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Abstract
Pathogens deploy effector proteins that interact with host proteins to manipulate 
the host physiology to the pathogen's own benefit. However, effectors can also be 
recognized by host immune proteins, leading to the activation of defence responses. 
Effectors are thus essential components in determining the outcome of plant– 
pathogen interactions. Despite major efforts to decipher effector functions, our cur-
rent knowledge on effector biology is scattered and often limited. In this study, we 
conducted two systematic large-scale yeast two-hybrid screenings to detect interac-
tions between Arabidopsis thaliana proteins and effectors from two vascular bacte-
rial pathogens: Ralstonia pseudosolanacearum and Xanthomonas campestris. We then 
constructed an interactomic network focused on Arabidopsis and effector proteins 
from a wide variety of bacterial, oomycete, fungal, and invertebrate pathogens. This 
network contains our experimental data and protein–protein interactions from 2,035 
peer-reviewed publications (48,200 Arabidopsis–Arabidopsis and 1,300 Arabidopsis–
effector protein interactions). Our results show that effectors from different species 
interact with both common and specific Arabidopsis interactors, suggesting dual roles 
as modulators of generic and adaptive host processes. Network analyses revealed 
that effector interactors, particularly “effector hubs” and bacterial core effector in-
teractors, occupy important positions for network organization, as shown by their 
larger number of protein interactions and centrality. These interactomic data were 
incorporated in EffectorK, a new graph-oriented knowledge database that allows 
users to navigate the network, search for homology, or find possible paths between 
host and/or effector proteins. EffectorK is available at www.effec tork.org and allows 
users to submit their own interactomic data.
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1  | INTRODUC TION

Plants are continuously confronted with a wide variety of patho-
gens, including bacteria, oomycetes, fungi, nematodes, and insects. 
To prevent their proliferation, plants have evolved a complex multi-
layered immune system (Jones and Dangl, 2006). Plants are able to 
recognize highly conserved pathogen-associated molecular patterns 
(PAMPs) through pattern-recognition receptors triggering induced 
defence responses collectively known as PAMP-triggered immunity 
(PTI) (Zipfel, 2014). These responses are usually enough to prevent 
most potential invaders; however, some pathogens secrete effector 
proteins to subvert the defence responses and alter diverse cel-
lular processes to ease their proliferation (Ma et al., 2018). Plants, 
moreover, have evolved several intracellular nucleotide-binding site- 
leucine-rich repeat (NBS-LRR) receptors recognizing these effec-
tors and activating potent defence responses collectively known as  
effector-triggered immunity (ETI) (Cui et al., 2015).

Although the interactors and molecular functions of some ef-
fectors have been characterized (Büttner, 2016; Giron et al., 2016; 
Sharpee and Dean, 2016; Vieira and Gleason, 2019), for most effec-
tors they are still unknown. The main factors complicating the large-
scale identification and characterization of effector–host protein 
interactions are the wide diversity of pathosystems, the difficulty 
in identifying bona fide effector genes, the collective contribution 
of effector proteins, the complexity of the host responses, and the 
lack of robust high-throughput techniques. For the model species 
Arabidopsis thaliana (Ath), to our knowledge, there are only two 
studies in which systematic effector–host protein interactions at the  
effectome-scale have been identified (Mukhtar et al., 2011; Weßling 
et al., 2014). In these studies plant interactors of effector proteins 
from Pseudomonas syringae (Psy, bacterium), Hyaloperonospora ara-
bidopsidis (Hpa, oomycete), and Glovinomyces orontii (Gor, fungus) 
were identified by yeast two-hybrid (Y2H) assays. They reported 
that the effectors of these species converged onto a limited set of 
Ath proteins. These studies also demonstrated that many effector 
interactors are important for plant immunity and showed that their 
importance correlates with the level of effector convergence.

Bacterial wilt, caused by Ralstonia pseudosolanacearum (Ralstonia 
solanacearum phylotype I, Rps), and black rot, caused by Xanthomonas 
campestris pv. campestris (Xcc), are listed among the top 10 scientifi-
cally and economically important plant bacterial diseases (Mansfield 
et al., 2012). Both Rps and Xcc are xylem-colonizing bacteria able 
to infect the model plant Ath (Deslandes et al., 1998; Buell, 2002). 
They both rely on their type III secretion system for full virulence 
(Arlat et al., 1991, 1992). This “molecular syringe” allows the patho-
gen to deliver type III effector proteins (T3Es) directly into the host 
cell in order to promote disease. The roles of several of their T3Es 
have been characterized (White et al., 2009; Coll and Valls, 2013), 
but most knowledge on T3E functions comes from the study of Psy, 

which resides on leaf surfaces and in the leaf apoplast (Lindeberg 
et al., 2012; Büttner, 2016). Focusing mainly on a few species offers 
a partial view of effector biology. It is therefore crucial to expand our 
studies to other species to grasp the existing diversity of effector 
proteins and pathogen lifestyles.

To obtain a deeper understanding of the global Ath–effector 
protein interactome, we conducted three systematic large-scale 
screenings with T3Es from Rps and Xcc, the first vascular pathogens 
screened in this manner. Additionally, we conducted an extensive 
literature survey to gather published Ath interactors of effector pro-
teins from pathogens from four different kingdoms of life: Bacteria, 
Chromista, Fungi, and Animalia. Combining all these data allowed 
us to identify 100 new “effector hubs” (i.e., Ath proteins interacting 
with two or more effectors). Together with Ath–Ath protein interac-
tions retrieved from public databases, we generated an Ath–effector 
protein network that captures the wide diversity of Ath pathogens. 
This network allowed us to detect general trends of effector inter-
ference with the host proteome. We have created a publicly avail-
able interactive knowledge database called EffectorK (for Effector 
Knowledge) that allows users to access and augment this network.

