Bayesian varying coefficient model with selection: An application to functional mapping
Benjamin Heuclin, Frédéric Mortier, Catherine Trottier, Marie Denis

To cite this version:

HAL Id: hal-03049793
https://hal.inrae.fr/hal-03049793
Submitted on 31 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Bayesian varying coefficient model with selection: An application to functional mapping

Benjamin Heuclin1,2 \mid Frédéric Mortier3,4 \mid Catherine Trottier1,5 \mid Marie Denis2,6

Abstract
How does the genetic architecture of quantitative traits evolve over time? Answering this question is crucial for many applied fields such as human genetics and plant or animal breeding. In the last decades, high-throughput genome techniques have been used to better understand links between genetic information and quantitative traits. Recently, high-throughput phenotyping methods are also being used to provide huge information at a phenotypic scale. In particular, these methods allow traits to be measured over time, and this, for a large number of individuals. Combining both information might provide evidence on how genetic architecture evolves over time. However, such data raise new statistical challenges related to, among others, high dimensionality, time dependencies, time varying effects. In this work, we propose a Bayesian varying coefficient model allowing, in a single step, the identification of genetic markers involved in the variability of phenotypic traits and the estimation of their dynamic effects. We evaluate the use of spike-and-slab priors for the variable selection with either P-spline interpolation or non-functional techniques to model the dynamic effects. Numerical results are shown on simulations and on a functional mapping study performed on an \textit{Arabidopsis thaliana} (L. Heynh) data which motivated these developments.

KEYWORDS
\textit{Arabidopsis thaliana} (L. Heynh), functional mapping, group spike-and-slab, P-splines, time-varying parameters, variable selection, varying coefficient models
INTRODUCTION

Genetic architecture controls part of the variational properties of a phenotype. It has been treated as constant over time while most biological processes of interest are dynamic by nature (Hansen, 2006). In agronomy, traits such as yield, quality or disease resistance vary over seasons, age of individuals or various environmental conditions. Such variations, so-called phenotypic plasticity, reflect the phenotypic responses of a given genotype to a changing environment and may constitute adaptive processes. Until recently, most analyses of dynamic traits have been based on mapping quantitative trait loci (QTL) at each time point separately. Such analysis does not allow to take into account dependencies between successive measures and can be less powerful to select QTL. It also does not allow the inclusion of external information such as environmental variables in case of identical conditions for all individuals at a given time. To overcome these limitations, new classes of statistical models have been developed to analyse such data. In particular, functional mapping (FM) has been proposed for QTL identification associated with dynamic traits (Li & Sillanpää, 2015; Ma et al., 2002; Wu et al., 2003).

FM is based on simultaneously modelling the dynamic relationship between quantitative traits and genotype information, and the residuals covariance matrix (Li & Wu, 2010). FM relied initially on the assumption that genetic effects are continuous functions (Li & Sillanpää, 2013) and thus appear as a special case of varying coefficient (VC) models (Hastie & Tibshirani, 1993). VC models encompass a broad class of statistical approaches such as generalized additive models (Hastie & Tibshirani, 1990), structured additive regression (STAR) models (Fahrmeir et al., 2004) or time-varying parameters (Bitto & Frühwirth-Schnatter, 2019). Parametric methods based on biological knowledge have been initially developed using sigmoid or logistic functions to model the QTL dynamic effects (Ma et al., 2002; Wu et al., 2003). But such assumptions limit the curve flexibility and are restrictive to reflect the underlying processes. To overcome this restriction, non-parametric functional methods have been proposed such as those based on Legendre polynomial (Li et al., 2015; Min et al., 2011), or B-spline (Gong & Zou, 2012; Wang et al., 2008) interpolation techniques. While Legendre polynomial interpolation relies on global function bases that may lead to a decrease in goodness-of-fit when the order of polynomials increases, especially at both ends of the curve, B-splines use local function bases which greatly depend on the number of knots and their positions. Few knots do not provide enough flexibility to capture the variability in the data, while many knots may lead to overfitting. To overcome such limitation, penalization is usually applied to guarantee smoothness of the fitted curves and to limit overfitting (O’Sullivan, 1986, 1988). In particular, P-spline interpolation (Eilers & Marx, 1996) consisting in constraining the coefficients finite differences of adjacent B-splines, has been widely advocated in the FM context (Li & Sillanpää, 2013; Ni et al., 2019). In these previously mentioned approaches, FM was mainly based on the decomposition of a particular functional basis. However, in the VC model context, non-functional methods are an alternative approach consisting in directly modelling the varying coefficients (one parameter per time point without assuming a decomposition in a given functional basis). Such non-functional methods are widely used (Frühwirth-Schnatter & Wagner, 2010; Hastie & Tibshirani, 1993), but an unrestricted estimation does not insure smoothness and leads to overfitting problems (Bitto & Frühwirth-Schnatter, 2019; Franco-Villoria et al., 2019). To overcome these limitations, as mentioned for P-splines, penalization techniques are used. For example, the ℓ^2- or the ℓ^1-norm of the second differences has been proposed to model trends in time series (Kim et al., 2009). From a Bayesian perspective, such penalizations are equivalent to defining Gaussian prior distributions (Rasmussen & Williams, 2006; Rue & Held, 2005). For example, the ℓ^2-norm of the first or second differences correspond to first- or second-order random walk process priors, respectively (Lang & Brezger, 2004). In a genetic context, non-functional methods have been sparsely applied.
and compared to functional approaches (Li & Sillanpää, 2013; Vanhatalo et al., 2019). In this paper, we propose to evaluate, in a Bayesian framework, the impact of modelling choices focusing either on functional or non-functional approaches, each combined with first or second random walk process priors to model genetic effects over time.

With current technologies, such as high-throughput genotyping, the number of genetic markers may be huge leading to a large set of time-varying parameters. To simultaneously analyse all markers and phenotypes observed along time, variable selection methods need to be performed in a FM context. In animal or plant genetics, selection is also crucial to improve breeding programs. Classical variable selection methods focus on a single coefficient. In FM, strategies are slightly different because all the sequences of coefficients associated with a genetic information have to be selected simultaneously. Group variable selection has been developed in such a context. Wang et al. (2008) extended the SCAD penalized approach to grouped longitudinal data and (Li & Sillanpää, 2013; Vanhatalo et al., 2019) adapted stepwise algorithms. In a Bayesian regression model, various variable selection approaches have been proposed. In particular, the Bayesian group LASSO with Legendre interpolation has been investigated by Li et al. (2015). However, in high-dimensional data, this type of approach which shrinks towards zero the effects of irrelevant variables without putting them exactly to zero, leads to biased estimation (Fan & Li, 2001; Kyung et al., 2010) and requires fitting the model in two steps. In time-varying parameters, double Gamma prior is advocated (Bitto & Frühwirth-Schnatter, 2019) as proposed by Prez et al. (2017) in a linear mixed context. In STAR models, Scheipl et al. (2012) proposed the use of a spike-and-slab prior based on mixture of inverse gamma distributions (Ishwaran & Rao, 2005). The spike-and-slab prior is a discrete mixture of two distributions (George & McCulloch, 1993, 1997). The spike distribution is concentrated around zero and models coefficients associated with irrelevant variables while the slab distribution is flat and allows to describe the coefficients of relevant variables (Frühwirth-Schnatter & Wagner, 2010; Ishwaran & Rao, 2005). In this paper, we propose a group spike-and-slab (GSS) prior with Dirac mass at zero allowing to set to zero non-relevant genetic information as proposed in Ghosh and Ghattas (2015); Yang and Narisetty (2020).

To sum up, we propose to use a Bayesian P-spline interpolation or a direct approach with first or second random walk process priors for the functional estimation of genetic and environmental dynamic effects. Both methods are combined with a GSS prior for selection of time-varying coefficients (functional effects). Our approach allows, in a single step, to estimate complex functions associated with varying coefficients and to select time-varying QTLs associated with phenotypic traits. Section 2 presents the full hierarchical Bayesian models. In Section 3, model performances are tested on simulations. Numerical results show that combining penalized functional or non-functional method with a GSS prior outperforms existing methods such as B-splines or Legendre interpolation combined with group-LASSO or even with GSS prior. Our approach compared to that of Vanhatalo et al., also show better performances notably in terms of selection. Finally, Section 4 is dedicated to a real case study, investigating the dynamic genetic architecture of shoot growth natural variations for Arabidopsis thaliana (L. Heynh) under two water availability conditions.

2 | STATISTICAL MODELS

Let y_{i,t_k} be the phenotype of individual $i = 1, \ldots, n$ at time t_k ($k = 1, \ldots, T$). Let $t = (t_1, \ldots, t_T)'$ the time vector and $e' = (e_{11}', \ldots, e_{1L}', \ldots, e_{L1}', \ldots, e_{L1}')$ be L known environmental variables varying over time but common to all individuals at any given time t_k. Finally let us assume that genotype information, $x_{ij}, j = 1, \ldots, J$, is available for each individual at each of J loci. J is potentially much larger than n. Note that markers are
constant over time but vary between individuals. We propose to model the phenotypes according to environmental conditions and genotypes using the following multivariate varying coefficient (VC) model:

\[y_{it} = \alpha + \mu(t_k) + \sum_{l=1}^{L} f_l(\epsilon^l_{it}) + \sum_{j=1}^{J} x_{ij}\beta_j(t_k) + \epsilon_{it}, \]

(1)

\(\alpha \) is the intercept, \(\mu \) and \(f_l \) are real smooth functions of time and of the \(l \)th environmental variable respectively. Note that for the model to be identifiable (Hastie & Tibshirani, 1990), \(\mu \) and \(f_l \) have to be centred. The effect \(\beta_j \) of the \(j \)th marker is assumed to be an unknown real smooth function of time. \(\epsilon_i = (\epsilon_{i1}, \ldots, \epsilon_{iT})' \) is a \(T \)-dimensional vector of residuals associated with individual \(i \) assumed to follow a multivariate Gaussian distribution, \(\mathcal{N}(0, \sigma^2 \Gamma) \), with \(\sigma^2 \) the residual variance and \(\Gamma \) the \(T \times T \) correlation matrix defined by a first-order autoregressive (AR(1)) structure with unknown parameter \(\rho \) (Fahrmeir & Kneib, 2011).

