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Summary. How does the genetic architecture of quantitative traits evolve over time? An-
swering this question is crucial for many applied fields such as human genetics and plant
or animal breeding. In the last decades, high-throughput genome techniques have been
used to better understand links between genetic information and quantitative traits. Re-
cently, high-throughput phenotyping methods are also being used to provide huge infor-
mation at a phenotypic scale. In particular, these methods allow traits to be measured
over time, and this, for a large number of individuals. Combining both information might
provide evidence on how genetic architecture evolves over time. However, such data raise
new statistical challenges related to, among others, high dimensionality, time dependen-
cies, time varying effects. In this work, we propose a Bayesian varying coefficient model
allowing, in a single step, the identification of genetic markers involved in the variability of
phenotypic traits and the estimation of their dynamic effects. We evaluate the use of spike-
and-slab priors for the variable selection with either P-spline interpolation or non-functional
techniques to model the dynamic effects. Numerical results are shown on simulations and
on a functional mapping study performed on an Arabidopsis thaliana (L. Heynh) data which
motivated these developments.

Keywords: Arabidopsis thaliana (L. Heynh); Functional mapping; Group Spike-and-
Slab; P-Splines; Time Varying Parameters; Variable selection; Varying coefficient
models.

1. Introduction

Genetic architecture controls part of the variational properties of a phenotype. It has
been treated as constant over time while most biological processes of interest are dynamic
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by nature (Hansen, 2006). In agronomy, traits such as yield, quality or disease resis-
tance vary over seasons, age of individuals or various environmental conditions. Such
variations, so-called phenotypic plasticity, reflect the phenotypic responses of a given
genotype to a changing environment and may constitute adaptative processes. Until
recently, most analyses of dynamic traits have been based on mapping quantitative trait
loci (QTL) at each time point separately. Such analysis does not allow to take into
account dependencies between successive measures and can be less powerful to select
QTL. It also does not allow the inclusion of external information such as environmental
variables in case of identical conditions for all individuals at a given time. To overcome
these limitations, new classes of statistical models have been developed to analyze such
data. In particular, functional mapping (FM) has been proposed for QTL identification
associated with dynamic traits (Ma et al., 2002; Wu et al., 2003; Li and Sillanpää, 2015).

FM is based on simultaneously modeling the dynamic relationship between quanti-
tative traits and genotype information, and the residuals covariance matrix (Li and Wu,
2010). FM relied initially on the assumption that genetic effects are continuous functions
(Li and Sillanpää, 2013) and thus appear as a special case of varying coefficient (VC)
models (Hastie and Tibshirani, 1993). VC models encompass a broad class of statistical
approaches such as generalized additive models (Hastie and Tibshirani, 1986), structured
additive regression (STAR) models (Fahrmeir et al., 2004) or time varying parameters
(Bitto and Frühwirth-Schnatter, 2019). Parametric methods based on biological knowl-
edge have been initially developed using sigmoid or logistic functions to model the QTL
dynamic effects (Ma et al., 2002; Wu et al., 2003). But such assumptions limit the curve
flexibility and are restrictive to reflect the underlying processes. To overcome this re-
striction, non-parametric functional methods have been proposed such as those based
on Legendre polynomial (Min et al., 2011; Li et al., 2015), or B-spline (Wang et al.,
2008; Gong and Zou, 2012) interpolation techniques. While Legendre polynomial inter-
polation relies on global function bases that may lead to a decrease of goodness-of-fit
when the order of polynomials increases, especially at both ends of the curve, B-splines
use local function bases which greatly depend on the number of knots and their posi-
tions. Few knots do not provide enough flexibility to capture the variability in the data,
while many knots may lead to overfitting. To overcome such limitation, penalization
is usually applied to guarantee smoothness of the fitted curves and to limit overfitting
(O’Sullivan, 1986, 1988). In particular, P-spline interpolation (Eilers and Marx, 1996)
consisting in constraining the coefficients finite differences of adjacent B-splines, has
been widely advocated in the FM context (Li and Sillanpää, 2013; Ni et al., 2019). In
these previously mentioned approaches, FM was mainly based on the decomposition of a
particular functional basis. However, in the VC model context, non-functional methods
are an alternative approach consisting in directly modeling the varying coefficients (one
parameter per time point without assuming a decomposition in a given functional basis).
Such non-functional methods are widely used (Hastie and Tibshirani, 1993; Frühwirth-
Schnatter and Wagner, 2010), but an unrestricted estimation does not insure smoothness
and leads to overfitting problems (Bitto and Frühwirth-Schnatter, 2019; Franco-Villoria
et al., 2019). To overcome these limitations, as mentionned for P-splines, penalization
techniques are used. For example, the `2- or the `1-norm of the second differences has
been proposed to model trends in time series (Kim et al., 2009). From a Bayesian per-
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spective, such penalizations are equivalent to defining Gaussian prior distributions (Rue
and Held, 2005; Rasmussen and Williams, 2006). For example, the `2-norm of the first
or second differences correspond to first or second order random walk process priors, re-
spectively (Lang and Brezger, 2004). In a genetic context, non-functional methods have
been sparsely applied and compared to functional approaches (Li and Sillanpää, 2013;
Vanhatalo et al., 2019). In this paper, we propose to evaluate, in a Bayesian frame-
work, the impact of modeling choices focusing either on functional or non-functional
approaches, each combined with first or second random walk process priors to model
genetic effects over time.

With current technologies, such as high-throughput genotyping, the number of ge-
netic markers may be huge leading to a large set of time varying parameters. To simul-
taneously analyze all markers and phenotypes observed along time, variable selection
methods need to be performed in a FM context. In animal or plant genetics, selection is
also crucial to improve breeding programs. Classical variable selection methods focus on
a single coefficient. In FM, strategies are slightly different because all the sequences of
coefficients associated to a genetic information have to be selected simultaneously. Group
variables selection have been developed in such a context. Wang et al. (2008) extended
the SCAD penalized approach to grouped longitudinal data and (Li and Sillanpää, 2013;
Vanhatalo et al., 2019) adapted stepwise algorithms. In a Bayesian regression model,
various variable selection approaches have been proposed. In particular, the Bayesian
group LASSO with Legendre interpolation has been investigated by Li et al. (2015).
However, in high-dimensional data, this type of approach which shrinks towards zero
the effects of irrelevant variables without putting them exactly to zero, leads to biased
estimation (Fan and Li, 2001; Kyung et al., 2010) and requires fitting the model in
two steps. In time varying parameters, double Gamma prior is advocated (Bitto and
Frühwirth-Schnatter, 2019) as proposed by Pérez et al. (2017) in a linear mixed context.
In STAR models, Scheipl et al. (2012) proposed the use of a spike-and-slab prior based on
mixture of inverse gamma distributions (Ishwaran and Rao, 2005). The spike-and-slab
prior is a discrete mixture of two distributions (George and McCulloch, 1993, 1997). The
spike distribution is concentrated around zero and models coefficients associated to irrel-
evant variables while the slab distribution is flat and allows to describe the coefficients of
relevant variables (Ishwaran and Rao, 2005; Frühwirth-Schnatter and Wagner, 2010). In
this paper, we propose a group spike-and-slab prior with Dirac mass at zero allowing to
set to zero non relevant genetic information as proposed in Ghosh and Ghattas (2015);
Yang and Narisetty (2020).

To sum up, we propose to use a Bayesian P-spline interpolation or a direct approach
with first or second random walk process priors for the functional estimation of ge-
netic and environmental dynamic effects. Both methods are combined with a group
spike-and-slab prior for selection of time varying coefficients (functional effects). Our
approach allows, in a single step, to estimate complex functions associated to varying
coefficients and to select time-varying QTLs associated to phenotypic traits. Section
2 presents the full hierarchical Bayesian models. In section 3, model performances are
tested on simulations. Numerical results show that combining penalised functional or
non-functional method with a group spike-and-slab prior outperforms existing methods
such as B-splines or Legendre interpolation combined with group-LASSO or even with
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group spike-and-slab prior. Our approach compared to that of Vanhatalo et al.’, also
show better performances notably in terms of selection. Finally, section 4 is dedicated to
a real case study, investigating the dynamic genetic architecture of shoot growth natural
variations for Arabidopsis thaliana (L. Heynh) under two water availability conditions.