2  | RESULTS

2.1 | Systematic identification of Arabidopsis 
interactors of R. pseudosolanacearum and 
X. campestris effectors

Three Y2H screenings were performed to identify Ath interactors 
of Rps and Xcc effector proteins. In a first screening, we identified 
42 Ath interactors for 21 out of 56 T3Es from Rps strain GMI100 
screened against a library of more than 8,000 full-length Ath cDNAs 
(8K space). The choice of the 56 Rps T3Es was guided by the available 
clones at the time of screening. In the second and third screenings, 
we identified 176 Ath interactors for 32 out of 48 T3Es from Rps 
strain GMI1000 and 52 Ath interactors for 18 out of 25 T3Es from 
Xcc strain 8,004 screened against an extended version of the previ-
ous library containing more than 12,000 Ath full-length cDNAs (12K 
space) (Figure S1 and Table S1). Here the choice of Rps T3Es was 
constrained by a pool maximum imposed by the screening method 
(see Materials and Methods). T3Es were picked according to their 
highest degree of conservation within the species complex (Peeters 
et al., 2013). On average, 10.7 and 5.7 Ath interactors were found 
per Rps and Xcc T3E. These Ath cDNA libraries had been previously 
used to test interactions with 57 and 32 effector proteins from Hpa 
and Psy, respectively, (8K space) and 46 effector proteins from Gor 
(12K space) (Mukhtar et al., 2011; Weßling et al., 2014). The subset 
of interactions of effectors from Rps, Xcc, and Gor in the 8K space 
was used to compare with previously published Hpa and Psy data 
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(Figure 1). In general, Rps effectors interacted on average with more 
Ath proteins than the other screened species; however, this differ-
ence is only statistically significant when compared to Gor effectors 
(one-tailed Wilcoxon signed-rank test p < .001). These data show 
that effector proteins from these five different species, on average, 
tend to interact with a similar number of Ath proteins regardless of 
kingdom, life style, or effectome size.

2.2 | Effectors converge onto a limited set of 
Arabidopsis proteins

We compared the Rps and Xcc effector interactors identified in our 
screenings with the interactors previously identified for Hpa, Psy, 
and Gor effector proteins (Mukhtar et al., 2011; Weßling et al., 2014). 
To avoid bias related to the size of the screened library, we consid-
ered only the subset of effector interactors present in the 8K space 
(Figure S2). At the kingdom level, Bacteria was the kingdom with the 
highest number of kingdom-specific interactors, with 158 exclu-
sive interactors out of a total of 217 interactors (72.8%), followed 
by Chromista, with 31 out of 117 (51.7%), and Fungi, with 16 out 
of 45 (35.6%). In total, 235 out of 299 effector interactors (78.6%) 
were kingdom-specific. At the species level, when comparing all five 
pathogens, the percentage of species-specific interactors was 58.9% 
for Psy, 58.7% for Rps, 51.7% for Hpa, 48.8% for Xcc, and 35.6% for 

Gor. The total number of species-specific effector interactors was 
221 out of 299 (73.9%). These data show that most effector interac-
tors are kingdom- and species-specific.

To evaluate whether Rps and Xcc effectors interact randomly or 
converge onto a common set of Ath proteins we performed simula-
tions rewiring effector–Ath protein interactions within the 8K space. 
In these simulations, each effector was assigned randomly as many 
Ath proteins as it had interacted with in our screenings. Then, the 
number of interactors found on all simulations was plotted and com-
pared with the experimental data (Figure 2a). The number of effector 
interactors observed in our screenings was significantly lower than 
the numbers obtained in the random simulations for both Rps and 
Xcc. Similar results had been reported for effectors from Hpa, Psy, 
and Gor (Mukhtar et al., 2011; Weßling et al., 2014). This shows that, 
similarly to other species, both Rps and Xcc effectors also interact 
with a common subset of Ath proteins (i.e., intraspecific convergence).

These random rewiring simulations also allowed us to determine 
whether effectors from different species interact randomly or con-
vergently with Ath proteins. For this, the number of common inter-
actors of effectors from different species was compared with the 
experimental data (Figure 2b). When comparing all three kingdoms, 
the number of common interactors observed was significantly higher 
than expected by random rewiring. We then analysed all possible bi-
nary, ternary, quaternary, and quinary combinations of species and 
in all cases the number of common interactors observed was higher 
than expected randomly (Figure 2c). These differences were all sta-
tistically significant except for the common interactors of effectors 
from Psy and Xcc (p = .058; Figure S3). This could indicate that these 
two species are the most different in terms of effector targeting. 
However, considering that Psy and Xcc are precisely the two species 
with the lowest number of effectors for which interactors have been 
identified (Psy: 32 and Xcc: 18 effector proteins), it is likely that the 
high p value is caused by the limited sample size. This shows that 
effectors from all these five species interact with a common subset 
of Ath proteins (i.e., interspecific convergence).

Altogether, our data indicate that Rps and Xcc effectors con-
verge both intra- and interspecifically onto a set of limited Ath pro-
teins, behaving similarly to effectors from other previously screened 
pathogen species. This suggests the existence of a convergent set 
of effector interactors common to evolutionarily distant pathogens 
that might have a predominant role in the general modulation of the 
host responses.

2.3 | Manual curation of the literature to compile 
Arabidopsis–effector protein interactions

In order to gather more knowledge on Ath–effector protein in-
teractions, we conducted an extensive literature search compiling 
data from a wider spectrum of bacterial, fungal, oomycete, and 
invertebrate effector proteins. We only considered published di-
rect protein–protein interactions that had been confirmed by clas-
sic techniques such as Y2H, co-immunoprecipitation, pull-down, 

