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ABSTRACT Genomic selection (GS) is a breeding approach which exploits genome-wide information and
whose unprecedented success has shaped several animal and plant breeding schemes through delivering
their genetic progress. This is the first study assessing the potential of GS in apricot (Prunus armeniaca) to
enhance postharvest fruit quality attributes. Genomic predictions were based on a F1 pseudo-testcross
population, comprising 153 individuals with contrasting fruit quality traits. They were phenotyped for physical
and biochemical fruit metrics in contrasting climatic conditions over two years. Prediction accuracy (PA) varied
from 0.31 for glucose content with the Bayesian LASSO (BL) to 0.78 for ethylene production with RR-BLUP,
which yielded the most accurate predictions in comparison to Bayesian models and only 10% out of 61,030
SNPs were sufficient to reach accurate predictions. Useful insights were provided on the genetic architecture
of apricot fruit quality whose integration in prediction models improved their performance, notably for traits
governed by major QTL. Furthermore, multivariate modeling yielded promising outcomes in terms of PA
within training partitions partially phenotyped for target traits. This provides a useful framework for the
implementation of indirect selection based on easy-to-measure traits. Thus, we highlighted themain levers to
take into account for the implementation of GS for fruit quality in apricot, but also to improve the genetic gain
in perennial species.
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Apricot (Prunus armeniaca) is a perennial fruit crop pertaining to
Rosaceae family and Prunus genus, which encompasses several
economically important species such as peach, almond, cherry and
plum. It is one of the leading stone fruit species due to its economic
contribution to the fruit industry. From a biological standpoint,
apricot is characterized by its diploid genome (2n = 2x = 16) of
294 Mb/1n and its high heterozygosity (Arumuganathan and Earle

1991). The availability of a high-quality genome sequence in
peach, defined as a reference Prunus species highly genetically
characterized (Infante et al. 2008; Verde et al. 2013), as well as the
high level of synteny between the Prunus species, have paved the
way for elucidating the genetics of key commercial traits in Prunus
species (Aranzana et al. 2019). They provide both a powerful
framework for apricot genetic improvement and valuable tools to
elucidate the genetic architecture of traits of interest.

Since the sixties, apricot breeding programs have been geared
toward conventional breeding based on mass field selection, a time-
consuming and labor-intensive process, which might reach 15 to
20 years from pre-breeding to the release of a new variety. Besides the
length of apricot breeding cycle, several biological features inherent to
this species impede genetic progress such as its wide range hetero-
zygosity and a preferential self-incompatibility regime that induces
uneven production according to climatic conditions. Recently, a
particular focus has been projected toward fruit quality, a dynamic
concept which encompasses a broad range of attributes linked to
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attractiveness, flavor, taste and texture with reference to fruit color,
balance of sugars and acids and shelf-life. The burgeoning interest in
fruit quality aims at shaping a sustainable fruit industry taking into
account consumer preference trends that are expressed in a com-
petitive landscape faced with climate change. Furthermore, commer-
cial depreciation due to ripeness deficiencies resulting from early
harvest and susceptibility to flesh mealiness incented the breeders to
circumvent the issues linked to postharvest quality and thus con-
tribute to the enhancement of fruit quality metrics (Gatti et al. 2009).
In the scope of intrinsic challenges of apricot, fruit quality-oriented
selection schemes aim tomeet consumers’ needs for improved quality
attributes and address stakeholders’ demands in the apricot sector.
Therefore, controlled cross-pollination schemes allow recombination
of desirable characteristics according to the integrated concept of
ideotype, which is likely to guide biological designs of improved
varieties through the identification and the integration of causal
variants for high-value traits as well as the elimination of deficiencies
(Donald 1968; Ramstein et al. 2019).

Here emerges one of the prominent impetuses of marker-based
breeding approaches, a breeding strategy whose feasibility strongly
tailored by the genetic architecture of target traits. Indeed, marker-
assisted selection (MAS), is particularly relevant for monogenic
inheritance, while genomic selection (GS), a promising breeding
approach that has revolutionized animal and plant breeding com-
munities, is favored for oligogenic and polygenic inheritance (Kumar
et al. 2012). GS is likely to capture the missing heritability of complex
traits by modeling thousands of single nucleotide polymorphisms
concomitantly (Makowsky et al. 2011; Resende et al. 2012a). Meu-
wissen et al.’s landmark article (2001) laid the foundation for
predicting genetic merit in plant and animal breeding and thus
identifying superior genotypes among selection candidates according
to their whole-genome sequence information (de los Campos et al.
2013). Unlike MAS, which pinpoints putative genes underlying the
traits of interest, GS potentially considers all markers’ effects without
prior selection (Makowsky et al. 2011; Resende et al. 2012a). This
breeding approach is at its outset for crop plants and notably for
perennial trees that are characterized by long breeding cycles due to
the length of juvenile phase and generation time. Therefore, the
recourse to GS for perennial species arises from the need to accelerate
the pace of the breeding process. The relevance of this breeding
approach has been assessed in forest trees such as eucalyptus
(Resende et al. 2012a), black spruce (Lenz et al. 2017), white spruce,
loblolly pine (Resende et al. 2012b), maritime pine (Bartholomé
et al. 2016) as well as in perennial fruit crops such as grapevine
(Fodor et al. 2014), apple (Muranty et al. 2015), citrus (Minamikawa
et al. 2017), cranberry (Covarrubias-Pazaran et al. 2018) and
kiwifruit (Testolin 2011).

Large-scale genomic information against limited phenotypic re-
cords leads to an ascertainment bias due to the number of predictors
(p), which is higher than the number of observations (n), resulting in
multicollinearity and overfitting and accordingly low prediction
performance (Desta and Ortiz 2014). To alleviate this statistical
challenge due to dimensionality, a wide range of mathematical
models are intended to infer linear combinations of the original
predictors in order to reduce through shrinking regression coeffi-
cients back toward zero (Whittaker et al. 2000; Gianola et al. 2003;
Solberg et al. 2009). The extent of shrinkage of the marker effects
differ across prediction models. For instance, in ridge regression
shrinkage is performed equally across markers. However, this as-
sumption is likely to be unreal because some markers are in linkage
disequilibrium (LD) with loci with no genetic variance (Goddard and