Several functional methods have been proposed to approximate unknown functions (De Boor et al., 1978). Among them, B-spline interpolation is widely used. It consists of writing an unknown function \(h \) as a linear combination of B-spline basis functions:

\[h(x) = \sum_{r=1}^{df} B_r(x, \nu) c_r, \]

where \((B_1(., \nu), \ldots, B_{df}(., \nu)) \) is the collection of the \(\nu \)th-degree B-spline basis functions defined using \(K \) knots leading to \((K-1)\) ordered subintervals on the \(x \)-domain and \(c = (c_1, \ldots, c_{df})' \) is a vector of unknown B-spline coefficients. \(df \) is equal to \(K + \nu \) and is called the degree of freedom of the B-spline basis. In the following \(\nu \) and \(K \) will be assumed to be equal for all bases. Let us denote \(\bar{B}^t \) the \(T \times df \) dimensional matrix where \(\bar{B}^t_{ij} = B_i(x_j, \nu) \). For \(h(.) \) functions to be centred, \(\bar{B}^t \) and \(c \) require to be re-parametrized (see appendix A.1). In the following, \(\bar{B}^t \) and \(\bar{c} \) denote the re-parametrized versions of \(B^t \) and \(c \). An accurate use of the B-spline approach strongly depends on the number of knots and the choice of their positions (Eilers & Marx, 1996). A misspecification may lead to over- or under-fits. To overcome these limitations and to introduce smoothness, penalized B-splines (P-splines) have been developed (Eilers & Marx, 1996). The idea is to penalize the first- or second-order finite differences in adjacent spline regression coefficients.

Non-functional method presents an alternative to B-spline interpolation. It consists in the discretization of coefficient functions \((\beta_1(t), \ldots, \beta_J(t))\) leading to the estimation of \(T \times J \) parameters as in a standard multivariate regression model (Li & Sillanpää, 2013). For smoothness reasons and due to the huge number of parameters, penalized least squares methods have been proposed consisting, as already used in P-spline context, to constrain the first or second differences of successive time regression parameters (Bitto & Frühwirth-Schnatter, 2019; Bruder et al., 2011; Franco-Villoria et al., 2019; Kim et al., 2009).

Finally, using either functional or non-functional methods, Equation (1) can be written for individual \(i \) over time as

\[y_i = \alpha 1 + \bar{B}^t \tilde{m} + \sum_{l=1}^{L} \bar{B}^t \tilde{a}_l + \sum_{j=1}^{J} x_{ij}Zb_j + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2 \Gamma) \]

(2)

where \(y_i = (y_{i1}, \ldots, y_{iT})' \) corresponds to the \(T \)-dimensional vector of phenotypic values for individual \(i \), \(\tilde{m} \) and \(\tilde{a}_l \) are the \((df-1)\)-dimensional vectors of B-spline coefficients associated with the smooth functions of time and of the \(l \)th environmental variable.
In case of B-spline or P-spline approaches, Z is then equal to B' and b_j are the df-dimensional vectors of coefficients associated with the jth marker. Otherwise, $Z \equiv I_{dT}$ where I_{dT} is the $T \times T$ identity matrix and $b_j = (\beta_{j1}, \ldots, \beta_{jl})'$.

From a Bayesian perspective, penalties based on the first- or second-order finite differences on adjacent coefficients correspond to a multivariate first- or second-order random walk prior (Lang & Brezger, 2004). In the following, prior distribution for \tilde{m}, \tilde{a}_l or b_j will be assumed to be:

$$\mathcal{N}(0, \tau_u(K)^{-1})$$

where τ_u is a variance parameter specific for each group of unknown parameters: τ_m for \tilde{m}, τ_{a_l} for \tilde{a}_l, $l = 1, \ldots, L$, and τ_{b_j} for b_j, $j = 1, \ldots, J$. K is equal to $\tilde{D}'_m \tilde{D}_m, \tilde{D}'_a \tilde{D}_a$, $l = 1, \ldots, L$, or $D'D$, where D is the matrix representation of the first- and second-order finite differentiating operator, \tilde{D}_m and \tilde{D}_a are the associated re-parametrized versions of D (see appendix A.1 for more details).

In order to simultaneously select relevant markers j and estimate their associated effects b_j, group variable selection has to be performed. In a Bayesian regression model, various variable selection approaches have been proposed (O’Hara et al., 2009). In particular, the spike-and-slab prior has been widely and efficiently used (Ghosh & Ghattas, 2015; Malsiner-Walli & Wagner, 2011). The spike-and-slab prior is a discrete mixture of two distributions (George & McCulloch, 1993, 1997). The allocation to both components is controlled by a latent indicator variable γ_j that follows a Bernoulli distribution. Thus, if $\gamma_j = 1$ the coefficient will be assigned to the slab part and the variable will be included in the model. To simultaneously select molecular markers and estimate their effects, we propose to combine the random walk prior (see Equation (3)) of the coefficients with a spike-and-slab prior. In our context, we consider each vector of coefficients as a group and we specify on each vector a multivariate spike-and-slab prior with the random walk prior on the slab component and a Dirac mass at zero (Ghosh & Ghattas, 2015; Yang & Narisetty, 2020) leading to the following prior:

$$b_j|\tau_{b_j}, \gamma_j, \sigma^2 \sim \gamma_j \mathcal{N}(0, \sigma^2(\tau_{b_j} D'D)^{-1}) + (1 - \gamma_j)\delta(0), j = 1, \ldots, J$$

$$\tau_{b_j} \sim IG(s, r), \gamma_j \sim Ber(\pi) \text{ and } \pi \sim Beta(1, 1)$$

(4)

where $IG(s, r)$ is the Inverse Gamma distribution with shape and rate respectively equal to s and r. σ^2 is the residual variance, π is the a priori inclusion probability and $Beta(1, 1)$ denote the Beta distribution.

Finally, the dynamic QTL mapping model can be expressed as the following Bayesian hierarchical model:

$$y_j|\alpha, \tilde{m}, \tilde{a}, b, \rho, \sigma^2 \sim \mathcal{N}(\alpha + \tilde{B}' \tilde{m} + \sum_{l=1}^{L} \tilde{B}_l' \tilde{a}_l + \sum_{j=1}^{J} x_j Z b_j, \sigma^2 \Gamma)$$

$$\alpha \sim U_{(-\infty, \infty)}$$

$$\tilde{m}|\tau_m \sim \mathcal{N}(0, (\tau_m \tilde{D}'_m \tilde{D}_m)^{-1})$$

$$\tilde{a}_l|\tau_{a_l} \sim \mathcal{N}(0, (\tau_{a_l} \tilde{D}'_a \tilde{D}_a)^{-1}), \quad l = 1, \ldots, L$$

$$b_j|\tau_{b_j}, \gamma_j, \sigma^2 \sim \gamma_j \mathcal{N}(0, \sigma^2(\tau_{b_j} D'D)^{-1}) + (1 - \gamma_j)\delta(0), \quad j = 1, \ldots, J$$

(5)

$$\tau_m, \tau_{a_l} \text{ and } \tau_{b_j} \sim IG(0.1, 0.1), \quad l = 1, \ldots, L \quad \text{and} \quad j = 1, \ldots, J$$

$$\gamma_j \sim Ber(\pi), \quad j = 1, \ldots, J \quad \text{and} \quad \pi \sim Beta(1, 1)$$

$$\rho \sim U_{(-1, 1)}, \quad \sigma^2 \sim IG(0.1, 0.1)$$

5
where $U_{(-1,1)}$ denotes the uniform distribution on the interval -1 to 1. The use of a Dirac spike may imply reducibility of the Markov chain ($\gamma_j = 0$ implies $b_j = 0$ and vice versa). To avoid it, it is essential to draw γ from the marginal posterior integrating over the regression coefficients b subject to selection, see Malsiner-Walli and Wagner (2011), Geweke (1996) and Smith et al. (1996). The details of the integration are provided in appendix A.2. This Bayesian hierarchical model (Equation (5)) relies on conditionally conjugate distributions. It allows analytical integration over the regression effects b and thus the development of an efficient Gibbs sampling algorithm (Gilks et al., 1995). The full conditional distributions for the GSS prior are given in appendix A.3 and are available on https://github.com/Heuclin/VCGSS.

3 | SIMULATIONS

This section aims to investigate through simulations the performance of the proposed models, by varying different parameters such as the degree of freedom, the residual variance, the number of observations (time steps and individuals), the number of markers, the correlation among them and considering several functional methods (Legendre polynomials (L), B-spline (BS) or P-splines with first- or second-order difference penalty (PS_1/PS_2)) and non-functional methods (with first- or second-order difference penalty (RW_1/RW_2)) combined with two variable selection priors (GSS) or Bayesian group Lasso (BGL) (Kyung et al., 2010) (see appendix A.3 and A.4 for the full conditional distributions). We also planned to test the approach proposed by Scheipl et al. (2012) and implemented in the spikeSlabGAM R-package Scheipl, 2011). Unfortunately, from computational and modelling perspectives, this was not possible. This method requires indeed data transformation, such as vectorization of matrices and Kronecker products, leading to manipulation of huge matrices, which is particularly the case in the longitudinal context. For example, assuming $n = 300$ individuals, $T = 100$ time points, and $J = 100$ genetic markers, the algorithm crashes on a high performance computer (28 cores, bi processor Intel Xeon E5-2680 v4 2.4 Ghz with 128 Go of RAM). In addition, spikeSlabGAM does not permit to consider residual dependencies within each individual to be structured over time, that may lead to spurious selection (Li & Sillanpää, 2013). In our paper, an AR(1) is used. Assuming independence impacts the variable selection process leading in particular to an increase in false positives. Furthermore, we also compare our different approaches with Vanhatalo et al.’s method that models the functional effects β_j with Gaussian process prior using a Mâtern covariance function combined with a stepwise selection approach and taking also into account an AR(1) residual covariance structure. We will refer to this approach as S-GP. Note that in a Bayesian framework, the Legendre interpolation combined with Bayesian group Lasso has been already explored by Li and Sillanpää (2015).

