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Limited-tenure concessions for collective goods∗

Nicolas Quérou†, Agnes Tomini‡, and Christopher Costello§

Abstract

This paper proposes and analyzes the consequences of a widely-used, but
little-studied institution, limited-tenure concessions, for governing natural
resources and other club goods. We first show in a simple repeated game
setting that such a system can incentivize socially-efficient provision of club
goods. We then extend the model to account for spatially-connected re-
sources, an arbitrary number of heterogeneous agents, and natural resource
dynamics, and show that the basic ability of limited-tenure concessions to
incentivize the first best private provision is preserved in this rich setting
that is more representative of natural resources such as fish, water, and
game. The duration of tenure and the dispersal of the resource then play
pivotal roles in whether this limited-duration concession achieves the socially
optimal outcome. Finally, in a setting with costly monitoring, we discuss
the features of a concession contract that ensure first-best behavior, but at
least cost to the implementing agency.

Key words: Concessions, club goods, cooperation, natural resources, spatial
externalities, dynamic games

1 Introduction
Since Samuelson (1954), the provision of impure public goods has received contin-
ued attention because of its empirical relevance across a wide variety of economic
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goods (see Buchanan (1965), Berglas (1976), or Cornes and Sandler (1996), among
others). Club goods and common-pool resources constitute primary examples, and
the issue of their efficient provision remains an important challenge, particularly
for natural resources. Indeed, the now widely-appreciated incentive problems iden-
tified in that literature may hinder the sustainable use of natural resources, which,
across a range of applications from water to fisheries, are increasingly overex-
ploited (Baland and Platteau 1997). Similar challenges arise for the efficient use
of club goods such as collective infrastructure systems, protection of biodiversity,
and provision of services by agricultural cooperatives.1

Following the literature that examines instruments to induce optimal private
provision of (impure) public goods, this paper proposes and analyzes the conse-
quences of an institution for governing club goods and natural resources called a
limited-tenure concession. That setup allows us to make three contributions. First,
we show in a simple repeated game of club goods contribution, that such a conces-
sion system can incentivize socially-efficient provision of club goods. Second, we ex-
tend the model to account for other characteristics of common-pool resources more
typical in natural resource settings. We specifically consider spatially-connected
resources, an arbitrary number of heterogeneous agents, and natural resource dy-
namics, and show that the basic ability of limited-tenure concessions to incentivize
the first best is preserved. Finally, in a setting with costly monitoring of a conces-
sion contract by an implementing agency, we discuss the features of the concession
contract that ensure first-best behavior, but at least cost to implement. All results
are analytically derived, allowing us to draw general conclusions.

Observing that natural resources are often over-extracted, many countries have
adopted policies that devolve the management of forests, fisheries or irrigation wa-
ter to states, communities, or individuals in the form of property rights. One of
the most common property right approaches is to assign a concession to a private
firm. We define a concession as a limited-duration assignment of a property right,
in which the temporary owner can extract natural resources during the conces-
sion period, and under some conditions, the concession may be renewed. Design
features such as tenure length and renewal requirements turn out to influence in
important ways the extraction incentives for the temporary owner. For example,
with short tenure, and no possibility of renewal, incentives to over-extract the re-
source are high, though we will show that the possibility of renewal may help to
reverse this incentive.

This general problem exists in some fashion for nearly all natural resources
and is closely related to the under-provision of public goods, and, as we will focus

1Other relevant examples include green goods and climate protection infrastructure, provided
their collective benefits may be potentially excludable.
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on, club goods, by private agents.2 There, free-riding incentives typically lead to
significant under-provision of club goods. And it is intuitive that if an agent can
be excluded from enjoying the club good (in the future) unless she contributes
sufficiently (in the present), she may contribute more. We develop such a model
and show how a limited tenure concession affects incentives to contribute to a club
good.

In the natural resource sector, concessions have been used widely to manage
forests, fish, game, water, gas, and oil around the world. These resources generalize
the club goods provision game in important dimensions because they may have
resource growth, mobility, heterogeneity across space, and other features that may
further exacerbate the tragedy of the commons.3 Concessions raise a challenge:
When contracts are awarded over a fixed geographical area, the resources they are
meant to encapsulate may disperse beyond the domain of the concessionaire, which
could significantly alter incentives for sustainable resource use, since this mobility
implies a spatial externality across concessionaires.4 This article analyzes and
informs the design of concession agreements for managing club goods or (mobile)
natural resources.

Our study is related to a broad literature applying property rights theory to
common-pool resource management. This literature has focused on the dichotomy
between private (Demsetz 1967; Cheung 1970) vs. common property rights (Os-
trom 1990), and on the instruments available to implement these regimes. Two
instruments that emerge are spatial property rights and use rights on the resource.
The latter instrument assigns rights to extract a specified quantity of the resource,
while the former instrument designs rules of exploitation in a limited area. Spatial
use rights thus grant secure rights to parts of a resource (Fischer and Laxmi-
narayan 2010), as in a concession system. In this paper, we design and analyze
a concession system that can be used as a coordination device to overcome the
externality problems caused by club goods or by the mobility of natural resources.

Following seminal contributions (Grossman and Hart 1986; Hart and Moore
1990) the literature on property rights has received renewed attention, mainly in
organizational economics, and the analysis has been developed with a focus on is-
sues raised by incentive structures (Kim and Mahoney 1967). This literature puts

2Bergstrom et al. (1986) provides the seminal paper on the private provision of public goods.
This issue has received attention in many areas, for instance in the environmental field (Vicary
2000; Kotchen 2006; Kotchen 2009).

3For instance, Cornes and Sandler (1983) provide a detailed analysis of this tragedy.
4For instance the world’s oceans consist of about 200 exclusive property right assignments

(exclusive economic zones) that are traversed by species such as tuna, sharks, and whales (White
and Costello 2014). The mismatch between the scales of property rights and of the resource is
often emphasized as a limitation (Aburto-Oropeza et al. 2017) in the case of mobile natural
resources (see Costello et al. (2015) or Kapaun and Quaas (2013) for recent analyses).
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some focus on conditional (or contingent) property rights, which are allocated
ex ante and materialize only if certain conditions are fulfilled (Maskin and Tirole
1999). This is also the case of a concession granted conditionally on the concession-
aire’s pattern of resource extraction.5 More closely related to our paper, property
rights theory is applied to strategic management such as oil field unitization (Kim
and Mahoney 1967; Libecap and Wiggins 1985), a private contractual arrangement
aimed at reducing externalities from a migratory common-pool resource with im-
portant contracting specifications (such as duration and economic sharing rules).
Consistent with this instrument, we thus design a concession contract stipulating
conditions that define the renewal process.

We begin by developing a simple club good provision game with both private
and public benefits where club members have limited tenure with the possibility of
renewal. We show that such a concession system can incentivize socially-efficient
provision of the club good. Second, we extend this setting to account for spatially-
connected resources, an arbitrary number of heterogeneous agents, and natural
resource dynamics. Allowing for game theoretic economic behavior among a set of
spatially-distinct property right owners, we consider three management regimes:
(i) the socially optimal regime, (ii) the decentralized regime and (iii) the concession
regime. The last regime involves assigning limited-duration tenure of each patch
to a concessionaire, with possible renewal under certain conditions. The regulator
announces for each patch a “minimum stock,” below which the concessionaire
should never harvest. This is a stylized version of how many concessions are
implemented in practice.6 Each concessionaire must then decide whether to comply
with the stock requirement or to defect, given that her payoff will depend on the
strategy adopted by others. Complying guarantees renewal, and thus raises future
payoffs, while mining the stock (driving it below the stock requirement) returns
large payoffs in the current period.

In this expanded setting that mirrors many natural resources, we show that
the ability of limited-tenure concessions to incentivize the first best is preserved.
Secondly, we analyze the properties of the system that ensure cooperation (or con-

5Conditional payment schemes, such as payments for ecosystem services (PES), are imple-
mented in case of successful spatial coordination or of a specific ecological outcome. The design
of our instrument raises similar issues about contract duration. Yet PES are based on payments,
while our system is non-monetary. When natural resources are regulated at the national or local
scale, a non-monetary instrument may be more feasible when regulators have budget restrictions,
as in many developing countries.

6For example, the TURF systems in Japan, Mexico and Chile contain maximum harvest
provisions, whose adherence is required for renewal. As a yearly stock assessment has to be
carried out by technical consultants approved by the government in order to determine a well-
designed total allowable catch (TAC) for each TURF, such a maximum harvest requirement may
translate into a minimum stock requirement, as in the present instrument. See also Hilborn et al.
(2005) and Wilen et al. (2012) for related discussions.
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versely, ensure defection). We find an interesting, and somewhat counterintuitive
result: longer tenure is more likely to lead to defection from the first best. This
result is of great importance for policy design, since length is a critical issue for a
concession regime to be successful. Furthermore, it seems to contradict the eco-
nomic intuition that more secure property rights (here, the longer the duration of
tenure) give rise to more efficient resource use. For instance, Costello and Kaffine
(2008) show that any tenure length is sufficient to induce the optimal resource
use, on the condition that the probability of renewal is sufficiently high. In our
paper, a long tenure period implies that the regulator essentially loses the ability
to manipulate a concessionaire’s harvest incentives via the promise of tenure re-
newal. And, we can show that for sufficiently long (but still finite) tenure length,
concessionaires will always have incentives to defect; thus tenure must not be too
long. Finally, we discuss how the instrument may still induce first-best behavior
under costly monitoring or imperfect enforcement.

The paper is structured as follows: In the next section we present a simple
motivating model of the private contribution to a club good and show how a
concession alters incentives for private provision. Then, in Section 3 we generalize
the model to allow for heterogeneity and complex resource dynamics. There,
we characterize concessionaires’ incentives under various property right regimes.
In Section 4 we highlight the conditions for cooperation with an emphasis on
spatial characteristics of the model and the tenure length. A discussion on the
robustness of the concession instrument is provided in Section 5. Section 6 provides
a discussion of various extensions and Section 7 summarizes and concludes the
paper. Proofs are provided in an Appendix.

2 An illustration of club good contributions
To motivate our main contribution, and to build intuition, we begin with a simple
model of individual behavior with both private and public consequences. This is
initially a static game setting in which (exogenous) N agents interact, where agent
i chooses action, zi (such as resource extraction), taking as given the actions of
her competitors. Let agent i’s utility function in this static game be given by:

ui(zi) + v

(
Φ−

∑
l

zl

)
(1)

where ui(zi) denotes the private component of agent i’s utility, v(·) represents
the public component, which depends on all agents’ behaviors, and Φ is a fixed
constant (for example, this could be the resource stock at the beginning of any
given period). Here, greater values of zi increase the private component of utility,
but confer a public cost. Consistent with well-known results about the private

5



(under) provision of public goods, it is straightforward to show that the private
agent i choose excessively high values of zi. Agent i maximizes Equation 1 by
setting u′i(ẑi) = v′(Φ−∑l ẑl), while the social planner would like to maximize the
sum of utility across all agents, so she sets u′i(z∗i ) = Nv′(Φ − ∑l z

∗
l ). Provided

both ui(·) and v(·) are increasing and concave, the under-provision of the public
good is ensured, so private agents will extract excessively: ẑi > z∗i . Henceforth,
we will refer to this as a club good (rather than a public good) because we restrict
its consumption to a limited set of N agents.

Now consider an infinitely repeated version of this club good provision game,
where club members contribute to, and enjoy the benefits from, the club good
provision for a limited duration tenure. For example, club membership may extend
for a period of T = 10 years. The regulator in this setting has the ability to renew
club membership to member i, and agrees to do so if and only if the member i
has acted responsibly, that is, if and only if she has provided z∗i in every preceding
period (up to T ). This limited-duration club membership with the possibility
of renewal is the focus of the rest of this paper, and in this section we use this
extremely simple setup to ask under what conditions this institution can induce
efficient provision of the club good.

Clearly, the enticement of renewal induces a tension in club member i’s decision
about her contribution. On one hand, as was shown above, she maximizes her
single-period payoff by choosing a contribution that is lower than the socially
optimal level. On the other hand, the revocation rule ensures that by doing so,
she will obtain zero benefit from period T onward. This tradeoff – of large current
period benefits from defection vs. infinite, though lower, benefits from cooperation
– is similar to the tradeoff in a Nash Reversion punishment strategy (see, e.g.,
Mas-Colell et al. (1995)), except that: (1) the punishment happens at date T (not
immediately upon defection), (2) the punishment payoff is zero (rather than the
Nash equilibrium), and (3) under this setup, other players besides i are not required
to play Nash upon defection. Despite these differences, it is straightforward to show
that this type of concession contract can still maintain cooperation around z∗i , and
that there is a Folk-theorem-like result that ensures cooperation.