2. Statistical Models

Let yitk be the phenotype of individual i = 1, . . . , n at time tk (k = 1, . . . , T ). Let

t = (t1, . . . , tT )′ the time vector and el =
(
elt1 , . . . , e

l
tk , . . . , e

l
tT

)′
be L known environ-

mental variables varying over time but common to all individuals at any given time tk.
Finally let us assume that genotype information, xij , j = 1, . . . , J , is available for each
individual at each of J loci. J is potentially much larger than n. Note that markers are
constant over time but vary between individuals. We propose to model the phenotypes
according to environmental conditions and genotypes using the following multivariate
varying coefficient (VC) model:

yitk = α+ µ(tk) +

L∑
l=1

fl(e
l
tk) +

J∑
j=1

xijβj(tk) + εitk . (1)

α is the intercept, µ and fl are real smooth functions of time and of the lth environmental
variable respectively. Note that for the model to be identifiable (Hastie and Tibshirani,
1986), µ and fl have to be centered. The effect βj of the jth marker is assumed to
be an unknown real smooth function of time. εi = (εit1 , . . . , εitT )′ is a T -dimensional
vector of residuals associated to individual i assumed to follow a multivariate Gaussian
distribution, N (0, σ2Γ), with σ2 the residual variance and Γ the T×T correlation matrix
defined by a first-order autoregressive (AR(1)) structure with unknown parameter ρ
(Fahrmeir and Kneib, 2011).

Several functional methods have been proposed to approximate unknown functions
(De Boor et al., 1978). Among them, B-spline interpolation is widely used. It consists
of writing an unknown function h as a linear combination of B-spline basis functions:

h(x) =

df∑
r=1

Br(x, ν) cr

where (B1(., ν), . . . , Bdf (., ν)) is the collection of the νth-degree B-spline basis functions
defined using K knots leading to (K − 1) ordered subintervals on the x-domain and
c = (c1, . . . , cdf )′ is a vector of unknown B-spline coefficients. df is equal to K + ν and
is called the degree of freedom of the B-spline basis. In the following ν and K will be
assumed to be equal for all bases. Let us denote Bx the T ×df dimensional matrix where
Bx
i,r = Br(xi, ν). For h(.) functions to be centered, Bx and c require to be reparametrized

(see appendix A.1). In the following, B̃x and c̃ denote the re-parametrized versions of
Bx and c. An accurate use of the B-spline approach strongly depends on the number of
knots and the choice of their positions (Eilers and Marx, 1996). A misspecification may
lead to over- or under- fits. To overcome these limitations and to introduce smoothness,
penalized B-splines (P-splines) have been developed (Eilers and Marx, 1996). The idea
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is to penalize the first or second order finite differences in adjacent spline regression
coefficients.

Non-functional method presents an alternative to B-spline interpolation. It consists
in the discretization of coefficient functions (β1(t), . . . , βJ(t)) leading to the estimation
of T × J parameters as in a standard multivariate regression model (Li and Sillanpää,
2013). For smoothness reasons and due to the huge number of parameters, penalized
least squares methods have been proposed consisting, as already used in P-spline context,
to constrain the first or second differences of successive time regression parameters (Kim
et al., 2009; Bruder et al., 2011; Bitto and Frühwirth-Schnatter, 2019; Franco-Villoria
et al., 2019).

Finally, using either functional or non-functional methods, equation (1) can be written
for individual i over time as

yi = α1 + B̃tm̃+

L∑
l=1

B̃el ãl +

J∑
j=1

xijZbj + εi, εi ∼ N (0, σ2Γ) (2)

where yi = (yit1 , . . . , yitT )′ corresponds to the T -dimensional vector of phenotypic values
for individual i, m̃ and ãl are the (df − 1)-dimensional vectors of B-spline coefficients
associated to the smooth functions of time and of the lth environmental variable.

In case of B-spline or P-spline approaches, Z is then equal to Bt and bj are the
df -dimensional vectors of coefficients associated to the jth marker. Otherwise, Z ≡ IdT
where IdT is the T × T identity matrix and bj = (βjt1 , . . . , βjtT )′.

From a Bayesian perspective, penalties based on the first or second order finite differ-
ences on adjacent coefficients correspond to a multivariate first or second order random
walk prior (Lang and Brezger, 2004). In the following, prior distribution for m̃, ãl or bj
will be assumed to be:

N
(
0, τu(K)−1

)
(3)

where τu is a variance parameter specific for each group of unknown parameters: τm for
m̃, τal for ãl, l = 1, . . . , L, and τbj for bj , j = 1, . . . , J . K is equal to D̃′mD̃m, D̃′alD̃al ,
l = 1, . . . , L, or D′D, where D is the matrix representation of the first and second order
finite differentiating operator, D̃m and D̃al are the associated re-parametrized versions
of D (see appendix A.1 for more details).

In order to simultaneously select relevant markers j and estimate their associated
effects bj , group variable selection has to be performed. In a Bayesian regression model,
various variable selection approaches have been proposed (O’Hara et al., 2009). In
particular, the spike-and-slab prior has been widely and efficiently used (Malsiner-Walli
and Wagner, 2011; Ghosh and Ghattas, 2015). The spike-and-slab prior is a discrete
mixture of two distributions (George and McCulloch, 1993, 1997). The allocation to
both components is controlled by a latent indicator variable γj that follows a Bernoulli
distribution. Thus, if γj = 1 the coefficient will be assigned to the slab part and the
variable will be included in the model. To simultaneously select molecular markers and
estimate their effects, we propose to combine the random walk prior (see eq. (3)) of
the coefficients with a spike-and-slab prior. In our context, we consider each vector of
coefficients as a group and we specify on each vector a multivariate spike-and-slab prior
with the random walk prior on the slab component and a Dirac mass at zero (Ghosh
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and Ghattas, 2015; Yang and Narisetty, 2020) leading to the following prior:

bj |τbj , γj , σ2 ∼ γjN (0, σ2(τbjD
′D)−1) + (1− γj)δ(0), j = 1, . . . , J (4)

τbj ∼ IG(s, r), γj ∼ Ber(π) and π ∼ Beta(1, 1)

where IG(s, r) is the Inverse Gamma distribution with shape and rate respectively equal
to s and r. σ2 is the residual variance, π is the a priori inclusion probability and
Beta(1, 1) denote the Beta distribution.

Finally, the dynamic QTL mapping model can be expressed as the following Bayesian
hierarchical model:

yi|α, m̃, ã, b, ρ, σ2 ∼ N (α+ B̃tm̃+

L∑
l=1

B̃el ãl +

J∑
j=1

xijZbj , σ
2Γ)

α ∼ U(−∞,∞)

m̃|τm ∼ N (0, (τmD̃
′
mD̃m)−1)

ãl|τal ∼ N (0, (τalD̃
′
alD̃al)

−1), l = 1, . . . , L

bj |τbj , γj , σ2 ∼ γjN (0, σ2(τbjD
′D)−1) + (1− γj)δ(0), j = 1, . . . , J

τm, τal and τbj ∼ IG(0.1, 0.1), l = 1, . . . , L and j = 1, . . . , J

γj ∼ Ber(π), j = 1, . . . , J and π ∼ Beta(1, 1)

ρ ∼ U(−1,1), σ2 ∼ IG(0.1, 0.1) (5)

where U(−1,1) denotes the uniform distribution on the interval −1 to 1. The use of a
Dirac spike may imply reducibility of the Markov chain (γj = 0 implies bj = 0 and vice
versa). To avoid it, it is essential to draw γ from the marginal posterior integrating over
the regression coefficients b subject to selection, see Malsiner-Walli and Wagner (2011),
Geweke (1996) and Smith et al. (1996). The details of the integration are provided
in appendix A.2. This Bayesian hierarchical model (eq. (5)) relies on conditionally
conjugate distributions. It allows analytical integration over the regression effects b and
thus the development of an efficient Gibbs sampling algorithm (Gilks et al., 1995). The
full conditional distributions for the group spike-and-slab prior are given in appendix
A.3 and are available on https://github.com/Heuclin/VCGSS.