Hayes 2007). Conversely, in models designed under the Bayesian
framework, shrinkage of effects is marker-specific (Crossa et al. 2017).
Further, the performance of GS is markedly influenced by several
factors including marker density (Grattapaglia and Resende 2011;
Lenz et al. 2017), training population size (Grattapaglia and Resende
2011), genetic relationship between training population and breeding
population (Rincent et al. 2012; Isidro et al. 2015; Lenz et al. 2017),
population structure (Zhong et al. 2009; Rincent et al. 2017), the
extent of LD (Daetwyler et al. 2008; Wientjes et al. 2013; Liu et al.
2015), statistical models (Lorenzana and Bernardo 2009; Heslot
et al. 2012; Resende et al. 2012b; Onogi 2020), trait heritability
(Calus et al. 2008) as well as the genetic architecture of target traits
(Daetwyler et al. 2010; Morgante et al. 2018). Along with the
ideotype concept, multiple traits of interest can also be considered
simultaneously through multivariate models to achieve more ac-
curate predictions in comparison to single-trait models. Several
simulation and empirical studies shed light upon the significant
potential of multiple trait genomic prediction in optimizing pre-
diction performance (Calus and Veerkamp 2011; Guo et al. 2014;
Covarrubias-Pazaran et al. 2018; Karaman et al. 2018; Michel et al.
2018). In this regard, the selection index strategy permits breeders to
obtain genotypes that concomitantly incorporate several desirable
characteristics. However, the efficiency of selection for multiple
traits simultaneously depends considerably on the genetic correla-
tion between these traits, that reflects the extent to which selection
for a focal trait triggers an indirect response to selection for a
secondary trait (Akdemir et al. 2019; Rana et al. 2019). In conjunction
with the optimization of prediction model design, the integration of
the insights gained by elucidating the genetic architecture of traits
under selection might be of great interest. Several studies have
emphasized the potential of including genomic information under-
lying the variation of target traits in prediction models (Spindel et al.
2016; Fang et al. 2017; Lopes et al. 2017; Liu et al. 2019).

Therefore, the main objectives of our study were to (1) gain
further insights into key fruit quality traits which are difficult to
access, (2) evaluate the performance of GS prediction model applied
to breeding for apricot fruit quality and (3) optimize GS accuracy by
accounting for QTL mapping findings in prediction models and
performing predictions under a multivariate framework.

MATERIALS AND METHODS

Plant material
The plant material used in this study is a F1 pseudo-testcross progeny
of 153 individuals issued from a cross between ‘Goldrich’ and
‘Moniqui’ cultivars, which exhibit contrasted fruit quality traits.
‘Goldrich’ cv., used as female parent, is a North American early-
season apricot cultivar. Self-incompatible, it is characterized by
large, firm, orange fruit without blush and with a high level of
acidity (Muñoz-Sanz et al. 2017). ‘Moniqui’ cv., used as male parent,
is a Spanish season apricot cultivar. Self-incompatible, it is charac-
terized by large, soft and tasty white flesh fruit. ‘Moniqui’ is char-
acterized by a high ethylene production, which results in a fast
evolution at maturity and post-harvest, while ‘Goldrich’ presents a
lower ethylene production, which results in an average fruit evolution
at maturity and post-harvest. The F1 progeny was grown at the
INRAE experimental field of Amarine in southern France. Seedlings
were randomly planted on their own roots in 2005. Trees were
managed under integrated management system which implies that
orchards are geared toward a sustainable production system with a
trend to reduce the use of phytosanitary products.
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Phenotyping for fruit quality
The phenotypic characterization of the Goldrich · Moniqui (Go·Mo)
progeny was carried out over two consecutive years 2006 and 2007,
which showed contrasted climatic conditions for 10 quality param-
eters of agronomic interest. These traits refer to the criteria which
underpin consumers’ perception of apricot fruit and meet the exi-
gencies of stakeholders in the apricot sector.

A total of 40 fruits per genotype were randomly collected close to
physiological maturity stage. Fruits were sorted according to their
global firmness, determined by the pressure (kPa) required to achieve
3% deformation of fruit height with a multipurpose texture analyzer
(Pénélaup, Serisud, Montpellier, France). Fruits were subdivided into
three homogenous lots of four fruits per genotype of contrasting
maturity: commercial maturity stage with pressure from 130 to 80 kPa,
half ripe stage from 80 to 50 kPa and mature fruits with firmness less
than 50 kPa. The physical, physiological and biochemical traits were
measured on these three representative batches for all genotype. The
fruit weight (g) was measured at the same time as firmness. The ground
color (Hue.g) of the non-blushed side (unexposed to sunlight) was
determined using a CR-400 chromameter (Minolta, Osaka, Japan) and
expressed in the CIE 1976 L�a�b�color space (illuminant D65, 0� view
angle, illumination area diameter 8 mm). Hue angle, was computed
using the chromaticity coordinates a� and b� as follows:

Hue ¼ tg21ðb�=a�Þ (1)

The ethylene production rate was assessed as physiological parameter
linked to maturity stage of climacteric fruits. Ethylene production,
expressed in nmol kg21h21, was measured by gas chromatography
after 1 h of confinement in a hermetically closed jar (Chambroy et al.
1995; Bureau et al. 2009). Then, flesh color was measured and fruits
were cut and frozen at -20� for further biochemical analyses. Fruit
stones were weighed individually (kg). Fruit pieces were ground with
an Ultra-Turrax T25 equipment (Ika Labortechnik, Staufen, Ger-
many) to obtain a slurry. The refractive index (RI) which stands for
the solid soluble content (SSC) was determined with a digital re-
fractometer (PR-101 ATAGO, Norfolk, VA) and expressed in �Brix at
20�. Titratable acidity (TA) was determined by neutralization up to
pH 8.1 with 0.1 NNaOH and expressed in meq 100 g-1 of fresh weight
using an autotitrator (Methrom, Herisau, Switzerland). Soluble sug-
ars (glucose, fructose, sucrose) and organic acids (malic acid and citric
acid) were quantified using an enzymatic method using kits for food
analysis (Boehringer Mannheim Co., Mannheim, Germany) and
expressed in g 100g21of fresh weight for sugars and meq 100g21of
fresh weight for acids. These measurements were performed with an
automatic analyzer BM-704 (Hitachi, Tokyo, Japan).

Statistical modeling of the phenotypic data
Statistical modeling of the fruit quality attributes was performed using
R software version 4.0.2 (R Core Team 2020). Significance assessment
of variance components was carried out using ANOVA tests to
determine the significant factors contributing to the phenotypic
variation intended to be included in the adjustment model. In light
of significance tests outcome, phenotypic data were adjusted using
‘lmer’ function provided in lme4 package (Bates et al. 2015) within a
mixed model framework:

yijk ¼ mþ ai þ bj þ dk þ abij þ eijk (2)

In equation 2, yijk is the phenotypic value of the genotype i for the year
j and the maturity group k, m is the overall mean, ai is the random

effect of the genotype i, bj refers to the fixed effect of the year j, dk is
the fixed effect of the maturity group k corresponding to the fruit lot,
abij is the interaction effect of the genotype i and the year j and eijk is
the random residual effect.