Provided that all other agents follow the rule stipulated by the concession
contract, agent i’s cooperation payoff is given by:

ΠC
i = ui(z∗i ) + v (Φ−∑l z

∗
l )

1− δ (2)

where δ is the discount factor. Instead, if agent i defects, she will do so in the first
tenure block, so her defection payoff is:

ΠD =

(
1− δT+1

)
1− δ

ui(zDi ) + v

Φ−
∑
l 6=i

z∗l − zDi

+ 0 (3)
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which is just the defection payoff for a total of T periods and zero thereafter.7
In this simple example the agent compares ΠC

i ≶ ΠD
i . Straightforward algebraic

manipulation implies that a necessary and sufficient condition ensuring that the
limited-tenure instrument induces the first-best outcome is the following:

δT+1 >
ui(zDi ) + v(Φ−∑l 6=i z

∗
l − zDi )− (ui(z∗i ) + v (Φ−∑l z

∗
l ))

ui(zDi ) + v(Φ−∑l 6=i z
∗
l − zDi ) (4)

The right hand side is the percentage loss in single-period utility to agent i from
cooperating, rather than defecting. If the discount factor is sufficiently large, so
agents are sufficiently patient, then cooperation will always be supported. One
interesting consequence of Condition 4 is that longer tenure blocks (i.e. larger T )
require higher discount factors (i.e. lower discount rates) to sustain cooperation –
sustaining cooperation under a long tenure period requires more patience on the
part of resource users.

Even the simple repeated game presented here provides some useful and inter-
esting insights about the ability of a limited tenure concession to induce socially
optimal provision of a club good. But because our main motivation is to exam-
ine whether this kind of limited-tenure concession can help solve the tragedy of
the commons for complex natural resources, the simple model here will require
some elaboration. In what follows, we maintain the basic idea behind this simple
model, but allow for a much more sophisticated array of economic and ecological
interactions including spatially-owned natural resource patches, natural resource
growth and dispersal across space, and strategic incentives across patch owners.
While many nuances arise, our overall conclusion will be that the basic insights
developed above are maintained in this richer environment.

3 Model & strategies
We are now in a position to introduce a model of natural resource exploitation
with spatially-connected property owners. We then home-in on the incentives for
different harvest strategies corresponding to three property right regimes: a so-
cial planner who optimzes resource extraction over space and time, decentralized
perpetual property right holders, and the case of decentralized limited-tenure con-
cessions. Versions of the social planner’s benchmark and the case of perpetual
property right holders have been analyzed previously so we only briefly state the
corresponding properties. The last case introduces the instrument on which we
focus.

7Defection strategy zDi is, implicitly, u′i(zDi ) = v′
(

Φ−
∑
l 6=i z

∗
l − zDi

)
.
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3.1 The model
We follow the basic setup of Costello et al. (2015) where a natural resource stock
is distributed heterogeneously across a discrete spatial domain consisting of N
patches. Patches may be heterogeneous in size, shape, economic, and environ-
mental characteristics, and resource extraction can occur in each patch. Using
a discrete-time model, the stock residing in property i at the beginning of time
period t is given by xit, and harvests undertaken in that property, hit, will reduce
the stock over the course of that time period: Thus leaves a “residual stock” at
the end of the period of eit ≡ xit − hit. The residual stock may grow, and the
growth conditions may be patch-specific denoted by the parameter αj. Finally, as
the resource is mobile and can migrate around this system, we follow the natural
science literature (see, e.g., Nathan et al. (2002), or Siegel et al. (2003)) who
denote dispersion by Dij ≥ 0 the fraction of the resource stock in patch i that
migrates to patch j in a single time period.8 Since some fraction of the resource
may indeed flow out of the system entirely, the dispersal fractions need not sum
to one: ∑iDji ≤ 1. Assimilating all of this information, the equation of motion in
patch i is given as follows:

xit+1 =
N∑
j=1

Djig(ejt, αj). (5)

Here g(ejt, αj) is the period-t resource stock growth in patch j. Following the
literature, we require that ∂g(e,α)

∂x
> 0, ∂g(e,α)

∂α
> 0, ∂2g(e,α)

∂e2 < 0, and ∂2g(e,α)
∂e∂α

> 0. We
also assume that extinction is absorbing, g(0;αj) = 0, and that the growth rate
is finite, ∂g(e,α)

∂e
|e=0 <∞.9 All standard biological production functions are special

cases of g(e, α).
We assume that both price and marginal harvest cost are constant in a patch,

though they can differ across patches. The resulting net price is given by pi.10 The
current profit from harvesting hit ≡ xit − eit in patch i at time t is:

Πit = pi (xit − eit) . (6)
8This model assumes density-independent dispersal parameters, Dij . We thus follow a large

part of the literature on metapopulation and source-sink dynamics (Sanchirico and Wilen 2009).
This allows us to analyze the comparative statics effect of dispersal on cooperation vs. defection
incentives. Dispersal may be influenced by factors like population size in an area, among others.
Dependence on local population abundance does not qualitatively affect our main results, but
impedes on the model tractability.

9We will omit the growth-related parameter in most of what follows, except briefly before
Section 3.2 and in Section 3.3, where its effect will be analyzed. Thus, we will use the notation
g′i(e) and g′′i (e) instead of (respectively) ∂g(e,αi)

∂e and ∂2g(e,αi)
∂e2 in most parts of the paper.

10This assumption is fairly common and consistent with the case where the market price is the
same in all patches, while marginal costs might be patch-specific (due to geographical locations,
different costs of access).
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We will employ this framework to compare the outcome and welfare implications
of three alternative property right systems.

At this stage it is important to make the following observation. Real world
natural resource management is more complex than the setting depicted here. For
instance, there could be more complicated cost structures. We have proposed a
relatively simple, analytically tractable model to gain insights on the potential
performance of a spatial concession instrument, while keeping the most relevant
features when studying issues of performance. This model still allows for dynamic
and spatial externalities, in addition to strategic behavior between patch owners.
It allows us to gain sharp insights on the effects of ecological and economic fun-
damentals and of features of the instrument (e.g. tenure length and target stock
requirements) on its performance. By exploiting the structure of our dynamic and
spatial game, we will be able to obtain sharp analytical results. We will derive
closed form expressions of the owners’ optimal payoffs when committing to the
concession instrument, and when following their best defection strategies. This is
necessary to analytically assess the performance of the instrument. Moreover, we
formally analyze the robustness of our results when costs are stock-dependent in
Section 5.2.

3.1.1 Social Planner’s Problem

As a useful benchmark, we begin with the social planner who seeks to maximize
the net present value of profit across the entire domain given the discount factor
δ. The social planner’s objective is:

max
{e1t,...,eNt}

∞∑
t=0

N∑
i=1

δtpi (xit − eit) , (7)

subject to the spatial equation of motion (5) for each patch i = 1, 2, ..., N . Focusing
on interior solutions,11 in any patch i, the planner should achieve a residual stock
level as follows:

g′i (e∗it) = pi
δ
∑
j Dijpj

(8)

11The case of interior socially optimal policies is consistent with sustainable management of the
resource. It allows us to emphasize the importance of ecological and economic fundamentals on
the performance of the instrument. Technically, this is equivalent to assuming g′i(0) > pi

δ
∑

j
Dijpj

and xi0 > (g′i)
−1
(

pi

δ
∑

j
Dijpj

)
. The polar case where social efficiency would require e∗it = 0

∀t ≥ 0 in some patches can be addressed by our instrument. Indeed, if marginal incentives at
the first best correspond to this case for some patches, then the marginal incentives of these
patches’ owners in the decentralized situation correspond to this case too. The other polar case,
where e∗it = xit ∀t ≥ 0 for at least one patch i, cannot be addressed by our instrument (or by
any concession instrument), this would require combining it with a side-payment scheme.

9



The optimal residual stock results from the standard trade-off between the present
profits from harvest and the discounted sum of future benefits given growth and
dispersal to all patches. Note, by inspection, that these optimal residual stock
levels are time and state independent. This implies that each patch has a single
optimal residual stock level that should be achieved every period into perpetuity
satisfying, for any period t:

e∗it = e∗i . (9)

Since biological growth, dispersal, and economic returns are patch-specific, the
optimal policy will vary across patches. Equation 8 highlights immediately that
the optimal policy depends on patch-specific net prices, growth, and dispersal and
self-retention parameters.

3.1.2 Decentralized Perpetual Property Right Holders

The second regime is the case in which each patch is owned in perpetuity by a
single owner who seeks to maximize the net economic value of harvest from his
patch, with complete information about the stock, growth characteristics, and
economic conditions present throughout the system. In that case owner i solves:

max
{eit}

∞∑
t=0

δtpi (xit − eit) . (10)

subject to the equation of motion (5). Following Lemma 1 in Kaffine and Costello
(2011), at the subgame perfect Nash equilibrium owner i will always harvest down
to a residual stock level ēit that satisfies:12

g′i(ēit) = 1
δDii

. (11)

The owner takes as given the behavior of other owners and realizes that he will not
be the residual claimant of any conservative harvesting behavior. Thus, he behaves
as if any additional resource that disperses out of his patch will be lost (indeed it
will be harvested by his competitors). This is why the only dispersal term to enter
the optimal residual stock term is Dii, the fraction of the resource that remains
in his patch. It is straightforward to show that ēit ≤ e∗it (with strict inequality as
long as Dii 6= 1), and thus that achieving social efficiency in a spatially connected
system will require some kind of intervention or cooperation. Moreover, Equation
(11) implies that ēit = ēi for any time period.13

12Required necessary conditions are g′i(0) > 1
δDii

and xi0 > (g′i)
−1
(

1
δDii

)
.

13As shown in Kaffine and Costello (2011), this result actually implies that the open loop and
feedback control rules are identical.
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3.1.3 Decentralized, Limited-Tenure Property Rights

In the final regime, and the one on which we focus in this paper, we assume that
ownership over patch i is granted to a private concessionaire for a duration of Ti
periods, to which we will refer as the “tenure block” for the spatial concession.
All concessionaires have the possibility of renewal provided that certain conditions
are met. Indeed, it is the possibility of renewal that will ultimately incentivize
the concessionaire to deviate from her (excessively high) privately-optimal harvest
rate; we will leverage this fact to design spatial concession contracts to induce
efficient outcomes.

We begin by defining an arbitrary set of instrument parameters, and we then
evaluate the manner in which each concessionaire would respond to that set of
incentives. The general instrument is defined as follows:

Definition 1. The Limited-Tenure Spatial Concession Instrument is defined by a
“target stock,” Si, and a tenure period, Ti for concessionaire i.

The concessionaire is allowed to extract as much of the resource as she wishes
over her tenure block, and the regulator imposes only one rule on the concession-
aire: At the end of the tenure block (i.e. at time Ti − 1, since the block starts at
t = 0), the concession will be renewed (under terms identical to those of the first
tenure block) if and only if the resource stock is maintained at or above the target
stock (Si) in every period. Because eit ≤ xit, this rule implies that concession i
will be renewed if and only if:

eit ≥ Si ∀t ≤ Ti − 1. (12)

Note that we allow for this instrument to be explicitly spatial in the sense that
Si 6= Sj.

