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Canada, Québec, Canada, 4 UMR AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Equipe «
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Abstract

The phenotypic changes that occurred during the domestication and diversification of grape-

vine are well known, particularly changes in seed morphology, but the functional causes and

consequences behind these variations are poorly understood. Wild and domesticate grapes

differ, among others, in the form of their pips: wild grapes produce roundish pips with short

stalks and cultivated varieties have more elongated pips with longer stalks. Such variations

of form are of first importance for archaeobotany since the pip form is, most often, the only

remaining information in archaeological settings. This study aims to enlighten archaeobota-

nical record and grapevine pip development by better understanding how size and shape

(co)variates between pip and berry in both wild and domesticated Vitis vinifera. The covaria-

tion of berry size, number of seeds per berry (“piposity”), pip size and pip shape were

explored on 49 grapevine accessions sampled among Euro-Mediterranean traditional culti-

vars and wild grapevines. We show that for wild grapevine, the higher the piposity, the big-

ger the berry and the more elongated the pip. For both wild and domesticated grapevine, the

longer is the pip, the more it has a “domesticated” shape. Consequences for archaeobotani-

cal studies are tested and discussed, and these covariations allowed the inference of berry

dimensions from archaeological pips from a Southern France Roman site. This systematic

exploration sheds light on new aspects of pip-berry relationship, in both size and shape, on

grapevine eco-evo-devo changes during domestication, and invites to explore further the

functional ecology of grapevine pip and berry and notably the impact of cultivation practices

and human selection on grapevine morphology.
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Introduction

Grapevine (Vitis vinifera L.) is one of the most cultivated fruit species in the world [1], and has

held a central economic and cultural role since ancient times, particularly in the Mediterra-

nean area [2, 3]. The berries of grapevine are primarily used in wine production, but can be

consumed fresh or dried (i.e. table grape). The wild progenitor of grapevine, Vitis vinifera
subsp. sylvestris, was first domesticated in the South Caucasian area [4], which has yielded the

oldest wine making evidence [5], dated to early Neolithic period (~8000 BP). The existence of

other domestication centres has also been argued [6, 7]. Since the early times of domestication,

grapevine varieties (or cultivars or “cépages”) of Vitis vinifera subsp. vinifera have been

selected and propagated; today there are several thousand varieties, identified by ampelogra-

phy (i.e. grape morphology) and molecular markers [8, 9]. V. vinifera subspecies differ in their

reproductive biology, and other phenotypic changes following domestication include larger

bunches, larger berries, higher diversity in berry shape and skin colour, and higher sugar con-

tent [10, 11].

The quantitative morphological description of archaeobotanical material has brought

major insights into the intertwined relationships between humans and domesticated plants

[12–20], including grapevine [21–27]. So far, molecular approaches on ancient grapevine have

yielded limited information on domestication [28, 29], with the study of ancient DNA hin-

dered by its poor preservation in charred archaeobotanical material (but see [30]).

Wild and domesticate grape seeds differ in their form (size plus shape): wild grapes produce

roundish pips with short stalks and cultivated varieties produce more elongated pips with lon-

ger stalks [31]. Such form variations have been identified on archaeological grapevine pips [22,

24, 25]. Archaeological material is often charred which can cause domesticated pips to appear

more similar to wild pips [32], yet experimental charring has demonstrated the robustness of

identification [26, 33].

The functional causes and consequences behind the form variation of grapevine pip are

poorly understood. If size, shape, taste and colour of berries are traits that have been selected by

humans, pip shape was likely not a direct target of selective pressures but may possibly be

affected by: the berry size; the number of pips per berry; the growing environment and cultiva-

tion practices; the domestication status and the variety for domesticated grapevine; and develop-

mental stochasticity. For instance, previous works suggested that pip size and the number of pips

per berry are positively correlated to berry size [8, 34, 35] particularly for wild grapevines [24].

To what extent the form changes observed in archaeological pips imply changes in the form

of berries? How this could be affected by the cultivation and domestication of wild

individuals?

This paper scrutinizes how the form of berries and pips they contain covariate. A dataset of

domesticated and wild contemporary grapevines allowed to compare patterns of covariation

between wild and domestic Vitis vinifera compartments. This article is divided into four ques-

tions: i) how does size (co)vary between pips and berries, and depending on the number of

pips?; ii) same question for shape; iii) how much pip shape depends on berry size, number of

pips per berry, status, accession, and which practical consequences for archaeobotanical stud-

ies?; iv) can we infer the berry dimensions from archaeological pips?