Heritability computation
Broad-sense heritability H2 for fruit quality traits, defined as the
proportion of phenotypic variance attributed to additive, dominance
and epistatic patterns, was computed using equation 3:

H2 ¼ s2
g

s2
g þ

s2
gy

ny
þ s2

l
nl
þ s2

y

ny
þ s2

e
ny�nl

(3)

where s2
g is the genetic variance, s

2
gy is the variance attributed to the

interaction between genotypes and years, ny refers to the number of
years and nl is the number of fruit lots.

Genotyping data
Genotyping by sequencing, performed according to the protocol
described by Elshire et al. (2011), was carried out within the Fruit-
SelGen project. Regarding the high level of synteny between the
apricot and peach genomes, the fastq sequences were aligned to the
peach genome (Verde et al. 2013). Raw data filtering, sequence
alignment and variant calling were performed using GATK software
(Genome Analysis Toolkit) (McKenna et al. 2010). The outcome of a
further filtering process using VariantAnnotation package
(Obenchain et al. 2014) resulted in a set of 61,030 SNPs with a
genotype quality score greater than 20 and a missing rate lower than
5%. Out of the 184 individuals, 31 individuals exhibiting spurious
genotypic profile were discarded and thus 153 individuals were kept
for downstream analysis. SNP markers were coded as 0, 1 and 2,
according to the number of copies of the alternative allele and missing
marker information was imputed as the mean of the genotypic scores
of non-missing data at the level of each maker.

Construction of the linkage maps
The advent of genomic selection to breed for apricot quality traits
requires a better understanding of their genetic architecture. How-
ever, up to now, the genetic determinism underlying fruit quality in
apricot was scarcely investigated (Ruiz et al. 2010). Thus, linkage
mapping was performed in order to uncover the genetic architecture
of the 10 fruit quality traits. Prior to QTL identification, two genetic
linkage maps were constructed for the full-sib progeny using a
pseudo-test cross mapping strategy (Grattapaglia and Sederoff
1994). The whole set of 61,030 SNPs was filtered according to
Mendelian inheritance, and those presenting strong deviation from
Hardy-Weinberg equilibrium (p-value , 1 · 1026) were discarded
using the function filterSegreg provided by rutilstimflutre package
(Flutre 2015). Afterward, the markers which depicted more than 1%
of missing information and more than 1% of genotyping errors were
eliminated and linkage group (LG) clustering, marker ordering and
genetic distance calculations were achieved by means of mstmap.da-
ta.frame function under ASMap package (Taylor and Butler 2017).
Maps construction was performed using Kosambi’s mapping func-
tion and a logarithm of the odds ratio (LOD) of 3.

QTL detection
In order to provide insights into the genetic architecture of the target
traits, we performed a composite interval mapping strategy using
R/qtl package (Broman et al. 2003) with the aim of identifying the
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genomic regions underpinning apricot fruit quality. In this respect,
1,000 permutations were undertaken with a significance level set at
0.01 in order to identify putative QTL and determine the threshold of
LOD scores. Then, the part of phenotypic variance explained by SNPs
significantly linked to target traits was estimated. Additionally, a joint
QTL detection analysis was performed on two independent datasets
recorded in 2006 and 2007 with the aim of assessing the stability of
QTL associated to the adjusted means corresponding to the pheno-
typic records. The graphical representation of the two genetic maps as
well as QTL-linked markers was drawn using MapChart 2.3 software
(Voorrips 2002).

Univariate genomic prediction modeling
Prediction of the genomic estimated breeding values was performed
using a baseline model where the genomic information as well as
the phenotypic records were fitted in order to estimate marker effects
and thus the breeding values:

y ¼ Xbþ Zuþ e (4)

In equation 4, y is the vector of the phenotypic records, X is an
incidence matrix for fixed effects relating fruit quality to the
vector of fixed effects b, b is a vector of fixed effects estimates, Z is
an incidence matrix for random effects relating fruit quality to the
vector of random additive genetic effects u. Z is inferred from
SNPs’ allelic dosage for each individual coded as 0, 1 and 2 accord-
ing to the number of copies of the minor allele. The term u is the
vector of random effects and e denotes the vector of random
errors.

Random SNP effects were assumed to follow a normal distribution
u � N (0, Is2

u) and random residual effects a normal distribution e�
N (0, Is2

e ) with I is the identity matrix, s2
u is variance of random

effects and s2
e residual variance. GEBVs were computed as the sum of

estimated marker effects multiplied by the corresponding allelic
doses, as follows:

GEBVi ¼
Xn
j¼1

Z’
ijûj (5)

In equation 5, Z’
ij denotes the matrix of allelic doses for the ith

individual in the validation partition at the jth locus and ûj is the
estimated effect at the jth locus.

Cross-validation procedure
The performance of prediction, mirrored in the predictive accuracy
for the 10 key quality traits, was assessed using a cross-validation
strategy where data were randomly partitioned into two subsets: 75%
of the reference set was assigned to the training set intended to
calibrate the prediction model and the remaining 25% was used as the
validation set whose phenotypes were assumed to be unknown. This
cross-validation scheme was iterated 100 times where samples were
drawn with replacement from the reference set. Pearson’s correlation
between predicted phenotypes and the observed ones was used to
determine the accuracy of the predicted phenotypes.

Factors controlling genomic prediction accuracy (PA)
As several parameters control the prediction performance such as
statistical models, training population size and marker density, these
parameters were investigated using randomly drawn subsets of the
reference dataset in order to point out the factors governing the
potential variation in PA, to assess their respective effect.

Impact of statistical prediction models: Within the framework of
genomic prediction, various statistical methods have been proposed
in literature. These models share the same prediction equation for
the estimation of the GEBVs while they are grounded on different
assumptions concerning markers effects. Five Bayesian models were
explored: Ridge regression best linear unbiased prediction (RR-
BLUP) model implemented in the rrBLUP package (Endelman
2011) as well as Bayes A, Bayes B, Bayes C, Bayesian LASSO (BL)
and Bayesian ridge regression (BRR) implemented in the package
BGLR (Pérez and de los Campos 2014).