In the following, whatever the number of markers J, only the first four markers are non-zeros and their functional effects are defined as follows:

$$
\beta_1(t) = 4 - 0.08t,
\beta_2(t) = \cos\left(\frac{\pi}{15}(t-25)\right) + \frac{t}{50},
\beta_3(t) = \frac{25 + \left(t - \frac{T}{2}\right)^2}{(t - \frac{T}{2})^2}
\beta_4(t) = 2 * 1_{t \leq \frac{T}{3}} + 0 * 1_{\frac{T}{3} < t \leq \frac{2T}{3}} + 1_{t > \frac{2T}{3}}.
$$

The overall mean function is set to:

$$
\mu(t) = 1 + \sin\left(\frac{\pi t}{20}\right).
$$
Only one environmental variable is considered:

\[e_t^1 = \cos\left(\frac{\pi}{2}(t - 25)\right) + \frac{1}{50} t \]

and its effect on phenotypes is defined for all \(t \) as

\[f_1(e_t^1) = 0.5e_t^1 + 0.3(e_t^1)^2. \]

The ratio of false positives (FP) and false negatives (FN) as well as Matthews correlation coefficient (MCC, Matthews 1975) are recorded to evaluate the selection performances. For the GSS prior, a variable is assumed to be selected if its marginal posterior probability is greater than 0.5. For the BGL prior, a variable is selected if zero does not belong to the credible interval of at least one B-spline or Legendre coefficient. The estimation quality is assessed using the root mean square error (RMSE). For the additive part \(\alpha + \mu(t) + f_1(e_t^1) \), the error is jointly calculated for identifiability reasons. For ease of comparison, RMSEs calculated for each \(\beta_j, \ j = 1, \ldots, 4 \), are summed up in a unique value \(\text{RMSE}_\beta = \sum_{j=1}^4 \text{RMSE}_{\beta_j} \). All results are based on 100 replications.

3.1 Impact of functional and non-functional methods on estimation and prediction performances

Functional methods depend on the degree of freedom (df) for the B- and P-spline interpolations and the polynomial degree (d) for the Legendre interpolation. In the following, \(\nu \) is set to three such that cubic spline basis functions are used. To understand the impact of different methods, we first perform inference with different values of \(d \) ranging from 9 to 70, df ranging from 9 to 100, and assuming the true model is known (no variable selection, \(J = 4 \)). The sample size \(n \) is set to 300, the number of time points \(T \) to 100, the residual variance \(\sigma^2 \) to 4 and the residual autocorrelation decay parameter \(\rho \) to 0.

Figure 1 presents the RMSEs calculated using the first three smooth effects \(\beta_1(t), \beta_2(t) \) and \(\beta_3(t) \). It highlights the benefit of coefficient difference penalty. Indeed, among functional methods, the error
generated by non-penalized methods decreases until 0.118 and then increases. It emphasizes the difficulty to choose the number of polynomial degree/degree of freedom. The P-spline method generates an error that decreases to 0.1 and 0.092 for penalization of order 1 and 2 respectively, then stabilizes when the degree increases. Thus, it outperforms non-penalized methods and avoids overfitting. Finally, penalized non-functional methods perform equally well than non-penalized functional methods at optimal degree. Figure 1(b) presents the RMSE of the piecewise constant effect $\beta_4(t)$. Because of the two jumps, the effect of $\beta_4(t)$ is a complicated task for functional methods, as confirmed here. Indeed the optimal estimations are reached for a degree of freedom equal to the number of time step T and are no better than the estimation generated by non-functional penalized methods. To ensure that the P-spline results showed in Figure 1(a) are not due to overfitting, a 10-fold cross-validation is performed and predictive RMSEs are given in Figure 1(c). This confirms that P-splines are more robust to overfitting.

This simulation has showed that penalized methods outperform non-penalized method and avoid overfitting. Functional penalized methods are suitable for very smooth functions with no function values changing abruptly at any time point. On the contrary, non-functional penalized methods are suitable for more complex functions which can present jumps.

In the following, the df for B- or P-splines and d for Legendre interpolation will be fixed at $T/3$.

3.2 Impact of priors on variable selection

The second set of simulations aims at comparing BGL and GSS priors under functional and non-functional methods. These different prior combinations are also compared with the stepwise approach of Vanhatalo et al. (2019) combined with Gaussian process using Måtæn covariance function to estimate functional effects (S-GP). The number of time points T is set to 100, the number of individuals n is set to 100 or 300 and the number of markers J is set to 3000 or 500 respectively. These scenarios are then coupled with a residual variance σ^2 set to 4 or 16 and a residual autocorrelation decay parameter ρ set to 0.4. When the number of individuals is high and the number of markers is low ($n = 300$ and $J = 500$, columns 1 and 2 in Table 1), BGL and GSS perform equally well regardless of the estimation method used. Both priors allow efficient selection of variables which leads to an MCC close to one. The S-GP approach also performs well with slightly lower MCC when the residual variance increases due to some FN. However, when the sample size is substantially smaller than the number of variables ($n = 100$ and $J = 3000$, columns 3 and 4 in Table 1), BGL and GSS perform differently. BGL fails to select 75% to 100% of the non-zero functions regardless of the estimation method used and leads to a decrease in the MCC down to 0. In order to determine the reasons for this behaviour, we calculated, for BGL combined with P-spline interpolation, the following RMSEs

1. between the observations and their predictions

$$RMSE_y = \sqrt{\frac{1}{nT} \sum_{k=1}^{T} \sum_{i=1}^{n} (\hat{y}_{i,t_k} - y_{i,t_k})^2},$$

2. between the true non-zero functions and their estimations using all markers

$$RMSE_{B^T X} = \sqrt{\frac{1}{nT} \sum_{k=1}^{T} \sum_{i=1}^{n} \sum_{j=1}^{J} (x_{i,j} [B^T \hat{b}]_{i,t_k} - x_{i,j} \beta_j(t_k))^2},$$
3. between the true non-zero functions and their estimations using the markers with true non-zero effects

\[RMSE_{X_i} = \sqrt{\frac{1}{nT} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{j=1}^{4} (x_{ij} [B^T \hat{b}]_{t} - x_{ij} \beta_j(t_k))^2}. \]