Beyond the assignment of the concession the regulator plays no role in the
management of the resource; all harvest decisions are made privately by the con-
cessionaire. Because the regulator would like to replicate the social planner’s
solution (see Section 3.1.1), she must determine a set of target stocks in each
area {S1,S2, ...,SN} and tenure lengths {T1, T2, ...TN} (i.e., a {Si, Ti} pair to offer
concessionaire i) that will incentivize all concessionaires to simultaneously, and in
every period, deliver the socially optimal level of harvest in all patches. In practice,
we will restrict attention to tenure lengths that are the same for all concessionaires,
so Ti = T , ∀i.14

14Intuitively, since concessionaires are heterogeneous, tenure lengths could be heterogeneous
as well. In order to limit the complexity of the scheme, and because the use of a uniform tenure
length for renewal seems to be the norm for real-world cases of concessions-regulated resources,
we consider the longest tenure that is compatible with all concessionaires’ incentives to cooperate.
This characterization is provided by expression 18 in Section 4.
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We will show that, if designed properly, spatial limited-tenure concessions can
be used to induce concessionaires to manage resources in a socially optimal man-
ner, thus replicating the social planner’s result from Equation 8. Agents may,
or may not, comply with the terms of the concession contract. If all N conces-
sionaires choose to comply with the target stocks in every period of every tenure
block, we refer to this as cooperation. All owners will then earn an income stream
in perpetuity. Instead, if a particular owner i fails to meet the target stock require-
ment (i.e, in some period she harvests the stock below Si), then, while she will
retain ownership for the remainder of her tenure block (and thus be able to choose
any harvest over that period), she will certainly not have her tenure renewed. In
that case, owner i’s payoff will be zero every period after her current tenure block
expires. Thus, the instrument raises a trade-off for each concessionaire who has
to choose between cooperation and defection. In the following, since an owner’s
payoff depends on others’ actions, we assume that if concessionaire i defects, then
the concession is granted to a new concessionaire in the subsequent tenure block.
If all initial owners decide to defect and are not renewed at the end of the current
tenure, then the game ends.15

3.2 Cooperation vs. Defection
We now characterize the payoffs that each concessionaire could achieve under co-
operation and under defection, and we characterize the optimal defection strategies
by any concessionaire.

We first consider the case where all N concessionaires cooperate and thus com-
ply with the target stocks in every period of every tenure block. Provided they do
not exceed the target stock (so they do not over-comply), then concessionaire i’s
present value payoff is:

Πc
i = pi

[
xi0 − Si +

∞∑
t=1

δt (x∗i − Si)
]
. (13)

where xi0 is the (given) starting stock and x∗i = ∑
j Djig(Sj).

Let us now turn to the characterization of the optimal defection strategies
pursued by concessionaires. If concessionaire i defects during an arbitrary tenure
block k and all other concessionaires follow their cooperation strategies (that is,
they are unconditional cooperators), the optimal defection strategy of concession-
aire i is characterized in the following result.16

15This rule turns out to be irrelevant because, as we later show, if everyone defects, the natural
resource is driven extinct.

16The proof relies on backward induction arguments since defection would occur on one tenure
block, and the defecting agent would not be renewed again.
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Proposition 1. 1. First assume that pi
δ
∑

j
Dijpj

< g′i(0) ≤ 1
δDii

. Then the opti-
mal defection strategy of concessionaire i in tenure block k is given by ēit = 0
for any period (k − 1)T ≤ t ≤ kT − 1.

2. Second, assume that g′i(0) > 1
δDii

. Then the optimal defection strategy of
concessionaire i in tenure block k is characterized as follows:

ēikT−1 = 0

and, for any period (k − 1)T ≤ t ≤ kT − 2, we have ēit = ēi > 0 where:

g′i(ēi) = 1
δDii

with x̄i > ēi.

When marginal growth of the resource g′i(0) is sufficiently low in area i, Propo-
sition 1 states that a concessionaire who decides to defect sometime during tenure
block k, will decide to completely mine the resource in his patch at every period of
the tenure block. By contrast, when marginal growth is high enough, this defect-
ing concessionaire will (1) choose the non-cooperative level of harvest (see Section
3.1.2) up until the final period of the tenure block and (2) then completely mine
the resource, leaving nothing for the subsequent concessionaire.17 Either way, the
resource is completely mined in that patch by the end of the tenure block. Note
that the optimal defection strategy does not depend on the tenure block, k.18 The
finding that the defection strategy is independent of the tenure block simplifies the
characterization of equilibrium strategies. The present value of owner i’s defection
payoffs is:

Πd
i = pi

xi0 − Si +
(k−1)T−1∑

t=1
δt (x∗i − Si) + δ(k−1)T (x∗i − ēi) +

kT−2∑
t=(k−1)T+1

δt (x̄i − ēi) + δkT−1x̄i

 .
(14)

where x̄i = Diig(ēi) +∑
j 6=iDjig(Sj).

Thus, the payoff when patch owner i defects during tenure block k is given by
(1) the profit obtained while abiding by the target stock prior to the kth tenure
block, and (2) the profit from non-cooperative harvesting during tenure block k,
until finally extracting all the stock in the final period of the kth tenure block,
kT − 1. We will make extensive use of the defection strategy in what follows. We
next turn to the conditions that give rise to cooperation.

17Note that if only one concessionaire defects, the entire stock will not be driven extinct because
patch i can be restocked via dispersal from patches with owners who cooperated.

18Regarding the block in which defection occurs, patch owner i’s optimal defection strategy in
period t is independent of period t choices by other patch owners, and patch owner i’s optimal
defection in period t+ 1 is independent of choices made by any owner prior to period t.
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4 Conditions for Cooperation
Here we derive the conditions under which all N concessionaires willingly choose
to cooperate in perpetuity. We will proceed in three steps. First, we derive the
target stocks that must be announced (S1, ...,SN) by the regulator who wishes
to replicate the socially optimal level of extraction in every patch at every time,
and we derive necessary and sufficient conditions for cooperation to be sustained.
Second we discuss the effects of the patch-level parameters. Finally, we will assess
the influence of the tenure duration T on the emergence of cooperation, and provide
comparative statics results.

4.1 The emergence of cooperation
Our interest here is to design the spatial concession instrument to replicate the
socially-optimal harvest in each patch at every time. Given that goal, we first prove
that the regulator must announce, as a patch-i target stock, the socially-optimal
residual stock for that patch.

Lemma 1. A necessary condition for social optimality is that the regulator an-
nounces as target stocks: S1 = e∗1, S2 = e∗2,..., SN = e∗N , where e∗i is given in
Equation 8.

The proof for Lemma 1 makes use of two main results from above. First,
because ēi ≤ e∗i , if the regulator announces any Si < e∗i , then the concessionaire
will find it optimal to drive the stock below e∗i , which is not socially optimal.
Second, if the regulator sets a high target, so Si > e∗i , then the concessionaire will
either comply with the target (in which case the stock is inefficiently high) or will
defect and reach an inefficiently low target stock. Either way, this is not socially
optimal, so Lemma 1 provides the target stocks that must be announced.

Thus, we can restrict attention to the target stocks Si = e∗i ∀i. In that case,
compliance by concessionaire i requires that eit ≥ e∗i ∀t, so she must never harvest
below that level. Our next result establishes that, while concessionaire i is free to
choose a residual stock that exceeds e∗i , she will never do so.

Proposition 2. If concessionaire i chooses to cooperate, she will do so by setting
eit = e∗i ∀i, t.

Proposition 2 establishes that, if it can be achieved, cooperation will involve each
concessionaire leaving precisely the socially-optimal residual stock in each period.

To analyze the conditions under which cooperation may emerge as a non coop-
erative outcome, we proceed as follows. We characterize the conditions ensuring
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that any given concessionaire i lacks incentives to defect from the strategy charac-
terized by Proposition 2 when all other concessionaires follow this strategy. In any
given tenure block, the basic decision facing concessionaire i is whether or not to
comply with the target stock requirement in each period. When all other conces-
sionaires follow the strategy characterized by Proposition 2, one simply calculates
her payoff from the optimal defection strategy (characterized by Proposition 1) and
compares it to her payoff from the cooperation strategy. We define concessionaire
i’s willingness-to-cooperate by:

Wi ≡ Πc
i − Πd

i . (15)

Each concessionaire must trade off between a mining effect, in which she achieves
high short-run payoffs from defection during the current tenure block, and a re-
newal effect, in which she abides by the regulator’s announced target stock, and
thus receives lower short-run payoff, but ensures renewal in perpetuity. This com-
parison turns out to have the following straightforward representation:

Proposition 3. Complete cooperation emerges as an equilibrium outcome if and
only if, for any concessionaire i, the following condition holds:

δx∗i − e∗i >
(
1− δT−1

)
(δx̄i − ēi) . (16)

Condition 16 is the analog to Condition 4, which was derived in the simple case
of private provision of club goods. Specifically, Proposition 3 shows that the gains
from cooperation to concessionaire i (δx∗i −e∗i ) must be sufficiently large compared
to those corresponding to defection (δx̄i−ēi). In such cases, we get full cooperation
forever.19 Note that this is possible, e.g. consider the case when concessionaires
are patient, and thus the discount factor, δ, is high. Then the right-hand side of
Condition 16 gets close to zero, and the left-hand side to x∗i − e∗i , so as long as we
have an interior solution to the optimal spatial problem, the condition holds. On
the contrary, when concessionaires are impatient (so the discount factor gets close
to zero), keeping in mind that e∗i > ēi, cooperation never arises. These cases are
used just as an example: there are also cases (depending on spatial parameters)
where Condition 16 will hold generically without relying on the assumption of
sufficiently patient concessionaires.

We have shown that the concession instrument we propose can lead to efficient
harvesting behavior across space and time in perpetuity. But this relies on a rela-
tively strict enforcement system (an owner who decides to defect is not renewed).
Because the welfare gains from cooperation vs. non-cooperation are potentially
large, it is possible that less stringent systems would also lead to efficient behavior.

19The proof of Proposition 1 highlights that defection entails at least some harvest (the stock
satisfies x̄i =

∑
j 6=iDjig(e∗j ) +Diig(ēi) > ēi). Thus, there are no corner solutions.
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Yet, the renewal process adopted here is consistent with the main characteristics of
real-world cases of concessions-regulated resources. Our analysis highlights that,
even without accounting for additional incentives (e.g. financial penalties), spatial
limited-tenure concessions have attractive practical appeal.20

4.2 Effects of Patch-Level Characteristics
Naturally, patch-level characteristics such as price, growth rates, and dispersal
will affect a concessionaire’s payoffs and may therefore play a role in the deci-
sion of whether to defect or cooperate. The fact that patch-level characteristics
may also affect the announced target stocks further complicates the analysis. We
next examine the effects of price, growth, and dispersal on the concessionaire i’s
willingness-to-cooperate, defined by Condition (15). Naturally, as a parameter
changes, we must trace its effects through the entire system, including how it
alters others’ decisions. Assuming that the willingness to cooperate is initially
positive, the impact of economic parameters, {pi, pj} is as follows: Concessionaire
i’s willingness-to-cooperate, Wi, is increasing in its own price, pi, but is ambiguous
in the price of the adjacent area, pj, and depends on the degree of the connection
between patches.

The effect of productivity of connected patches is also nuanced. Agent i will
be more likely to cooperate with a higher growth rate of the adjacent property,
αj. Since defection implies harvesting one’s entire stock, there is little opportunity
(under defection) to take advantage of one’s neighbor’s high productivity. But
under cooperation, a larger αj implies larger immigration, which translates into
higher profit. The impact of own growth (αi) is negative when the self-retention
rate, Dii, is small, and is positive for sufficiently large Dii. In the former case, the
direct impact on the residual stock in patch i offsets all other impacts, but as a
small proportion of the resource stays in the area; this decreases the gains from
cooperation.

Finally, spatial parameters have interesting implications. We provide cases
in the Appendix where the cooperation decision is increasing in self-retention,
Dii, but the impact of this parameter is mixed since it affects the resource stock
under defection and cooperation. On the contrary, concessionaire i’s willingness-to-
cooperate, Wi, is increasing in Dji for reasons similar to those driving comparative
statics on αj. In contrast, a higher emigration rate (Dij) reduces the incentive
to cooperate. The intuition is that defection incentives are not altered much

20The use of financial penalties may be infeasible in developing countries, as financial con-
straints may be tight. From a general point of view, as the effect of financial capacity on natural
resource management may be ambiguous (see for instance Tarui (2007) for an analysis of the
effect of improved access to credit), relying on the spatial concession instrument avoids potential
problems related to the use of monetary devices.
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(since concessionaire i harvests the entire stock under defection), but cooperation
incentives are reduced because the regulator will instruct concessionaire i to reduce
her harvest under a larger Dij.

Table 1 summarizes these conclusions: their proofs are provided in the Ap-
pendix (Section A).

Table 1: Effect of patch-specific parameters on willingness-to-cooperate.
θ pi pj αi αj Dii Dij Dji
∂Wi

∂θ
+ +/− +/− + +/− − +

The results above provide insight about how the strength of the cooperation
incentive for i depends on parameters of the problem. But whether this incentive
is sufficiently strong to induce cooperation (i.e. whether Wi > 0) remains to be
seen. We focus on resource dispersal, which plays a pivotal role in our story. If the
resource was immobile, the patches would not be interconnected, so no externality
would exist and private property owners with secure property rights would har-
vest at a socially optimal level in perpetuity. It is dispersal that undermines this
outcome and induces a spatial externality which leads to overexploitation and mo-
tivates the need for regulation. Naturally, then, the nature and degree of dispersal
will play an important role in the cooperation decisions of each concessionaire.