3. Simulations

This section aims to investigate through simulations the performance of the proposed
models, by varying different parameters such as the degree of freedom, the residual vari-
ance, the number of observations (time steps and individuals), the number of markers,
the correlation among them and considering several functional methods (Legendre poly-
nomials (L), B-spline (BS) or P-splines with first or second order difference penalty (PS 1
/ PS 2)) and non-functional methods (with first or second order difference penalty (RW 1
/ RW 2)) combined with two variable selection priors (group spike-and-slab (GSS) or
Bayesian group Lasso (BGL) (Kyung et al., 2010) (see appendix A.3 and A.4 for the full
conditional distributions)). We also planned to test the approach proposed by Scheipl

https://github.com/Heuclin/VCGSS
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et al. (2012) and implemented in the spikeSlabGAM R-package (Scheipl, 2011). Unfor-
tunately, from computational and modeling perspectives, this was not possible. This
method requires indeed data transformation, such as vectorization of matrices and Kro-
necker products, leading to manipulation of huge matrices, which is particularly the
case in the longitudinal context. For example, assuming n = 300 individuals, T = 100
time points, and J = 100 genetic markers, the algorithm crashes on a high performance
computer (28 cores, bi processor Intel Xeon E5-2680 v4 2,4 Ghz with 128 Go of RAM).
In addition, spikeSlabGAM does not permit to consider residual dependencies within
each individual to be structured over time, that may lead to spurious selection (Li and
Sillanpää, 2013). In our paper, an AR(1) is used. Assuming independence impacts the
variable selection process leading in particular to an increase of false positives. Further-
more, we also compare our different approaches with Vanhatalo et al.’s method that
models the functional effects βj with Gaussian process prior using a Mátern covariance
function combined with a stepwise selection approach and taking also into account an
AR(1) residual covariance structure. We will refer to this approach as S-GP. Note that in
a Bayesian framework, the Legendre interpolation combined with Bayesian group Lasso
has been already explored by Li and Sillanpää (2015).

In the following, whatever the number of markers J , only the first four markers are
non-zeros and their functional effects are defined as follows:

β1(t) = 4− 0.08t,

β2(t) = cos

(
π

15
(t− 25)

)
+

t

50
,

β3(t) =
60

25 + (t− T
2 )2

β4(t) = 2 ∗ 1t≤T
3

+ 0 ∗ 1 2T

3
<t≤ 2T

3
+ 1t> 2T

3
. (6)

The overall mean function is set to:

µ(t) = 1 + sin

(
πt

20

)
. (7)

Only one environmental variable is considered:

e1t = cos

(
π

2
(t− 25)

)
+

1

50
t (8)

and its effect on phenotypes is defined for all t as

f1(e
1
t ) = 0.5e1t + 0.3(e1t )

2. (9)

The ratio of false positives (FP) and false negatives (FN) as well as Matthews correlation
coefficient (MCC, Matthews (1975)) are recorded to evaluate the selection performances.
For the GSS prior, a variable is assumed to be selected if its marginal posterior prob-
ability is greater than 0.5. For the BGL prior, a variable is selected if zero does not
belong to the credible interval of at least one B-spline or Legendre coefficient. The es-
timation quality is assessed using the root mean square error (RMSE). For the additive
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part α+ µ(t) + f1(e
1
t ), the error is jointly calculated for identifiability reasons. For ease

of comparison, RMSEs calculated for each βj , j = 1, . . . , 4, are summed up in a unique

value (RMSEβ =
∑4

j=1RMSEβj ). All results are based on 100 replications.

Impact of functional and non-functional methods on estimation and prediction perfor-
mances
Functional methods depend on the degree of freedom (df) for the B- and P-spline inter-
polations and the polynomial degree (d) for the Legendre interpolation. In the following,
ν is set to three such that cubic spline basis functions are used. To understand the im-
pact of different methods, we first perform inference with different values of d ranging
from 9 to 70, df ranging from 9 to 100, and assuming the true model is known (no
variable selection, J = 4). The sample size n is set to 300, the number of time points T
to 100, the residual variance σ2 to 4 and the residual autocorrelation decay parameter
ρ to 0.

Figure 1 presents the RMSEs calculated using the first three smooth effects β1(t),
β2(t) and β3(t). It highlights the benefit of coefficient difference penalty. Indeed, among
functional methods, the error generated by non penalised methods decreases until 0.118
and then increases. It emphasizes the difficulty to choose the number of polynomial de-
gree / degree of freedom. The P-spline method generates an error that decreases to 0.1
and 0.092 for penalisation of order 1 and 2 respectively, then stabilizes when the degree
increases. Thus, it outperforms non penalised methods and avoids overfitting. Finally,
penalised non-functional methods perform equally well than non penalised functional
methods at optimal degree. Figure 1b presents the RMSE of the piecewise constant
effect β4(t). Because of the two jumps, the effect of β4(t) is a complicated task for
functional methods, as confirmed here. Indeed the optimal estimations are reached for a
degree of freedom equal to the number of time step T and are no better than the estima-
tion generated by non-functional penalised methods. To ensure that the P-spline results
showed in Figure 1a are not due to overfitting, a 10-folds cross-validation is performed
and predictive RMSEs are given in Figure 1c. This confirms that P-splines are more
robust to overfitting.

This simulation has showed that penalised methods outperform non-penalised method
and avoid overfitting. Functional penalised methods are suitable for very smooth func-
tions with no function values changing abruptly at any time point. On the contrary,
non-functional penalised methods are suitable for more complex functions which can
present jumps.

In the following, the df for B- or P-splines and d for Legendre interpolation will be
fixed at T/3.

Impact of priors on variable selection
The second set of simulations aims at comparing BGL and GSS priors under functional
and non-functional methods. These different prior combinations are also compared with
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Fig. 1. Panel (a) presents the mean of RMSEs for functional estimation of the smooth effects
β1(t), β2(t) and β3(t) for varying number of df and d. Panel (b) presents the RMSE for func-
tional estimation of the piecewise constant effect β4(t) for varying number of df and d. Panel
(c) presents the predictive RMSE using 10-folds cross-validation for varying number of df and
d. Green, red, blue and purple lines correspond to P-splines 2, P-splines 1, B-splines and
Legendre polynomial interpolation respectively. Dashed and dotted black lines correspond to
non-functional interpolation with order 1 and 2 respectively.

the stepwise approach of Vanhatalo et al. (2019) combined with Gaussian process using
Mátern covariance function to estimate functional effects (S-GP). The number of time
points T is set to 100, the number of individuals n is set to 100 or 300 and the number
of markers J is set to 3000 or 500 respectively. These scenarios are then coupled with
a residual variance σ2 set to 4 or 16 and a residual autocorrelation decay parameter ρ
set to 0.4. When the number of individuals is high and the number of markers is low
(n = 300 and J = 500, columns 1 and 2 in Table 1), BGL and GSS perform equally
well regardless of the estimation method used. Both priors allow efficient selection of
variables which leads to an MCC close to one. The S-GP approach also performs well
with slightly lower MCC when the residual variance increases due to some FN. However,
when the sample size is substantially smaller than the number of variables (n = 100 and
J = 3000, columns 3 and 4 in Table 1), BGL and GSS perform differently. BGL fails to
select 75% to 100% of the non-zero functions regardless of the estimation method used
and leads to a decrease of the MCC down to 0. In order to determine the reasons for this
behaviour, we calculated, for BGL combined with P-spline interpolation, the following
root mean square errors

(a) between the observations and their predictions

RMSEy =

√√√√ 1

nT

T∑
k=1

n∑
i=1

(ŷi,tk − yi,tk)2,

(b) between the true non-zero functions and their estimations using all markers

RMSEBtX =

√√√√ 1

nT

T∑
k=1

n∑
i=1

J∑
j=1

(xi,j [BT b̂j ]tk − xi,jβj(tk))2,
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Table 1. Matthews correlation coefficient (MCC), False negative (FN) in percentage and RMSEβ obtained
using different priors and approaches. Standard deviations are given in brackets.