4. between 0 and the estimation using the markers with true null effects

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Prior</th>
<th>(n = 300, J = 500, \sigma^2 = 4)</th>
<th>(n = 100, J = 3000, \sigma^2 = 4)</th>
<th>(n = 300, J = 500, \sigma^2 = 16)</th>
<th>(n = 100, J = 3000, \sigma^2 = 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC</td>
<td>BGL-PS</td>
<td>0.91 (0.08)</td>
<td>0.9 (0.082)</td>
<td>0.51 (0.041)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BGL-BS</td>
<td>0.99 (0.041)</td>
<td>0.98 (0.046)</td>
<td>0.5 (0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BGL-L</td>
<td>0.75 (0.099)</td>
<td>0.7 (0.092)</td>
<td>0.5 (0)</td>
<td>0.2 (0.274)</td>
</tr>
<tr>
<td></td>
<td>GSS-L</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>0.96 (0.962)</td>
</tr>
<tr>
<td></td>
<td>GSS-BS</td>
<td>1 (0)</td>
<td>1 (0)</td>
<td>1 (0)</td>
<td>1 (0.019)</td>
</tr>
<tr>
<td></td>
<td>GSS-PS_1</td>
<td>1 (0)</td>
<td>1 (0)</td>
<td>1 (0)</td>
<td>0.98 (0.044)</td>
</tr>
<tr>
<td></td>
<td>GSS-PS_2</td>
<td>1 (0)</td>
<td>1 (0)</td>
<td>1 (0)</td>
<td>0.94 (0.941)</td>
</tr>
<tr>
<td></td>
<td>GSS-RW_1</td>
<td>1 (0)</td>
<td>0.99 (0.027)</td>
<td>1 (0)</td>
<td>0.87 (0)</td>
</tr>
<tr>
<td></td>
<td>GSS-RW_2</td>
<td>1 (0)</td>
<td>0.99 (0.027)</td>
<td>1 (0)</td>
<td>0.87 (0)</td>
</tr>
<tr>
<td></td>
<td>S-GP</td>
<td>1 (0)</td>
<td>0.89 (0.05)</td>
<td>0.94 (0.063)</td>
<td>0.62 (0.141)</td>
</tr>
<tr>
<td>FN</td>
<td>BGL-PS</td>
<td>0</td>
<td>0</td>
<td>73.98 (4.998)</td>
<td>100 (0)</td>
</tr>
<tr>
<td></td>
<td>BGL-BS</td>
<td>0</td>
<td>0</td>
<td>75 (0)</td>
<td>100 (0)</td>
</tr>
<tr>
<td></td>
<td>BGL-L</td>
<td>0</td>
<td>0</td>
<td>75 (0)</td>
<td>90 (13.693)</td>
</tr>
<tr>
<td></td>
<td>GSS-L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5 (3.536)</td>
</tr>
<tr>
<td></td>
<td>GSS-BS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 (8.207)</td>
</tr>
<tr>
<td></td>
<td>GSS-PS_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11 (11)</td>
</tr>
<tr>
<td></td>
<td>GSS-PS_2</td>
<td>0</td>
<td>1 (4.949)</td>
<td>0</td>
<td>25 (0)</td>
</tr>
<tr>
<td></td>
<td>GSS-RW_1</td>
<td>0</td>
<td>1 (4.949)</td>
<td>0</td>
<td>25 (0)</td>
</tr>
<tr>
<td></td>
<td>GSS-RW_2</td>
<td>0</td>
<td>20.5 (9.702)</td>
<td>7.5 (11.573)</td>
<td>59 (18.736)</td>
</tr>
<tr>
<td>RMSE_{\beta}</td>
<td>BGL-PS</td>
<td>0.47 (0.083)</td>
<td>0.86 (0.17)</td>
<td>3.48 (0.248)</td>
<td>5.62 (0)</td>
</tr>
<tr>
<td></td>
<td>BGL-BS</td>
<td>0.43 (0.042)</td>
<td>0.69 (0.091)</td>
<td>3.54 (0.065)</td>
<td>5.62 (0)</td>
</tr>
<tr>
<td></td>
<td>BGL-L</td>
<td>0.75 (0.187)</td>
<td>1.53 (0.391)</td>
<td>3.56 (0.108)</td>
<td>4.83 (1.077)</td>
</tr>
<tr>
<td></td>
<td>GSS-L</td>
<td>0.43 (0.429)</td>
<td>0.7 (0.695)</td>
<td>0.63 (0.628)</td>
<td>1.22 (1.224)</td>
</tr>
<tr>
<td></td>
<td>GSS-BS</td>
<td>0.42 (0.022)</td>
<td>0.66 (0.042)</td>
<td>0.6 (0.04)</td>
<td>1.03 (0.1)</td>
</tr>
<tr>
<td></td>
<td>GSS-PS_1</td>
<td>0.38 (0.024)</td>
<td>0.61 (0.041)</td>
<td>0.56 (0.04)</td>
<td>0.96 (0.176)</td>
</tr>
<tr>
<td></td>
<td>GSS-PS_2</td>
<td>0.39 (0.39)</td>
<td>0.66 (0.665)</td>
<td>0.58 (0.578)</td>
<td>1.23 (1.234)</td>
</tr>
<tr>
<td></td>
<td>GSS-RW_1</td>
<td>0.43 (0.024)</td>
<td>0.87 (0.106)</td>
<td>0.74 (0.041)</td>
<td>1.79 (0.054)</td>
</tr>
<tr>
<td></td>
<td>GSS-RW_2</td>
<td>0.42 (0.04)</td>
<td>0.89 (0.131)</td>
<td>0.76 (0.043)</td>
<td>1.81 (0.057)</td>
</tr>
<tr>
<td></td>
<td>S-GP</td>
<td>0.44 (0.023)</td>
<td>1.05 (0.204)</td>
<td>0.76 (0.276)</td>
<td>2.87 (0.819)</td>
</tr>
</tbody>
</table>
\[\text{RMSE}_{y} = \sqrt{\frac{1}{nT} \sum_{k=1}^{T} \sum_{i=1}^{n} \sum_{j=1}^{J} (x_{ij}[B^T \hat{b}])_{ik}^2}. \]

\(\text{RMSE}_y \) and \(\text{RMSE}_{B^X} \) are very similar regardless of the number of individuals and markers (see Table 2). This suggests that even when the model selection fails, the global estimation remains acceptable. However, \(\text{RMSE}_{B^X_1} \) and \(\text{RMSE}_{B^X_0} \) clearly differ between the two cases (\(n = 300, J = 500 \) vs. \(n = 100, J = 3000 \)). In the first and more favourable case, both RMSEs are low while for the case where the number of markers is high compared to the number of individuals, the RMSEs increases substantially. In particular, \(\text{RMSE}_{B^X_0} \) is high demonstrating a clear over-estimation of the zero components and thus an under-estimation of the true non-zero parts. That is, BGL is not shrinking to zero the 2996 markers with no effect and is estimating them to have low values, while biasing towards zero the estimation of the four markers with true effects. The biased estimations thereby impact the selection. The S-GP approach seems also sensitive to the complexity of the data. Indeed, the S-GP’s MCC decreases to 0.62 due to a FN which reaches 59%. It is affected by the ratio of the number of observations to the number of variables and especially by the noise which degrades its selection ability. The selection performance of the GSS prior combined with non-functional methods (GSS-RW_1/GSS-RW_2) also appears to be slightly affected by the noise when the number of individuals is low. Effectively, these combinations systematically miss variable 3 which is the smallest non-zero effect leading to 25% FN. GSS prior combined with functional method does not present the same comportment despite some false negatives (see Table 1). Li and Sillanpää (2013) showed that the non-functional method performs better when used with a diagonal covariance structure than with AR(1), in the sense that it does not erroneously shrink the effects of any marker towards zero when the number of observations is low and there is high temporal correlation among the residual errors. However, assuming a simple diagonal residual covariance structure tends to significantly underestimate the uncertainty, which may result in including some false positive markers into the variable selection. Therefore, the AR(1) covariance structure might be a more suitable choice. To investigate the limitations of the GSS prior combined with functional and non-functional methods in response to the data complexity, we simulate datasets with 100, 300 or 900 individuals, 20 time points, 500 markers, a residual variance equal to 1, 4 or 16 and a residual autocorrelation decay parameter \(\rho \) of 0, 0.4, 0.7 and 0.9. Figure 2 presents the results for GSS prior combined with P-spline interpolation and with non-functional method both with penalty of order 2. The GSS prior combined with non-functional method presents FN which increases with the noise (\(\rho \) and \(\sigma^2 \)) when the number of observations is low (see Figure 2(a)) while GSS prior combined with P-spline interpolation does not. This phenomenon is less pronounced when the number of observations increases (see Figure 2(b)) and disappears totally when the number of individuals is high (\(n = 900 \)). Thus, non-functional methods assuming AR(1) residual covariance may suffer from

Table 2

<table>
<thead>
<tr>
<th>(n)</th>
<th>(J)</th>
<th>(\sigma^2)</th>
<th>(\text{RMSE}_y)</th>
<th>(\text{RMSE}_{B^X})</th>
<th>(\text{RMSE}_{B^X_1})</th>
<th>(\text{RMSE}_{B^X_0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>500</td>
<td>4</td>
<td>2.64</td>
<td>0.89</td>
<td>0.44</td>
<td>0.93</td>
</tr>
<tr>
<td>100</td>
<td>3000</td>
<td>4</td>
<td>2.64</td>
<td>0.97</td>
<td>2.88</td>
<td>2.85</td>
</tr>
</tbody>
</table>

All these quantities are obtained using BGL prior combined with P-spline interpolation. \(X \) denote the matrix associated with all markers, \(X_1 \) the marker matrix associated with the true non-zero effects and \(X_0 \) the marker matrix associated with the true zero effects.
lack of statistical power when the data are complex (few observations with high noise) and may have difficulties to identify the correct origin of the observed dependency in this situation. The dimensional reduction caused by functional methods (number of parameters is divided by 3 using P-splines with $df = T/3$) implicitly increases the statistical power. Note that it also reduces the computation time (divided by 10 using $df = T/3$, see Table 3).

Finally, the correct selection leads to accurate estimation of parameters (see RMSE$_\rho$ in Table 1). The RMSE$_\rho$ in the first scenario where all approaches have a good selection confirms the performance of the different estimation methods. In addition we can see that the Gaussian process method has a comparable performance to the non-functional methods RW_1 and RW_2.

3.3 Impact of the number of individuals and time steps on GSS prior performance

To go a step further and better understand the impact of the number of individuals and time steps on the performance of GSS prior, we consider another set of simulations. In the following, we assume that only three markers have significant and constant effects of 0.1, 0.2 and 0.3 over time. An additional marker is added with no effects. The number of time points T varies from 1 to 50 and the number of individuals n is set to 100, 300, 500 or 1000. The residual variance σ^2 is fixed to one and the residual autocorrelation decay parameter ρ to 0. We focus on the marginal posterior probabilities of inclusion ($P(r_j = 1|y, X)$, $j = 1, \ldots, 4$) with all parameters fixed at their true values. Such an approach has
already been used by Malsiner-Walli and Wagner (2011) to evaluate the performance of spike-and-slab priors. First, regardless of the number of individuals or time steps, the marker with null effect is never selected (see Figure 3). Next, if we focus on one time step, these simulations confirm that the number of individuals plays a crucial role in variable selection as already mentioned in Malsiner-Walli and Wagner (2011). Increasing the number of individuals leads to a clear improvement of all marginal posterior probabilities. For example, for the strongest effect of 0.3, when the number of individuals goes from 100 to 300 with one time step ($T = 1$), $P(\gamma_3 = 1 | y, X)$ increases from 0.44 to 0.92 (see Figures 3(a), 3(b)). For the smallest effect of 0.1, with one time step, $P(\gamma_1 = 1 | y, X)$ increases from 0.01 to 0.34 when the number of individuals varies from 100 to 1000 (see Figures 3(a), 3(d)). While increasing the number of individuals improves the posterior probabilities of inclusion, the number of time steps also plays a significant role. Indeed, in the first panel with $n = 100$, the probability of inclusion for the intermediate effect of 0.2 increases from 0.10 for one time step to more than 0.35 using 50 time steps. This phenomenon is more evident when $n = 300$ where $P(\gamma_2 = 1 | y, X)$ jumps from 0.52 to 1 when considering around 10 or more time steps, or when $n = 1000$ and $P(\gamma_1 = 1 | y, X)$ climbs from 0.01 for one time step to 1 with 20 or more time steps. Thus, combining a high number of individuals with longitudinal data improves the variable selection allowing the detection of small effects while strengthening the confidence in the strongest ones. These results demonstrate the superiority of longitudinal data analyses compared to a separate analysis at each time point.