In this model, dispersal is completely characterized by the NxN matrix whose
rows sum to something less than or equal to 1 (∑j Dij ≤ 1). Thus, in theory, there
are N2 free parameters that describe dispersal, so at first glance it seems difficult
to get general traction on how dispersal affects cooperation. But Proposition 1
provides a useful insight: If concessionaire i decides to defect, she will optimally
do so by considering only Dii, thus totally ignoring all other N2 − 1 elements of
the dispersal matrix. This insight allows us first to assess the effect of spatial
parameters on the emergence of cooperation. Specifically, we show that a high
degree of self-retention (Dii) in all patches – that is a situation with low migration
rates – is sufficient to ensure cooperation.

Proposition 4. Let patch i be the patch with smallest self-retention parameter.
For sufficiently large Dii, complete cooperation over all N concessions can be sus-
tained as an equilibrium outcome.

Intuitively, if all patches have sufficiently high self-retention, then the external-
ity is relatively small, which (we show) implies that the renewal effect outweighs
the mining effect in all patches. When spatial externalities are not too large, the
concession instrument overcomes the externality caused by strategic interaction.
If self-retention is very low, then a large externality exists, and it may be more
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difficult to sustain cooperation. The formal result is not quite as straightforward
because Dii also plays a role in e∗j for all patches j, and thus affects defection
incentives in all patches. Accounting for all of these dynamics, we obtain:

Proposition 5. Let patch i be the patch with the largest self-retention parameter.
For sufficiently small Dii, cooperation will not emerge as an equilibrium outcome
provided the following condition is satisfied:

pi
∑
j 6=i

Djig(e∗j) <
∑
j 6=i

Dijpjg
′(e∗i )e∗i . (17)

Proposition 5 establishes that if the resource is highly mobile (sufficiently low self-
retention rates), then cooperation might be destroyed. This result relies on the
fact that economic benefits mainly depend on resource immigration. Condition
(17) compares concessionaire i’s cooperation benefits due to incoming resources
and the sum of benefits other concessionaires may get from the resource migrating
from patch i. This condition contrasts the benefits and losses of concessionaire i
due to species movement.

4.3 Effect of tenure duration
Thus far we have focused on inherent features of patches and the system as a whole
that affect a concessionaire’s incentives to cooperate or defect. But Condition (16)
also depends explicitly on the tenure length T . Indeed, the length of the concession
might play a role in how concessionaires make their private decisions, and thus this
is a policy issue for a concession regime to be successful. This subsection focuses
on the optimal determination of T .

A basic tenet of property rights and resource exploitation is that more secure
property rights lead to more efficient resource use. Apropos of this observation,
Costello and Kaffine (2008) found that longer tenure duration indeed increased the
likelihood of sustainable resource extraction in limited-tenure (though aspatial)
concessions. So at first glance, we might expect a similar finding here. In fact, we
find the opposite, summarized as follows:

Proposition 6. For sufficiently long tenure duration, T , cooperation cannot be
sustained as an equilibrium outcome.

Proposition 6 seems to contradict basic economic intuition; it states that if tenure
duration is long, it is impossible to achieve socially-optimal extraction of a spatially-
connected resource by using the instrument analyzed here. But upon deeper in-
spection this result accords with economic principles, due to defection incentives
driven by spatial externalities in this setting. Consider the case of very long tenure

18



duration - in the extreme, when tenure is infinite, gains from defection always out-
weigh gains from cooperation. The promise of renewal has no effect on incentives,
so each concessionaire acts in his own best interest, which involves the defection
path identified in Proposition 1.21 Proposition 6 also holds in an extended ver-
sion of the instrument, where the regulator can (with some probability f < 1)
terminate tenure immediately upon defection (rather than waiting until the end of
the tenure block in which defection occurs).22 Indeed, the optimal defection will
retain the qualitative features of Proposition 1: ēit = ēi(f) > 0 at every period
but the last one, and ēikT−1 = 0 (as long as 1− f is large enough so that ēi(f) > 0
holds). Since cooperation payoffs remain unchanged, results in Proposition 3 and
thus Proposition 6 remain valid qualitatively under this extension. Other inter-
pretations of this extension are interesting. On one hand, f could reflect stock
assessment uncertainty (so f is the probability of correct assessment). Then the
instrument exhibits some robustness to imperfect stock assessment (when f is large
enough). On the other hand, if it denotes the probability that stock assessment is
actually implemented, then the expected cost of monitoring would decrease as the
tenure length increases.

Short tenure duration harbors two incentives for cooperation: First, when
tenure is short, the payoff from defection is relatively small because the concession-
aire has few periods in which to defect. Second, the renewal promise is significant
because it involves a much longer future horizon that does the current tenure block.
This result obtains because the spatial externality of resource dispersal drives a
wedge between the privately optimal decision and the socially optimal one.

In fact, we can characterize a threshold tenure length for which concessionaire
i will defect if Ti > T̄i, and owner i will cooperate otherwise. The time-threshold
for concessionaire i can be written as follows:

T̄i = 1 +
ln
(
δ(x̄i−x∗

i )+e∗
i−ēi

δx̄i−ēi

)
ln(δ) (18)

Consequently, it can be shown that cooperation is sustained by assigning to all N
concessionaires a threshold value, which we summarize as follows:

Proposition 7. Assume the following holds for concessionaire i:

δx∗i − e∗i > (1− δ) (δx̄i − ēi) ; (19)
21Following our approach above, we focus on the incentives of any given concessionaire when all

other concessionaires follow the equilibrium strategies defined in Proposition 2. A more complex
set of strategies (trigger or other punishment strategies) might weaken Proposition 6; we briefly
return to this issue by providing one result (Proposition 9) in the Appendix.

22In this extended version we maintain the assumption that, at the last period of the tenure
block, the regulator can terminate tenure immediately upon defection with probability one.
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Then there exists a threshold value T̄ = mini{T̄i} > 1 such that cooperation is
sustained as an equilibrium outcome if and only if T ≤ T̄ .

The condition in Proposition 7 is a restatement of the result of Proposition 3
for a tenure period of T = 2. Thus, by Proposition 3 we know that a tenure period
of 1 will guarantee cooperation. It turns out that the threshold tenure length,
T̄ = mini{T̄i}, depends on patch level characteristics. Here, we briefly examine
the dependence of T̄i on patch, and system-level characteristics.

Because the variables ēi, x̄i, e∗i , and x∗i all depend on model parameters, de-
riving comparative statics is non-trivial. Recalling the comparative statics which
addresses how concessionaire i’s willingness to cooperate depends on parameters
of the problem, intuitively similar results will be obtained here. Indeed, we obtain
qualitatively similar results; because of this similarity, we relegate them to the
Appendix (in Section B).

5 Robustness of the concession instrument
To maintain analytical tractability, and to sharpen the analysis, we have made a
number of simplifications. Here we examine the consequences of two noteworthy
assumptions. First, we examine whether a finite horizon (rather than infinite, as
is assumed above) can still induce cooperation. Finally, we briefly explain why the
emergence of cooperation is robust to the case of stock-dependent costs.

5.1 The case of a finite horizon
In this analysis, concessionaires must trade off a finite single tenure block against an
infinite number of renewed tenure blocks. Even though this is not an unreasonable
assumption per se, it raises the question of whether the instrument is still effective
at inducing cooperation when the horizon is finite. Suppose time ends after K
tenure blocks where 1 < K < ∞ after which all concessionaires’ payoffs are zero.
We prove here that provided cooperation was subgame perfect under an infinite
horizon, it remains subgame perfect under the finite horizon problem described
here.

Proposition 8. Suppose time ends after the K th tenure block. Provided that the
following condition holds for any i:(

1− δT
)

(δx∗i − e∗i )− δT
(
1− δT−1

) (
δ ¯̄xi − ēi

)
>
(
1− δT−1

)
(δx̄i − ēi) , (20)

then the instrument induces cooperation for the first K − 1 tenure blocks of the
finite horizon problem. This condition is more stringent than the one ensuring
cooperation over an infinite time horizon.
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The key insight from Proposition 8 is that the planner’s time horizon need not
be infinitely long for the limited-tenure concession instrument to be effective. In-
deed, the proposition provides a sufficient condition for complete cooperation, and
thus socially-optimal extraction rates, to occur across the entire spatial domain, de-
spite the limited time horizon. Condition (20) is a new statement of the condition
provided in Proposition 3. The right-hand side term (the gains from defection) is
still the same, while the left-hand side term is more complex. Concessionaires an-
ticipate that they will not be renewed at the end of the final tenure block. As such,
they follow the cooperative strategy during the first tenure blocks, then they all
deviate and choose residual stock ēi before mining the resource in their respective
areas in the final period. The (discounted) payoffs when concessionaires cooperate
during the entire process,

(
1− δT

)
(δx∗i − e∗i ), are now lower due to the increase

in the defection payoffs in the final period δT
(
1− δT−1

) (
δ ¯̄xi − ēi

)
. By compari-

son with the case of an infinite time horizon, shorter time horizons require more
stringent conditions for cooperation to be effective. Thus, longer time horizons are
most effective. The best choice of tenure duration, however, is less clear-cut. Long
tenure duration might result in the failure of the instrument, while short duration
might entail higher transaction costs. This suggests a trade-off between shorter
and longer tenure durations.

5.2 The case of stock-dependent costs
So far, we have assumed that extraction costs are linear in the amount extracted.
Here we consider whether the concession instrument is robust to stock-dependent
harvest costs. For example, the expression of concessionaire i’s payoffs during
period t could be as follows:

Πit = pi (xit − eit)−
∫ xit

eit
ci(s)ds

where c′i(s) < 0 is continuously differentiable (see ?) for an early treatment of
stock-dependent costs). Our aim is to explain briefly why the logic of Proposition
3 (the main result analyzing the performance of the instrument) remains valid
here. The proof relies mainly on two arguments.23 First, the optimal defection
strategy does not depend on the tenure block considered. Second, for the tenure
block during which defection occurs, patch owner i’s optimal defection strategy
in period t remains time and state independent. These two features remain valid,
even though the characterization of the optimal defection strategy differs. The
conditions ensuring the emergence of complete cooperation differ from Conditions

23We provide the key arguments of the proof. The full details are available at the end of the
appendix in Propositions 10 and 11.
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(16) also, but the qualitative conclusion of Proposition 3 remains valid. We con-
clude that while using stock-dependent marginal cost complicates the proofs and
exposition of the results, there are still conditions under which the instrument
incentivizes the agents to manage the resource in a socially optimal way. Over-
all, since the same logic applies, this suggests it is unlikely to overturn the other
main findings (for instance, the failure of the instrument for sufficiently long tenure
lengths).

6 Discussions and extensions

6.1 Stock assessment and monitoring
We have relied on an assumption that the regulator can monitor the stock to
verify compliance with the terms of the concession contract. Iin practice, stock
assessment may be difficult to implement, and the cost of monitoring may thus
prove to be important. Several points are worth highlighting. First, the alter-
native form of the instrument discussed in Section 4.3 exhibits some robustness
to imperfect stock assessment; moreover, it would actually decrease the expected
cost of monitoring. That alternative form accounts for the fact that the proba-
bility that stock assessment is actually implemented may be less than one, and
the expected cost of monitoring would thus decrease as the tenure length increases.

Second, several contributions suggest that regular and proper stock assessment
is a mandatory part of a well-designed concession system, even if the system is
based on extraction levels. Wilen et al. (2012) explain that in successful systems
a mandatory annual stock assessment is carried out by technical consultants ap-
proved by the government and paid by concession members. This requirement is
further supported by Hilborn et al. (2005), who explain that successful conces-
sion systems based on extraction levels tend to engage in active research programs
funding stock assessments directly. A logical implication is that, for a system to
be effective, proper stock assessment is mandatory, whether the system is based
on extraction or on (residual) stock requirements.