F I G U R E  1   Arabidopsis thaliana (Ath) degree of effector proteins 
from Glovinomyces orontii (Gor), Hyaloperonospora arabidopsidis 
(Hpa), Pseudomonas syringae (Psy), Xanthomonas campestris 
pv. campestris (Xcc), and Ralstonia pseudosolanacearum (Rps). 
Comparison of the Ath degree (i.e., number of Ath interactors per 
effector) of effector proteins from Gor, Hpa, Psy, Xcc, and Rps 
found in the 8,000-Ath-cDNA collection (8K space). Horizontal 
black bars represent the median. Colours represent the kingdom 
(orange: Fungi, yellow: Chromista, and blue: Bacteria)
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F I G U R E  2   Effectors converge intra- and interspecifically onto a common set of Arabidopsis thaliana (Ath) proteins. (a) Left: random and 
intraspecific convergent interactions of effectors (purple squares) with Ath proteins (green circles) can be distinguished by random network 
rewiring and simulation. Adapted from Weßling et al. (2014). Middle and right: number of Ath interactors in the 8K space of effectors from 
Xanthomonas campestris pv. campestris (Xcc) strain 8,004 and Ralstonia pseudosolanacearum (Rps) strain GMI1000 found in 10,000 degree-
preserving simulations (grey) versus the observed number (red arrow). (b) Left: random and interspecific convergent interactions of effectors 
from different species (purple and orange squares) with Ath proteins (green circles) can be distinguished by random network rewiring and 
simulation. Right: number of common Ath interactors in the 8K space of effectors from Chromista, Bacteria, and Fungi found in 10,000 
simulations (grey) versus the observed number (red arrow). (c) Scatterplot of observed versus simulated number of common Ath interactors 
between all binary, ternary, quaternary, and quinary combinations of species. x = y regression is represented with a dashed grey line
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protein-fragment complementation, fluorescence resonance en-
ergy transfer, or mass spectrometry. We compiled 287 interac-
tions found in 80 peer-reviewed publications involving 218 Ath 
proteins and 72 effectors from 22 pathogen species (Table S2). 
Among these 22 pathogens, there were nine bacterial species, 
mostly proteobacteria but also a phytoplasma species; eight in-
vertebrate species, including both nematodes and insects; four 
oomycete, and one fungal species. While this collection of spe-
cies does not represent the full diversity of Ath pathogens, it cov-
ers the majority of pathogens for which effector interactors have 
been reported. We can see that, despite being one of the major 
pathogen classes, few studies have described fungal effector in-
teractors. This illustrates one of the current gaps in our knowledge 
of effector interactors in Ath.

2.4 | Identification of one hundred new “effector 
hubs”

To compare experimental and published data, we combined all the 
interactions curated from the published data together with data 
from our large-scale Y2H screenings. This resulted in a total of 
564 different Ath proteins interacting with pathogen effectors. 
Our screenings on Rps and Xcc effectors identified 235 interac-
tors. Similar published screenings on Psy, Gor, or Hpa effectors 
had identified 200 interactors (Mukhtar et al., 2011; Weßling et al., 
2014). The literature curation allowed us to identify 218 effector 
interactors. From the 235 Rps and Xcc effectors interactors found 
in our screening, 166 were new, which represents 29.4% of the 
total interactors compiled in this study (Figure 3). This highlights 
the potential of such systematic and high-throughput large-scale 
screenings in identifying novel effector interactors. The average 
effector degree (i.e., the number of effectors interacting with a 
given Ath protein) was 2.3 but it was unevenly distributed among 
the 564 interactors, with 350 of them interacting with only one ef-
fector (62%) and 14 interacting with more than 10 effectors (2.5%) 
(Figure S4). The contribution of our experimental data was impor-
tant in the identification of single interactors as we identified 93 
out of the 350 (26.6%). More remarkable was the contribution in 
the identification of “effector hubs,” defined here as Ath proteins 
interacting with two or more effectors (Figure 4). The definition 
of “hub” has been debated and it has been traditionally associ-
ated with proteins that are highly connected in interactomic net-
works (Vandereyken et al., 2018). Our definition of “effector hub” 
came from the need to designate the Ath proteins that interact 
with several effectors and is based exclusively on the number of 
interacting effector proteins. We identified 100 new effector hubs 
and increased the degree of 42 previously described effector hubs 
(Table S3).

To evaluate the potential relevance of the newly identified effec-
tor hubs in plant immunity, we conducted a second literature survey 
to check if the corresponding Ath genes had previously reported 
functions in plant immunity or in pathogen fitness in planta (Table 1). 

Sixteen out of the 100 new effector hub genes have already been 
described for their altered infection or other immunity-related phe-
notype when mutated, silenced or overexpressed. Additionally, 
the orthologs of three other new hubs in other plant species also 
produced altered infection phenotypes when silenced or overex-
pressed. A total of 19 out of the 100 newly identified effector hubs 
have already been shown to be involved in biotic stress responses. 
Considering that many of the remaining newly defined effector hubs 
have been poorly characterized (e.g., hypothetical proteins or de-
scriptions based on homology or belonging to a protein family), it is 
likely that the number of effector hubs involved in immunity was un-
derestimated. This constitutes a valuable source of novel candidates 
for further functional characterization.

In terms of organism of origin, most of the 564 interactors are 
bacterial effector interactors, as could be expected considering 
that 132 out of the 266 total effectors compiled came from bac-
teria (Figure S4). In the case of effector hubs, it is noteworthy that 
133 out of the 214 hubs described in this work interact with ef-
fectors from a single kingdom while there are only 64, 16, and one 
hubs interacting with effectors from two, three or four different 
kingdoms, respectively (Table S3). Although biased by the struc-
ture of the data, this could suggest kingdom specificity of effector 
targeting.

F I G U R E  3   Overlap among effector interactors depending on 
the origin of the data set. Area-proportional Venn diagram showing 
the overlap among effector interactors identified in the large-
scale yeast two-hybrid (Y2H) screenings performed in this study, 
in similar large-scale Y2H already published, and in the manual 
curation of the literature. The total number of effector interactors 
coming from each dataset is indicated in parentheses
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2.5 | Construction of an interaction network 
involving Arabidopsis and effector proteins

We constructed an Ath–effector protein interaction network com-
piling the previously described experimental and literature-compiled 
data with Ath–Ath protein interactions from public databases and the 
literature (Stark et al., 2006; Dreze et al., 2011; Orchard et al., 2014; 
Smakowska-Luzan et al., 2018). From the total of 49,500 interactions 
compiled in this study, 48,597 were grouped into a single connected 
component constituting what we defined as our Ath–effector inter-
actomic network (Table S4). This network was constituted of 47,314 
Ath–Ath and 1,283 Ath–effector protein interactions between 8,036 
Ath proteins and 245 effector proteins. Effectors came from 23 dif-
ferent species, including bacteria (128 effectors), oomycetes (61 ef-
fectors), fungi (46 effectors), and invertebrates (10 effectors). The 
uneven distribution of effectors among kingdoms highlights the con-
tribution of the large-scale screenings in the identification of effector 
interactors as 1,002 out of 1,283 Ath–effector protein interactions 
came from either our experimental data or previous screenings of 
the same library (Mukhtar et al., 2011; Weßling et al., 2014).