3.4 Impact of correlation between markers

Correlation is a difficult task in practice especially when working with high-throughput genotyping data where the fine discretization of the genome leads to very strong collinearity between markers. So it is important to understand how the GSS prior will perform under this constraint. To study this kind of situation, we consider a new simulated dataset constructed from markers provided from real case study on *Arabidopsis thaliana* (L. Heynh) (Marchadier et al., 2019) presented in Section 4. Phenotypic observations y are simulated for 300 individuals over 100 time points from four independent groups of 9 correlated markers. The correlation between adjacent markers within group is set to 0.8, 0.9 and 0.95 following the data process described in Section 4. For the jth group, only the 5th
marker has non-zero effect defined by $\beta_j(t)$ in Equation (6), $j = 1, 2, 3$ or 4. The residual variance is set to 4 and the residual autocorrelation decay parameter ρ to 0.9.

Figure 4 gives the marginal inclusion probability for each marker under different levels of correlation among them. It shows a clear impact of the correlation among markers on selection. The higher the correlation, the lower the marginal inclusion probabilities of the non-zero markers and the higher the marginal inclusion probabilities of adjacent zero markers. The correlation of 0.95 highlights this fact well. This is due to a switch of selection among markers that are highly correlated (adjacent markers) with the true non-zero markers. This result is in agreement with those of Malsiner-Walli and Wagner (2011) and Ghosh and Ghattas (2015) who have also studied the spike-and-slab prior under collinearity. Thus, when the data present high correlation, approaches using spike-and-slab prior lead to identification of a set of physically related markers defining genomic regions involved for the phenotypic observations. Ghosh and Ghattas (2015) advise against the use of Zellner’s g-prior (leading to more false negative) and recommend a routine examination of the correlation matrix and calculation of the joint inclusion probabilities for correlated covariates, in addition to marginal inclusion probabilities, for assessing the importance of covariates.
This application aims at disentangling the effects of the complex genetic architecture of shoot growth of *Arabidopsis thaliana* (L. Heynh) (Marchadier et al., 2019) and the impact of soil water conditions (SWCs) on its dynamics. The complete phenotypic dataset is freely available at: https://data.inra.fr/dataset.xhtml?persistentId=doi:10.15454/OCOP9B (Loudet, 2018). The genotypic dataset is freely available at: http://publiclines.versailles.inra.fr/page/8. We focus on the phenotypic trait compactness of a recombinant inbred line (RIL) composed of 358 individuals followed during the vegetative growth from days 8 to 29 after sowing ($T = 21$). Compactness dynamics was observed along time using the high-throughput Phenoscope robot (Tisné et al., 2013). Compactness is the ratio between the projected rosette area and the convex hull area. Two environmental conditions are considered: well-watered (WW) and moderate water deficit (MWD) conditions. WW slowly decreases SWC from 100% on day one to 60% on day 5, then maintains that level throughout the experiment. MWD let natural evaporation act until a threshold of 30% humidity is reached (see Figure 5(a)). The dynamics of compactness according to the two SWC are presented in Figure 5(b) and (c). From 113 single-nucleotide polymorphisms (SNPs), the parental genotype probabilities were calculated at 538 positions for each individual using the `calc.genoprob` function in R/QTL package (Broman et al., 2003). These probabilities lead to 538 genetic predictors and are referred to ‘markers’ in the following. Markers on different chromosomes are independent (mean correlation between chromosomes lower than 0.05). However, within a chromosome, markers are ordered such that adjacent markers share similar information and are highly correlated. Such dependencies among covariates is known to impact variable selection and parameter estimation as showed on our simulations and by others (Ghosh & Ghattas, 2015; Malsiner-Walli & Wagner, 2011). In order to reduce the collinearity, we process the data as follows: starting from the marker at the first position, we calculate its correlation with the subsequent markers. All markers with correlations greater than 0.95 are discarded and the first marker with a correlation less than 0.95 is retained, defining a new starting point. This procedure is repeated along the genome and results in the selection of 125 markers denoted $X_{0.95}$. Since this correlation threshold is high, we apply the procedure on the subset $X_{0.95}$ using a threshold of 0.7. This results in the

![Figure 4](attachment:fig4.png)

Figure 4 Marginal probabilities of inclusion for each effect associated with correlated markers within four independent groups

4 | APPLICATION

This application aims at disentangling the effects of the complex genetic architecture of shoot growth of *Arabidopsis thaliana* (L. Heynh) (Marchadier et al., 2019) and the impact of soil water conditions (SWCs) on its dynamics. The complete phenotypic dataset is freely available at: https://data.inra.fr/dataset.xhtml?persistentId=doi:10.15454/OCOP9B (Loudet, 2018). The genotypic dataset is freely available at: http://publiclines.versailles.inra.fr/page/8. We focus on the phenotypic trait compactness of a recombinant inbred line (RIL) composed of 358 individuals followed during the vegetative growth from days 8 to 29 after sowing ($T = 21$). Compactness dynamics was observed along time using the high-throughput Phenoscope robot (Tisné et al., 2013). Compactness is the ratio between the projected rosette area and the convex hull area. Two environmental conditions are considered: well-watered (WW) and moderate water deficit (MWD) conditions. WW slowly decreases SWC from 100% on day one to 60% on day 5, then maintains that level throughout the experiment. MWD let natural evaporation act until a threshold of 30% humidity is reached (see Figure 5(a)). The dynamics of compactness according to the two SWC are presented in Figure 5(b) and (c). From 113 single-nucleotide polymorphisms (SNPs), the parental genotype probabilities were calculated at 538 positions for each individual using the `calc.genoprob` function in R/QTL package (Broman et al., 2003). These probabilities lead to 538 genetic predictors and are referred to ‘markers’ in the following. Markers on different chromosomes are independent (mean correlation between chromosomes lower than 0.05). However, within a chromosome, markers are ordered such that adjacent markers share similar information and are highly correlated. Such dependencies among covariates is known to impact variable selection and parameter estimation as showed on our simulations and by others (Ghosh & Ghattas, 2015; Malsiner-Walli & Wagner, 2011). In order to reduce the collinearity, we process the data as follows: starting from the marker at the first position, we calculate its correlation with the subsequent markers. All markers with correlations greater than 0.95 are discarded and the first marker with a correlation less than 0.95 is retained, defining a new starting point. This procedure is repeated along the genome and results in the selection of 125 markers denoted $X_{0.95}$. Since this correlation threshold is high, we apply the procedure on the subset $X_{0.95}$ using a threshold of 0.7. This results in the
selection of 38 markers among the previous 125, which we denote $X_{0.7}$. Selected markers are labelled by their chromosome numbers and their positions separated by an underscore, such that marker 1_1 corresponds to the first position on the first chromosome. Both environmental conditions are initially related to time with a linear decrease over the first few days then become constant for the remainder of the experiment. During the first phase, environmental effects are fully correlated with time. This raises identifiability problems and does not permit to model jointly a time-varying intercept and environmental effects. Thus, the environmental factors are not included in the model. In addition, since genotype × environment interactions are not taken into account, we analyse separately each environmental condition.

In a nutshell, the study data consist of one phenotypic trait (compactness) measured over 21 time points ($T = 21$) on 358 individuals ($n = 358$) under two soil water conditions. We used two sets of covariates $X_{0.70}$ and $X_{0.95}$ containing 38 and 125 markers respectively. The two SWC are analysed separately to identify differences in the genetic architecture between the conditions. The results are based on 100 MCMC chains initialized at random starting values, each with 1,000,000 iterations, a burn-in of 500,000 and a thinning of ten. Gelman and Rubin’s potential scale reduction factors (Gelman et al., 1992) for all continuous parameters and log predictive density (log-likelihood) are close to 1, indicating convergence. More details are presented in the supplementary materials. All output statistics are based on the pooled five million posterior samples.

Selecting relevant markers for WW condition: in the case of low correlations between markers, the selection procedure is highly stable. Figure 6 presents the mean of the marginal posterior inclusion probability for each marker using the PS_2 method across the pooled 10 million posterior samples. Eight markers (1_1, 1_20, 1_110, 2_62, 4_45, 5_33, 5_76 and 5_104) are included in the model with marginal posterior probabilities of one. Seven other markers have a marginal posterior inclusion probabilities lower than one but strictly greater than zero. Among these, for the markers (1_79, 1_97) and (3_14, 3_25) the algorithm tends to switch between the two adjacent markers. Indeed, we first note that the joint inclusion probabilities $\mathbb{P}(\gamma_{1.79} = 1 \cap \gamma_{1.97} = 1)$ and $\mathbb{P}(\gamma_{3.14} = 1 \cap \gamma_{3.25} = 1)$ are close to zero (lower than 10^{-4}), demonstrating that these two consecutive markers are hardly ever selected simultaneously. Second, the sum of the marginal posterior inclusion probabilities for each pair is equal to one. Thus, the algorithm switches from one marker to another. The three markers 2_47, 3_1 and 3_91 have marginal posterior inclusion probabilities of 0.07, 0.9, 0.97 respectively and have no adjacent markers selected. The switch between included markers can be explained by the pre-selection procedure. Using a threshold of 0.7 and
starting from the first position may have led to the removal of other relevant markers or genomic regions, and the retained markers may not actually be relevant but only be close to or encompassing relevant regions. To validate this assumption, GSS-PS_2 is applied to the $X_{0.95}$ dataset.