Moreover, it seems plausible that endogenous enforcement would be strengthened
by parameters that induce persistent cooperation over time, particularly when
monitoring involves capital expenditures.24 Enforcement issues may be driven by

24Concession rights might strengthen endogenous enforcement, and this could be rewarded via
management certification. Moreover, certification may provide improvements in market access.
Thus, certifications might decrease transaction costs and strengthen agents’ monitoring activities;
both mechanisms would plausibly ease the conditions under which our instrument induces the
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lack of legitimacy or the “need” for profit versus risk of deterrence. In develop-
ing countries this motivation might be greater than in developed ones; this might
underscore enforcement issues. Yet, initiatives like community-based concessions
might improve the legitimacy of this instrument while reducing monitoring costs.25

These institutional arrangements are receiving increasing attention in developing
countries. Since participation in the organization of the concession instrument can
contribute to building its legitimacy, community-based concessions might consti-
tute an interesting option to increase enforcement in such areas. Finally, real-world
cases of concessions suggest that science-based stock assessment is an integral part
of the property rights system, which makes it less onerous for managers to monitor
stocks and assess patch-specific characteristics. Cooperation between communities
and government might help to decrease the cost of stock assessment, which may
provide incentives for engagement in assessment practices, consistent with Hilborn
et al. (2005). Indeed, it allows increasing interactions between concession owners
and public-sector scientists, who might contribute to stock assessment, thus de-
creasing the assessment cost in return for access to the data collected.

Finally, if stock assessments require a fixed cost each year, then they also in-
fluence the social planner’s optimized payoff, but will not affect her optimal choice
of residual stock. This follows from Section 3.1.1. This will also be the case for
concessionaires under the concession instrument proposed here: their optimized
payoffs will be affected, but their optimal choice to cooperate/defect will not. In
other words, the existence of monitoring costs will affect the agents’ optimized
payoff, but it will not affect the ability of the instrument to act as an effective
cooperation device.

6.2 Comparison with other potential policies
Our paper explicitly compares three alternative policies. First, we examine the so-
cial planner’s problem. In that setting, externalities are internalized and the result
is Equation 4 in each and every patch, which yields the highest possible present
value of the spatially-connected resource. Second, we examine the completely de-
centralized policy where property rights are allocated, but without coordination
across properties. This leads to over-extraction in all patches, and is shown in
Equation 7. Finally, we examine a wide range of possible concession instruments
(longer and shorter tenure duration, higher and lower target stocks). We derive
the parameters of the concession contract that guarantee that the socially optimal
level of extraction will take place every period.
efficient outcome.

25Monitoring costs are very likely to be lower compared to the case of state monitoring. Le-
gitimacy may increase because of active and engaged leadership (Crona et al. 2017).
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Beyond these policies, it might be useful to consider alternative concession ap-
proaches (though a full comparison is beyond the scope of this paper). An obvious
candidate is to consider concessions with renewal based on maximum total extrac-
tion. In this case, the characterization of the socially optimal paths obtained in
Section 3.1.1, together with the reasoning used to characterize the optimal defec-
tion path in Proposition 1, suggest that this instrument would not achieve the
socially optimal outcome. Even if total extraction requirements are satisfied by
the end of the tenure, it will induce over-harvest in certain time periods. In other
words, it cannot ensure that the socially optimal outcome is implemented at any
time period.

Second, consider concessions with renewal based on the maximum total extraction
in any time period. This instrument would be similar to our proposed system, ex-
cept that the requirements for tenure renewal would be based on extraction target
levels every time period, rather than a target stock. If one focuses on the capacity
of this instrument to induce the socially optimal outcome, then the conditions
under which this instrument is effective are likely to be equivalent to those related
to our instrument. Indeed, by the identity hit = xit − eit, one could choose either
extraction or residual stock as the main defining variable (because given the state
of the system (xt) one derives directly from the other). Moreover, as we discuss
in Section 6.1, both types of instruments require regular stock assessment.

Third, consider policies that employ property rights over the resource itself, rather
than over space. This approach induces challenges for spatial resources because
biological growth, dispersal, and economic returns are patch-specific, and the op-
timal policy will thus vary across patches. Specifically, Equation 8 reveals that
the optimal policy depends on patch-specific net prices, growth, and dispersal and
self-retention parameters. So the socially optimal outcome is spatially explicit,
while using property rights over the resource implies that one would abstract from
spatial features and propose a non-spatial instrument. As a consequence, such an
instrument cannot achieve the first best, unlike our proposed instrument. Fur-
thermore, as explained in Section 6.1 it is not clear that property rights over the
resource would be less demanding in terms of the related costs of monitoring if the
regulator or manager wants to ensure that this policy be as effective as possible.26

Finally, we conclude this section by discussing an extension of the present instru-
ment. While we consider that the size of concessions is not endogenously chosen

26We refer to Wilen et al. (2012) for a discussion of other advantages of spatially explicit
instruments compared to non-spatial systems.
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by the manager, this dimension may be part of the manager’s decision and thus be
used to define another type of instrument. It is still possible here to derive some
insights about changes in the size of patches on the agents’ incentives. Indeed,
if size is somehow related to biological productivity, then we can use the findings
from Section 4.2 to derive insights about the effects of variations in the size of
connected patches. These results suggest that such variations may have a nuanced
effect. Indeed, based on Section 4.2 agent i will be more likely to cooperate as the
size of an adjacent property increases, but the effect of an increase in the size of
agent i’s own property on his incentives to do so is ambiguous. As such, the design
of a policy that would be based on the size of the patches would have to account
for a variety of direct and indirect effects. This will raise many new questions
about design and effectiveness.

7 Conclusion
This paper has spawned from two basic observations. First, free-riding incentives
typically lead to dramatic under-provision of goods providing both private and
public benefits. Second, concessions are increasingly used to manage forests, fish,
gas, and oil around the world, and these resources generalize the club good pro-
vision problem in important dimensions because they may have growth, mobility,
heterogeneity across space, and other features that further exacerbate the tragedy
of the commons. Despite their widespread use, limited-tenure concessions have
received almost no attention from economists. We have studied the efficiency of
a decentralized property rights system over a club good or a spatially-connected
natural resource. To overcome the excessive harvest that is incentivized by de-
centralization, we propose a new instrument based on limited-tenure concessions
with the possibility of renewal. We find that this instrument can be designed to
be extremely effective: it can often induce the concessionaires to implement the
socially optimal outcome, completely neutralizing the externality. This is remark-
able as it does not rely on any transfers or side-payments, and seems to accord
with certain real-world institutions that use limited-term concessions to manage
natural resources. Second, unlike an initial intuition, the effect of a longer time
horizon is usually negative. This is in contrast with the case without strategic
spatial interactions as depicted in Costello and Kaffine (2008).

Several observations bear further discussion. First, we have considered a quite
secure tenure system: renewal is ensured as long as the target is attained. This
allows us to focus on the effects of the spatial characteristics of our problem.
Introducing a probability of renewal would require characterizing the threshold
value over which cooperation could be induced; a version of this approach was
discussed in Section 4.3.
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Second, several additional extensions remain. We could analyze situations
where there is imperfect (incomplete) information, or where the growth of the
resource is stochastic. As long as patches are symmetric regarding the anticipated
effects, we expect no drastic change in the qualitative results. The incentives of
regulators in offering concessions may also be an interesting issue to explore. In this
setting, the regulator could be viewed as a Stackelberg leader. The focus here was
on identifying design parameters that induce concessionaires to cooperate. A next
step could involve introducing different regulators’ objectives. Finally, depending
on the situations there could be density-driven movement, or different timing of
growth. Such features reduce model tractability and neither render our results
moot nor obviously make the analysis more realistic.

Overall, our results suggest that limited tenure concessions can achieve socially-
optimal outcomes and yet still allow concessionaires to make decentralized deci-
sions all while the government retains regulatory authority to require adherence to
certain restrictions. They also suggest that such instruments may not only have
attractive intuitive appeal, but that if designed and implemented with care, they
could be theoretically grounded in economic efficiency.
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Appendix
Proof of Proposition 1
We proceed by backward induction. We first consider the case where g′i(0) > 1

δDii
. At final

period kT − 1, concessionaire i’s problem is to maximize

max
eikT−1≥0

pi (xikT−1 − eikT−1)

Using the first order condition enables us to conclude immediately that ēikT−1 = 0, that is,
concessionaire i extracts the entire stock at the final period. Now, moving backward, at period
T − 2, this concessionaire’s problem becomes:

max
eikT−2≥0

pi

xikT−2 − eikT−2 + δ

∑
j 6=i

Djig(ējkT−2) +Diig(eikT−2)− ēikT−1

 .
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Using the first order condition (with respect to ēikT−2) and ēikT−1 = 0, we obtain that
ēikT−2 is characterized by the following condition:

δDiig
′(ēikT−2) = 1.

This is so since ēikT−2 = 0 is ruled out by the lower bound on the value of g′(0), and ēikT−2 =
xikT−2 is ruled out if xikT−2 > (g′)−1

(
1

δDii

)
holds, which is satisfied as we will later show.

Repeating the same argument of backward induction it is easily checked that any equilibrium
residual stock level ēit (where (k − 1)T ≤ t ≤ kT − 3) is characterized by the same condition
provided that xit > (g′)−1

(
1

δDii

)
= ēi for any period t. In the present case, we have, by

definition of ēi and concavity of g(.):

g(ēi) > ēig
′(ēi) = ēi

δDii

which implies that Diig(ēi) > ēi

δ ≥ ēi for δ ∈]0, 1] and thus, by the definition of xit for any period
(k − 1)T ≤ t ≤ kT − 1 we deduce that xit > ēi for any tenure block but the first one. Even

if concessionaire i chooses to defect at the very beginning, since xi0 > (g′)−1
(

pi

δ
∑

j
Dijpj

)
>

(g′)−1
(

1
δDii

)
by assumption, the same conclusion follows in this case. This concludes the proof

of the first case. The proof of the second case follows quickly from backward induction arguments
because of the upper bound on the value of g′(0).

Proof of Proposition 2
Compliance by concessionaire i requires that eit ≥ e∗i ∀t. Now assume that there is a time period
t during which concessionaire i chooses eit > e∗i : this implies that, for eit to be strictly profitable
we must have:

pi (1 + δ) (x∗i − e∗i ) < pi

(x∗i − eit) + δ

∑
j 6=i

Djig
(
e∗j
)

+Diig (eit)

 .
Simplifying this inequality, we obtain:

δDii (g (eit)− g (e∗i )) > eit − e∗i . (21)

Since g(.) is continuously differentiable and increasing, we know there exists ei ∈]e∗i , eit[ such
that g (eit)− g (e∗i ) = (eit − e∗i ) g′(ei) and we can rewrite expression 21 as follows:

δDii (eit − e∗i ) g′(ei) > eit − e∗i ⇔ g′(ei) >
1

δDii
= g′(ēi).

We thus deduce that (since g(.) is strictly concave) e∗i < ei < ēi, which is a contradiction (since
e∗i ≥ ēi as explained in subsection 3.1.2). This implies that eit = e∗i for any time period t, which
concludes the proof.

Proof of Proposition 3
If concessionaire i deviates during tenure k+1 (while other concessionaires follow their equilibrium
strategies) then this concessionaire’s payoff is Πd

i = piA, where :

A =
[
xi0 − e∗i + δ(1− δkT )

1− δ (x∗i − e∗i ) + δkT (e∗i − ēi) + δkT+1(1− δT−1)
1− δ (x̄i − ēi) + δ(k+1)T−1ēi

]
.
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Now, using Condition (13), we compute Πc
i −Πd

i = piB, with:

B =
[
δkT+1

1− δ (x∗i − e∗i )− δkT (e∗i − ēi)−
δkT+1(1− δT−1)

1− δ (x̄i − ēi)− δ(k+1)T−1ēi

]
(22)

= δkT pi
1− δ

[
δx∗i − e∗i − (1− δT−1) (δx̄i − ēi)

]
. (23)

The conclusion follows from Equality (23).

Proof of Proposition 4
We will show that concessionaire i does not have incentives to deviate, which will be sufficient
to prove the result. First, we prove that the concessionaire does not have incentive to deviate
from the initial period until the end of the first tenure. From the proof of Proposition 3 (using
the expression of the difference in payoffs (45) when k = 0) we know that:

Πc
i −Πd

i = pi

[
ēi − e∗i + δ

1− δ (x∗i − e∗i )−
δ(1− δT−1)

1− δ (x̄i − ēi)− δT−1ēi

]
= pi

1− δ
[
(1− δ)(ēi − e∗i ) + δ(x∗i − e∗i )− δ(1− δT−1)(x̄i − ēi)− δT−1(1− δ)ēi

]
.