Criteria Prior n=300, J=500, σ2=4 n=300, J=500, σ2=16 n=100, J=3000, σ2=4 n=100, J=3000, σ2=16

MCC

BGL-PS 0.91 (0.08) 0.9 (0.082) 0.51 (0.041) 0
BGL-BS 0.99 (0.041) 0.98 (0.046) 0.5 (0) 0
BGL-L 0.75 (0.099) 0.7 (0.092) 0.5 (0) 0.2 (0.274)
GSS-L 1 (1) 1 (1) 1 (1) 0.96 (0.962)
GSS-BS 1 (0) 1 (0) 1 (0) 1 (0.019)
GSS-PS 1 1 (0) 1 (0) 1 (0) 0.98 (0.044)
GSS-PS 2 1 (1) 1 (1) 1 (1) 0.94 (0.941)
GSS-RW 1 1 (0) 0.99 (0.027) 1 (0) 0.87 (0)
GSS-RW 2 1 (0) 0.99 (0.027) 1 (0) 0.87 (0)
S-GP 1 (0) 0.89 (0.05) 0.94 (0.063) 0.62 (0.141)

FN

BGL-PS 0 0 73.98 (4.998) 100 (0)
BGL-BS 0 0 75 (0) 100 (0)
BGL-L 0 0 75 (0) 90 (13.693)
GSS-L 0 0 0 7 (7)
GSS-BS 0 0 0 0.5 (3.536)
GSS-PS 1 0 0 0 3 (8.207)
GSS-PS 2 0 0 0 11 (11)
GSS-RW 1 0 1 (4.949) 0 25 (0)
GSS-RW 2 0 1 (4.949) 0 25 (0)
S-GP 0 20.5 (9.702) 7.5 (11.573) 59 (18.736)

RMSEβ

BGL-PS 0.47 (0.083) 0.86 (0.17) 3.48 (0.248) 5.62 (0)
BGL-BS 0.43 (0.042) 0.69 (0.091) 3.54 (0.065) 5.62 (0)
BGL-L 0.75 (0.187) 1.53 (0.391) 3.56 (0.108) 4.83 (1.077)
GSS-L 0.43 (0.429) 0.7 (0.695) 0.63 (0.628) 1.22 (1.224)
GSS-BS 0.42 (0.022) 0.66 (0.042) 0.6 (0.04) 1.03 (0.1)
GSS-PS 1 0.38 (0.024) 0.61 (0.041) 0.56 (0.04) 0.96 (0.176)
GSS-PS 2 0.39 (0.39) 0.66 (0.665) 0.58 (0.578) 1.23 (1.234)
GSS-RW 1 0.43 (0.024) 0.87 (0.106) 0.74 (0.041) 1.79 (0.054)
GSS-RW 2 0.42 (0.04) 0.89 (0.131) 0.76(0.043) 1.81 (0.057)
S-GP 0.44 (0.023) 1.05 (0.204) 0.76 (0.276) 2.87 (0.819)

(c) between the true non-zero functions and their estimations using the markers with
true non-zero effects

RMSEBtX1
=

√√√√ 1

nT

T∑
k=1

n∑
i=1

4∑
j=1

(xi,j [BT b̂j ]tk − xi,jβj(tk))2,

(d) between 0 and the estimation using the markers with true null effects

RMSEBtX0
=

√√√√ 1

nT

T∑
k=1

n∑
i=1

J∑
j=5

(xi,j [BT b̂j ]tk)
2.

RMSEy and RMSEBtX are very similar regardless of the number of individuals and
markers (see Table 2). This suggests that even when the model selection fails, the global
estimation remains acceptable. However, RMSEBtX1

and RMSEBtX0
clearly differ be-

tween the two cases (n = 300, J = 500 vs n = 100, J = 3000). In the first and more
favorable case, both RMSEs are low while for the case where the number of markers
is high compared to the number of individuals, the RMSEs increases substantially. In
particular, RMSEBtX0

is high demonstrating a clear over-estimation of the zero com-
ponents and thus an under-estimation of the true non-zero parts. That is, BGL is not
shrinking to zero the 2996 markers with no effect and is estimating them to have low
values, while biasing toward zero the estimation of the four markers with true effects.
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Table 2. RMSE between the observations and their predictions (RMSEy),
between the true non-zero functions and their estimations using all markers
(RMSEBtX) or using the markers with true non-zero effects (RMSEBtX1

) and be-
tween 0 and the estimation using the markers with true null effects (RMSEBtX0

).
All these quantities are obtained using BGL prior combined with P-spline inter-
polation. X denote the matrix associated to all markers, X1 the marker matrix
associated to the true non-zero effects and X0 the marker matrix associated to
the true zero effects.

n J σ2 RMSEy RMSEBtX RMSEBtX1
RMSEBtX0

300 500 4 2.64 0.89 0.44 0.93

100 3000 4 2.64 0.97 2.88 2.85

The biased estimations thereby impact the selection. The S-GP approach seems also
sensitive to the complexity of the data. Indeed, the S-GP’s MCC decreases to 0.62 due
to a FN which reaches 59%. It is affected by the ratio of the number of observations
to the number of variables and especially by the noise which degrades its selection abil-
ity. The selection performance of the GSS prior combined with non-functional methods
(GSS-RW 1 / GSS-RW 2) also appears to be slightly affected by the noise when the
number of individuals is low. Effectively, these combinations systematically miss vari-
able 3 which is the smallest non-zero effect leading to 25% FN. GSS prior combined with
functional method does not present the same comportment despite some false negatives
(see Table 1). Li and Sillanpää (2013) showed that the non-functional method performs
better when used with a diagonal covariance structure than with AR(1), in the sense that
it does not erroneously shrink the effects of any marker toward zero when the number
of observations is low and there is high temporal correlation among the residual errors.
However, assuming a simple diagonal residual covariance structure tends to significantly
underestimate the uncertainty, which may result in including some false positive markers
into the variable selection. Therefore, the AR(1) covariance structure might be a more
suitable choice. To investigate the limitations of the GSS prior combined with functional
and non-functional methods in response to the data complexity, we simulate datasets
with 100, 300 or 900 individuals, 20 time points, 500 markers, a residual variance equal
to 1, 4 or 16 and a residual autocorrelation decay parameter ρ of 0, 0.4, 0.7 and 0.9. Fig-
ure 2 presents the results for GSS prior combined with P-spline interpolation and with
non-functional method both with penalty of order 2. The GSS prior combined with
non-functional method presents FN which increases with the noise (ρ and σ2) when the
number of observations is low (see Figure 2a) while GSS prior combined with P-spline
interpolation does not. This phenomenon is less pronounced when the number of obser-
vations increases (see Figure 2b) and disappears totally when the number of individuals
is high (n = 900). Thus, non-functional methods assuming AR(1) residual covariance
may suffer from lack of statistical power when the data is complex (few observations
with high noise) and may have difficulties to identify the correct origin of the observed
dependency in this situation. The dimensional reduction caused by functional methods
(number of parameters is divided by 3 using P-splines with df = T/3) implicitly in-
creases the statistical power. Note that it also reduces the computation time (divided
by 10 using df = T/3, see Table 4).
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Fig. 2. Panel (a) presents the false negative (FN) rate in percentage for n = 100. Panel (b)
presents the FN rate in percentage for n = 300. Black line corresponds to the GSS prior
combined with P-spline interpolation and dashed line corresponds to the GSS prior combined
with non-functional method both with penalty of order 2.
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Finally, the correct selection leads to accurate estimation of parameters (see RMSEβ
in Table 1). The RMSEβ in the first scenario where all approaches have a good selection
confirms the performance of the different estimation methods. In addition we can see
that the Gaussian process method has a comparable performance to the non-functional
methods RW 1 and RW 2.