Genomic prediction models vary in their assumptions regard-
ing marker effects. RR-BLUP model postulates that all SNPs have
identical variance with small but non-zero effect. All marker
effects are homogeneously shrunk toward zero but markers are
allowed to have unequal effects (Desta and Ortiz 2014). Unlike
RR-BLUP, Bayesian models posit that each SNP has its own
variance. Under Bayes A model, markers effects follow a normal
distribution and variances follow a scaled inverted x2 distribution
(Meuwissen et al. 2001). Similar to Bayes A, Bayes B yields a scaled
inversed x2 with p . 0 so that several SNPs have zero effect.
Unlike Bayes A, Bayes B applies both shrinkage and variable
selection methods. Bayes A and Bayes B are both characterized
by a prior probability ðp) that a SNP has zero effect and a
probability (12p) of marker effects that are shrunk toward zero.
In Bayes A, all markers have non-zero effect p = 0. On the
contrary, Bayes C states that the prior of zero SNP effects p is
considered as unknown. Similar to Bayes B model, Bayes C applies
both shrinkage and variable selection. But, unlike Bayes B, Bayes C
is characterized by a Gaussian distribution (Desta and Ortiz 2014).
BRR model, a Bayesian version of Ridge regression, assumes non-
zero and normally distributed marker effects and equal marker
variances. Similar to RR-BLUP, BRR applies a homogenous shrink-
age across markers (de los Campos et al. 2013). As for Bayesian
LASSO (BL), the Bayesian version of LASSO, it posits a compromise
between Lasso and ridge regression (Park and Casella 2008). BL
assumes a double exponential distribution of marker variances
(Desta and Ortiz 2014).

Impact of training population (TP) size: In order to explore the
impact of population size on PA, we used three randomly drawn
subsets of 43, 76, and 115 individuals corresponding to 25%,
50% and 75% of the respective study population to elaborate the
prediction model and thus compute breeding values of the
remaining individuals.

Impact of marker density: Furthermore, we assessed the extent to
which randomly selected marker subsets of different sizes, from 1 to
100% could affect the accuracy of prediction.

Genomic prediction optimization
Herein, we assessed two prediction strategies with a view to the
improvement of PA.

Accounting for genetic architecture: The first optimization scenario
made use of the information brought by QTL mapping. Thus, SNPs
tightly linked to QTL with medium to large effects were included in
the prediction models as fixed covariates in order to assess the PA.
The genomic prediction model which accounts for prior information
on genetic architecture is defined as:

y ¼ X’b’þ Z’u’þ e (6)
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where y is the vector of phenotypic observations, X’ is the design
matrix for fixed effects linking phenotypes to allelic doses of SNPs
tagging QTL, b’ is the vector of allelic doses of SNPs closely linked to
QTL, Z’ is the design matrix for random effects linking phenotypes to
the remaining SNPs, u’ is the vector of allelic doses of the remaining
SNPs and e is the vector of residuals.

The first phase of analysis was dedicated to QTL detection within
the training population that was randomly drawn using 75% of the
study population. The identified QTL were subsequently included in
genomic prediction models. This procedure was repeated 100 times.
The baseline model that includes QTL as fixed-effect covariates
attributed different weights to SNPs according to their linkage to
QTL. Accordingly, we aimed at assessing the potential of prediction
models that treated all SNPs as random and those that placed greater
weights on QTL.

Multivariate genomic prediction: A second scenario dedicated to
optimizing genomic selection accuracy is the multi-trait prediction
implemented using the R package ‘sommer’ (Covarrubias-Pazaran
2016), which provides a framework for fitting multivariate pre-
diction models. Hence, this prediction strategy was performed
using Genomic BLUP (GBLUP) model whose equation is provided
in equation 7:

yi ¼ Xibi þ Ziui þ ei (7)

where yi is a N · t vector of the phenotypic records for trait i with i =
1, . . ., t, X is an incidence matrix for fixed effects relating fruit quality
to the vector of fixed effects bi, which is a vector of fixed effects
estimates, Z is an incidence matrix for random effects relating fruit
quality to vectors of random additive genetic effect ui, ui is a vector of
random effects and ei denotes the vector of random errors.

The implementation framework of multi-trait models follows that
of (Maier et al. 2015) and (Covarrubias-Pazaran et al. 2018):

y1 ¼ X1b1 þ Z1u1 þ e1   for trait  1
y2 ¼ X2b2 þ Z2u2 þ e2 for trait  2
yt ¼ Xtbt þ Ztut þ et for trait t

(8)

For trait i (i = 1. . .t), random effects ui and ei, fitted within
multivariate response model, are assumed to be normally distributed
with mean zero with u � Nð0;As2

u) and e � Nð0; Is2
e ).

AssumingA is the additive genomic relationship matrix computed
according to (VanRaden 2008), as:

A ¼ WW’=2
X​

pið12 piÞ (9)

In equation 9, W is the matrix of marker alleles coded as -1, 0 and
1 for homozygote, heterozygote and homozygote individuals, re-
spectively, pi is the allele frequency of marker i.

Within this context, components of prediction model follow
multivariate normal distribution with y � MVN (Xb;V), ui �
MVN (0;

P
u
5A) and ei � MVN (0;

P
e
5R).

where
P
u
is the variance-covariance matrix for marker effects,

P
e

is the variance-covariance matrix for residual effects,5 is Kronecker
product of variance-covariance matrices.

with        y ¼
y1
y2
. . .
y t

2
64

3
75 X ¼

X1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Xt

2
4

3
5 (10)

The phenotypic variance covariance matrix (V) is denoted as:

V ¼
Z1Ks

2
u1 t1Z

’
1 þ Z1Rs

2
et1Z

’
1 ⋯ Z1Ksu11;tZ

’
t þ Zt1Rse1;tZ

’
ti

⋮ ⋱ ⋮
Z1Ksu11;tZ

’
t þ Z1Rse1;tZ

’
t ⋯ ZtKs2

u1 t Z
’
ti þ ZtRs2

et Z
’
t

2
64

3
75

(11)

where K denotes the covariance matrix for the Kth random effect and
R = I is an identity matrix for the residual term. The terms s2

uki
and s2

ei
are the genetic and residual variance of trait I, sukij and seij are the
genetic and residual covariance between traits i and j with i = 1,. . ., t
and j = 1, . . ., t.

Prediction of focal traits within the validation partition was
grounded on two multi-trait methods according to the type of proxy
predictand as described in Michel et al. (2018). Proxies were either
phenotypic values or estimated genetic values of the secondary trait.