Results

Preliminary analyses on modern material

The average piposity is equivalent between domesticated and wild accessions (mean±sd:

domesticated = 2.01±0.891, wild = 2.1±0.968; GLM with Poisson error: df = 1468, z = 1.234,
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P = 0.217 –Fig 1). The distribution of piposity, however, does differ (Fisher’s exact test:

P = 0.004) due to a higher proportion of 4-pips berries in wild grapevines (with 4-pips berries

removed: P = 0.6272). No difference was observed between cultivated (domesticated and wild)

accessions and those collected from wild (GLM with Poisson error: df = 1468, z = -0.676,

P = 0.499).

Covariation between pip and berry size in relation to the number of pips

Wild vs. domesticated. All berries and pips measurements were overall smaller for wild

accessions compared to their domesticated counterparts (Wilcoxon one-tailed rank tests: all

P<10−8 –S1 Fig). Differences between wild and domesticated varied among the pip dimen-

sions (pipLengthStalk > pipPositionChalaza > pipLength > pipThickness > pipBreadth).

Overall, the higher the piposity, the lower the contrast between domesticated and wild (Fig

2A). Pip dimensions of wild grapevines increase more substantially with piposity than their

domesticated counterpart decrease. In wild grapevines, larger berries have more and larger

pips (Fig 2A). No differences in berry dimensions/mass along increasing piposity were found

for the cultivated grapevines, excepted between 1- and 2-pip for pipThickness (Wilcoxon rank

test: P = 0.006).

Table vs. wine cultivars. Table grapes have higher dimensions than wine varieties (Fig

2B). With increasing piposity, table varieties have bigger berries which is not the case for wine

varieties. For pips, the only difference between low and high piposity were found for wine vari-

eties and for pipBreadth and pipThickness (P<10−16).

Wild grown in collection vs. wild in natura. Wild grapevine pips and berries are bigger

when in cultivation than their counterparts growing in natura (Fig 2C). Otherwise, trends of

all measured variables are similar along increasing piposity. The berry mass ratios, relatively to

wild collected in natura, were on average, 6.4 for wine varieties, 15.6 for table ones and 1.8 for

cultivated wild.

Bivariate comparisons (S2 Fig) indicate positive correlations between all measurements.

The total pipLength is the most consistent variable, between domesticated and wild grapevines:

indeed, only the correlation with the pipLengthStalk show a significant interaction. Inversely, the

correlations implying pipLengthStalk always show a significant interaction. For pips dimensions,

the best correlations were found between pipLength and pipPositionChalaza (adj. r2 = 0.8) among

those with non-significant interactions, and between pipLengthStalk and pipPositionChalaza (adj.

r2
wild = 0.615, adj. r2

domesticated = 0.717) among those with significant interactions. Compared

to pips dimensions, correlations between berry dimensions were much better and the three

possible interactions were all significant.

Covariation between pip and berry shape in relation to the number of pips

The PCA shows that the first two PCs (Fig 3) gathered 69% of the total shape variation, and

higher rank components levelled off (PC1 = 43.0%; PC2 = 26.2%; PC3 = 6.7%; PC4 = 3.9%),

only the first two PCs were used as synthetic shape variables. Shape differences between wild

and domesticated grapevines are mostly captured on PC1 yet scores on both PC1 (Wilcoxon

rank tests, P<10−16) and on PC2 (P<10−16) were found different. PC1 represents how promi-

nent is the stalk and how round is the pip; PC2 represents the circularity, a more global length/

width ratio of pips, for the two views.

Regarding shape versus pip dimensions, pipLength, correlated to all other measurements, is

itself correlated with position on PC1. Two regressions were justified (Analysis of covariance:

df = 1, F = 362.7, P<10−16); their slope were identical (df = 1, F = 0.037, P = 0.848) but their

intercept differed between wild and domesticated. These two regressions were significant yet
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r2 were low (wild: P<10−16, adj. r2 = 0.195; domesticated: P<10−16, adj. r2 = 0.240 –Fig 4A).

When PC1 and PC2 are considered jointly, two regressions were not justified (P = 0.04) and

the r2 was lower (P = 0.04, adj. r2 = 0.181 –Fig 4A). The longer the pip is, the more “domesti-

cate” it looks, particularly in terms of stalk prominence.