Impact of the number of individuals and time steps on GSS prior performance
To go a step further and better understand the impact of the number of individuals and
time steps on the performance of GSS prior, we consider another set of simulations. In
the following, we assume that only three markers have significant and constant effects of
0.1, 0.2 and 0.3 over time. An additional marker is added with no effects. The number
of time points T varies from 1 to 50 and the number of individuals n is set to 100, 300,
500 or 1000. The residual variance σ2 is fixed to one and the residual autocorrelation
decay parameter ρ to 0. We focus on the marginal posterior probabilities of inclusion
(P (γj = 1|y,X), j = 1, . . . , 4) with all parameters fixed at their true values. Such an
approach has already been used by Malsiner-Walli and Wagner (2011) to evaluate the
performance of spike-and-slab priors. First, regardless of the number of individuals or
time steps, the marker with null effect is never selected (see Figure 3). Next, if we
focus on one time step, these simulations confirm that the number of individuals plays
a crucial role in variable selection as already mentioned in Malsiner-Walli and Wagner
(2011). Increasing the number of individuals leads to a clear improvement of all marginal
posterior probabilities. For example, for the strongest effect of 0.3, when the number of
individuals goes from 100 to 300 with one time step (T = 1), P (γ3 = 1|y,X) increases
from 0.44 to 0.92 (see Figures 3a, 3b). For the smallest effect of 0.1, with one time step,
P (γ1 = 1|y,X) increases from 0.01 to 0.34 when the number of individuals varies from
100 to 1000 (see Figures 3a, 3d). While increasing the number of individuals improves the
posterior probabilities of inclusion, the number of time steps also plays a significant role.
Indeed, in the first panel with n = 100, the probability of inclusion for the intermediate
effect of 0.2 increases from 0.10 for one time step to more than 0.35 using 50 time
steps. This phenomenon is more evident when n = 300 where P (γ2 = 1|y,X) jumps
from 0.52 to 1 when considering around 10 or more time steps, or when n = 1000 and
P (γ1 = 1|y,X) climbs from 0.01 for one time step to 1 with 20 or more time steps. Thus,
combining a high number of individuals with longitudinal data improves the variable
selection allowing the detection of small effects while strengthening the confidence in the
strongest ones. These results demonstrate the superiority of longitudinal data analyses
compared to a separate analysis at each time point.

Impact of correlation between markers

Correlation is a difficult task in practice especially when working with high-throughput
genotyping data where the fine discretization of the genome leads to very strong collinear-
ity between markers. So it is important to understand how the GSS prior will perform
under this constraint. To study this kind of situation, we consider a new simulated
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Fig. 3. Marginal probabilities of inclusion for each effect as a function of the number of time
points T . Dotted-dashed line, dotted line, dashed line and solid line correspond to effects equal
to 0.3, 0.2, 0.1 and 0 respectively. Figures a, b, c and d are based on 100, 300, 500 and 1000
individuals respectively.
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dataset constructed from markers provided from real case study on Arabidopsis thaliana
(L. Heynh) (Marchadier et al., 2019) presented in section 4. Phenotypic observations y
are simulated for 300 individuals over 100 time points from four independent groups of
9 correlated markers. The correlation between adjacent markers within group is set to
0.8, 0.9 and 0.95 following the data process described in section 4. For the jth group,
only the 5th marker has non-zero effect defined by βj(t) in equation (6), j = 1, 2, 3 or 4.
The residual variance is set to 4 and the residual autocorrelation decay parameter ρ to
0.9.
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Fig. 4. Marginal probabilities of inclusion for each effect associated to correlated markers within
four independent groups.

Figure 4 gives the marginal inclusion probability for each marker under different levels
of correlation among them. It shows a clear impact of the correlation among markers
on selection. The higher the correlation, the lower the marginal inclusion probabilities
of the non-zero markers and the higher the marginal inclusion probabilities of adjacent
zero markers. The correlation of 0.95 highlights this fact well. This is due to a switch
of selection among markers that are highly correlated (adjacent markers) with the true
non-zero markers. This result is in agreement with those of Malsiner-Walli and Wagner
(2011) and Ghosh and Ghattas (2015) who have also studied the spike-and-slab prior
under collinearity. Thus, when the data present high correlation, approaches using
spike-and-slab prior lead to identification of a set of physically related markers defining
genomic regions involved for the phenotypic observations. Ghosh and Ghattas (2015)
advise against the use of Zellner’s g-prior (leading to more false negative) and recommend
a routine examination of the correlation matrix and calculation of the joint inclusion
probabilities for correlated covariates, in addition to marginal inclusion probabilities, for
assessing the importance of covariates.



16 B. Heuclin, F. Mortier, C. Trottier and M. Denis

4. Application

This application aims at disentangling the effects of the complex genetic architecture
of shoot growth of Arabidopsis thaliana (L. Heynh) (Marchadier et al., 2019) and the
impact of soil water conditions (SWC) on its dynamics. The complete phenotypic
dataset is freely available at: https://data.inra.fr/dataset.xhtml?persistentId=

doi:10.15454/OCOP9B (Loudet, 2018). The genotypic dataset is freely available at:
http://publiclines.versailles.inra.fr/page/8. We focus on the phenotypic trait
compactness of a recombinant inbred line (RIL) composed of 358 individuals followed
during the vegetative growth from days 8 to 29 after sowing (T = 21). Compactness
dynamics was observed along time using the high-throughput Phenoscope robot (Tisné
et al., 2013). Compactness is the ratio between the projected rosette area and the convex
hull area. Two environmental conditions are considered: well-watered (WW) and mod-
erate water deficit (MWD) conditions. WW slowly decreases SWC from 100% on day
one to 60% on day five, then maintains that level throughout the experiment. MWD let
natural evaporation act until a threshold of 30% humidity is reached (see Figure 5a). The
dynamics of compactness according to the two SWC are presented in Figures 5b and 5c.
From 113 Single Nucleotide Polymorphisms (SNPs), the parental genotype probabilities
were calculated at 538 positions for each individual using the calc.genoprob function in
R/QTL package (Broman et al., 2003). These probabilites lead to 538 genetic predic-
tors and are referred to “markers” in the following. Markers on different chromosomes
are independent (mean correlation between chromosomes lower than 0.05). However,
within a chromosome, markers are ordered such that adjacent markers share similar in-
formation and are highly correlated. Such dependencies among covariates is known to
impact variable selection and parameter estimation as showed on our simulations and
by others (Malsiner-Walli and Wagner, 2011; Ghosh and Ghattas, 2015). In order to
reduce the collinearity, we process the data as follows: starting from the marker at the
first position, we calculate its correlation with the subsequent markers. All markers with
correlations greater than 0.95 are discarded and the first marker with a correlation less
than 0.95 is retained, defining a new starting point. This procedure is repeated along the
genome and results in the selection of 125 markers denoted X0.95. Since this correlation
threshold is high, we apply the procedure on the subset X0.95 using a threshold of 0.7.
This results in the selection of 38 markers among the previous 125, which we denote
X0.7. Selected markers are labelled by their chromosome numbers and their positions
separated by an underscore, such that marker 1 1 corresponds to the first position on
the first chromosome. Both environmental conditions are initially related to time with
a linear decrease over the first few days then become constant for the remainder of the
experiment. During the first phase, environmental effects are fully correlated with time.
This raises identifiability problems and does not permit to model jointly a time varying
intercept and environmental effects. Thus, the environmental factors are not included
in the model. In addition, since genotype × environment interactions are not taken into
account, we analyse separately each environmental condition.