2.6 | Effector interactors tend to occupy key 
positions in the Arabidopsis–effector protein 
interaction network

To further investigate the potential impact of effectors on the plant 
interactome, we evaluated the importance of their interactors for the 
organization of the network. We focused on two main network to-
pology parameters: “degree” and “betweenness centrality” (Figure 4). 
The “degree” of a protein represents the number of proteins that it 
interacts with. In this study we differentiated two types of degrees 
depending on the nature of the interacting proteins: the Ath degree 
of a given effector or Ath protein (i.e. the number of interacting Ath 
proteins) and the effector degree for a given Ath protein (i.e. the num-
ber of interacting effector proteins). The “betweenness centrality” of 
a protein is the fraction of all shortest paths connecting two proteins 
from the network that pass through it. There are two main types of 
key proteins in a network (Li et al., 2017): (a) proteins important for 
local network organization, typically showing high degree, and (b) pro-
teins important for the global diffusion of the information through the 
network, characterized by high betweenness centrality. It had been 
previously reported in more limited networks that effectors tend 
to interact with host proteins with high degree and high centrality 
(Memišević et al., 2015; Li et al., 2017; Ahmed et al., 2018). We then 
analysed whether this was the case in our network comparing effector 
interactors with the rest of the Ath proteins (Figure 5). The fraction of 
proteins decreased rapidly as the Ath degree increased. This indicates 
that most Ath proteins present low Ath degree and only a few of them 
show high Ath degree values. This tendency was significantly shifted 
towards higher Ath degree values in effector interactors compared to 
the rest of Ath proteins. To represent this tendency shift we estimated 
and compared the area under the curve values of the cumulative dis-
tribution of the Ath degree for effector interactors and the rest of Ath 
proteins (Table 2). Effectively, the area under the curve value of effec-
tor interactors was higher than the value of the rest of the Ath pro-
teins. This indicates that effector interactors present generally higher 
Ath degree than the rest of the Ath proteins. Similarly, we compared 
the betweenness centrality of these two groups of proteins (Table 2 
and Figure S5). Effector interactors also presented significantly higher 
betweenness centrality values than the rest of the Ath proteins. 
Altogether, these results indicate that effectors preferentially interact 
with Ath proteins that are more connected to other Ath proteins and 
that occupy more central positions in the interactomic network as re-
ported for smaller networks (Li et al., 2017; Ahmed et al., 2018).

2.7 | Effector hubs are better connected and 
more central than single effector interactors in the 
Arabidopsis–effector interaction network

We then wanted to test if the Ath degree and betweenness centrality 
values differed among distinct types of effector interactors (Table 2 and 
Figure S5). First, we compared multipathogen and pathogen-specific 
interactors as previously described (Figure S2). Multipathogen effector 

F I G U R E  4   Network topology parameters. Example of a 
simple interactomic network of three effector proteins (purple 
squares) and nine Arabidopsis thaliana (Ath) proteins (green circles) 
to illustrate our definition of “effector hub” (i.e., Ath protein 
interacting with two or more effectors; highlighted in red) and 
the three network topology parameters analysed in this study. 1, 
Effector degree: number of effectors that interact with a given Ath 
protein; 2, Ath degree: number of Ath proteins that interact with a 
given effector or Ath protein; 3, Betweenness centrality: fraction 
of all shortest paths connecting two proteins from the network that 
pass through a given protein
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TA B L E  1   List of 19 new effector hubs involved in plant immunity

Effector hub Protein name
Effector 
degreea  Description of observed phenotype Reference

AT1G58100 TCP domain protein 8 (TCP8) 13 Triple tcp8 tcp14 tcp15 mutant showed enhanced 
Pseudomonas syringae strain DC3000 ∆avrRps4 
growth

Kim et al. (2014)

AT1G71230b  COP9-signalosome 5B (CSN5B) 8 Wheat TaCSN5 mutant showed enhanced disease 
symptoms caused by Puccinia triticina

Zhang et al. (2017)

AT3G12920 BOI-related gene 3 (BRG3) 7 brg3 mutant showed increased Botrytis cinerea 
lesion size

Luo et al. (2010)

AT5G08330b  TCP domain protein 21 
(TCP21)

7 Rice OsTCP21 silenced and overexpressing 
plants showed enhanced and reduced disease 
symptoms caused by rice rust stunt virus (RRSV), 
respectively

Zhang et al. (2016)

AT5G61010 Exocyst subunit EXO70 family 
protein E2 (EXO70E2)

6 exo70e2 mutant showed reduced flg22-induced 
callose deposition.

Redditt et al. (2019)

AT4G00270 STOREKEEPER-related 1 
(STKR1)

6 STKR1 overexpressing plants showed reduced 
Hyaloperonospora arabidopsidis spore formation

Nietzsche et al. (2018)

AT3G01670 SIEVE ELEMENT OCLUSSION-
related 2 (SEOR2)

4 Myzus persicae feeding from seor2 mutant showed 
reduced progeny

Anstead et al. (2012)

AT5G17490 RGA-like protein 3 (RGL3) 3 rgl3 mutant showed reduced P. syringae growth and 
increased SA content upon infection

Li et al. (2019)

AT3G54230 Suppressor of abi3-5 (SUA) 3 sua mutant showed enhanced P. syringae growth 
and reduced chitin-induced ROS production

Zhang et al. (2014)

AT3G11410 Protein phosphatase 2CA 
(PP2CA)

3 pp2ca mutant showed reduced P. syringae 
colonization and stomatal aperture. PP2CA 
overexpressor showed enhanced stomatal 
aperture

Lim et al. (2014)

AT2G17290 Calcium-dependent protein 
kinase 6 (CPK6)

3 Double cpk5-cpk6 mutant showed enhanced 
P. syringae growth and reduced flg22-induced 
ROS production

Boudsocq et al. (2010)

