhibited the yeast growth during the fermentation
and compared the bean composition as well as the quality and
sensory characteristics of coffee fermented with or without yeasts.
Using this strategy, they were able to clearly demonstrate the
implication of yeasts in the quality improvement of the wet-
processed coffee. Finally, several authors also demonstrated the
improvement of the quality after the inoculation of selected yeasts
and lactic acid bacteria strains on coffee undergoing not only the
wet (DeMelo Pereira et al., 2015b, 2016; Da Silva Vale et al., 2019;
Bressani et al., 2020) but also the semidry processing (Martinez
et al., 2017).

Another explored aspect where microorganisms could have
an impact on coffee quality is the potential control of toxigenic

fungi. Indeed, it has been demonstrated that some yeasts and
lactic acid bacteria are able to control the development and toxin
production by toxigenic fungi during artificially contaminated
coffee fermentation (Massawe and Lifa, 2010; De Melo Pereira
et al., 2015a).

It is also important tomention that coffee processing generates
several by-products including the fruit skin, pulp, parchment,
silverskin, and used coffee grounds (Iriondo-DeHond et al.,
2020). Several strategies have been explored to valorize these
wastes by using them among others as animal feed, fertilizer,
substrate for biogas/biodiesel production, compost for plants,
and edible fungi and for earthworm production (Perraud-Gaime
et al., 2000; Kondamudi et al., 2008; Ronga et al., 2016). However,
these strategies are difficult to implement because of caffeine,
tannin, and polyphenol contents that make the wastes toxic.
For these reasons, microorganisms have also been studied for
their potential utilization in detoxifying the coffee wastes and
were therefore screened for their capacity to degrade the caffeine
and tannins (Aquiahuatl et al., 1988; Roussos et al., 1995;
Brand et al., 2000; Mazzafera, 2002; Nayak et al., 2012). Finally,
microorganisms have also been explored for some industrial
applications such as the production of enzymes with by-products
such as amylases (Murthy et al., 2009), pectinases (Antier et al.,
1993; Boccas et al., 1994; Sakiyama et al., 2001; Serrat et al., 2002;
Masoud and Jespersen, 2006), proteases (Rodarte et al., 2011),
and xylanases (Murthy and Naidu, 2012).

Consequently, the application of microbes in the coffee
industry is of prime interest, not only to improve the quality of
the final product but also to achieve a better management of the
wastes and potentially add some value to by-products.

CONCLUSION AND FUTURE TRENDS

The coffee microbiota has been extensively studied and the
potential applications of the microorganisms to improve the
coffee plant fitness, either by directly promoting its growth or
by acting as pathogen antagonists are now well-documented.
Despite that a substantial work has been done in vitro and
in planta under a controlled environment, there is a lack of
assessment of the real potential of these microorganisms in situ
under field conditions. This should be included as a research
priority despite the difficulty of implementing this kind of
experimental approach for a perennial crop such as coffee,
which requires the monitoring of the plants for several years.
Consumers, producers, industries, and governments are more
and more concerned about the environmental and health issues
associated with intensive agriculture and chemical inputs. Thus,
microorganisms represent a promising alternative to improve
the sustainability not only of the coffee production but also
of the wastes’ management as well as the quality of the final
product. Despite the fact that metabarcoding studies now provide
a more global understanding of the microbial communities
associated with coffee, there are still some limitations regarding
the taxonomic resolution. However, this issue should be resolved
in the coming years with the improvement of both the sequencing
technologies and the bioinformatics treatments. Nevertheless,
this strategy remains complementary of the culture-dependent
applied research that could be improved by some culturomics
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approaches, for example. The present review provides an
extensive description of the diversity of microorganisms at both
farming and processing levels and an overview of their potential
uses. The present paper also highlights the need of further
researches in this area.
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