As concerns shape versus piposity, the latter is associated with shape changes on PC1

between wild and domesticated both overall (see above) and within levels (Wilcoxon rank

tests, all P<10−10 –Fig 4B). Within domesticated accessions, differences were never signifi-

cant. Within wild accessions, differences were not found between pairs of successive piposity

levels but those between 1–3, 2–3 and 2–4 (all with P<10−8 –not shown). For PC2, differences

observed between domesticated and wild vanished for high piposity (1-pip: P<10−12; 2-pips:

Fig 1. Distribution of the number of pips per berry for wild and domesticated grapevines.

https://doi.org/10.1371/journal.pone.0239863.g001
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P<10−9; 3-pips: P = 0.016; 4-pips: P = 0.035 –Fig 4B). No differences within wild/domesticated

and between successive piposities were found significant.

Mean shapes (Fig 5) illustrate these results. The mean absolute difference (MD) confirms

that larger changes between extreme piposities are observed within wild grapevines (particu-

larly for cultivated ones) and reveals that most of these changes affect the dorsal side of the

pips (Fig 5).

Pip shape and size in relation to status, accession and piposity;

consequences for archaeobotanical inference

The respective contributions of berry height, accession and piposity on the shape of pips (Fig

6) show that the accession is the factor affecting the most the pip shape. The accession factor

has a higher impact on domesticated grapevine than on wild, and on cultivated wild accessions

than on those collected in natura. By contrast, its contributions for wine and table domesti-

cated varieties were similar. Here again, piposity and berry height both affect the pip shape of

wild accessions, but have a limited (piposity) and very limited (berry height) contribution for

domesticated accessions.

Classification accuracies were compared using different training data and on different sub-

sets (Fig 7). When different piposity levels were pooled, mirroring archaeobotanical admix-

tures, classification was very good at the status level (Fig 7A). Size + shape performed better

(95%), than shape (93.7%) and size (92.5%) alone. When these models were evaluated on

Fig 2. Comparisons of (logged) lengths and (log cubic-rooted) mass measurements. Each row represents a different comparison: a) wild and domesticated

grapevines, b) table and wine varieties for domesticated accessions only, and c) cultivated and collected from wild for wild grapevine only. For each measurement,

boxplots are displayed for each piposity level. Differences are tested using multivariate analyses of covariances, and differences of P<10−5, are indicated by stars in

the facet title (interaction), on the right (overall difference) and above each piposity level (difference within a given piposity).

https://doi.org/10.1371/journal.pone.0239863.g002
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piposity subsets, they all have an accuracy above 91%, except for 4-pips berries. As expected,

accuracies were lower at the accession level (Fig 7B) and when piposity levels were pooled, size

Fig 3. Principal component analysis on the joint matrices of Fourier coefficients obtained for the two views. The first two principal component gathered 69% of the

total variance. The component of shape variation they capture are illustrated with reconstructed shapes at each extreme of their range. Colour of markers and convex hulls

indicate pips from wild (green) and domesticated (blue) grapevines.

https://doi.org/10.1371/journal.pone.0239863.g003
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+ shape (89.8%) outperformed shape alone (81.3%) and size alone (46.3%). The same model

ranking was observed on piposity subset, except for 4-pips berries. Overall, accuracies obtained

were much higher than chance alone.

Application to archaeological pips: Can we infer the dimensions of the

(vanished) berry dimensions from the (recovered) pips?

On modern material, we used the size of pips to predict berry heights and diameters. Both

regressions show a significant interaction of the domestication status (berryDiameter: df = 1,

F = 8369, P<10−16; berryDiameter: df = 1, F = 7730, P<10−16), and two regressions for berry

Fig 4. a) Regressions PC1 and PC2 versus pip length for domesticated pips (blue) and cultivation (green); b) boxplots for each piposity level for domesticated pips (blue)

and cultivation (green). Differences are tested using Wilcoxon rank tests, and differences of P<10−5, are indicated by brackets above graphs.

https://doi.org/10.1371/journal.pone.0239863.g004

PLOS ONE Grapevine berry-pip traits covariation

PLOS ONE | https://doi.org/10.1371/journal.pone.0239863 November 6, 2020 7 / 22

https://doi.org/10.1371/journal.pone.0239863.g004
https://doi.org/10.1371/journal.pone.0239863