AT5G41410b  Homeobox protein BEL1 
homolog (BELL1)

3 Rice OsBIHD1 mutant and overexpressing plants 
showed increased and reduced Magnaporthe 
oryzae lesion area, respectively

Liu et al. (2017)

AT4G26750 LYST-interacting protein 5 
(LIP5)

2 lip5 mutant showed enhanced P. syringae growth 
and disease symptoms and reduced endosomal 
structure formation upon infection

Wang et al. (2014)

AT4G35090 Catalase-2 (CAT2) 2 cat2 mutant showed increased ROS accumulation 
upon infection with incompatible P. syringae strain

Simon et al. (2010)

AT3G02870 Inositol-phosphate 
phosphatase (VTC4)

2 vtc4 mutant showed reduced P. syringae growth Mukherjee et al. (2010)

AT5G53060 Regulator of CBF gene 
expression 3 (RCF3)

2 rcf3 mutant showed reduced percentage of 
diseased plants and higher percentage of plant 
survival upon Fusarium oxysporum infection

Dagdas et al. (2016)

AT3G02540 RAD23 family protein C 
(RAD23C)

2 rad23BCD mutant (and not rad23BD) did not 
show Candidatus Phytoplasma-induced flower 
virescence and phyllody

MacLean et al. (2014)

AT5G38470 RAD23 family protein D 
(RAD23D)

2 rad23D mutant did not show flower virescence 
and phyllody upon transgenic expression of 
C. phytoplasma SAP54 effector

MacLean et al. (2014)

AT2G37630 Asymmetric leaves 1 (AS1) 2 as1 mutant showed reduced lesion size caused by 
B. cinerea and Alternaria brassicicola and enhanced 
Pseudomonas fluorescens and P. syringae growth

Nurmberg et al. (2007)

aRanked in decreasing order. 
bOrthologous gene in other plant species, as defined by EnsemblPlants (Kersey et al., 2018), characterized for a role in immunity. 
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interactors presented significantly higher Ath degree and betweenness 
centrality compared to pathogen-specific effector interactors. We also 
compared effector hubs with single effector interactors. Similarly, ef-
fector hubs also showed higher betweenness centrality and Ath degree 
than single effector interactors. This last observation implies that an 
Ath protein that interacts with several effectors tends also to interact 
with more Ath proteins. To evaluate whether this is biologically relevant 
or a bias of the “stickiness” of a protein, we compared the Ath and ef-
fector degree values of all effector interactors. Our results showed that  
these two parameters are not correlated (Pearson correlation coef-
ficient = 0.3221; Figure S6). This suggests that effector hubs inter-
act with more Ath proteins than single effector interactors and that 
this is not due to a higher stickiness of these proteins. Altogether, 
these results show that the general tendencies of effector interac-
tors (i.e. more connected to other Ath proteins and more central in 
the Arabidopsis–effector interaction network) are stronger among ef-
fector hubs compared to single interactors, and among multipathogen 
effector interactors compared to pathogen-specific interactors. This 
reflects the importance of interfering with key position proteins for 
the modulation of host–pathogen interactions.

2.8 | Bacterial core T3Es interact with more 
connected and central Ath proteins

Our work on Rps and Xcc together with previous work on Psy T3Es 
(Mukhtar et al., 2011) provided a large amount of interactomic data 

F I G U R E  5   Ath degree of Ath proteins interacting or not with 
effectors. Cumulative distribution of Ath degree of Ath proteins 
interacting (orange) or not (purple) with effectors. The significance 
of the difference was validated by one-tailed Wilcoxon signed-
rank test. The illustration in the upper right corner represents 
each compared group. Effectors are represented by squares, Ath 
proteins by circles and the colour code matches the cumulative 
distribution graph

Area under the curvea  Figureb  p valuec 

Effector interactors Other Ath proteins

Ath degree 2,737 1,010 5 <.0001

Betweenness centrality 0.23 0.033 S5A <.0001

Multipathogen effector interactors Pathogen-specific effector interactors

Ath degree 5,344 1,790 S5B <.0001

Betweenness centrality 0.657 0.136 S5C <.0001

Effector hubs Single effector interactors

Ath degree 4,067 1,810 S5D <.0001

Betweenness centrality 0.407 0.118 S5E <.0001

Bacterial core T3Es Rest of bacterial T3Es

Ath degree 656 712 S7A 0.4571

Betweenness centrality 0.072 0.074 S7B 0.9198

Bacterial core T3E interactors Other bacterial T3Es interactors

Effector degree 347 123 S7C <.0001

Ath degree 3,610 2,714 S7D 0.0131

Betweenness centrality 0.369 0.239 S7E 0.0007

aEstimated area under the curve of the cumulative distribution of Ath degree, effector degree, and betweenness centrality for each group of proteins 
as represented in Figures 5, S5, and S7. Estimation based on numerical integration using Simpson's rule. 
bFigure illustrating the cumulative distribution graphic from which the areas under the curve compared were calculated. 
cOne-tailed Wilcoxon signed-rank test p value of the comparison of the Ath degree, effector degree or betweenness centrality values of all proteins 
from each compared group. 

TA B L E  2   Cumulative Ath and effector degrees and betweenness centrality of different groups of effector interactors
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on bacterial pathogen species for which other resources have been 
generated, particularly in terms of abundance and diversity of se-
quenced genomes and thus curated T3E repertoires (Lindeberg et al., 
2012; Guy et al., 2013; Peeters et al., 2013; Roux et al., 2015; Dillon 
et al., 2019; Sabbagh et al., 2019). The most conserved set of T3Es, or 
“core effectome,” from each of the three bacterial species has been 
previously defined (Guy et al., 2013; Dillon et al., 2019; Sabbagh et al., 
2019). We then tested whether these subsets of T3Es behaved dif-
ferently from the rest of bacterial T3Es in terms of interaction with 
host proteins (Table 2 and Figure S7). Our data showed that core and 
variable T3Es from the three species do not differ in Ath degree nor 
betweenness centrality. We then tested if there were any differences 
between the network properties of the interactors of core T3Es and 
the other bacterial T3E interactors. Core T3Es interactors showed 
higher effector degree, Ath degree, and betweenness centrality than 
the rest of interactors of bacterial T3Es. This suggests that, although 
core T3Es in general do not have more interactors than the rest of 
bacterial T3Es, they do interact with more highly connected and 
central Ath proteins. This might imply that core T3Es have a larger 
potential to interfere with the host interactome, which could explain 
the selective pressure to maintain them in the majority of strains.