In a nutshell, the study data consist of one phenotypic trait (compactness) measured
over 21 time points (T = 21) on 358 individuals (n = 358) under two soil water con-
ditions. We used two sets of covariates X0.70 and X0.95 containing 38 and 125 markers

https://data.inra.fr/dataset.xhtml?persistentId=doi:10.15454/OCOP9B
https://data.inra.fr/dataset.xhtml?persistentId=doi:10.15454/OCOP9B
http://publiclines.versailles.inra.fr/page/8


Bayesian varying coefficient model with selection 17

10 15 20 25

0.
0

0.
4

0.
8

Time

S
oi

l w
at

er
 c

on
te

nt

(a)

10 15 20 25

10
20

30
Time

C
om

pa
ct

ne
ss

 in
 W

W

(b)

10 15 20 25

10
20

30

Time

C
om

pa
ct

ne
ss

 in
 M

W
D

(c)

Fig. 5. Panel (a) presents the soil water content under the well-watered (WW) condition in
solid line and the moderate water deficit (MWD) conditions in dashed line over time. Panel (b)
presents compactness trait observations for the 358 individuals under the WW condition over
21 days. Panel (c) presents compactness trait observations for the 358 individuals under the
MWD condition over 21 days.

respectively. The two SWC are analyzed separately to identify differences in the genetic
architecture between the conditions. The results are based on 100 MCMC chains initial-
ized at random starting values, each with 1,000,000 iterations, a burn-in of 500,000 and
a thinning of ten. Gelman and Rubin’s potential scale reduction factors (Gelman et al.,
1992) for all continuous parameters and log predictive density (log-likelihood) are close
to 1, indicating convergence. More details are presented in the supplementary materials.
All output statistics are based on the pooled five million posterior samples.

Selecting relevant markers for WW condition: in the case of low correlations be-
tween markers, the selection procedure is highly stable. Figure 6 presents the mean
of the marginal posterior inclusion probability for each marker using the PS 2 method
across the pooled 10 million posterior samples. Eight markers (1 1, 1 20, 1 110, 2 62,
4 45, 5 33, 5 76 and 5 104) are included in the model with marginal posterior proba-
bilities of one. Seven other markers have a marginal posterior inclusion probabilities
lower than one but strictly greater than zero. Among these, for the markers (1 79, 1 97)
and (3 14, 3 25) the algorithm tends to switch between the two adjacent markers. In-
deed, we first note that the joint inclusion probabilities P(γ1 79 = 1 ∩ γ1 97 = 1) and
P(γ3 14 = 1 ∩ γ3 25 = 1) are close to zero (lower than 10−4), demonstrating that these
two consecutive markers are hardly ever selected simultaneously. Second, the sum of
the marginal posterior inclusion probabilities for each pair is equal to one. Thus, the
algorithm switches from one marker to another. The three markers 2 47, 3 1 and 3 91
have marginal posterior inclusion probabilities of 0.07, 0.9, 0.97 respectively and have
no adjacent markers selected. The switch between included markers can be explained
by the pre-selection procedure. Using a threshold of 0.7 and starting from the first po-
sition may have led to the removal of other relevant markers or genomic regions, and
the retained markers may not actually be relevant but only be close to or encompassing
relevant regions. To validate this assumption, GSS-PS 2 is applied to the X0.95 dataset.
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Fig. 6. Marginal posterior inclusion probabilities for the 38 markers in the genetic data X0.7

using the PS 2 method. The alternation of white and gray area delimites the 5 chromosomes.
A line at 0.5 representing a threshold at 0.5 is plotted.

Revealing genomic regions for WW condition: markers in the X0.95 subset are highly
correlated but offer a better coverage of the genome. Strong collinearity between covari-
ates can lead to a multimodal posterior distribution and posterior distributions have to
be carefully analyzed Ghosh and Ghattas (2015). In particular, it can be troublesome for
variable selection where subsets are weakly separable (Rocková and George, 2014). For
highly correlated covariates, at a given MCMC iteration, one particular covariate can
switch with another as shown on simulations. This phenomenon is classically observed
using spike-and-slab priors. However, this drawback can be lifted to identify potential
genomic regions involved in phenotypic variations. Applying PS 2 method on the X0.95
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Fig. 7. Marginal posterior inclusion probabilities for the 125 markers of the genetic data X0.95

using the PS 2 method. The alternation of white and gray area delimits the five chromosomes.
A line at 0.5 representing a threshold at 0.5 is plotted.

subset allows us to check this (see Figure 7). For the X0.70 subset, a model which contains
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Table 3. Table of the identified relevant regions. Columns 2 and 3 indicate the markers or the
range of markers corresponding to regions identified using the PS 2 method on the X0.7 and X0.95

subsets respectively. Column 4 indicates the markers or the range of markers corresponding to
regions identified using the RW 2 method on the X0.95 subset. The last column indicates if regions
were identified by Marchadier et al. (2019).

Region X0.70 & PS 2 X0.95 & PS 2 X0.95 & RW 2 Marchadier et al. (2019)
1 1 1 1 1 → 1 4 1 4 → 1 8
2 1 20 1 20 → 1 25 1 20 yes
3 1 79 → 1 97 1 85 →1 93 1 85 →1 89
4 1 110 1 110 → 1 115
5 2 62 2 57 → 2 64 2 57 → 2 64 yes
6 2 80 → 2 84
7 3 1 3 3 → 3 10 yes
8 3 14 → 3 25 3 14 → 3 18
9 3 97 3 97 3 97 yes
10 4 45 4 45 → 4 51 4 45 yes
11 4 79 → 4 87
12 5 33 5 33→ 5 42
13 5 76 5 76 → 5 80 5 64 yes
14 5 104 5 102 → 5 110 yes

12 markers (see Figure 6) is clearly favored with a joint posterior probability of 0.74,
while no consensus can be reached based on X0.95 as the joint posterior probabilities
of the top three models are only 0.027, 0.026 and 0.022. However and interestingly, the
selected positions and models are similar. For example, the first three markers, 1 1, 1 2
and 1 4 are never selected simultaneously (P (γ1 1 = ∩ γ1 2 = 1 ∩ γ1 4 = 1) = 0) but
are complementary: P (γ1 1 = 1) + P (γ1 2 = 1) + P (γ1 4 = 1) = 1. This phenomenon
is observed for most switching positions allowing the delimitation of 14 genetic regions
that may be involved in compactness variation (see Table 3). From Table 3 several ad-
ditional observations can be made. All markers or regions detected using X0.70 match
those identified with X0.95 (see columns 2 and 3 of Table 3 ). The use of X0.95 leads to
the selection of two additional regions (regions 6 and 11), and regions 3 and 8 seem nar-
rower with X0.95. Thus, a more intensive repartition of markers along the genome, while
avoiding extremely high correlations, allows the detection of genetic regions potentially
involved in the underlying genetic architecture.

We compare PS 1 and PS 2 methods applied on the subsets X0.70 and X0.95. The
results are identical demonstrating no impact of the order difference penalty (see Figure
8). We also compare the PS 2 and RW 2 methods. The results are different in terms of
selection. Indeed, the number of selected markers or regions are lower with RW 2 than
PS 2 with for instance 7 regions identified among the 14 of PS 2 using the X0.95 subset.
The estimation of the residual correlation is roughly equal to 0.9 using all methods.
This high correlation seems to influence the selection process when using RW 1 or RW 2
methods, as already observed on simulations.
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Fig. 8. Estimation of the effect for the marker which has the highest marginal posterior inclusion
probability within each region in the X0.95 subset. The blue, black, and red lines represent the
estimation using the PS 1, PS 2, and RW 2 methods respectively. Plots with box are associated
to markers which are identified by Marchadier et al. (2019).
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Impact of MWD condition: applying the PS 2 method to compactness measured in
MWD condition using the X0.70 as well as X0.95 subsets reveals no clear impact of the
MWD condition on the complex genetic architecture of shoot growth and its dynamics.
Among the 12 positions selected in the WW condition using X0.70, seven positions are
also selected in the MWD condition. Using X0.95, 12 genomic regions in the MWD
condition overlap with the 14 selected regions in the WW condition. Interestingly,
among the 5 positions selected for WW but not MWD using X0.70, three positions
belong to the 12 shared genomic regions while the two last positions belong to the
two unselected regions in MWD. Two hypotheses can explain such differences: (i) a
genotype × environment interaction effect or (ii) an experimental effect. For the PS 2
method, when comparing cumulated effects estimated using the seven shared positions,
no difference can be observed between the two conditions (see Figure 9). Moreover,
when plotting the effects of the two markers selected in WW condition but not in the
MWD condition (see Figure 8, regions 7 and 12), it seems that these two positions
impact compactness from the beginning to the end of the experiment. Such results do
not support either hypotheses.
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Time

Ef
fe
ct

(a)
Fig. 9. Cumulative genetic effect of common markers selected in both conditions. The solid line
represents the effect for the WW condition and the dashed line represents the effect of MWD
conditions. Gray lines represent 95% credible intervals.