The second method consisted on combining single-trait predic-
tions into a selection index based on two stepmethod. First, GEBVs of
proxies were computed via single-trait baseline model described in
equation (4). The vector of GEBVs was, subsequently, included as
covariates in the prediction model in order to predict the trait of
interest. GEBVs for focal trait are weighted by GEBVs of proxy trait.

GEBVi ¼ xibproxy þ ui (12)

where ui denotes the random genetic effect of the ith individual, xi is
the GEBV for secondary trait being proxy of the ith individual and
bproxy is the estimated fixed effect of the secondary trait.

These two methods aimed at assessing the performance of multi-
trait prediction that hypothetically enables indirect selection for
costly and difficult-to-record traits.

In order to further assess the performance of multi-trait models in
comparison with single-trait models described in equation (4),
missing values were randomly included in the training partition,
with an increasing missing rate ranging from 0 to 90% for the focal
trait.

Data availability
Supplemental data are available in Files S1-8. File S1 contains the raw
phenotypic data. Descriptive statistics of phenotypic data are pre-
sented in File S2 .File S3 contains the estimations of trait heritability.
The genotypic data are available in File S4. The results of QTL
detection are summarized in File S5 and the two genetic maps are
provided in File S6. Pairwise genetic correlation between the traits are
available in File S7. R scripts are provided in File S8.

Supplemental material available at figshare: https://doi.org/
10.25387/g3.13050107.

RESULTS

Exploration of the phenotypic data
The distribution of phenotypic values according to the maturity stage
(Figure 1A) reflects the quantitative determinism of most apricot fruit
quality traits, except for ethylene production rate which exhibited a
skewed distribution and was adjusted with a logarithmic transfor-
mation to restore its normal distribution. Continuous distribution
of the phenotypic records points to polygenic inheritance of most
traits and a potential contribution of several QTL to the phenotypic
variation. The apricot quality traits were positively affected by
maturity (Figure 1A). The average phenotypic values for fruit RI
and sucrose content increased from 13.7 to 15 �Brix and from 5.5 to
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7.0 g 100 g-1 of fresh weight respectively, while TA decreased slightly
from 25.9 to 21.8 meq 100 g-1 fresh weight. A sharp rise in the
ethylene production rate was observed throughout ripening, which
corresponds to a 94% increase from group 1 to group 3. Likewise,
Hue.g changed with maturity stage, the average value of which
decreased from 73 to 71 degrees. The range of variability of pheno-
typic values varied from 8.5% for Hue.g to 30.4% for fructose content.
The extent of phenotypic variation reflects the diversity within the
genetic pattern of the study population issued from two varieties with
contrasted fruit characteristics.

The partition of the phenotypic variance into different sources of
variation (Figure 1B) highlights the significant contribution of the
year effect (from 0.1% for glucose to 13.5% of the sum of squares for
malic acid) as well as the fruit maturity stage modeled by fruit groups
(from 0.01% for fructose to 18.6% of the sum of squares for ethylene).
The highest contribution to the phenotypic variation is attributed to
the genetic pattern reflected in the genotype effect (from 38.4% for
sucrose to 72.9% of the sum of squares for glucose) as well as to the
interactions between genotype and year (from 8.2% for ethylene to
25.6% of the sum of squares for sucrose). This trend was endorsed by
the moderate to high heritability estimates of apricot quality traits
(File S3), with broad-sense H2 ranging from 0.56 for sucrose content
to 0.92 for glucose content. Moreover, analysis of apricot fruit qual-
ity traits revealed high positive pairwise correlations between TA
and Citric.A (r = 0.83), RI and Sucrose (0.73), Glucose and Fructose
(r = 0.56), RI and Fructose (r = 0.50) and Ethylene production and
Citric.A. (r = 0.47) and Ethylene production and Malic.A. (r = -0.44)
(Figure 2).

Linkage map construction
The linkage mapping for apricot fruit quality was performed accord-
ing to a pseudo-testcross mapping strategy. Beforehand, markers

filtering was implemented according to Mendelian segregation lead-
ing to a final set of 4,922 SNPs, of which 2,311 were heterozygous for
Goldrich and 1,395 were heterozygous for Moniqui. Then, we applied
a stringent quality control by removing markers presenting more
than 1% of genotyping error. A total of 366 SNPs was retained for
Goldrich and 250 SNPs for Moniqui. Hence, two parental linkage
maps were generated. SNPs mapped for Goldrich were distributed on
eight LGs, which present an overall length of 562 cM and an average
distance of 1.6 cM between adjacent SNPs. For the male parent
Moniqui, the genetic map spanned an overall length of 842.3 cM with
an average spacing of 3.5 cM between SNPs. The 250 SNPs mapped
for Moniqui were positioned on 10 LGs, where chromosomes 1 and
7 were split into two LGs each.

QTL detection
The linkage analysis was performed using BLUPs. The across-years
analysis undertaken using composite interval mapping revealed
20 significant QTL spread over all LGs except LGs 5 and 8 (Figure
3), which explained from 7.6% (TA) to 51.2% (Hue.g) of the observed
phenotypic variance and whose peak LOD values varied from 3.44
(TA) to 23.8 (Hue.g) for the 10 fruit quality traits (Table S4). Two
major QTL, that explain 23.1% and 21.6% of the phenotypic vari-
ability, were detected for RI. One major QTL explaining 51.2% of the
observed variability was found for Hue.g, one major QTL explaining
43.7% for Ethylene, one major QTL explaining 24.6% for Citric.A and
one major QTL explaining 22.9% for Sucrose.

With reference to the annual linkage analyses, 19 QTL were
detected for apricot fruit quality in 2006 and 19 QTL in 2007. Seven
QTL showed stability across years, being consistently detected in
2006 and in 2007. The amount of explained variance ranged from
7.9% (Ethylene) to 46.1% (Hue.g) for 2006 and from 0.5% (Fruit
weight) to 46.7% (Hue.g) for 2007, while LOD values varied from 3.3

Figure 1 Exploration of the phenotypic data: distribution of phenotypic values for the 10 apricot quality traits in the Go X Mo progeny (A) and
components of the phenotypic variation with reference to genotype (G) effect, year (Y) effect, G·Y interaction and fruit stage of maturity (B).
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(TA) to 20.5 (Hue.g) for 2006 and from 3.5 (TA) to 20.9 (Hue.g) for
2007. Detailed information is provided in Files S5 and S6.