2.9 | EffectorK, an online interactive knowledge 
database to explore the Arabidopsis–effector 
interactomic data

In order to facilitate the access and exploration of all the data pre-
sented in this work, we have generated EffectorK (for “Effector 
Knowledge”), an interactive web-based knowledge database freely 
available at www.effec tork.org. The latest version (2 October 2019) 
contains 49,875 interactions for 8,617 proteins coming from 2,035 
publications. Of these, 1,300 are Ath–effector protein interac-
tions. Searches can be done based on a wide range of supported 
identifiers such as different protein names, NCBI or TAIR acces-
sion numbers, PubMed identifiers, and InterPro terms. Additionally, 
users can also query nucleotide or amino acid sequences directly 
with BLAST or use accession numbers from other model and crop 
plants to find homologs within the database. All proteins found by 
query are then listed in tabular format and hyperlinked to the cor-
responding interactomic data, external resources, and amino acid 
sequences. Interactomic data for a given protein can be then ex-
plored and downloaded in tabular or graphical format. The graphical 
representation of the interactomic data depicts proteins interacting 
with other proteins as nodes interconnected by edges (Figure 6). The 
size of a node is proportional to the number of interacting proteins, 
whereas the thickness of an edge represents the confidence of the 
interaction (i.e. whether the interaction has been detected by one 
[narrow] or several independent [thick] techniques). This visual inter-
face allows users to expand or re-centre a local subnetwork based 
on a given protein, get information and access to external resources 
linked to either a protein (node) or an interaction (edge), or modify 
the layout and the position of the elements for optimal visualization. 

Additionally, EffectorK also allows users to find the shortest paths 
between two queried proteins in the network.

In order to update, expand, and further improve EffectorK, we 
encourage users to submit their own interactomic data by filing in 
and sending a dedicated template available on the site. These data 
will be verified by the curator team prior to their incorporation in the 
database. More information about usage, content, and data submis-
sion is accessible online, under the tabs “Help” and “Contribute” of 
the database web server. Please contact us if you have any question 
or suggestions by email via contact@effectork.org.

3  | DISCUSSION

In this study we identified systematically Ath interactors of effectors 
from the vascular bacterial pathogens Rps and Xcc. We combined 
this information with other Ath interactors identified in similar ex-
perimental setups. Additionally, we conducted an extensive litera-
ture review to gather published Ath interactors of effectors from a 
wide variety of pathogens, including other bacterial species and also 
oomycete, fungal, and invertebrate pathogens. Studying this com-
bined interactomic dataset allowed us to identify new trends of how 
effectors interfere with the plant proteome and evaluate whether 
previously described network principles were still supported on a 
wider scale. We showed that there are no substantial differences in 
terms of connectivity among the effectomes of five different patho-
gen species screened systematically (Figure 1). We have reinforced 
previously described intra- and interspecific convergence of effector 

F I G U R E  6   Graphical representation of interactomic data on 
EffectorK. Graphical representation of interactomic data from Xcc 
effector XopAC (AvrAC). XopAC, in purple, interacts with 36 Ath 
proteins, in green (only 12 shown for better visualization). The size 
of a protein node is proportional to its degree (e.g. CSN5B interacts 
with 50 proteins, BIK1 with six, and APK1A only with XopAC). The 
thickness of the connecting edges indicates the level of confidence: 
narrow edges represent physical interaction detected by only 
one technique, whereas thick edges indicate that the interaction 
has been detected by at least two independent techniques 
(e.g. XopAC interaction with BIK1 has been detected by co-
immunoprecipitation and pulldown assays, whereas the interaction 
with APK1A, only by Y2H)

http://www.effectork.org
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targeting with effectors from two new species (Mukhtar et al., 2011; 
Weßling et al., 2014), and showed at the same time that most effector 
interactors are pathogen specific (Figure 2 and S2). Our analyses also 
supported the previously described tendency of effectors to interact 
with plant proteins better connected and central in the network (Li 
et al., 2017; Ahmed et al., 2018), and showed that this tendency is 
even stronger among effector hubs, multipathogen interactors, and 
bacterial core T3E interactors (Table 2 and Figure S5).

3.1 | The balance between interactor specificity and 
convergence

Our data showed that most effector interactors were pathogen- 
specific (Figure S2) but at the same time effectors converge inter-
specifically onto a small subset of Ath proteins (Figure 2B,C). These a 
priori contradictory observations pose an interesting question: what 
is the balance between the specificity and convergence of effector in-
teractors? At this point, it is impossible to assert whether this specific-
ity is merely caused by the limited number of pathogens screened at 
the effectome-scale or if it is a reflection of the different and unique 
ways that each pathogen has evolved to interfere with the host physi-
ology and immunity. This issue can only be addressed by increasing 
the number of pathogen effectors screened thoroughly and at a large 
scale. Comparing large datasets of effector interactors of a wider 
and more diverse set of pathogens would allow evaluating where the 
balance is between specificity and convergence: (a) If the interactor 
specificity decreased, it would mean that the effectomes from the 
different pathogens tend to interact similarly with the host proteome. 
This was the case when we compared the percentage of species- 
specific interactors of effectors from Hpa, Psy, and Gor that passed 
from being 73.9%, 64.9%, and 46.7% in previous works (Mukhtar et al., 
2011; Weßling et al., 2014), to 51.7%, 58.9%, and 35.6%, respectively, 
in the present study (Figure S2). Nevertheless, a total of five screened 
species is probably not powerful enough to sustain this claim. (b) If, 
in contrast, the interactor specificity increased with the number of 
screened species, it would mean that the different pathogens have 
evolved unique ways to modulate the interaction with the host. If this 
were the case, deeper analyses comparing related pathogens (e.g. 
species with similar lifestyle or from the same kingdom) could allow 
identifying trait-specific interactors (e.g. effector interactors exclu-
sive among vascular pathogen effectors). In any case, to better under-
stand the similarities and particularities on how effectors modulate 
host processes, it is essential to increase the number of pathogen spe-
cies screened for effector interactors at the effectome-scale.