Comparative results: in an earlier study, Marchadier et al. (2019) identified in the
WW condition eight significant markers involved in compactness variability for the last
experimental day (T = 29) using a single time analysis. Seven of them match the re-
gions we identified (Table 3, column 6 and Figure 8). Using the PS 2 method, we also
identified seven additional regions that were not detected by Marchadier et al. (2019).
These additional regions are identified by taking into account the dynamics of the phe-
notypic trait. Indeed, considering the observations of all individuals over the T times
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selects markers which can have an effect only at a few times unlike a single time point
analysis as proposed by Marchadier et al. (2019). For example, marker “1 89”, which
has the highest posterior inclusion probability within the third region (see Figure 8),
shows an effect only at the early stage of the vegetative growth process. Thus, it can’t
be identified using the last day as in Marchadier et al. (2019). Another advantage of
considering functional variations of the effects allows a better understanding of the ge-
netic architecture.
Finally using functional methods such as P-spline interpolation compared to non-functional
approaches reduces the number of parameters and thus indirectly increases the statistical
power.

5. Conclusion

In this article we proposed a Bayesian varying coefficient model with variable selection
for studying the dynamic genetic architecture of a complex trait.

The model combines a group spike-and-slab prior for the selection of markers with a
P-spline interpolation or direct estimation of time coefficient functions. Both methods
use first or second order difference penalty to ensure smoothness of the genetic functional
effects. We evaluate the performance of the model through different simulations. We
show that our approaches outperform, in terms of estimation as well as prediction,
models using B-spline or Legendre interpolation in combination with group spike-and-
slab or Bayesian group LASSO priors, as well as the alternative approach of Vanhatalo
et al. (2019). P-spline interpolation is more suitable for very smooth genetic effect while
direct estimation of time coefficient functions with difference penalty is more suitable
for more complex effect with potential jumps. However, simulations demonstrate that
direct estimation of time coefficient functions with difference penalty is more sensitive to
noise (residual variance and residual time correlation) leading to false negative. P-spline
interpolation reduces the number of parameters which indirectly increases the statistical
power. Considering a point mass at zero for the spike part of the prior distribution of the
regression coefficients improves the selection and thereby the quality of the estimation
(George and McCulloch, 1997). Moreover, an investigation of the marginal inclusion
probability associated to each covariate reveals the importance of the number of time
points in the variable selection performance.

From a practical point of view, we show that a longitudinal approach allows a better
detection of relevant markers or genomic regions compared to an approach that analyzes
a single time point as proposed in Marchadier et al. (2019). In addition, as classically
observed in genetic studies, markers present high correlation, thus requiring pre-selection.
In this paper, we considered two correlation thresholds for the pre-selection leading to two
subsets of markers considered for the analysis. The first subset with moderate correlation
between markers allows a clear identification of positions and the estimation of their
associated functional effects. The second, with high correlation among markers and
more intensive coverage of the genome, allows the identification of genomic regions but
the estimation of their associated effects is unreliable due to identifiability issues. This
aspect has been observed on our simulations and was already reported by others (Ghosh
and Ghattas, 2015; Malsiner-Walli and Wagner, 2011). Further research is needed for
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variable selection in the presence of high collinearity between covariates, for example
considering alternative priors such as g-priors (Malsiner-Walli and Wagner, 2011; Ghosh
and Ghattas, 2015) or priors defined using the order structure information of markers
along the genome.

Finally, more or less complex extensions should be considered. In this work we
assumed that time points are common to all individuals. This could be restrictive in
some applications. However such assumption could be easily relaxed as done by (Li and
Sillanpää, 2015), who defined a B-spline basis for each individual. Moreover, our model
considered a time-varying environmental condition and genetic markers to have additive
effects. The functional estimation of the genetic effects captures the dynamics associated
to each marker. However, the additivity assumption does not permit to determine if these
estimated effects are directly related to the physiological processes or to the time-varying
environmental condition. Genotype-by-environment (GE) interactions may impact the
dynamic genetic architecture of complex traits and the selection procedure. One possible
solution for incorporating GE interactions could be the addition of a functional effect
depending on the environmental condition for each marker. But such an approach is
computationally challenging. Finally, in this paper, only one time-varying environmental
condition common to all individuals is considered. Another extension would involve the
integration of different environmental conditions for the same genotypes and evaluating
GE interactions.

Avaiability of the Arabidopsis thaliana (L. Heynh) dataset

The complete phenotypic dataset is freely available on: https://data.inra.fr/dataset.
xhtml?persistentId=doi:10.15454/OCOP9B (Loudet, 2018). The genotypic dataset is
freely available on: http://publiclines.versailles.inra.fr/page/8.
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A. Appendix

A.1. Estimation of centered function using interpolation approach
For identifiability reasons in VC models, the h functions to be interpolated for the
intercept and the environmental effect have to be centered. This means

∫
< h(x)dx = 0

(Hastie and Tibshirani, 1986; Wood, 2017). Let Bx denote the (T × df)-dimensional
matrix containing the basis functions calculated at x = (x1, .., xt)

′. Let also denote c a
df -dimensional vector of associated coefficients such that

h(x) = Bxc. (10)

To satisfy the centering constraint on h(.), the sum of the elements of h(x) must be zero
(1′Bxc = 0). This can be achieved by a re-parametrisation of Bx and c using a QR
decomposition as explained by Wood (2017) in section 1.8.1 and 4.2. Let

(1′Bx)′ = Q


R
0
...
0


the QR decomposition of (1′Bx)′ where Q is a (df × df)-dimensional orthogonal matrix
and R is a scalar in this case. By taking Z the df − 1 last columns of Q we obtain that

1′BxZ = (0 . . . 0).

Now, we can rewrite Equation (10) by defining a new (df − 1)-dimensional parameters

vector c̃ such that c = Zc̃ and a new T × (df − 1) basis functions matrix B̃x = BxZ

leading to Bxc = B̃xc̃ which satisfies the constraint.
If adjacent coefficients are penalized as in P-spline interpolation, the new parameters c̃
imply also a re-parametrisation of the matrix of the finite differentiating operator D by
D̃ = DZ. Thus c′D′Dc is equal to c̃′D̃′D̃c̃.
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A.2. Detail of the full conditional distribution of γk
Let Θ the set of all parameters {α, m̃, τm, ã1, . . . , ãL, τa1 , . . . , τaL , b1, . . . , bJ , γ1, . . . , γJ , τb1 , . . . , τbJ , π, ρ, σ

2}
in the Bayesian hierarchical model (5), Θk0 and Θk1 be Θ with γk = 0 and γk = 1 re-
spectively. Let

ȳi = yi − α1− B̃tm̃−
L∑
l=1

B̃el ãl −
J∑
j=1

xi,jZbj

and

ȳi−k = yi − α1− B̃tm̃−
L∑
l=1

B̃el ãl −
J∑

j=1;j 6=k
xi,jZbj .