Revealing genomic regions for WW condition: markers in the $X_{0.95}$ subset are highly correlated but offer a better coverage of the genome. Strong collinearity between covariates can lead to a multimodal posterior distribution and posterior distributions have to be carefully analysed Ghosh and Ghattas (2015). In particular, it can be troublesome for variable selection where subsets are weakly separable (Rocková & George, 2014). For highly correlated covariates, at a given MCMC iteration, one particular covariate can switch with another as shown on simulations. This phenomenon is classically observed using spike-and-slab priors. However, this drawback can be lifted to identify potential genomic regions involved in phenotypic variations. Applying PS_2 method on the $X_{0.95}$ subset allows us to check this (see Figure 7). For the $X_{0.70}$ subset, a model which contains 12 markers (see Figure 6) is clearly favoured with a joint posterior probability of 0.74, while no consensus can be reached based on $X_{0.95}$ as the joint posterior probabilities of the top 3 models are only 0.027, 0.026 and 0.022. However and interestingly, the selected positions and models are similar. For example, the first three markers, 1_1, 1_2 and 1_4 are never selected simultaneously ($\mathbb{P}(\gamma_{1.1} = 1 \cap \gamma_{1.2} = 1 \cap \gamma_{1.4} = 1) = 0$) but are complementary: $\mathbb{P}(\gamma_{1.1} = 1) + \mathbb{P}(\gamma_{1.2} = 1) + \mathbb{P}(\gamma_{1.4} = 1) = 1$. This phenomenon is observed for most switching positions allowing the delimitation of 14 genetic regions that may be involved in compactness variation (see Table 4). From Table 4 several additional observations can be made. All markers or regions detected using $X_{0.70}$ match those identified with $X_{0.95}$ (see columns 2 and 3 of Table 4). The use of $X_{0.95}$ leads to the selection of two additional regions (regions 6 and 11), and regions 3 and 8 seem narrower with $X_{0.95}$. Thus, a more intensive repartition of markers along the genome allows a finer understanding of the underlying genetic architecture but the effects of markers cannot be evaluated because of identifiability issues. Thus, a more intensive repartition of markers along the genome, while avoiding extremely high correlations, allows the detection of genetic regions potentially involved in the underlying genetic architecture.

We compare PS_1 and PS_2 methods applied on the subsets $X_{0.70}$ and $X_{0.95}$. The results are identical demonstrating no impact of the order difference penalty (see Figure 8). We also compare the PS_2 and RW_2 methods. The results are different in terms of selection. Indeed, the number of selected markers or regions are lower with RW_2 than PS_2 with for instance seven regions identified among
the 14 of PS_2 using the $X_{0.95}$ subset. The estimation of the residual correlation is roughly equal to 0.9 using all methods. This high correlation seems to influence the selection process when using RW_1 or RW_2 methods, as already observed on simulations.

Impact of MWD condition: applying the PS_2 method to compactness measured in MWD condition using the $X_{0.7}$ as well as $X_{0.95}$ subsets reveals no clear impact of the MWD condition on the complex genetic architecture of shoot growth and its dynamics. Among the 12 positions selected in the WW condition using $X_{0.7}$, seven positions are also selected in the MWD condition. Using $X_{0.95}$, 12 genomic

FIGURE 7 Marginal posterior inclusion probabilities for the 125 markers of the genetic data $X_{0.95}$ using the PS_2 method. The alternation of white and grey area delimits the five chromosomes. A line at 0.5 representing a threshold at 0.5 is plotted.

TABLE 4 Table of the identified relevant regions

<table>
<thead>
<tr>
<th>Region</th>
<th>$X_{0.70}$ & PS_2</th>
<th>$X_{0.95}$ & PS_2</th>
<th>$X_{0.95}$ & RW_2</th>
<th>Marchadier et al. (2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1_1 → 1_4</td>
<td>1_1 → 1_4</td>
<td>1_4 → 1_8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1_20</td>
<td>1_20 → 1_25</td>
<td>1_20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1_79 → 1_97</td>
<td>1_85 → 1_93</td>
<td>1_85 → 1_89</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1_110</td>
<td>1_110 → 1_115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2_62</td>
<td>2_57 → 2_64</td>
<td>2_57 → 2_64</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>2_80</td>
<td>2_80 → 2_84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3_1</td>
<td>3_3 → 3_10</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>3_14 → 3_25</td>
<td>3_14 → 3_18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3_97</td>
<td>3_97</td>
<td>3_97</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>4_45</td>
<td>4_45 → 4_51</td>
<td>4_45</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>4_79</td>
<td>4_79 → 4_87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5_33</td>
<td>5_33 → 5_42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5_76</td>
<td>5_76 → 5_80</td>
<td>5_64</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>5_104</td>
<td>5_102 → 5_110</td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>

Columns 2 and 3 indicate the markers or the range of markers corresponding to regions identified using the PS_2 method on the $X_{0.7}$ and $X_{0.95}$ subsets respectively. Column 4 indicates the markers or the range of markers corresponding to regions identified using the RW_2 method on the $X_{0.95}$ subset. The last column indicates if regions were identified by Marchadier et al. (2019).
Figure 8. Estimation of the effect for the marker which has the highest marginal posterior inclusion probability within each region in the $X_{0.95}$ subset. The blue, black, and red lines represent the estimation using the PS_1, PS_2, and RW_2 methods respectively. Plots with box are associated with markers which are identified by Marchadier et al. (2019).
regions in the MWD condition overlap with the 14 selected regions in the WW condition. Interestingly, among the five positions selected for WW but not MWD using $X_{0.70}$, three positions belong to the 12 shared genomic regions while the two last positions belong to the two unselected regions in MWD. Two hypotheses can explain such differences: (i) a genotype × environment interaction effect or (ii) an experimental effect. For the PS_2 method, when comparing cumulated effects estimated using the seven shared positions, no difference can be observed between the two conditions (see Figure 9). Moreover, when plotting the effects of the two markers selected in WW condition but not in the MWD condition (see Figure 8, regions 7 and 12), it seems that these two positions impact compactness from the beginning to the end of the experiment. Such results do not support either hypotheses.

Comparative results: in an earlier study, Marchadier et al. (2019) identified in the WW condition eight significant markers involved in compactness variability for the last experimental day ($T = 29$) using a single time analysis. Seven of them match the regions we identified (Table 4, column 6 and Figure 8). Using the PS_2 method, we also identified seven additional regions that were not detected by Marchadier et al. (2019). These additional regions are identified by taking into account the dynamics of the phenotypic trait. Indeed, considering the observations of all individuals over the T times selects markers which can have an effect only at a few times unlike a single time point analysis as proposed by Marchadier et al. (2019). For example, marker ‘1_89’, which has the highest posterior inclusion probability within the third region (see Figure 8), shows an effect only at the early stage of the vegetative growth process. Thus, it cannot be identified using the last day as in Marchadier et al. (2019). Another advantage of considering functional variations of the effects allows a better understanding of the genetic architecture.

Finally using functional methods such as P-spline interpolation compared to non-functional approaches reduces the number of parameters and thus indirectly increases the statistical power.

5 | CONCLUSION

In this article we proposed a Bayesian varying coefficient model with variable selection for studying the dynamic genetic architecture of a complex trait.

The model combines a GSS prior for the selection of markers with a P-spline interpolation or direct estimation of time coefficient functions. Both methods use first- or second-order difference
penalty to ensure smoothness of the genetic functional effects. We evaluate the performance of the model through different simulations. We show that our approaches outperform, in terms of estimation as well as prediction, models using B-spline or Legendre interpolation in combination with GSS or Bayesian group LASSO priors, as well as the alternative approach of Vanhatalo et al. (2019). P-spline interpolation is more suitable for very smooth genetic effect while direct estimation of time coefficient functions with difference penalty is more suitable for more complex effect with potential jumps. However, simulations demonstrate that direct estimation of time coefficient functions with difference penalty is more sensitive to noise (residual variance and residual time correlation) leading to false negative. P-spline interpolation reduces the number of parameters which indirectly increases the statistical power. Considering a point mass at zero for the spike part of the prior distribution of the regression coefficients improves the selection and thereby the quality of the estimation (George & McCulloch, 1997). Moreover, an investigation of the marginal inclusion probability associated with each covariate reveals the importance of the number of time points in the variable selection performance.

From a practical point of view, we show that a longitudinal approach allows a better detection of relevant markers or genomic regions compared to an approach that analyses a single time point as proposed in Marchadier et al. (2019). In addition, as classically observed in genetic studies, markers present high correlation, thus requiring pre-selection. In this paper, we considered two correlation thresholds for the pre-selection leading to two subsets of markers considered for the analysis. The first subset with moderate correlation between markers allows a clear identification of positions and the estimation of their associated functional effects. The second, with high correlation among markers and more intensive coverage of the genome, allows the identification of genomic regions but the estimation of their associated effects is unreliable due to identifiability issues. This aspect has been observed on our simulations and was already reported by others (Ghosh & Ghattas, 2015; Malsiner-Walli & Wagner, 2011). Further research is needed for variable selection in the presence of high collinearity between covariates, for example considering alternative priors such as g-priors (Ghosh & Ghattas, 2015; Malsiner-Walli & Wagner, 2011) or priors defined using the order structure information of markers along the genome.

Finally, more or less complex extensions should be considered. In this work we assumed that time points are common to all individuals. This could be restrictive in some applications. However, such assumption could be easily relaxed as done by (Li & Sillanpää, 2015), who defined a B-spline basis for each individual. Moreover, our model considered a time-varying environmental condition and genetic markers to have additive effects. The functional estimation of the genetic effects captures the dynamics associated with each marker. However, the additivity assumption does not permit to determine if these estimated effects are directly related to the physiological processes or to the time-varying environmental condition. Genotype-by-environment (GE) interactions may impact the dynamic genetic architecture of complex traits and the selection procedure. One possible solution for incorporating GE interactions could be the addition of a functional effect depending on the environmental condition for each marker. But such an approach is computationally challenging. Finally, in this paper, only one time-varying environmental condition common to all individuals is considered. Another extension would involve the integration of different environmental conditions for the same genotypes and evaluating GE interactions.