3.2 | Large-scale screenings fill the gap in the 
identification of effector interactors

Including manually curated data from literature has allowed us to 
broaden significantly the diversity of plant pathogen species com-
pared to similar studies. However, 346 out the 564 described 

Arabidopsis effector interactors have been identified exclusively 
through large-scale Y2H screenings against partial libraries of Ath 
cDNAs. As with any other large-scale screening, the technical limi-
tations together with the incompleteness of the library might have 
led to an underestimation of the plant–effector interactome of the 
five screened species (Brückner et al., 2009). The relatively small 
overlap between the large-scale Y2H screenings and manually cu-
rated literature data sets might be a consequence of this limitation 
(Figure 3). This small overlap illustrates the current knowledge gap 
in the characterization of the full plant interactome of pathogen ef-
fectors. Extensive work will be required to characterize further ef-
fector–host protein interactions in other pathosystems. As one of 
the simplest yet powerful high-throughput techniques for protein– 
protein interaction detection, our work, like others before, highlights 
the potential of such large-scale Y2H screenings in the identification 
of novel effector interactors in an easy, cheap, and systematic manner.

3.3 | EffectorK, an entry point to explore and make 
sense of plant–effector interactomics

To conclude, our work also provides valuable resources for the 
plant–pathogen interaction community. We described 540 new 
Ath–Rps and Ath–Xcc effector protein interactions that allowed us 
to identify 166 new effector interactors (Table S1). We also manu-
ally curated several publications to assemble a collection of 287 
Ath–effector protein interactions from a wide variety of patho-
gens (Table S2). All this allowed us to identify 100 novel effector 
hubs (Table S3). The contribution to plant immunity of these effec-
tor hubs has been described for 19 of them, but remains untested 
for the majority (Table 1). This constitutes a list of promising can-
didates for further functional characterization. All these data were 
integrated in EffectorK, a knowledge database where users can 
have easy access to the Ath–effector protein interactions and ex-
plore the resulting interactomic network visually and interactively. 
While major efforts were made to capture the maximal diversity 
on the pathogen side, we limited our work to the Arabidopsis plant 
model. Thanks to the built-in homology search tools available, 
users can also use their own data as query regardless of the spe-
cies studied. It is therefore feasible to use EffectorK as a starting 
point to build on and extend to crop plant–effector protein inter-
actomics. In the long term, these data could be exploited to bet-
ter understand how pathogens interact with these crops with the 
prospect of selecting breeding candidates for improved tolerance 
or resistance against pathogens.

4  | E XPERIMENTAL PROCEDURES

4.1 | Cloning of Rps and Xcc T3E genes

All the cloning of the T3E genes from Rps and Xcc was performed 
by BP gateway BP or TOPO cloning (Thermo Fisher Scientific, 
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Waltham, MA, USA) to generate pENTRY plasmids, which were later 
transferred into the appropriate Y2H plasmids (Mukhtar et al., 2011) 
using the LR gateway reaction (Thermo Fisher Scientific). Table S5 
contains all the PCR primers and final plasmid identities describing 
the collection of plasmids used in this study. Gene sequence infor-
mation from Rps strain GMI1000 (GenBank accessions: NC_003295 
and NC_003296) (Salanoubat et al., 2002) can be obtained from 
www.ralst o-T3E.org (Sabbagh et al., 2019) and from the published 
genome of Xcc strain 8,004 (NC_007086) (Qian, 2005).

4.2 | Y2H screenings

The Y2H screening was performed in semi-liquid (“8K space” screen-
ing) and liquid (“12K space” screening) media as recently reported 
(Monachello et al., 2019), which is an adaptation of a previously de-
veloped Y2H-solid pipeline (Dreze et al., 2010). In both protocols the 
same low copy number yeast expression vectors and the two yeast 
strains, Saccharomyces cerevisiae Y8930 and Y8800, were used. The 
expression of the GAL1-HIS3 reporter gene was tested with 1 mM 
3AT (3-amino-1,2,4-triazole, a competitive inhibitor of the HIS3 gene 
product) unless described otherwise. Prior to Y2H screening, DB-X 
strains were tested for auto-activation of the GAL1-HIS3 reporter 
gene in the absence of AD-Y plasmid. In case of auto-activation, DB-X 
were physically removed from the collection of baits and screened 
against the (DB)-Ath-cDNA collections using their AD-X constructs. 
Briefly, DB-X baits expressing yeasts were individually grown (30 °C 
for 72 hr) in 50-ml polypropylene conical tubes containing 5 ml of 
fresh selective media (Sc−leucine, Sc−Leu). Pools were created by 
mixing a maximum of 72 and 50 individual bait yeast strains for the 
“8K space” and “12K space”, respectively. Subsequently, 120 and 
50 µl of these individual pools were plated into 96-well and 384-well 
low-profile microplates for Ath-cDNA “8K space” and “12K space” 
collections, respectively. Glycerol stocks of the (AD)-Ath-cDNA “8K 
space” and “12K space” collections were thawed, replicated by hand-
picking or using a colony picker Qpix2 XT into 96-well and 384-well 
plates filled with 120 and 50 µl of fresh selective media (Sc−trypto-
phan, Sc−Trp), respectively, and incubated at 30 °C for 72 hr. Culture 
plates corresponding to the DB-baits pools and AD-collection were 
replicated into mating plates filled with YEPD media and incubated 
at 30 °C for 24 hr. In liquid Y2H case (“12K space” screening), mat-
ing plates were then replicated into screening plates filled with 50 µl 
of fresh Sc−Leu−Trp−histidine + 1 mM 3AT media and incubated at 
30 °C for 5 days. In order to identify primary positives, the OD600 
of the 384-well screening plates was measured using a microplate 
reader Tecan Infinite M200 PRO (Tecan, Männedorf, Switzerland). In 
semi-liquid Y2H case (“8K space” screening), mated yeast were spot-
ted onto Sc−Leu−Trp−histidine + 1 mM 3AT media agar plates, and 
incubated at 30 °C for 3 days. Protein pairs were identified by de-
pooling of DB-baits in a similar targeted matricial liquid or semi-liquid 
assays in which all the DB-baits were individually tested against all 
the previously identified AD-proteins. Identified pairs were picked 
and checked by PCR and DNA sequencing.