When Dii gets arbitrarily close to one, the characterizations of ēi and e∗i enable to conclude that
ēi gets arbitrarily close to e∗i . We can deduce that Πc

i −Πd
i gets arbitrarily close to the following

expression:

pi

[
δT

1− δ (x∗i − e∗i )− δT−1e∗i

]
= δT−1pi

1− δ (δx∗i − e∗i ). (24)

Again, when Dii converges to one, x∗i gets arbitrarily close to g(e∗i ). Then, for Dii = 1 we know
that 1 = δg′(e∗i ) and we can rewrite Equation (24) as follows:

δT

1− δ (δx∗i − e∗i ) = δT

1− δ [δg(e∗i )− δg′(e∗i )e∗i ] = δT+1

1− δ [g(e∗i )− g′(e∗i )e∗i ]. (25)

The concavity of g (together with the fact that g(0) = 0) enables to quickly deduce that
g(e∗i )− g′(e∗i )e∗i is positive. Thus, for Dii = 1 we know that Πc

i −Πd
i > 0 which, by a continuity

argument, enables to conclude that the above deviation is not profitable (for concessionaire i)
for sufficiently large (but less than one) values of self retention of this concessionaire’s patch.

Second, we conclude the proof by showing that concessionaire i does not have incentives to
deviate during any other tenure block. Consider that defection might occur during tenure block
k + 1. We can rewrite the difference in payoffs as follows:

Πc
i −Πd

i = pi

δkT (ēi − e∗i ) +
(k+1)T−1∑
t=kT+1

δt (x∗i − e∗i − x̄i + ēi) + δ(k+1)T

1− δ (x∗i − e∗i )− δ(k+1)T−1ēi

 .
When Dii gets arbitrarily close to one, the characterizations of ēi and e∗i enable to conclude that
ēi gets arbitrarily close to e∗i , and x̄i gets arbitrarily close to x∗i (since g is continuous). We can
deduce that Πc

i −Πd
i gets arbitrarily close to pi δ

(k+1)T−1

1−δ (δx∗i − e∗i ). We can then deduce that the
deviation is not profitable for concessionaire i (for sufficiently large values of Dii). This proves
that concessionaire i does not have the incentive to defect. The same reasoning holds for any
other concessionaire, which concludes the proof.
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Proof of Proposition 5
Using Proposition 3, we know that concessionaire i would defect if the following condition is
satisfied:

δx∗i − e∗i <
(
1− δT−1) (δx̄i − ēi) .

The right hand side of this inequality increases as T increases. Indeed, the derivative of this
term as a function of T is −δT−1ln(δ) (δx̄i − ēi), which is positive, since ln(δ) < 0 and δx̄i− ēi is
positive.27 As such, for any tenure length T there will be defection if δx∗i −e∗i is negative. Now, if
Dii is sufficiently small, then ēi = 0 and we focus on cases where e∗i is still positive. We examine
the extreme case where e∗i > 0 even when Dii is equal to zero. Using the characterization of e∗i ,
we can rewrite δx∗i − e∗i as follows:

δx∗i − e∗i = δ

∑
j 6=i

Djig(e∗j )−
∑
j 6=i

Dij
pj
pi
g′(e∗i )e∗i

 .
If the left hand side of this equality is negative (which is the case provided that Condition 17
holds), then δx∗i − e∗i is negative, which concludes the proof.

Proof of Proposition 6
We claim that, as T gets arbitrarily large, any concessionaire i will defect from full cooperation.
Let us assume that any concessionaire j 6= i follows a full cooperation path; we now analyze
concessionaire i’s incentives to defect. One possible deviation is described in Proposition 1.
Specifically, concessionaire i might deviate from the initial period until period T . Then this
concessionaire will not be renewed. According to Proposition 1, this concessionaire’s payoff from
defecting will then be equal to Πd

i .
We now prove that Πc

i − Πd
i ≤ 0 for sufficiently large values of T . Using the proof of

proposition 3 (specifically, the difference in payoffs (45) when k = 0) we have:

Πc
i −Πd

i = pi

[
ēi − e∗i + δ

1− δ (x∗i − e∗i )−
δ(1− δT−1)

1− δ (x̄i − ēi)− δT−1ēi

]
.

When T gets arbitrarily large, Πc
i −Πd

i gets close to

pi

[
ēi − e∗i + δ

1− δ (x∗i − e∗i − x̄i + ēi)
]
. (26)

Now, we know that x∗i − x̄i = Dii(g(e∗i )− g(ēi)) and we obtain the following inequality (by
concavity of function g):

x∗i − x̄i = Dii(g(e∗i )− g(ēi)) < Diig
′(ēi)(e∗i − ēi).

This enables us to deduce the following inequality regarding Equation (26):

pi
1− δ [δDii(g(e∗i )− g(ēi))− (e∗i − ēi)] <

pi
1− δ [δDiig

′(ēi)− 1](e∗i − ēi). (27)

27Indeed, δx̄i − ēi = δ
∑
j 6=iDjig(e∗j ) + δDiig(ēi) − δDiig

′(ēi)ēi = δ
∑
j 6=iDjig(e∗j ) +

δDii (g(ēi)− g′(ēi)ēi) > 0 since the second term is positive by concavity of the growth func-
tion g. If Dii = 0 then δx̄i − ēi = δx̄i is positive too.
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But we know (from the characterization of ēi) that ēi satisfies δDiig
′(ēi) = 1, which implies that

the right hand side of the above inequality is equal to zero. We conclude that the Expression
(26) is negative which, by a continuity argument, implies that Πc

i −Πd
i ≤ 0 for sufficiently large

values of T . This concludes the proof.

Proof of Proposition 7
For a given concessionaire i, consider T̄i defined implicitly by:

ēi − e∗i + δ

1− δ (x∗i − e∗i )−
δ(1− δT̄i−1)

1− δ (x̄i − ēi)− δT̄i−1ēi = 0.

Since the characterization of ēi and e∗i ensure that residual stock levels (and thus stock levels)
do not depend on the value of the time horizon, we can differentiate the left hand side of the
equality as a function of T , and we obtain the following expression:

δT−1 ln(δ)
1− δ (δx̄i − ēi)

which is negative since ln(δ) < 0 as 0 < δ ≤ 1 and δx̄i − ēi is positive (as shown in the proof of
Proposition 5). This implies that the left hand side of the equality is a decreasing and continuous
function of T (where T is assumed to take continuous values). Since the proof of Proposition 2
implies that this function takes on negative values as T becomes large, if we can prove that it
has a positive value when T = 2 this would imply that T̄i is uniquely defined and that T̄i > 1.28

Then, again using the proof of Proposition 4 enables us to conclude that concessionaire i will
have incentives to defect as soon as the renewal time horizon is larger than T̄i.

For T = 2 the value of the function is given by the following expression:

ēi − e∗i + δ

1− δ (x∗i − e∗i )− δx̄i = 1
1− δ [δx∗i − e∗i − (1− δ) (δx̄i − ēi)] .

Assumption (19) implies that the right hand side of this equality is positive, which enables us to
conclude about the existence and uniqueness of

T̄i = 1 +
ln
[
δx̄i−ēi−(δx∗i−e

∗
i )

δx̄i−ēi

]
ln(δ) .

This concludes the proof of the result since T̄ = mini T̄i qualifies as the appropriate threshold
value.

Proof of Proposition 8
First, consider what happens during the final tenure block K. Using backward induction reveals
that any concessionaire i’s strategy during that block is characterized by ei,KT−1 = 0, and for
any other period (K − 1)T ≤ t ≤ KT − 2 we have ei,t = ēi where 1 = δDiig

′(ēi).

28Keep in mind that T̄i is assumed to take continuous values in the proof. Now coming back
to the fact that it is actually discrete, the argument of the proof implies that T̄i is at least equal
to 2.
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In other words, anticipating that he will not get renewed for sure at the end of the final
tenure block, any concessionaire i will defect. But in order to reach the final tenure block all
concessionaires will have managed the resource cooperatively (for the first K − 1 tenure blocks).
Thus, cooperative concessionaires will play as follows (the first period of the first tenure block
being t = 0):

• during the first K − 1 tenure blocks (thus from t = 0 to t = (K − 1)T − 1) concessionaire
i chooses ei = e∗i : from t = 1 to t = (K − 1)T − 1 the stock level is xi = x∗i , at period
t = 0 we has xi = xi,0;

• then, at period t = (K−1)T , concessionaire i chooses ei = ēi, and stock level at this same
period (K − 1)T is still xi = x∗i ;

• In all other periods of the final tenure block but the last one, concessionaire i chooses
ei = ēi and the stock level is ¯̄xi =

∑
j Djig(ēj);

• Finally, at t = KT − 1 we have ei = 0 and xi = ¯̄xi.

This implies that the payoffs from cooperation are this time given by:

Πc
i = pi

xi,0 − e∗i +
(K−1)T−1∑

t=1
δt(x∗i − e∗i ) + δ(K−1)T (x∗i − ēi) +

KT−2∑
t=(K−1)T+1

δt(¯̄xi − ēi) + δKT−1 ¯̄xi

 .
Now, we have to consider concessionaire i’s potential unilateral deviation strategy. Assuming

that this concessionaire defects during tenure block 1 ≤ k < K (thus knowing that he will not
be renewed following tenure block k) the timing of his strategy then becomes:

• From t = 0 to t = (k−1)T−1 concessionaire i chooses ei = e∗i : from t = 1 to t = (k−1)T−1
the stock level is xi = x∗i , at period t = 0 we have xi = xi,0;

• Then, at period t = (k − 1)T , concessionaire defects by choosing ei = ēi, and the stock
level at this same period (k − 1)T is still xi = x∗i ;

• In all other periods of tenure block k but the last one, concessionaire i chooses ei = ēi
and the stock level is xi = x̄i;

• Finally, at t = kT − 1 we have ei = 0 and xi = x̄i.

This implies that the payoffs from unilaterally deviating during tenure block k < K are this time
given by:

Πd
i = pi

xi,0 − e∗i +
(k−1)T−1∑

t=1
δt(x∗i − e∗i ) + δ(k−1)T (x∗i − ēi) +

kT−2∑
t=(k−1)T+1

δt(x̄i − ēi) + δkT−1x̄i

 .
Using the expressions of Πc

i and Πd
i , we obtain:

Πc
i −Πd

i = piδ
(k−1)T

1− δ

{(
1− δ(K−k)T

)
[δx∗i − e∗i + (1− δ)ēi] + δ(1− δT−2)

[
δ(K−k)T (¯̄xi − ēi)− (x̄i − ēi)

]
+ δT−1(1− δ)

[
δ(K−k)T ¯̄xi − x̄i

]}
= piδ

(k−1)T

1− δ

{(
1− δ(K−k)T

)
(δx∗i − e∗i ) + δ(K−k)T (1− δT−1) δ ¯̄xi −

(
1− δT−1) [δx̄i − (1− δ(K−k)T

)
ēi

]}
.
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This implies that the sign of Πc
i −Πd

i is given by that of:

Φ(k) :=
(

1− δ(K−k)T
)

(δx∗i − e∗i )+δ(K−k)T (1− δT−1) δ ¯̄xi−
(
1− δT−1) [δx̄i − (1− δ(K−k)T

)
ēi

]
Differentiating Φ(·) with respect to k, we obtain:

Φ′(k) = δ(K−k)TT ln(δ)
{
δx∗i − e∗i −

(
1− δT−1) [δ ¯̄xi − ēi

]}
. (28)

By definition of ¯̄xi we have ¯̄xi ≤ x̄i. Suppose concessionaires cooperate in the infinite horizon
problem, i.e. that:

δx∗i − e∗i >
(
1− δT−1) (δx̄i − ēi) , (29)

Then we have:

δx∗i − e∗i −
(
1− δT−1) [δ ¯̄xi − ēi

]
> δx∗i − e∗i −

(
1− δT−1) (δx̄i − ēi) > 0.

This implies that the term between brackets on the right hand side of Equality (28) is positive.
Since ln(δ) < 0 as δ ∈ (0, 1] we conclude that Φ′(k) < 0 for any k. This means that willingness
to cooperate is decreasing in k - the longer we wait to defect, the lower is their incentive to
cooperate. This implies that k = K − 1 corresponds to the lowest possible value of Φ(k). In
other words, if concessionaire i will defect, she will have the strongest incentive to do so late in
the game. We then obtain:

Φ(K − 1) =
(
1− δT

)
(δx∗i − e∗i ) + δT

(
1− δT−1) δ ¯̄xi −

(
1− δT−1) [δx̄i − (1− δT ) ēi] .