PLOS ONE Grapevine berry-pip traits covariation

PLOS ONE | https://doi.org/10.1371/journal.pone.0239863 November 6, 2020 8 / 22

https://doi.org/10.1371/journal.pone.0239863


diameter and two others for its height were obtained (Fig 8). All were significant (all P<10−16)

yet the adjusted r2 were low (berryDiameter adj. r2
wild = 0.585, adj. r2

domesticated = 0.491; berry-

Height adj. r2
wild = 0.615, r2

domesticated = 0.511). Final models all used pipLength, pipThickness, and

at least one PC. Table 1). On unlogged berry diameter and height, the relative deviations were

obtained (S3 Fig). Mean relative deviation per accession for berryDiameter ranged from -12.9%

to +10.3% for wild, and from -22.9% to +17.7% for domesticated; for berryHeight they ranged

from -13.0% to +13.1% for wild, and from -29.4% to +29.4% for domesticated. The average

predictions were all centred (on zero) ±1.6%.

Then, these four models were applied on the archaeobotanical material after being classified

at the wild/domesticated level using LDA. 46 pips (22%) were classified with a posterior proba-

bility<0.8 and were filtered out. Among the remaining pips, 114 (72%) were classified as

domesticated and 45 (28%) as wild. When compared to their modern analogues (Fig 9), the

length of “domesticated pips” were closer to those of wine varieties than table varieties; the

lengths of “wild pips” were intermediate between wild accessions collected in their habitat and

those cultivated. For archaeological pips identified as domesticated, both inferred berry height

and diameter were intermediate between wine and table modern varieties yet closer to wine

ones. Similarly, for wild archaeological material, inferred berry height and diameter were

intermediate between wild collected in their habitat and those grown in collection.

Discussion

This study opens new fronts in our understanding of Vitis vinifera phenotypic changes under

domestication and helps disentangle the interplay of the number of pips per berry, berry

dimensions, domestication, pip shape, varietal diversity and cultivation practices in both wild

and domesticated grapevines. We discuss implications for Vitis vinifera eco-evo-devo and per-

spectives for archaeobotanical studies for which a possible application is proposed.

Patterns of covariation between the form of the pip, the form of the berry

and the piposity

For grapevine, the theoretical maximum number of pips per berry is four, yet one was

observed with five. Such abnormal piposity has already been reported [8, 36]. More than 70%

berries had only one or two pips which is in accordance with previous publication [35]. There

were no differences in piposity neither between domesticated or wild (Fig 1), nor between cul-

tivated wild and those collected in natura.

Wild pips and berries are smaller than their domesticated counterparts; those from wine

varieties are smaller than those of table varieties; and those of wild grapevines collected in
natura are also smaller than those from cultivated wild individuals. This study details the effect

of piposity on the pip form reported by previous studies [10, 24, 34, 35]. Among vertebrate dis-

persed plants, the reward (the fruit pulp mass) associated with a given seed mass is commensu-

rate with work required to move it, and is expected to scale relatively [37]. For wild grapevine

the berry and pip dimensions are thus expected to be constrained by their dispersers and by a

general trade-off between pip size and number [38].

For all but wine varieties, the higher the piposity the longer the pip and the bigger the berry

in which they develop (Fig 2). For these groups, it seems that more numerous pips are not

Fig 5. Mean shapes calculated for all pips sampled from berry with 1 (blue) or 4 pips (red), for different subsets (in

rows) and for the dorsal and lateral views (in columns). Between the two views, an index of shape differences between

these two extreme piposity levels (0 = identical shapes; unit = as much differences as between wild and domesticated

average shapes).

https://doi.org/10.1371/journal.pone.0239863.g005
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limited by space or nutrients but rather contribute the development of bigger berries. The two

stages of berry development are well known [39, 40]. The first, prior to anthesis, is a period of

rapid berry growth mostly due to cell division. After anthesis, berry growth is largely due to

cell enlargement and it has been suggested that pip growth may also increases cell mitosis in

the developing berry [41]. Auxins, cytokinins and gibberelins, upregulated shortly after fertili-

sation in grapevine ovaries, are likely to trigger berry growth by cell expansion [35].

The absence of positive (or even negative) correlations between piposity, pip and berry

dimensions for wine varieties remains unclear. For these varieties, the regulation, if any, may

be at the bunch or stock scale, whether it has been selected (for example to concentrate sugars,

aromas and flavours) or it is a by-product of another trait under selection. Since table varieties

are larger than wine varieties, the berry dimensions of the latter cannot be argued to have

reached a developmental limit.