In terms of colocalization, QTL for Sucrose coincided with
QTL for RI on LG2 for Moniqui and on LG4 for Goldrich, while
QTL for TA coincided with QTL for Citric.A on LG7 for Moniqui,
with QTL for Glucose on LG6 for Goldrich and with Ethylene on
LG2 for Goldrich (Figure 3). QTL for RI and Ethylene colocalized
on LG2 for Moniqui. In addition, QTL intervals for Malic.A,
Sucrose, Fructose, RI, Ethylene and Hue.g presented an overlap
on LG 2 of Moniqui parental linkage map. Finally, QTL associated
to Glucose and TA coincided on LG6, while those for Fructose,
Ethylene and F.weight overlapped on LG1 of Goldrich parental
linkage map.

Genomic prediction accuracy
The GS accuracy was assessed using different statistical models,
different sizes of training population and different subsets of markers

randomly distributed along the genome. Results are provided in
Figure 4.

Factors controlling genomic prediction accuracy

Impact of statistical prediction models:We investigated prediction
performance for six models (RR-BLUP, Bayes A, Bayes B, Bayes
C, BL and BRR). Across the traits, the overall average PA varied
from 0.31 with BL (for Glucose) to 0.78 with RR-BLUP (for
Ethylene) (Figure 4A). RR-BLUP outperformed Bayes A, Bayes B,
Bayes C, BL and BRR for six traits out of 10 (F.weight, Ethylene,
RI, Sucrose, Fructose and Malic.A). For three traits (Glucose, TA
and Citric.A) similar PA was yielded using RR-BLUP and Bayes
A, while Bayes B exhibited the best prediction performance for
Hue.g. BL, BRR and Bayes C models provided similar prediction
performance across all traits. Among the 10 apricot fruit quality
traits, Glucose and TA displayed the lowest average PA regardless
of the investigated model.

Figure 2 Matrix of pairwise correlations: Bivariate scatterplots (lower off-diagonal) and correlation values between phenotypic values (upper off-
diagonal) for 10 apricot fruit quality traits. The distribution of adjusted phenotypic values is shown in the diagonal.
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To further explore the impact of statistical models on prediction
performance, we assessed the magnitude of variation appraised by
standard deviation of PA of the testedmodels. Averaged over 10 traits,
RR-BLUP showed the lowest variation in PA (0.09) and BRR the
highest (0.11). The lowest variation in PA was noted for Ethylene
(0.05) and Citric.A (0.09) and the highest variation for Glucose (0.15)
and Fructose (0.14).

Then, assessment of variation in PA according to factors such as
marker density and training population size was performed with
RR-BLUP model, which represents an optimal compromise between
prediction performance and computational time.

Impact of training population (TP) size: To assess the impact of TP
size on accuracy, we performed genomic prediction using 43, 76 and
115 individuals. As shown in Figure 4B, the increase in TP size
resulted in a substantial increase in PA, which ranged from 11 to 24%
as a response to the increase in TP size from 25 to 75%.

Impact of the number of markers: PA increased with the number of
markers, regardless of the trait genetic architecture, and became
steady reaching a plateau at about 6,103 SNPs corresponding to
10% of the total number of markers (Figure 4C). No significant
improvement in accuracy was noted when more than 6,103 SNPs
were used and with only a rather small number of markers, the
model was able to accurately predict the phenotypes in the
validation set. Conversely, the average PA dropped from 0.55
to 0.25 across traits when the number of markers used in the
prediction model dropped from 6,103 to 100, and the drop was
steeper when the number of SNPs was below 50. In addition,
decreasing the number of markers resulted in an increase in the
variability of PA for all the traits under investigation. For instance,

for ethylene production, the standard deviation ranged from 0.24
for 50 SNPs to 0.06 for 61,030 SNPs. Furthermore, it should be
noted that traits with a rather simple genetic architecture due to
the contribution of major QTL to the phenotypic variation such as
Ethylene, RI as well as Citric.A were the most sensitive to the
variation of the number of markers.

Optimization of genomic prediction

Optimization of the GS models: We investigated the effect of in-
tegrating prior knowledge about the trait genetic architecture on
the accuracy of genomic prediction. The prediction performance of
models in response to the inclusion of QTL significantly linked to the
traits of interest varied across models and traits (Figure 5). This
optimization approach resulted in a consistent gain in accuracy for all
traits with the exception of F.weight. Accuracy gain derived from
models with QTL as fixed effects in comparison with models with
markers as random effects was more pronounced for Hue.g for which
adding two QTL explaining a substantial proportion of phenotypic
variance resulted in an accuracy gain of 25.8% across the six in-
vestigated models. Similarly, for ethylene production, upweighting
major QTL improved accuracy by 9.4%. The magnitude of gain in PA
was tightly linked to the proportion of variance explained by QTL
added to prediction models with R2 = 0.67. Furthermore, models built
with regard to trait genetic architecture also permitted to enhance
PA for sugars and organic acids, for which gains ranged from 2.3 to
10.5%. Nevertheless, the integration of QTL as fixed effects in the
models slightly decreased the prediction performance for F.weight,
with decreases ranging from -2.1% to -0.1%. Furthermore, the pre-
diction models differed in their response to the integration of prior
genomic information. The gain in PA ranged from 4.6 to 10.3%.

Figure 3 QTL detection performed on adjusted phenotypic values of 10 apricot fruit quality traits according to a pseudo-test cross mapping
strategy where two genetic linkage maps were constructed for Goldrich and Moniqui. A joint linkage analysis was carried out across years on two
independent datasets recorded in 2006 and 2007. On the y axis, positions of SNPs significantly linked to targeted traits expressed in cM. On the x
axis, traits distributed across years and genetic backgrounds. Only chromosomes enclosing significant SNPs are represented.
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The highest gain was observed for the BRR model, although
RR-BLUP depicted the lowest increase in PA.