P (y|Θk1 \ {bk}) =

∫
R
P (y|.)P (bk|γk = 1)∂bk

=
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R
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nT
2 |Γ|n2

exp

{
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ȳ′iΓ
−1ȳi

}
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2
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− 1
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ȳi−k −

n∑
i=1
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P (γk = 1|Θ \ {bk, γk}) =
P (y|Θk1 \ {bk})P (γk = 1)

P (y|Θk1 \ {bk})P (γk = 1) + P (y|Θk0 \ {bk})P (γk = 0)

=
R

1 +R
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Γ−1ȳi−k

}

=
π

1− π
|D′D| 12 |Σbk |

1
2

1

(σ2τbk)
df
2

exp

{
1

2

n∑
i=1
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A.3. Full conditional distributions for group spike-and-slab prior

Let Θ the set of all parameters {α, m̃, τm, ã1, . . . , ãL, τa1 , . . . , τaL , b1, . . . , bJ , γ1, . . . , γJ , τb1 , . . . , τbJ , π, ρ, σ
2}

in the Bayesian hierarchical model (5), ȳi = yi−α1− B̃tm̃−
∑L

l=1 B̃
el ãl−

∑J
j=1 xi,jZbj

and ȳi−k = yi − α1− B̃tm̃−
∑L

l=1 B̃
el ãl −

∑J
j=1;j 6=k xi,jZbj .

α|. ∼ N1

(
Σα1′

Γ−1

σ2

n∑
i=1

(ȳi + α1),Σα

)
with Σα =

(
n1′

Γ−1

σ2
1

)−1

m̃|. ∼ N
(

Σm̃

n∑
i=1

B̃t
′Γ−1

σ2
(ȳi + B̃tm̃),Σm̃

)
with

Σm̃ =

(
D̃′mD̃m

τm
+

n

σ2
B̃t
′
Γ−1B̃T

)−1

τm|. ∼ IG
(
df

2
+ 0.001,

1

2
m̃′D̃′mD̃mm̃+ 0.001

)
ãk|. ∼ N

(
Σãk

n∑
i=1

B̃e
k′ Γ−1

σ2
(ȳi + B̃e

k

ãk),Σãk

)
with

Σãk =

(
D̃′akD̃ak

τak
+

n

σ2
B̃e

k′

Γ−1B̃e
k

)−1

, k = 1, . . . , L

τak |. ∼ IG
(
df

2
+ 0.001,

1

2
ãk
′
D̃′akD̃ak ãk + 0.001

)
, k = 1, . . . , L

bk|. ∼ γkN
(

Σbk

n∑
i=1

xi,jB
t′Γ
−1

σ2
(ȳi + xi,kZbk),Σbk

)
+ (1− γk)δ with

Σbk =

(
D′D

σ2τbk
+

1

σ2

n∑
i=1

x2
i,kZ

′Γ−1Z

)−1

, k = 1, . . . , J

P (γk = 1|Θ \ {bk, γk}) ∼
R

1 +R
with

R =
π

1− π
|D′D| 12 |Σbk |

1
2

1

(σ2τbk)
df
2

exp

{
1

2

n∑
i=1

(ȳ′i−kxi,k)
Γ−1

σ2
ZΣbkZ

′Γ
−1

σ2

n∑
i=1

(xi,kȳi−k)

}
τbk |. ∼ IG

(
df

2
+ 0.001,

1

2σ2
b′kD

′Dbk + 0.001

)
, k = 1, . . . , J

π|. ∼ Beta(1 + |γ|, 1 + J − |γ|)

ρ|. ∼ |Γ|−n2 exp
{
− 1

2σ2

n∑
i=1

ȳi
′Γ−1ȳi

}
1(−1<ρ<1)

σ2|. ∼ IG
(

0.001 +
1

2
nT +

1

2
df

J∑
j=1

γj , 0.001 +
1

2

J∑
j=1

bj
′D′Dbjηj +

1

2

n∑
i=1

ȳi
′Γ−1ȳi

)
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A.4. Bayesian group Lasso

A.4.1. Hierarchical model

yi|α, m̃, ã, b, ρ, σ2 ∼ N (α+ B̃tm̃+

L∑
l=1

B̃el ãl +

J∑
j=1

xi,jZbj , σ
2Γ)

α ∼ U(−∞,∞)

m̃|τm ∼ N (0, (τmD̃
′
mD̃m)−1)

ãl|τal ∼ N (0, (τalD̃
′
alD̃ak)

−1), l = 1, . . . , L

bj |ηj , σ2 ∼ N (0, σ2τ2j (D′D)−1), j = 1, . . . , J

τ2j |λ2 ∼ G
(
df + 1

2
,
λ2

2

)
, j = 1, . . . , J

τm, τal and λ2 ∼ G(0.001, 0.001) and l = 1, . . . , L

ρ ∼ U(−1,1) and σ2 ∼ IG(0.001, 0.001)

(11)

A.4.2. Full conditional distributions

Let Θ the set of all parameters {α, m̃, τm, ã1, . . . , ãL, τa1
, . . . , τaL , b1, . . . , bJ , τ

2
1 , . . . , τ

2
J , λ, ρ, σ

2}
in the Bayesian hierarchical model (11) and ȳi = yi−α1−B̃tm̃−

∑L
l=1 B̃

el ãl−
∑J

j=1 xi,jZbj

α|. ∼ N1

(
Σα1′

Γ−1

σ2

n∑
i=1

(ȳi + α1),Σα

)
with Σα =

(
n1′

Γ−1

σ2
1

)−1

m̃|. ∼ N
(

Σm̃

n∑
i=1

B̃t
′Γ−1

σ2
(ȳi + B̃tm̃),Σm̃

)
with

Σm̃ =

(
τmD̃

′
mD̃m +

n

σ2
B̃t
′
Γ−1B̃T

)−1

τm|. ∼ G
(
df

2
+ 0.001,

1

2
m̃′D̃′mD̃mm̃+ 0.001

)
ãk|. ∼ N

(
Σãk

n∑
i=1

B̃e
k′ Γ−1

σ2
(ȳi + B̃e

k

ãk),Σãk

)
with

Σãk =

(
τakD̃

′
ak
D̃ak +

n

σ2
B̃e

k′

Γ−1B̃e
k

)−1

, k = 1, . . . , L

τak |. ∼ G
(
df

2
+ 0.001,

1

2
ãk
′
D̃′akD̃ak ãk + 0.001

)
, k = 1, . . . , L
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bk|. ∼ N
(

Σbk

n∑
i=1

xi,jB
t′Γ
−1

σ2
(ȳi + xi,kZbk),Σbk

)
with

Σbk =

(
D′D

τ2
kσ

2
+

1

σ2

n∑
i=1

xi,kZ
′Γ−1Z

)−1

, k = 1, . . . , J

1

τ2
k

|. ∼ I − Gaussian

(√
σ2λ2

bk
′D′Dbk

, λ2

)
, k = 1, . . . , J

λ2|. ∼ G
(
Jdf + J

2
+ 0.001,

J∑
j=1

τ2
j

2
+ 0.001

)

ρ|. ∼ |Γ|−n2 exp
{
− 1

2σ2

n∑
i=1

ȳi
′Γ−1ȳi

}
1(−1<ρ<1)

σ2|. ∼ IG
(

0.001 +
1

2
nT +

1

2
df

J∑
j=1

γj , 0.001 +
1

2

J∑
j=1

bj
′D′Dbjηj +

1

2

n∑
i=1

ȳi
′Γ−1ȳi

)
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Table 4. Computational time (in minutes) obtained using different priors.
Prior n=300, J=500, σ2=4 n=300, J=500, σ2=16 n=100, J=3000, σ2=4 n=100, J=3000, σ2=16
BGL-PS

8 (0.5) 8 (0.5) 67 (1) 66 (2)BGL-BS
BGL-L

GSS-L
8 (1) 8 (1) 60 (5) 60 (5)

GSS-BS

GSS-PS 1
16 (5) 16 (5) 120 (10) 120 (10)

GSS-PS 2

GSS-RW 1
282 (9) 281 (10) 1500 (150) 1500 (150)

GSS-RW 2

S-GP 68 (13) 61 (9) 26 (6) 11 (4)
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