Fig 6. Relative contribution of berry height, accession and number of pips per berry (coloured bars) onto the shape of pips for different subsets.

https://doi.org/10.1371/journal.pone.0239863.g006
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Finally, bivariate correlations concerning berry dimensions and mass are the strongest

observed. This indicate robust allometries between berry size and mass, in other words that

berry largely remain ellipsoid in shape, independently of their dimensions.

Fig 7. Classification accuracy (LDA leave-one-out) at the a) status and b) accessions levels. Models are trained (and evaluated) on the admixture of pips, then

evaluated on piposity subsets. Different combinations of training data are used (Fourier coefficients of shape, lengths/mass measurements, both). Lines provide a

random baseline and summarise 10000 permutations: solid line correspond to mean accuracy; dashed line to the maximal values obtained.

https://doi.org/10.1371/journal.pone.0239863.g007

Fig 8. Regressions for berry dimensions from pip dimensions, obtained on modern material: Predicted versus actual (logged) berry dimensions at the

domestication status level (all accessions). Columns are for berry diameter and height, respectively.

https://doi.org/10.1371/journal.pone.0239863.g008
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Morphometrics and domestication as a wedge into grapevine eco-evo-devo

For grapevine and domesticated plants in general, domestication results in a change of

desirable phenotypic patterns but also releases many “natural” constraints such as

Table 1. Estimates for pip lengths used to infer berry dimensions.

Estimates of predictors

log Predicted: subset Intercept log pipLength log pipLengthStalk log pipPositionChalaza log pipBreadth log pipThickness PC1 PC2

berryDiameter wild 0.689 1.136 – – – -0.438 -0.223 0.209

domesticated 1.298 0.478 – 0.149 -0.150 0.520 – 0.430

berryHeight wild 0.838 0.732 – 0.216 0.171 -0.318 -0.524 0.258

domesticated 0.760 1.312 0.279 – -0.783 0.584 1.021 –

Variables were all logged; so that berryDiameter (in mm and for wild) can be obtained with exp[0.65163 +1.19914×log(pipLength) +0.10617×log(pipPositionChalaza)

-0.13263×log(pipBreadth) -0.45449×log(pipThickness)].

https://doi.org/10.1371/journal.pone.0239863.t001

Fig 9. Distribution of pip lengths (observed for all), berry height and diameter inferred from pip dimensions for the archaeological material from Sauvian–La

Lesse. Rows distinguish domesticated and wild grapes since separate regressions were required.

https://doi.org/10.1371/journal.pone.0239863.g009
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dispersion [42]. Cultivation practices such as pruning may explain why wild individuals

grown in collection have bigger berries for higher piposity: the number of bunches is

reduced, leading to larger pips. Cultivation also reduces growth constraints such as com-

petition for water and light, self-supporting and climbing costs, those related to dispers-

ers, etc.

Evidence of plastic and canalized phenotypic expression may be fuel for further eco-evo-

devo studies. The latter brings a conceptual and experimental framework that relies on

environmentally mediated regulatory systems to better understand ecological and evolutionary

changes [43]. Here, the norm of reaction of the pip size and shape, along increasing piposity

and berry dimensions, is clearly different at the three investigated levels: between wild and

domesticated, between wine and table, between wild individuals grown in collection and those

collected in their natural habitat.

Consequences for archaeological inference

Some pip lengths differences between wild and domesticated appear more “robust” to increas-

ing piposity, notably pipLengthStalk and pipPositionChalaza (Fig 2A; and S1 Fig). The use of lengths

in discriminating between wild and domesticated types has long been used, including when

archaeological material is charred [21, 32, 33]. Shape is confirmed here to refine such identifi-

cation [22, 24]. We show here that shape is also affected by piposity for wild accessions (Fig 4).

Most of these changes affect the dorsal side of wild pips, particularly when piposity is high.

There is as much as ~70% difference, between 1- and 4-pips for wild accessions, than those

observed between wild and domesticated types. Differences in extreme piposity are even larger

than this “domestication gap”, for the cultivated wild. This does not answer the question

whether past vineyards cultivated “true” wild grapevines or “weakly” domesticated forms [24,

25] but it nevertheless points out how piposity and cultivation practices may contribute to this

confusion by enhancing the continuum of pip forms.