Multi-trait genomic prediction: In order to improve the accuracy of
genomic prediction, we assessed the univariate prediction in com-
parison with multivariate prediction, by leveraging the information
on secondary traits that are easy-to-measure, such as F.weight, Hue.g,
RI and TA, in order to predict the ethylene production rate and the
apricot fruit content in organic acids (Malic.A and Citric.A) and in
soluble sugars (Sucrose, Glucose and Fructose) (Figure 6). Multi-trait
prediction using genetic values yielded improvement in PA notably
for traits which showed high positive pairwise genetic correlations
such as sugars and RI, Citric.A and TA, ethylene and Hue.g. By
contrast, model-based index was approximately equivalent to uni-
variate models for non-correlated traits (Figure 6A). Nevertheless,
multivariate models using phenotypic information on secondary
traits to predict focal traits displayed the lowest overall PA for all the
traits under investigation (Figure 6). Prediction performance for
ethylene production, organic acids and sugars was significantly
improved subsequent to the integration of estimated genetic values
of Hue.g, RI and TA (Figures 6B, 6C and 6D, respectively). The
model-based index showed a gain in accuracy which reached 0.25
for Citric.A. informed by TA (Figure 6D), 0.23 for sucrose content
informed by RI, 0.17 for glucose informed by RI, and 0.08 for
fructose informed by RI (Figure 6C). Nevertheless, the model-based
selection index displayed a slight drop in accuracy when genetic
correlation between secondary traits and focal traits was low. The
decrease ranged from 0.01 to 0.04 for traits where genetic corre-
lation ranged from -0.86 to 0.24.

Further, as depicted in Figure 7, the inclusion of an increasing
percentage of missing data for target traits within the training

partition resulted in a decrease in PA for all the traits in compar-
ison with bivariate models that did not include missing values.
However, bivariate models with 90% of missing data outperformed
single-trait models with 0% of added missing values for Sucrose
and Glucose informed by RI and for Citric.A informed by TA that
yielded strong genetic correlation and for which models were built
using only 11 individuals. Interestingly, bivariate predictions that
modeled jointly Glucose and TA, with 90% of missing values,
exhibited higher accuracy compared to univariate models despite their
strong negative correlation (-0.72). Average gain in accuracy derived
from bivariatemodels conceivedwith only 10% of the training partition
ranged from 2.2% for (Glucose, RI) to 20.5% for (Sucrose, RI). In
addition, the model-based index strategy yielded higher accuracies
with respect to bivariate predictions that model phenotypic values
rather than GEBVs of proxy traits.

DISCUSSION
The objective of our study aimed at investigating GS within a
biparental cross between two apricot varieties Goldrich and
Moniqui contrasting for fruit traits. The emphasis on GS in
apricot breeding stems from the need to deliver genetic progress
by facing constraints that hamper or slow down genetic improve-
ment in this species such as the length of juvenility period and the
complex genetic architecture of several traits of interest. In this
context, our work represents the first evaluation of GS in apricot
with a focus on key fruit quality attributes in order to help
selection decisions within quality-oriented breeding schemes.
Moreover, our study provided new insights into the genetic
architecture of fruit quality parameters for fruit weight, ethylene
production, and the content in soluble sugars and organic acids.
The optimization of genomic PA was also explored by including

Figure 4 Variation in accuracy of genomic prediction for ten apricot fruit quality traits using a random cross-validation (100 replicates). Effect of the
GS statistical model: RR-BLUP, Bayes A, Bayes B, Bayes C, Bayesian LASSOand BRR (A); Effect of the training population size using subsets of 43, 76,
and 115 individuals randomly drawn corresponding to 25%, 50% and 75%of the study population using RR-BLUPmodel (B). Effect of marker density
using randomly selected SNP subsets: 50, 100 and from 1 to 100% out of 61,030 SNPs using RR-BLUP model.
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QTL significantly linked to targeted traits in prediction models
and within a multivariate prediction framework.

Exploration of the phenotypic data
Exploring the phenotypic data revealed that fruit Hue.g and ethylene
production showed skewed distributions, which feeds to the con-
comitant existence of orange skinned fruits with low ethylene pro-
duction and white colored fruits with high ethylene outburst,
reflecting the scope of variation of fruit quality traits within the
Go·Mo progeny. Nevertheless, fruit weight and contents in glucose
and fructose present symmetric distributions coupled with low
standard deviation. A particular variability was found for the sucrose
content, the main soluble carbohydrate derived from photosynthesis,
which accounts for 60–80% of total soluble sugars stored in the
apricot fruit. The related variability could result from source-sink
relationships. Indeed, carbohydrate translocation from source leaves
to ‘non-photosynthetic’ sink organs, notably fruits, depends largely
on agricultural practices such as fruit thinning which tends to
increase the availability of photo-assimilates in the remaining fruits
(Roussos et al. 2011). Therefore, as no thinning was performed in the
Go·Mo progeny, this likely resulted in a stronger competition for
carbohydrates between sink organs thereby affecting fruit weight and
carbohydrate concentration over the two years of observation. In
addition, a broad range of variability was mirrored in Hue.g within
the Go·Mo population, which originates from color-contrasted
varieties, with a variation magnitude that ranges from deep-orange
to white. Indeed, the fruits of Goldrich tend to accumulate colored
carotenoids (b-carotene) while those of Moniqui mainly accumulate
uncolored compounds notably phytoene and phytofluene (Marty
et al. 2005; Adami et al. 2013; Jiang et al. 2019). Likewise, Goldrich
and Moniqui show different climacteric behaviors with regard to
ethylene production that ranges from fruits with a high ethylene

production rate and fast evolution toward maturity (Moniqui), to
fruits characterized by lower ethylene production (Goldrich). With
respect to fruit organic acidity, the Go·Mo progeny exhibited a wide
range of phenotypic variability for TA (from 11.3 to 41 meq 100g-1),
citric acid (from 8.0 to 45.3 meq 100g-1) and malic acid (from 4.1 to
17.9 meq 100g-1). The citric to malic acid ratio ranged from 0.9 to 8.5
with a predominance of citric acid in Go·Mo. These results are in
accordance with previous studies expressing large genetic diversity in
apricot germplasm (Gurrieri et al. 2001; Bassi and Audergon 2006).

It is noteworthy that the genotype effect contributes significantly
to the variability of target traits within the Go·Mo population.
Therefore, the phenotypic variation linked to apricot fruit quality
is largely due to genetic differences and thus the contribution of
genetic pattern to the overall phenotypic variance, which is confirmed
by estimation of trait heritability. Indeed, except for the sucrose
content, all the apricot fruit quality traits were highly heritable.
Moreover, the quality attributes varied in response to the fruit
physiological stage, the year effect and the genotype · year interac-
tion. Hence, components of phenotypic variance resulted from an
interplay of several factors including both genetic and environmental
conditions. However, the phenotypic variation differed between
traits. For instance, climatic fluctuations tended to exert minor effect
on sucrose, glucose and fructose contents, although genotype by year
interaction highly contributes to the expression of sugar-related traits.
Contrastingly, acid-related traits (TA, contents in citric and malic
acids) were considerably dependent on the year effect. This trend has
been confirmed by several studies, which highlighted that a higher
acidity pertains to fruits that were produced under cold and wet
weather while fruits with low acid flavor are produced under warmer
temperatures (Wang and Camp 2000; Gautier et al. 2005; Etienne
et al. 2013).