The reasoning above implies that Φ(K − 1) > 0 is a necessary and sufficient condition to ensure
that concessionaire i will not defect. This condition can be rewritten as follows:

δx∗i − e∗i >
1− δT−1

1− δT
{
δx̄i −

(
1− δT

)
ēi − δT+1 ¯̄xi

}
.

This concludes the proof of the first part of the proposition.

Finally, we can show that Condition 20 is more stringent than the condition ensuring coop-
eration under the infinite horizon instrument (Condition 29). Indeed, we have:

1− δT−1

1− δT
[
δx̄i −

(
1− δT

)
ēi − δT+1 ¯̄xi

]
−
(
1− δT−1) (δx̄i − ēi) = 1− δT−1

1− δT δT+1 (x̄i − ¯̄xi
)
> 0.

This inequality implies that, as soon as Condition 20 is satisfied then Condition 29 is satisfied:

δx∗i − e∗i >
1− δT−1

1− δT
[
δx̄i −

(
1− δT

)
ēi − δT+1 ¯̄xi

]
⇒ δx∗i − e∗i >

(
1− δT−1) (δx̄i − ēi) ,

but the opposite does not always hold true. Full cooperation under the infinite horizon instrument
is not sufficient to ensure the same result under the finite horizon version of the instrument. Still,
there are conditions under which cooperation will persist under the finite horizon version.

Section 4.2 and comparative statics on the time
horizon (given by (18))
We have the following stocks, respectively, when patch i defects and when all patches cooperate:

x̄i = Diig (ēi, αi) +
∑
j 6=i

Djig
(
e∗j , αj

)
; x∗i =

∑
j

Djig
(
e∗j , αj

)
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We assume that one parameter, θi = {pi, αi, Dii, Dij} or θj = {pj , αj , Dji}, is elevated. We
obtain the general following forms for the stocks:

dx̄i
dθi

= ∂x̄i
∂ēi
· ∂ēi
∂θi

+ ∂x̄i
∂θi

+
∑
j 6=i

∂x̄i
∂e∗j
·
∂e∗j
∂θi

(30)

dx̄i
dθj

= ∂x̄i
∂θj

+
∑
l 6=i

∂x̄i
∂e∗l
· ∂e

∗
l

∂θj
(31)

dx∗i
dθi

= ∂x∗i
∂θi

+
∑
j

∂x∗i
∂e∗j
·
∂e∗j
∂θi

(32)

dx∗i
dθj

= ∂x∗i
∂θj

+
∑
l

∂x∗i
∂e∗l
· ∂e

∗
l

∂θj
(33)

and the residual stock levels

Table 2: Computations of derivatives
θ

∂e∗
i

∂θ
∂ēi
∂θ

∂x∗
i

∂θ
∂x̄i
∂θ

pi
1−δDiigei∑N

j=1 δDijpjgeiei
< 0 0 0 0

pj − Dijgei∑N

l=1 Dilplgeiei
> 0 0 0 0

αi −geiαi
geiei

> 0 −geiαi
geiei

> 0 Diigα∗
i
> 0 Diigᾱi > 0

αj 0 0 Djigα∗
j
> 0 Djigα∗

j
> 0

Dii −
pigei∑N

j=1 Dijpjgeiei
> 0 − gei

geiei
> 0 g(e∗i ) > 0 g(ēi) > 0

Dij − pjgei∑N

j=1 Dijpjgeiei
> 0 0 0 0

Dji 0 0 g(e∗j) g(e∗j)

with gα∗
i
≡ gαi(e∗i ) and gᾱi ≡ gᾱi(ēi).

A. Impact on the emergence of cooperation
Using Expressions (30) to (33) and Table 1 we compute the following expressions.
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Impact of net price, p
Impact of pi
We first analyze the impact of pi on concessionaire i’s willingness to cooperate by using Expres-
sions (30) to (33) and the table in order to compute the following expression:

d
(
Πc
i −Πd

i

)
dpi

= δkT

1− δ
[
δx∗i − e∗i − (1− δT−1)(δx̄i − ēi)

]
+ δkT pi

1− δ

δ∑
j

∂x∗i
∂e∗j

∂e∗j
∂pi
− ∂e∗i
∂pi
− δ(1− δT−1)

∑
j 6=i

∂x̄i
∂e∗j

∂e∗j
∂pi


Let us focus on the second term between brackets and rewrite it as follows:

∂e∗i
∂pi

(
δ
∂x∗i
∂e∗i
− 1
)

+
∑
j 6=i

∂e∗j
∂pi

[
δ
∂x∗i
∂e∗j
− δ(1− δT−1)∂x̄i

∂e∗j

]
(34)

⇔ ∂e∗i
∂pi

(
δDiige∗

i
− 1
)

+
∑
j 6=i

∂e∗j
∂pi

[
δDjige∗

j
− δ(1− δT−1)Djige∗

j

]
(35)

⇔ − ∂e∗i
∂pi

(
1− δDiige∗

i

)
+
∑
j 6=i

∂e∗j
∂pi

δTDjige∗
j
> 0 (36)

because we have ∂e∗i
∂pi

< 0, 1 − δDiige∗
i
> 0 and ∂e∗j

∂pi
> 0. Thus, we can conclude that

d(Πc
i−Πd

i )
dpi

> 0 if the condition regarding concessionaire i’s willingness-to-cooperate is satisfied.

This means that an increase in pi results in an increase in the value of d(Πc
i−Πd

i )
dpi

, thus an increase
in the willingness-to-cooperate.

Effect of pj, j 6= i

In this case we have

d
(
Πc
i −Πd

i

)
dpj

= δkT pi
1− δ

δ∑
l

∂x∗i
∂e∗l

∂e∗l
∂pj
− ∂e∗i
∂pj
− δ(1− δT−1)

∑
l 6=i

∂x̄i
∂e∗l

∂e∗l
∂pj


= δkT pi

1− δ

∂e∗i
∂pj

(
δ
∂x∗i
∂e∗i
− 1
)

+
∑
l 6=i

(
δ
∂x∗i
∂e∗l

∂e∗l
∂pj
− δ(1− δT−1)∂x̄i

∂e∗l

∂e∗l
∂pj

)
= δkT pi

1− δ

−∂e∗i
∂pj

(
1− δDiige∗

i

)
+ δT

∑
l 6=i

∂e∗l
∂pj

Dlige∗
l



= δkT pi
1− δ

−∂e
∗
i

∂pj

(
1− δDiige∗

i

)
︸ ︷︷ ︸

<0

+δT

∂e
∗
j

∂pj
Djige∗

j︸ ︷︷ ︸
<0

+
∑
l 6=i,j

∂e∗l
∂pj

Dlige∗
l︸ ︷︷ ︸

>0
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Using the expressions provided in the table and focusing on the spatial connection between
the patch of interest and the patch where the value of the parameter is increased, (i and j), we
deduce the following conclusions:
• First, if both dispersal rates Dij and Dji are sufficiently small, then the first and second

term between brackets on the RHS of the equality are small, which implies that d(Πc
i−Πd

i )
dpj

is positive;
Indeed, when Dij and Dji are small, then ∂e∗i

∂pj
and ∂e∗j

∂pj
Djige∗

j
are small. And the sign of the

term between brackets (and thus of d(Πc
i−Πd

i )
dpj

) is similar to the sign of
∑
l 6=i,j

∂e∗l
∂pj

Dlige∗
l
,

which is positive.
• Second, if the degree of spatial connection between the two patches and their own self-

retention rate are sufficiently large (or if both patches i and j are weakly spatially-
connected with other patches), respectively Dii+Dij and Djj +Dji are sufficiently large,
then the term

∑
l 6=i,j

∂e∗l
∂pj

Dlige∗
l

is small, which implies that d(Πc
i−Πd

i )
dpj

is negative.

Impact of growth, α
Effect of αi
We analyze the effect of αi on concessionaire i’s willingness to cooperate. We have:

d
(
Πc
i −Πd

i

)
dαi

= δkT pi
1− δ

{
δ

(
∂x∗i
∂αi

+ ∂x∗i
∂e∗i

∂e∗i
∂αi

)
− ∂e∗i
∂αi
− (1− δT−1)

[
δ

(
∂x̄i
∂αi

+ ∂x̄i
∂ēi

∂ēi
∂αi

)
− ∂ēi
∂αi

]}
= δkT pi

1− δ

[
∂e∗i
∂αi

(
δDiige∗

i
− 1
)

+ δDiigα∗
i
− (1− δT−1)

(
∂ēi
∂αi

(δDiigēi
− 1) + δDiigᾱi

)]
= δkT pi

1− δ

[
∂e∗i
∂αi

(
δDiige∗

i
− 1
)

+ δDii

(
gα∗

i
− (1− δT−1)gᾱi

)]
If Dii is small while ēi > 0, then d(Πc

i−Πd
i )

dαi
< 0 and an increase in αi decreases concessionaire

i’s incentives to cooperate.

If Dii = 1, then 1− δDiige∗
i

= 0 and d(Πc
i−Πd

i )
dαi

> 0 since gα∗
i
− (1− δT−1)gᾱi is positive. By

a continuity argument, this conclusion remains valid when Dii is sufficiently large.

Effect of αj, j 6= i

We analyze the effect of αj on concessionaire i’s willingness to cooperate. We have:

d
(
Πc
i −Πd

i

)
dαj

= δkT pi
1− δ

[
δ

(
∂x∗i
∂αj

+ ∂x∗i
∂e∗j

∂e∗j
∂αj

)
− δ(1− δT−1)

(
∂x̄i
∂αj

+ ∂x̄i
∂e∗j

∂e∗j
∂αj

)]

= δkT+1pi
1− δ

[
δT−1Djigα∗

j
+
∂e∗j
∂αj

δT−1Djige∗
j

]
= δ(k+1)T pi

1− δ Dji

(
gα∗

j
+ ge∗

j

)
> 0

An increase in αj increases the willingness-to-cooperate of concessionaire i.
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Impact of dispersal rate, D
Effect of Dii

We first analyze the effect of the self-retention rate on an concessionaire’s willingness to cooperate.
We have:

d
(
Πc
i −Πd

i

)
dDii

= δkT pi
1− δ

{
δ

(
∂x∗i
∂Dii

+ ∂x∗i
∂e∗i

∂e∗i
∂Dii

)
− ∂e∗i
∂Dii

− (1− δT−1)
[
δ

(
∂x̄i
∂Dii

+ ∂x̄i
∂ēi

∂ēi
∂Dii

)
− ∂ēi
∂Dii

]}
= δkT pi

1− δ

{
∂e∗i
∂Dii

(
δDiige∗

i
− 1
)

+ δg(e∗i , αi)− (1− δT−1)
[
∂ēi
∂Dii

(δDiigēi
− 1) + δg(ēi, αi)

]}
= δkT pi

1− δ

(
δ[g(e∗i , αi)− g(ēi, αi)] + δT g(ēi, αi)−

(
1− δDiige∗

i

) ∂e∗i
∂Dii

)
.

The overall effect of Dii on Πc
i −Πd

i is given by the sum of two terms of opposite signs, and is
thus ambiguous (due to the expression of ∂e∗i

∂Dii
provided in the table, when pi is small we might

expect d(Πc
i−Πd

i )
dDii

to be positive).

Effect of Dij

We now analyze the effect of dispersal from patch i on concessionaire i’s willingness to cooperate.
We have:

d
(
Πc
i −Πd

i

)
dDij

= δkT pi
1− δ

(
δ
∂x∗i
∂e∗i

∂e∗i
∂Dij

− ∂e∗i
∂Dij

)
= −δ

kT pi
1− δ ·

∂e∗i
∂Dij

(
1− δDiige∗

i

)
< 0

An increase in dispersal from patch i decreases concessionaire i’s incentives to cooperate.

Effect of Dji

We finally analyze the effect of dispersal from a given patch to patch i on concessionaire i’s
willingness to cooperate. We have:

d
(
Πc
i −Πd

i

)
dDji

= δkT pi
1− δ

[
δ

(
∂x∗i
∂Dji

+ ∂x∗i
∂e∗j

∂e∗j
∂Dji

)
− δ(1− δT−1)

(
∂x̄i
∂Dji

+ ∂x̄i
∂e∗j

∂e∗j
∂Dji

)]

= δ(k+1)T pi
1− δ

[
∂e∗j
∂Dji

Djige∗
j

+ g(e∗j , αj)
]
> 0

An increase in dispersal from patch j to patch i increases concessionaire i’s incentives to
cooperate.