Pip shape being largely used in archaeobotany, it was crucial to point out which factors con-

tribute to its variability and if they could preclude archaeobotanical. We show that the main

factor associated to pip differences was, by far, the accession and it was even more important

for domesticated accessions. In other words, accession effect appears stronger than domestica-

tion (Fig 6). Comparatively, berry dimensions and piposity poorly contributed to shape differ-

ences. This confirms the usefulness and robustness of shape to identify shape archetypes. It

may also indicate that domestication favours pip shape diversification whether this results

from genetical linkage or drift.

Classification accuracies at the status level were all good (Fig 7). Shape was superior to size

but, when considered jointly, the accuracies was improved. Whenever possible, both should

thus be included. Concerning the accession level, results evidenced even more clearly these

conclusions. Finally, we show that piposity is very unlikely to affect archaeobotanical identifi-

cation either at the status or accession levels.

An application on archaeological material: Inferring berry size from pip

Berry is very likely home to the most selected traits, from the beginnings of domestication to

varietal breeding and diversification times. Unfortunately, such fleshy parts are usually too

degraded, or even absent, to be quantified in archaeological material. The only route is thus

inference based on modern material. Here, multiple regressions on pip dimensions show that

berry diameter (Fig 8A) and height (Fig 8B) were centred and in the ±25% range.

Our archaeological application used material from Sauvian—La Lesse, a Roman farming

establishment involved in wine production, were an admixture of wild and domesticated type

PLOS ONE Grapevine berry-pip traits covariation

PLOS ONE | https://doi.org/10.1371/journal.pone.0239863 November 6, 2020 13 / 22

https://doi.org/10.1371/journal.pone.0239863


is attested [44]. Berry dimensions inferred from pips are intermediate between the wild grow-

ing in natura and those cultivated (Fig 9). This may suggest that wild, or weakly domesticated,

individuals were cultivated in Roman vineyards. The berry dimensions inferred for domesti-

cated varieties were closer to modern wine varieties than to table ones. This is congruent with

the wine production attested at this period and in this region [44, 45].

Conclusion

The main finding of this exploration of berry and pip form covariation is that for wild grape-

vine, the higher the piposity, the bigger is the berry and the longer is the pip. For both wild and

domesticated, the longer is the pip, the more its shape looks like “domesticated”. Further stud-

ies and dedicated experimental plans will help clarify the contribution of cultivation practices

and, more generally on the interplay of genetic, functional and evolutionary changes that

occurred in Vitis vinifera between the pip, its reproductive unit, and the berry, its dispersal

reward and the main target of its domestication and varietal improvement.

Material and methods

Statistical environment

Statistical analyses were performed using the R 3.6.2 environment [46], the package Momocs

1.3.0 for everything morphometrics [47] and the tidyverse 1.2.1 packages for data manipula-

tion and most graphics [48]. Alpha significance level was chosen equal to 10−5 all along analy-

ses. This level both ensure marked differences for subsequent archaeobotanical application

and an overall alpha level below 0.05 when repeated tests were done.

Nomenclature

Status designates compartment (domesticated vs. wild); accession designates the variety/indi-

vidual for domesticated/wild grapevine; synecdochically, a domesticated/wild pip/berry refers

to the accession they were collected from; cultivation designs whether wild individuals were

grown in field collection or sampled in natura; form is used when shape and size are used in

combination; “piposity” is short for “given a pip, the number of pips in the berry where it was

sampled”.

Modern and archaeological material

The modern reference material included 49 accessions (30 domesticated and 19 wild) from

Euro-Mediterranean traditional cultivars and wild grapevines (Table 2). Fourteen wild grape-

vines were collected at ripeness in their habitat, and five were cultivated in the French central

ampelographic collection (INRA, Vassal-Montpellier Grapevine Biological Resources Center;

https://www6.montpellier.inra.fr/vassal), along with the domesticated accessions, which filters

out most of environmental confounding effects such as different soils, climate or cultivation

practices. Of the domesticated accessions, 21 were wine varieties and 9 table varieties. For each

accession, 30 normally developed berries have been haphazardly collected from a single, fully

ripe bunch.