AVAILABILITY OF THE ARABIDOPSIS THALIANA (L. HEYNH) DATASET

ACKNOWLEDGEMENTS
We thank S. Tisné for the fruitful discussions around *Arabidopsis thaliana* (L. Heynh). We also thank M.G. Tadesse for her helpful comments. M. Denis was partially supported by the European Unions Horizon 2020 research and innovation program under grant agreement No773383. We thank the two reviewers and the associate editor for their numerous valuable comments and suggestions, which substantially improved the paper.

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.
A. APPENDIX

A.1.1 | Estimation of centred function using interpolation approach

For identifiability reasons in VC models, the \(h \) functions to be interpolated for the intercept and the environmental effect have to be centred. This means \(\int h(x)dx = 0 \) (Hastie & Tibshirani, 1990; Wood, 2017). Let \(B^t \) denote the \((T \times df)\)-dimensional matrix containing the basis functions calculated at \(x = (x_1, \ldots, x_t)' \). Let also denote \(c \) a \(df \)-dimensional vector of associated coefficients such that

\[
h(x) = B^t c. \tag{10}
\]

To satisfy the centring constraint on \(h(.) \), the sum of the elements of \(h(x) \) must be zero (\(\frac{1}{\text{var}B^t} (\text{var}B^t) c = 0 \)). This can be achieved by a re-parametrization of \(B^t \) and \(c \) using a QR decomposition as explained by Wood (2017) in section 1.8.1 and 4.2. Let

\[
(1'B^t)' = Q \begin{bmatrix}
R \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

the QR decomposition of \((1'B^t)'\) where \(Q \) is a \((df \times df)\)-dimensional orthogonal matrix and \(R \) is a scalar in this case. By taking \(Z \) the \(df - 1 \) last columns of \(Q \) we obtain that

\[
1'B^t Z = (0 \ldots 0).
\]

Now, we can rewrite Equation (10) by defining a new \((df - 1)\)-dimensional parameters vector \(\tilde{c} \) such that \(c = Z\tilde{c} \) and a new \(T \times (df - 1) \) basis functions matrix \(\tilde{B}^t = B^t Z \) leading to \(\tilde{B}^t \tilde{c} = \tilde{B}^t \tilde{c} \) which satisfies the constraint.

If adjacent coefficients are penalized as in P-spline interpolation, the new parameters \(\tilde{c} \) imply also a re-parametrization of the matrix of the finite differentiating operator \(D \) by \(\tilde{D} = DZ \). Thus \(c'DD'c \) is equal to \(\tilde{c}'D'D\tilde{c} \).

A.1.2 | Detail of the full conditional distribution of \(\gamma_k \)

Let \(\Theta \) the set of all parameters \(\{a, \tilde{m}, \tau_{m}, \tilde{a}_1, \ldots, \tilde{a}_L, \tau_{a_1}, \ldots, \tau_{a_L}, b_1, \ldots, b_J, \gamma_1, \ldots, \gamma_J, \tau_{b_1}, \ldots, \tau_{b_J}, \pi, \rho, \sigma^2 \} \) in the Bayesian hierarchical model (5), \(\Theta_{k_0} \) and \(\Theta_{k_1} \) be \(\Theta \) with \(\gamma_k = 0 \) and \(\gamma_k = 1 \) respectively. Let

\[
\bar{y}_i = y_i - \alpha 1 - \tilde{B}^t \tilde{m} - \sum_{l=1}^{L} \tilde{B}^t \tilde{a}_l - \sum_{j=1}^{J} x_{i,j}Zb_j
\]

and

\[
\bar{y}_{i,k} = y_i - \alpha 1 - \tilde{B}^t \tilde{m} - \sum_{l=1}^{L} \tilde{B}^t \tilde{a}_l - \sum_{j=1 \cdot j \neq k}^{J} x_{i,j}Zb_j.
\]
\[P(y | \Theta_k \setminus \{b_k\}) = \int_R P(y | \cdot, b_k) P(b_k | \gamma_k = 1) \, db_k \]
\[= \int_R \frac{1}{(2\pi \sigma^2)^{\frac{n}{2}} |\Gamma| \frac{1}{2}} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} \tilde{y}_i^T \Gamma^{-1} \tilde{y}_i \right\} \frac{|D' \Gamma^{-1} D|^{\frac{1}{2}}}{(2\pi \sigma^2 \tau_{b_k})^{\frac{n}{2}}} \exp \left\{ -\frac{1}{2\sigma^2} b_k' D' D b_k \right\} \, db_k \]
\[= \frac{1}{(2\pi \sigma^2)^{\frac{n}{2}} |\Gamma| \frac{1}{2}} \frac{|D' \Gamma^{-1} D|^{\frac{1}{2}}}{(2\pi \sigma^2 \tau_{b_k})^{\frac{n}{2}}} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} \tilde{y}_i^T \Gamma^{-1} \tilde{y}_i \right\} \]
\[\int_R \exp \left\{ -\frac{1}{2} b_k' Z' \sum_{i=1}^{n} x_{i,k} \Gamma^{-1} x_{i,k} Z b_k - b_k' Z' \sum_{i=1}^{n} x_{i,k} \Gamma^{-1} \tilde{y}_{i,k} - \frac{1}{2} \sum_{i=1}^{n} \tilde{y}_{i,k}^T \Sigma_{b_k} \Gamma^{-1} \tilde{y}_{i,k} \right\} \, db_k \]
\[= \frac{1}{(2\pi \sigma^2)^{\frac{n}{2}} |\Gamma| \frac{1}{2}} \frac{|D' \Gamma^{-1} D|^{\frac{1}{2}}}{(2\pi \sigma^2 \tau_{b_k})^{\frac{n}{2}}} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} \tilde{y}_i^T \Gamma^{-1} \tilde{y}_i \right\} \]
\[\exp \left\{ \frac{1}{2} \sum_{i=1}^{n} (\tilde{y}_{i,k} x_{i,k}) \Gamma^{-1} Z \Sigma_{b_k} Z' \Gamma^{-1} \sum_{i=1}^{n} (x_{i,k} \tilde{y}_{i,k}) \right\} \]
\[= \frac{1}{(2\pi \sigma^2)^{\frac{n}{2}} |\Gamma| \frac{1}{2}} \frac{|D' \Gamma^{-1} D|^{\frac{1}{2}}}{(2\pi \sigma^2 \tau_{b_k})^{\frac{n}{2}}} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} \tilde{y}_i^T \Gamma^{-1} \tilde{y}_i \right\} \]
\[\exp \left\{ \frac{1}{2} \sum_{i=1}^{n} (\tilde{y}_{i,k} x_{i,k}) \Gamma^{-1} Z \Sigma_{b_k} Z' \Gamma^{-1} \sum_{i=1}^{n} (x_{i,k} \tilde{y}_{i,k}) \right\} \]
\[P(y_k = 1 | \Theta \setminus \{b_k, y_k\}) = \frac{P(y | \Theta_k \setminus \{b_k\}) P(y_k = 1)}{P(y | \Theta_k \setminus \{b_k\}) P(y_k = 1) + P(y | \Theta_k \setminus \{b_k\}) P(y_k = 0)} \]
\[= \frac{R}{1 + R} \]

with
\[R = \frac{P(y | \Theta_k \setminus \{b_k\}) P(y_k = 1)}{P(y | \Theta_k \setminus \{b_k\}) P(y_k = 0)} \]
\[= \frac{\pi |D' \Gamma^{-1} D|^{\frac{1}{2}} |\Sigma_{b_k}|^{\frac{1}{2}}}{(2\pi \sigma^2)^{\frac{n}{2}} |\Gamma| \frac{1}{2}} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} \tilde{y}_i^T \Gamma^{-1} \tilde{y}_i \right\} \exp \left\{ \frac{1}{2} \sum_{i=1}^{n} (\tilde{y}_{i,k} x_{i,k}) \Gamma^{-1} Z \Sigma_{b_k} Z' \Gamma^{-1} \sum_{i=1}^{n} (x_{i,k} \tilde{y}_{i,k}) \right\} \]
\[= \frac{\pi}{1 - \pi |D' \Gamma^{-1} D|^{\frac{1}{2}} |\Sigma_{b_k}|^{\frac{1}{2}} (\sigma^2 \tau_{b_k})^{\frac{n}{2}}} \exp \left\{ \frac{1}{2} \sum_{i=1}^{n} (\tilde{y}_{i,k} x_{i,k}) \Gamma^{-1} Z \Sigma_{b_k} Z' \Gamma^{-1} \sum_{i=1}^{n} (x_{i,k} \tilde{y}_{i,k}) \right\} \]
A.1.3 | Full conditional distributions for group spike-and-slab prior

Let Θ the set of all parameters \{\(a, \bar{m}, \tau_m, \bar{a}_1, \ldots, \bar{a}_L, \tau_{a_1}, \ldots, \tau_{a_L}, b_1, \ldots, b_J, \gamma_1, \ldots, \gamma_J, \tau_{b_1}, \ldots, \tau_{b_J}, \pi, \rho, \sigma^2\) in the Bayesian hierarchical model (5), \(\bar{y}_i = y_i - a1 - B'd\bar{m} - \sum_{l=1}^{L} B^\prime_d \bar{a}_l - \sum_{j=1}^{J} x_{ij}Zb_j\) and \(\bar{y}_{i,k} = y_i - a1 - B'd\bar{m} - \sum_{l=1}^{L} B^\prime_d \bar{a}_l - \sum_{j=1,j\neq k}^{J} x_{ij}Zb_j\).