4.3 | Database content and manual curation

Binary interactions between Ath proteins with each other and with 
pathogen effector proteins were compiled on tabular form keeping 
track of the protein names and accessions, species and ecotypes/
strains of origin, techniques used to detect the interactions and 
the reference. Ath–Ath protein interactions were compiled from 
the Arabidopsis Interactome (Dreze et al., 2011; Smakowska-
Luzan et al., 2018) and the public databases BioGrid (www.thebi 
ogrid.org [Stark et al., 2006], downloaded in September 2019) and 
IntAct (www.ebi.ac.uk/intact [Orchard et al., 2014], downloaded 
in September 2019). We only kept the direct interactions with the 
evidence codes “co-crystal structure,” “FRET” (fluorescence reso-
nance energy transfer), “PCA” (protein-fragment complementa-
tion assay), “reconstituted complex” or “two-hybrid” on BioGrid 
and “physical association” on IntAct. Ath–effector protein inter-
actions were gathered from our experimental Y2H data together 
with the similarly produced data on Hpa, Psy, and Gor effectors 
(Mukhtar et al., 2011; Weßling et al., 2014). In addition, an exten-
sive keyword search on effector–Arabidopsis literature was done 
to retrieve interactions from 80 published articles. A confidence 
level was assigned to each interaction depending on the number of 
independent techniques used in a publication for validation: “1” if 
the interaction was detected by only one technique and “2” if the 
interaction was validated by at least a second technique. Some in-
teractions lacked important information but, in order to maximize 
the extent of our network, several assumptions were taken in-
stead of discarding useful data. First, gene models for Ath proteins 
were rarely mentioned on publications so we assumed the first 
gene model available on the latest version of the Arabidopsis ge-
nome (Araport11 (Cheng et al., 2017)). Second, when the ecotype/
strain of the organism was not explicitly stated, a generic “NA” (not 
available) was assigned.

4.4 | In silico analysis

4.4.1 | Computational simulations of random 
targeting of Ath proteins by single pathogen effectors 
(intraspecific convergence)

Significance of the intraspecific convergence was tested, comparing 
our experimental data with random simulations as previously pub-
lished (Weßling et al., 2014). Briefly, for each effector of Xcc and Rps 
we assigned randomly the same number of Ath interactors as experi-
mentally observed from the degree-preserved list of 8K proteins. 
The distribution obtained from 10,000 simulations was plotted and 
compared to the experimentally obtained data. The p value of the 
experimental data were calculated as follows: number of simulations 
where the number of interactors is lower than or equal to experi-
mentally observed is divided by the number of simulations. When 
the number of simulations with fewer interactors than observed was 
zero, the p value was set to <.0001.

http://www.ralsto-T3E.org
http://www.thebiogrid.org
http://www.thebiogrid.org
http://www.ebi.ac.uk/intact


1268  |     GONZÁLEZ-FUENTE ET aL.

4.4.2 | Computational simulations of random 
targeting of Ath proteins by several pathogen 
effectors (interspecific convergence)

The significance of the interspecific convergence was tested by 
comparing our experimental data and previously published data 
with random simulations as published (Mukhtar et al., 2011; Weßling 
et al., 2014). Briefly, for each effector of all compared pathogens 
we assigned the same number of Ath interactors as experimentally 
observed/published from the list of 8K proteins. The distribution 
obtained from 10,000 simulations was plotted and compared to ex-
perimentally and published data. The p values of the experimental 
data were calculated as follows: number of simulations where the 
number of common interactors between species was higher or equal 
than the experimentally observed is divided by the number of simu-
lations. When the number of simulations with more common inter-
actors than observed was zero, the p value was set to <.0001.

4.4.3 | Overlap of effector interactors

The overlap of effector interactors from the different datasets was 
calculated without limiting the screening space. For representation 
of the data, Venn diagrams were generated using the Venn Diagrams 
tool from VIB-UGent Center for Plant Systems Biology (www.bioin 
forma tics.psb.ugent.be/webto ols/Venn/). The overlap of effector 
interactors from the different datasets were calculated not limiting 
to any limited space. For an area-proportional representation of the 
data, a Venn diagram was generated using BioVenn (Hulsen et al., 
2008).

4.4.4 | Network topology analyses

The topology parameters of the Ath–effector interactomic net-
work were calculated on Cytoscape 3.7.2 (Shannon, 2003). Our 
analyses focused on two key node parameters: degree and be-
tweenness centrality. The degree of a protein is a measure of its 
connectivity and denotes the number of proteins interacting with 
it. Throughout this work, we have differentiated two kinds of de-
grees: (a) effector degree (i.e. number of interacting effector pro-
teins) and (b) Ath degree (i.e. number of interacting Ath proteins). 
The betweenness centrality measures the proportion of shortest 
pathways between two proteins that passes through a given node. 
These parameters were compared against different subsets of 
data and statistical tests were performed in R language (R Core 
Team, 2019). The cumulative distributions of these parameters 
among different subset of data were plotted and the area under 

the curve was estimated using Simpson's rule with the “Bolstad2” 
package (Bolstad, 2009).

4.5 | Database construction

The databases were built using the software architecture recently 
described (Carrère et al., 2019). The files submitted by the curator 
team were automatically checked for typographic mistakes using ad 
hoc Perl scripts and loaded into a Neo4J database and indexed in an 
ElasticSearch search engine. Each release was rebuilt from scratch. 
Data were made accessible through a web interface (see Results and 
Discussion) built on Cytoscape.js library (Franz et al., 2016). The raw 
data used for the database setup are available in the “Data” section 
of www.effec tork.org and the source code is available at https://
frama git.org/LIPM-BIOIN FO/KGBB.
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