Archaeobotanical material comes from two wells at the Roman farm of Sauvian—La Lesse,

extensively described elsewhere (US3022, US3063, US3171 and US3183 in [44]). These archae-

ological layers were dated to 2025–1725 BP based on pottery and coins. The waterlogged con-

ditions ensured very good preservation of the pips (N = 205).
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Traditional measurements

On modern material, the berry diameter (berryDiameter), height (berryHeight) and mass (berry-

Mass) were obtained before dissection (Table 2). Mass was not available for 9 accessions that

were removed from further analyses involving mass. Then, the number of pips (hereafter “pip-

osity”) was recorded and one pip was randomly chosen. A single berry from the variety “Kravi

tzitzi” was found with 5 pips and was discarded from further analyses. The final dataset thus

consisted of 1469 pips (48 accessions × 30 pips + 1×29).

All pips, were photographed in dorsal and lateral views by the same operator (TP) using an

Olympus SZ-ET stereomicroscope and an Olympus DP camera. On each pip, five length mea-

surements were recorded by the same operator (LB) using ImageJ [49] Table 2, Fig 10): total

length (pipLength), length of stalk (pipLengthStalk), position of the chalaza (pipPositionChalaza),

breadth (pipBreadth) and thickness (pipThickness). All length measurements were log-trans-

formed to focus on relative changes and minimize size differences; the mass was log cubic-root

transformed for the same reason [24].

As preliminary analyses on modern material, differences between average piposity were

tested using generalized linear model with Poisson error; differences in their distributions

were tested using two-sided Fisher’s exact tests.

Testing the covariation between pip and berry size in relation to the

number of pips

On modern material, three sets of differences in pips and berries measurements were tested

using multivariate analysis of covariance: i) the interaction between status and piposity; ii) if

the latter was significant, we also tested differences between status for a given piposity level; iii)

whether the average piposity differs between status. These three possible sets of differences

were tested between different subsets: domesticated and wild accessions; wine and table varie-

ties for domesticated accessions; cultivated wild individuals and those collected in natura. Pip-

osity was then discarded and sets were compared using Wilcoxon rank tests.

Bivariate comparisons were explored between the domesticated and wild accessions (discard-

ing piposity), and tested with an analysis of covariance. When the domestication status was signif-

icant, separate regressions were tested and, if significant, the adjusted r2 was obtained.

Testing the covariation between pip and berry shapes in relation to the

piposity

For pips, shape data were extracted from the dorsal and lateral outlines. 2D coordinates were

extracted from photographs, centred, scaled, aligned along their longer axis and normalized

for the position of their first point. These preliminary steps removed positional, size, rotation

and phasing differences between outlines before elliptical Fourier transforms (EFT). The latter

were performed on the dorsal and lateral views separately, and the number of harmonics was

chosen to gather 99% of the total harmonic power (8 for both views). This generated 64 coeffi-

cients for each pip (2 views × 8 harmonics per view × 4 coefficients per harmonic).

To explore the overall variability of shape, a principal component analysis (PCA) was calcu-

lated on the full matrix of coefficients. The first two PCs (see Results) were used as synthetic

shape variables (Fig 3). To test the effect of piposity and pip dimension on pip shape, the same

approach than for length measurements using PC1 and PC2 as the response variables. To test

the relation between shape and pip length (only pipLength was used), analyses of covariance

first tested if separate regressions were justified. Then Wilcoxon tests were used to test for

shape differences between and within piposity levels.
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To visualize shape differences between extreme piposity levels (1 and 4), mean shapes for

the dorsal and lateral views were calculated on the matrix of coefficients. These differences

were quantified with the mean absolute difference (MD) between each sets of Fourier coeffi-

cients. To make these differences meaningful, they were divided by the mean difference of

Fourier coefficients between cultivated and wild accessions with all piposity levels pooled. For

each subset, MD was calculated as:(| coefficientssubset; 1� pip - coefficientssubset; 4� pips |)/(|

coefficientsdomesticated; all pips - coefficientswild; all pips |). For example, a MD equals to 0 indicates

no difference between pips with a piposity of 1 or 4; a MD greater than unit indicates more dif-

ferences relatively to differences that exist between domesticated and wild individuals.

Pip shape and size in relation to status, accession and piposity

To quantify the respective contribution of berry dimensions, accession and piposity onto pip

shape, a multivariate analysis of variance used the following model: all Fourier coefficients ~

berryHeight + accessions + piposity within accession. Since it was highly correlated to other

Fig 10. Dorsal and lateral views of a grapevine pip, here from the Vitis vinifera subsp. sylvestris wild” individual “Pic Saint-Loup 13”, with

indications of morphometric measurements: piplength (total length), pipstalk (length of the stalk), pipchalaza (position of the chalaza), pipwidth and

pipthickness.

https://doi.org/10.1371/journal.pone.0239863.g010
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berry measurements (see Results), only berryHeight was used to describe berry dimensions. The

contribution of each variable is the ratio of its sum of squares over the total sum of squares

(including residuals). Again, this is tested on the different subsets of interest (Fig 6).