\[
\begin{align*}
\alpha |. & \sim N(\Sigma_{\alpha}1', \frac{\Gamma^{-1}}{\sigma^2}, \Sigma_{\alpha}) \quad \text {with} \quad \Sigma_{\alpha} = (n1'\frac{1}{\sigma^2}1)^{-1} \\
\bar{m} |. & \sim \mathcal{N}(\Sigma_{\bar{m}} \sum_{i=1}^{n} (\bar{y}_i + \alpha 1), \Sigma_{\bar{m}}) \quad \text {with} \\
\Sigma_{\bar{m}} & = (\frac{\bar{D}^\prime_m \bar{D}_m}{\tau_{\bar{m}}} + \frac{n}{\sigma^2} \bar{B}'(\bar{I}^{-1}B^\prime))^{-1} \\
\tau_{\bar{m}} |. & \sim IG(\frac{df}{2} + 0.001, \frac{1}{2} \bar{m}' \bar{D}_m \bar{D}_m \bar{m} + 0.001) \\
\bar{a}_k |. & \sim \mathcal{N}(\Sigma_{\bar{a}_k} \sum_{i=1}^{n} \bar{B}' \frac{\Gamma^{-1}}{\sigma^2} (\bar{y}_i + \bar{B'} \bar{a}_k), \Sigma_{\bar{a}_k}) \quad \text {with} \\
\Sigma_{\bar{a}_k} & = (\bar{D}_a' \bar{D}_a + \frac{n}{\sigma^2} \bar{B}'(\bar{I}^{-1}B^\prime))^{-1}, \quad k = 1, \ldots, L \\
\tau_{a_k} |. & \sim IG(\frac{df}{2} + 0.001, \frac{1}{2} \bar{a}_k' \bar{D}_a \bar{D}_a \bar{a}_k + 0.001), \quad k = 1, \ldots, L \\
b_k |. & \sim \gamma k \mathcal{N}(\Sigma_{b_k} \sum_{i=1}^{n} x_{ij}B' \frac{\Gamma^{-1}}{\sigma^2} (\bar{y}_i + x_{ij}Zb_k), \Sigma_{b_k}) + (1 - \gamma k) \bar{a}_k \delta \frac{1}{\sigma^2} \gamma \mathcal{N}(\Sigma_{b_k} \sum_{i=1}^{n} x_{ij}Z' \Gamma^{-1}Z)^{-1}, \quad k = 1, \ldots, J \\
\Sigma_{b_k} & = (\frac{D' D}{\sigma^2 \tau_{b_k}} + \frac{1}{\sigma^2} \sum_{i=1}^{n} x_{ij}^2Z' \Gamma^{-1}Z)^{-1}, \quad k = 1, \ldots, J \\
P(\gamma_k = 1 | \Theta \setminus \{b_k, \gamma_k\}) & \sim \frac{R}{1 + R} \quad \text {with} \\
R & = \frac{\pi}{1 - \pi} |D' D|^{-\frac{1}{2}} |\Sigma_{b_k}|^{-\frac{1}{2}} \exp\left\{\frac{1}{2} \sum_{i=1}^{n} (\bar{y}_i x_{i,k})' \frac{\Gamma^{-1}}{\sigma^2} \sum_{i=1}^{n} (x_{i,k} \bar{y}_{i,k}) \right\} \\
\tau_{b_k} |. & \sim IG(\frac{df}{2} + 0.001, \frac{1}{2} b_k' D' D b_k + 0.001), \quad k = 1, \ldots, J \\
\pi |. & \sim \text{Beta}(1 + |\gamma |, 1 + J - |\gamma |) \\
\rho |. & \sim |\Gamma|^{-\frac{1}{2}} \exp\left\{\frac{1}{2} \sum_{i=1}^{n} y_i \frac{\Gamma^{-1}y_i}{\sigma^2} \right\} \quad \text{for } -1 < \rho < 1 \\
\sigma^2 |. & \sim IG(0.001 + \frac{1}{2} nT, 0.001 + \frac{1}{2} \sum_{j=1}^{J} \gamma_j + \frac{1}{2} \sum_{j=1}^{J} b_j' D' D b_j + \frac{1}{2} \sum_{i=1}^{n} \bar{y}_i \frac{\Gamma^{-1}y_i}{\sigma^2})
\end{align*}
\]
A.1.4 Bayesian group Lasso

A.1.4.1 Hierarchical model

\[
y_j | \alpha, \tilde{m}, \tilde{a}, b, \rho, \sigma^2 \sim \mathcal{N}(\alpha + \bar{B}' \tilde{m} + \sum_{i=1}^L \bar{B}^{\nu_i} \tilde{a}_i + \sum_{j=1}^J x_{i,j}Zb_j, \sigma \Gamma)
\]

\[
\alpha \sim \mathcal{U}_{(-\infty, \infty)} \\
\tilde{m} | \tau_m \sim \mathcal{N}(0, (\tau_m \bar{D}'_m \bar{D}_m)^{-1}) \\
\tilde{a}_i | \tau_{a_i} \sim \mathcal{N}(0, (\tau_{a_i} \bar{D}'_a \bar{D}_a)^{-1}), \quad i = 1, \ldots, L \\
b_j | \eta_j, \sigma^2 \sim \mathcal{N}(0, \sigma^2 \tau_j^2 (D'D)^{-1}), \quad j = 1, \ldots, J \\
\tau_j^2 | \lambda^2 \sim \mathcal{G} \left(\frac{df+1}{2}, \frac{\lambda^2}{2} \right), \quad j = 1, \ldots, J \\
\tau_m, \tau_{a_i} \text{ and } \lambda^2 \sim \mathcal{G}(0.001, 0.001) \quad \text{and} \quad l = 1, \ldots, L \\
\rho \sim \mathcal{U}_{(-1,1)} \quad \text{and} \quad \sigma^2 \sim IG(0.001, 0.001)
\]

A.1.4.2 Full conditional distributions

Let \(\Theta \) the set of all parameters \(\{ \alpha, \tilde{m}, \tau_m, \tilde{a}_1, \ldots, \tilde{a}_L, \tau_{a_1}, \ldots, \tau_{a_L}, b_1, \ldots, b_J, \tau_j^2, \ldots, \tau_j^2, \lambda, \rho, \sigma^2 \} \) in the Bayesian hierarchical model (11) and \(\tilde{y}_i = y_j - \alpha 1 - \bar{B}' \tilde{m} - \sum_{i=1}^L \bar{B}^{\nu_i} \tilde{a}_i - \sum_{j=1}^J x_{i,j}Zb_j \)

\[
\alpha | . \sim N_1 \left(\Sigma_a 1' \Gamma_a^{-1} \frac{1}{\sigma^2} \sum_{i=1}^n (\tilde{y}_i + \alpha 1), \Sigma_a \right) \quad \text{with} \Sigma_a = \left(\frac{n 1' \Gamma_a^{-1} 1}{\sigma^2} \right)^{-1} \\
\tilde{m} | . \sim N \left(\Sigma_{\tilde{m}} \bar{D}'_m \bar{D}_m \tilde{m} + \frac{n}{\sigma^2} \bar{B}' \Gamma_a^{-1} \bar{B} \tilde{m}, \Sigma_{\tilde{m}} \right) \quad \text{with} \\
\Sigma_{\tilde{m}} = \left(\tau_m \bar{D}'_m \bar{D}_m + \frac{n}{\sigma^2} \bar{B}' \Gamma_a^{-1} \bar{B} \right)^{-1} \\
\tau_m | . \sim \mathcal{G} \left(\frac{df}{2} + 0.001, \frac{1}{2} \tilde{m}' \bar{D}'_m \bar{D}_m \tilde{m} + 0.001 \right) \\
\tilde{a}_i | . \sim N \left(\Sigma_{\tilde{a}_i} \bar{D}'_a \bar{D}_a \tilde{a}_i + \frac{n}{\sigma^2} \bar{B}^{\nu_i} \Gamma_a^{-1} \bar{B} \tilde{a}_i, \Sigma_{\tilde{a}_i} \right) \quad \text{with} \\
\Sigma_{\tilde{a}_i} = \left(\tau_{a_i} \bar{D}'_a \bar{D}_a + \frac{n}{\sigma^2} \bar{B}^{\nu_i} \Gamma_a^{-1} \bar{B} \right)^{-1}, \quad k = 1, \ldots, L \\
\tau_{a_i} | . \sim \mathcal{G} \left(\frac{df}{2} + 0.001, \frac{1}{2} \tilde{a}_i' \bar{D}'_a \bar{D}_a \tilde{a}_i + 0.001 \right), \quad k = 1, \ldots, L
\]
\(b_k\) | \(\sim \mathcal{N}(\Sigma_{b_k} \sum_{i=1}^{n} x_{i,k} B' \frac{\Gamma^{-1}}{\sigma^2} (y_i + x_{i,k} Z b_k), \Sigma_{b_k})\) with

\[
\Sigma_{b_k} = \left(\frac{D' D}{\tau_k^2 \sigma^2} + \frac{1}{\sigma^2} \sum_{i=1}^{n} x_{i,k} Z' \Gamma^{-1} Z \right)^{-1}, \quad k = 1, \ldots, J
\]

\(\frac{1}{\tau_k^2}\) | \(\sim \text{I - Gaussian}\left(\sqrt{\frac{\sigma^2 \lambda^2}{b_k' D' D b_k}}, \lambda^2\right), \quad k = 1, \ldots, J\)

\(\lambda^2\) | \(\sim \mathcal{G}\left(\frac{J \text{df} + J}{2} + 0.001, \sum_{j=1}^{J} \frac{\tau_j^2}{2} + 0.001\right)\)

\(\rho\) | \(\sim |\Gamma|^{-\frac{n}{2}} \exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} y_i' \Gamma^{-1} y_i\} I_{(-1 < \rho < 1)}\)

\(\sigma^2\) | \(\sim \mathcal{IG}\left(0.001 + \frac{1}{2} nT + \frac{1}{2} J \text{df} \sum_{j=1}^{J} \gamma_j, 0.001 + \frac{1}{2} \sum_{j=1}^{J} b_j' D' D b_j, 0.001 + \frac{1}{2} \sum_{i=1}^{n} y_i' \Gamma^{-1} y_i\right)\)