B. Impact on the time threshold, T̄i
Differentiating Condition (18) with respect to parameter θ, we have:
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dT̄i
dθ

= ∂T̄i
∂θ

+ ∂T̄i
∂x̄i

dx̄i
dθ

+ ∂T̄i
∂ēi

∂ēi
∂θ

+ ∂T̄i
∂x∗i

dx∗i
dθ

+ ∂T̄i
∂e∗i

∂e∗i
∂θ

(37)

= 1
ln(δ) [δ(x̄i − x∗i ) + e∗i − ēi]

[
∂e∗i
∂θ
− δ dx

∗
i

dθ
+
(
δx∗i − e∗i
δx̄i − ēi

)(
δ
dx̄i
dθ
− ∂ēi
∂θ

)]
(38)

Since δ ∈ (0, 1) and δ(x̄i − x∗i ) + e∗i − ēi > 0, we know that the first term in Equality (38)
is always negative. Thus, in order to sign the effect of parameter θ on T̄i we examine the term
between brackets. Using expressions (30)-(33) and Table 1, we check that δ dx̄i

dθ −
∂ēi

∂θ > 0. Then
let us notice that:

∂e∗i
∂θ
− δ dx

∗
i

dθ
= ∂e∗i

∂θ
(1− δDiige∗

i
)− δ

∂x∗i
∂θ

+
∑
j 6=i

Djige∗
j

∂e∗j
∂θ

 < 0 if θ = {pi;αj ;Dji}

> 0 if θ = {Dij}

which implies that dT̄i

dθ > 0 for θ = {pi;αj ;Dji} and dT̄i

dθ < 0 for θ = {Dij}. By contrast, the
sign is ambiguous for θ = {pj ;αi;Dii}. We can yet find some situations highlighting that the
overall expression can be positive or negative. We focus on the expression between brackets in
Condition (38).

Effect of pj, j 6= i

∂e∗i
∂pj

(
1− δ ∂x

∗
i

∂e∗i

)
− δ

∑
l 6=i

∂x∗i
∂e∗l

∂e∗l
∂pj

+ δ

(
δx∗i − e∗i
δx̄i − ēi

)∑
l 6=i

∂x̄i
∂e∗l

∂e∗l
∂pj

(39)

⇔ ∂e∗i
∂pj

(1− δDiigei) + δ
∑
l 6=i

Dligel

∂e∗l
∂pj

(
δ(x∗i − x̄i)− e∗i + ēi

δx̄i − ēi

)
(40)

⇔ ∂e∗i
∂pj

(1− δDiigei
) + δ

(
δ(x∗i − x̄i)− e∗i + ēi

δx̄i − ēi

)Djigej

∂e∗j
∂pj

+
∑
l 6=i,j

Dligel

∂e∗l
∂pj

 (41)

Using the expressions provided in the table, we can obtain conclusions that highlight that
the effect on T̄i depends on the dispersal process.

• First, if Dij is small enough, then expression (36) is negative, which implies that the value
of T̄i increases when pj increases;

• Second, if Dji and
∑
l 6=i,j DliDlj are small enough, then expression (36) is positive, which

implies that the value of T̄i decreases when pj increases.
Indeed, this leads to a small value of the last term between brackets, Djigej

∂e∗j
∂pj

+
∑
l 6=i,j Dligel

∂e∗l
∂pj

.
Thus, the sign of dT̄i

dpj
depends only on that of ∂e

∗
i

∂pj
(1− δDiigei), which is positive. We thus

conclude that ∂T̄i

∂pj
is negative.
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Effect of αi

∂e∗i
∂αi

(
1− δ ∂x

∗
i

∂e∗i

)
− δ ∂x

∗
i

∂αi
+
(
δx∗i − e∗i
δx̄i − ēi

)[
δ

(
∂x̄i
∂αi

+ ∂x̄i
∂ēi

∂ēi
∂αi

)
− ∂ēi
∂αi

]
(42)

⇔ ∂e∗i
∂αi

(
1− δDiige∗

i

)
− δDii

[
gα∗

i
− gᾱi

(
δx∗i − e∗i
δx̄i − ēi

)]
(43)

So, if δDii is sufficiently small while ēi remains positive, then the sign of (37) is positive,
which implies that T̄i would decrease when the growth-related parameter increases in patch i.

Effect of Dii

∂e∗i
∂Dii

(
1− δ ∂x

∗
i

∂e∗i

)
− δ ∂x

∗
i

∂Dii
+
(
δx∗i − e∗i
δx̄i − ēi

)[
δ

(
∂x̄i
∂Dii

+ ∂x̄i
∂ēi

∂ēi
∂Dii

)
− ∂ēi
∂Dii

]
⇔ ∂e∗i

∂Dii

(
1− δDiige∗

i

)
− δg(e∗i , αi) +

(
δx∗i − e∗i
δx̄i − ēi

)[
δg(ēi, αi) + ∂ēi

∂Dii
(δDiigēi

− 1)
]

⇔ ∂e∗i
∂Dii

(
1− δDiige∗

i

)
− δ

[
g(e∗i , αi)−

(
δx∗i − e∗i
δx̄i − ēi

)
g(ēi, αi)

]
︸ ︷︷ ︸

>0

We obtain a conclusion in one case described as follows. If δ is sufficiently small (so that
∂e∗i
∂Dii

(
1− δDiige∗

i

)
> δ

[
g(e∗i , αi)−

(
δx∗i−e

∗
i

δx̄i−ēi

)
g(ēi, αi)

]
) while ēi remains positive, then the sign

of the expression is that of ∂e∗i
∂Dii

, which is positive.

The scope of applicability of trigger strategies
Concessionaires implementing trigger strategies will not get renewed at the end of the tenure
block where punishment is implemented. This is a form of self-punishment, which can be seen
as an additional incentive scheme.29 Yet it is difficult to think about the frequent use of self-
punishment schemes in the real-world, so we only briefly consider this possibility.

Proposition 9. When concessionaires follow trigger strategies, cooperation will emerge as an
equilibrium outcome if and only if the following condition holds (for any concessionaire i):

δx∗i − e∗i − (1− δT−1)
[
δ ¯̄xi − ēi

]
> 0,

where ¯̄xi =
∑
j Djig(ēj) > ēi > 0.

Proof. If concessionaire i deviates during tenure k+ 1 (while other concessionaires follow trigger
strategies) then this concessionaire’s payoff is Πd

i , where :

pi

[
xi0 − e∗i + δ(1− δkT )

1− δ (x∗i − e∗i ) + δkT (e∗i − ēi) + δkT+1(1− δT−1)
1− δ

(¯̄xi − ēi)+ δ(k+1)T−1ēi

]
.

29It is useful to recall that the instrument analyzed here does not require that the concession-
aires use such kind of self-punishment devices in order to induce efficient resource management.
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Now, computing the difference Πc
i −Πd

i , we obtain:

Πc
i −Πd

i = pi

[
δkT+1

1− δ (x∗i − e∗i )− δkT (e∗i − ēi)−
δkT+1(1− δT−1)

1− δ
(¯̄xi − ēi)− δ(k+1)T−1(1− δ)ēi

]
= pi

1− δ
[
δkT+1x∗i − δkT e∗i + δkT (1− δT−1)ēi − δkT (1− δT−1)δ ¯̄xi

]
= δkT

pi
1− δ

[
δx∗i − e∗i − (1− δT−1)

(
δ ¯̄xi − ēi

)]
.

The conclusion follows from this equality. Condition ¯̄xi =
∑
j Djig(ēj) > ēi follows from the

same argument than in the proof of Proposition 1.

The proof confirms one of our previous claims regarding the incentives to defect: it is intuitive
and straightforward to show that incentives to defect are the same at any given period, that is,
they are not time dependent. This proposition implies that the incentives to defect increase with
a longer time horizon.30 Moreover, the inequality characterizing the scope of trigger strategies
is less restrictive than the similar condition in Proposition 3. Thus, using trigger strategies in
addition to the concession instrument enlarges the scope for full cooperation.

Robustness to stock-dependent costs
We state the equivalent of Propositions 1 and 3 for the case of stock-dependent marginal costs,
and we provide the corresponding proofs.31

Proposition 10. The optimal defection strategy of concessionaire i in tenure block k is given
by:

ēikT−1 = c−1
i (pi)

and, for any period (k − 1)T ≤ t ≤ kT − 2, we have ēit = ēi > 0 where:

δDiig
′
i(ēi) (pi − ci(x̄it+1)) = pi − ci(ēit) with x̄it > ēit.

Indeed ēit = ēi since the system of optimality conditions is time and state independent.

Proof. We proceed by backward induction. At final period kT − 1, concessionaire i’s problem is
to maximize

max
eikT−1≥0

pi (xikT−1 − eikT−1)−
∫ xikT−1

eikT−1

ci(s)ds

Using the first order condition enables us to conclude immediately that ci(ēikT−1) = pi, that
is, concessionaire i extracts the stock up to level ēikT−1 = c−1

i (pi). Now, moving backward, at
period T − 2, this concessionaire’s problem becomes:

max
eikT−2≥0

pi [xikT−2 − eikT−2]−
∫ xikT−2

eikT−2

ci(s)ds+δpi

∑
j 6=i

Djig(ējkT−2) +Diig(ēikT−2)− ēikT−1


30This conclusion follows if we differentiate the expression of the difference between payoffs as

a function of the time horizon.
31To keep the exposition as simple and short as possible, we here focus on the case of an

interior optimal defection strategy. In Proposition 1 this corresponds to the case where the value
of g′i(0) is high.
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−δ
∫ ∑

j 6=i
Djig(ējkT−2)+Diig(ēikT−2)

ēikT−1

ci(s)ds.

Using the first order condition (with respect to ēikT−2) and ēikT−1 = c−1
i (pi), we obtain that

ēikT−2 is characterized by the following condition:

δDiig
′(ēikT−2)

pi − ci(∑
j 6=i

Djig(ējkT−2) +Diig(ēikT−2))

 = pi − ci(ēikT−2).

This optimality condition enables quickly to deduce, since economic returns and spatial parame-
ters are time independent, that ēikT−2 depends only on ējkT−2 (j 6= i) and not on x̄lkT−2 (l ∈ I).
This implies that ēikT−2 is time and state independent. Repeating the same argument of back-
ward induction, it is easily checked that any residual stock level ēit (where (k−1)T ≤ t ≤ kT−3)
is characterized by the same optimality condition. This concludes the proof.

Finally, we have:

Proposition 11. Complete cooperation emerges as an equilibrium outcome if and only if, for
any concessionaire i, the following condition holds:

δkT+1

1− δ

[
pi (x∗i − e∗i )−

∫ x∗i

e∗
i

ci(s)ds
]
− δkT

[
pi (e∗i − ēi)−

∫ e∗i

ēi

ci(s)ds
]

−δ
kT+1(1− δT−1)

1− δ

[
pi (x̄i − ēi)−

∫ x̄i

ēi

ci(s)ds
]
−δ(k+1)T−1

[
pi
(
ēi − c−1

i (pi)
)
−
∫ ēi

c−1
i

(pi)
ci(s)ds

]
> 0.

(44)

Proof. If concessionaire i deviates during tenure k + 1 (while other concessionaires follow their
candidate equilibrium strategies) then this concessionaire’s payoff is :

Πd
i = pi [xi0 − e∗i ]−

∫ xi0

e∗
i

ci(s)ds+ δ(1− δkT )
1− δ

[
pi (x∗i − e∗i )−

∫ x∗i

e∗
i

ci(s)ds
]

+δkT
[
pi (e∗i − ēi)−

∫ e∗i

ēi

ci(s)ds
]

+ δkT+1(1− δT−1)
1− δ

[
pi (x̄i − ēi)−

∫ x̄i

ēi

ci(s)ds
]

+δ(k+1)T−1

[
pi
(
ēi − c−1

i (pi)
)
−
∫ ēi

c−1
i

(pi)
ci(s)ds

]
.

Now we can compute Πc
i −Πd

i = B, with:

B = δkT+1

1− δ

[
pi (x∗i − e∗i )−

∫ x∗i

e∗
i

ci(s)ds
]
− δkT

[
pi (e∗i − ēi)−

∫ e∗i

ēi

ci(s)ds
]

−δ
kT+1(1− δT−1)

1− δ

[
pi (x̄i − ēi)−

∫ x̄i

ēi

ci(s)ds
]
−δ(k+1)T−1

[
pi
(
ēi − c−1

i (pi)
)
−
∫ ēi

c−1
i

(pi)
ci(s)ds

]
.

(45)
The conclusion follows from Equality (45).
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