Linear discriminant analyses (LDA) were used to evaluate whether piposity could preclude

status and accession classification accuracies. Different combinations of predictors (sizes;

shape; sizes + shape) were evaluated to benchmark their performance to classify the pips to

their correct status and accession (Fig 7).

Given a combination of (status, accession) × (sizes+shape, sizes, shape), a leave-one-out

cross-validation was used to assess classification accuracies, evaluated on all pips, to mirror

archaeological admixtures where piposity is unknown (Fig 7). To cope with unbalanced group

structures, we calculated a baseline for each subset that estimates the mean and maximum

accuracy one can obtain by chance, using 104 permutations (see [50]). If the accuracy observed

is higher than the maximum value obtained using permutations, the LDA can be considered

to perform better than chance alone, with an estimated alpha below 10−4.

Predicting the dimensions of the archaeological berry dimensions

Separate multivariate regressions were calculated on the modern material, for berry height and

diameter, using the five length measurements on pips. As predictor variable, we used length mea-

surements (for dimensions) and the first two principal components (for shape). The difference

between domesticated and wild grapevines regressions was first tested using an analysis of covari-

ance: two regressions (one for cultivated, one for wild) were obtained for the berry height and two

others for its diameter (Fig 8). These four regressions were fitted using stepwise regression with

backward elimination based on the AIC, and started with full models: berryHeight/Diameter for wild/

domesticated ~ pipLength + pipLengthStalk + pipPositionChalaza + pipBreadth + pipThickness + PC1 + PC2,

all but PCs were log-transformed). Then, archaeological pips were classified into domesticated or

wild using an LDA trained using the same variables but of modern pips. Pips assigned to wild/

domesticated with a posterior probability<0.8 were filtered out. Finally, the berry height and

diameter of this archaeological material were inferred using the corresponding models (Fig 9).

Supporting information

S1 Fig. Comparisons of (logged) lengths and (cubic-rooted) mass measurements. On rows

are displayed different subsets: a) wild and domesticated grapevines, b) for domesticated acces-

sions, table and wine varieties and, c) for wild accessions, those collected in natura and others

cultivated as domesticated varieties. Different piposity levels are pooled (see Fig 3 for the

detail). Differences are tested using Wilcoxon rank tests and all of them have a P<10−5.

(TIF)

S2 Fig. Bivariate pairwise plot between (logged) lengths and (cubic-rooted) mass measure-

ments. For the sake of readability, only the wild versus domesticated status are displayed using

different colours (green for wild; blue for domesticated). If two regressions are justified, then

they are shown using the corresponding colours; otherwise a single regression line is showed

in black. Then, for each regression, the correlations are tested and, if significant, the adjusted

R2 is displayed on the regression lines.

(TIF)

S3 Fig. Predictions obtained from regressions for berry dimensions from pip dimensions

on modern material. The relative deviation, at the accession level, and for unlogged measure-

ments. Columns are for berry diameter and height, respectively.

(TIF)
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23. Orrù M, Grillo O, Lovicu G, Venora G, Bacchetta G. Morphological characterisation of Vitis vinifera L.

seeds by image analysis and comparison with archaeological remains. Vegetation History and Archae-

obotany. 2013; 22: 231–242. https://doi.org/10.1007/s00334-012-0362-2

24. Bouby L, Figueiral I, Bouchette A, Rovira N, Ivorra S, Lacombe T, et al. Bioarchaeological Insights into

the Process of Domestication of Grapevine (Vitis vinifera L.) during Roman Times in Southern France.

Degryse P, editor. PLoS ONE. 2013; 8: e63195. https://doi.org/10.1371/journal.pone.0063195 PMID:

23690998

25. Pagnoux C, Bouby L, Ivorra S, Petit C, Valamoti S-M, Pastor T, et al. Inferring the agrobiodiversity of

Vitis vinifera L. (grapevine) in ancient Greece by comparative shape analysis of archaeological and

modern seeds. Vegetation History and Archaeobotany. 2015; 24: 75–84. https://doi.org/10.1007/

s00334-014-0482-y
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