Figure 5 Accuracy of genomic prediction for 10 apricot fruit quality traits using six statistical models treating all SNPs as random effects (boxplots
with solid line type) and models where SNPs, significantly linked to apricot quality traits within randomly drawn training partitions, were considered
as fixed effects (boxplots with dashed line type). Prediction accuracies were computed using a random cross-validation scheme replicated
100 times.
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QTL detection
The genetic architecture underlying the fruit quality attributes has
been assessed in order to deepen our knowledge of the genomic
regions harboring QTL for apricot quality. The exploration of genetic
determinism of target traits revealed highly stable QTL across the two
years for all traits under consideration, except for sucrose and glucose
contents. Several QTL were identified at the same position on the two
parental maps for eight traits out of 10, except for the contents in
glucose and citric acid, which suggests the stability of these QTL over
genetic backgrounds. Three QTL clusters were identified: (i) ethylene,
fructose and fruit weight on LG1 of Goldrich, (ii) ethylene, TA, citric
acid andmalic acid on LG2 of Goldrich and (iii) ethylene, RI, fructose,
sucrose, on one hand, malic acid and Hue.g on the other hand on LG2
on Moniqui. QTL clusters might arise from pleiotropic effects of one
QTL or the presence of tightly linked QTL (Eduardo et al. 2011). QTL
linked to ethylene production and acid-related traits which clustered
on LG2 on Goldrich as well as QTL clustered for sugar-related traits,
organic acids and ethylene on LG2 Moniqui underline overlapping
patterns in the expression of apricot quality attributes, notably for
ethylene. Indeed, ethylene is a phytohormone interfering in several
metabolic pathways and whose biosynthesis is coupled with a re-
spiratory burst. Linked with subsequent ethylene signal and related
transcription factors, several physical and biochemical changes
occur in fruit maturation such as chlorophyll degradation, carot-
enoid accumulation and modulation of sugar content, as well as
changes in organic acids profiles (Paul et al. 2012). Additionally,
QTL colocalization between ethylene production and organic
acids content in the Go·Mo progeny, confirmed by significant
phenotypic correlations, demonstrates that these traits are likely
to segregate together so that the fruits whose ethylene production
is high, can also produce large amounts of citric acid and low

amounts of malic acid. Our results support the causality link
between ethylene production and organic acids, which is consis-
tent with several studies postulating that metabolic pools of citric
and malic acids are under ethylene regulation (Fan et al. 1999;
Defilippi et al. 2004; Gao et al. 2007; Valdés et al. 2009; Etienne
et al. 2013; Batista-Silva et al. 2018).

A major and robust QTL was mapped for Hue.g, located on the
LG3 of Goldrich supporting results of Socquet-Juglard et al. (2013).
Similarly, different studies on Prunus species have also reported that
LG3 is associated with skin and flesh pigmentation in conjunction
with carotenoid and anthocyanin contents (Frett et al. 2014; Salazar
et al. 2017; García-Gómez et al. 2019). Further, a cluster including
QTL for ethylene and Hue.g was only detected for Moniqui. This is in
adequacy with the results of Marty et al. (2005) according to which
the synthesis of colorless carotenoid precursors, phytoene and phyto-
fluene, is upregulated by ethylene, while b-carotene, the main colored
carotenoid pigment, is ethylene-independent. This trend has been
confirmed by a steeper expression of carotenogenic genes in white
fruits in comparison to orange ones (Marty et al. 2005).

Genomic prediction accuracy
Our investigation of the potential of GS for apricot fruit quality
revealed that within-family predictions hold a great promise since
accuracies varied across traits within a range from 0.31 to 0.78. Our
results are in accordance with Riedelsheimer et al. (2013) who
evidenced the need to train prediction models using full-sibs for
the validation set. Hence, cross-validation performed within-family
provides richer information than that issued from distant relatives,
given the identity-by-descent (IBD) relationships among full-sibs
(Legarra et al. 2008). Therefore, within-population prediction pre-
sents a valuable tool for the implementation of genomic prediction.

Figure 6 Assessment of multivariate genomic prediction of ethylene production, content in organic acids (malic acid and citric acid) and soluble
sugars (sucrose, glucose and fructose) using F.weight (A), Hue.g (B), RI (C), and TA (D) as proxy predictands in comparison to univariate prediction.
Multivariatemodels leveraged the information provided by secondary traits using either phenotypic values (multi-trait model) or genomic estimated
breeding values (model-based index).
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It allows to achieve higher genomic PA than predictions across multiple
populations (de Roos et al. 2009). However, despite its robustness and
stability, a mainstream pitfall encountered in within-population genomic
prediction lies in its limited flexibility and thus the need for expanding
predictions to multi-population training sets (Schopp et al. 2017).

Moreover, for a full-sib family, the high level of relatedness and
the strong LD between SNPs and causal QTL underlying the traits
under investigation result in high PA. Our results are in accordance
with previous studies that pointed out the importance of the inclusion
of relatedness in the prediction model (Lenz et al. 2017). Interestingly,
the highest PA were obtained for ethylene production rate, a trait
whose direct measurement is time-consuming, making it unsuitable
for high-throughput studies. Conversely, the lowest PA was found for
the fruit content in sucrose, glucose and fructose. This might be
attributed to the non-genetic part of the observed variation due to
environmental factors. Indeed, postharvest performance strongly
depends upon various preharvest factors that modulate the source-
sink relationships. It is noteworthy that the fruit sweetness has a
tendency to increase in response to cultural practices such as fruit
thinning. As sucrose is prominent metabolites in the photosynthetic
carbon scheme, and as the increase in availability of this carbohydrate
is considerably dependent upon fruit load during the secondary fruit
growth phase (Roussos et al. 2011), the lack of precise source-sink
control by thinning strongly impacted the quality of the prediction.

Factors controlling genomic prediction accuracy

Impact of statistical prediction models: Across all prediction models,
the average accuracy for apricot quality traits were moderate to high.
This trend is in adequacy with the extent of linkage disequilibrium

(LD) between SNPs and QTL. Hence, in a single generation cross, as a
limited number of recombination events occurs per meiosis, leading
to large linkage blocks and therefore, more phenotypic records per
chromosome segment are available in order to derive GEBVs which
leads to more accurate predictions (Lorenzana and Bernardo 2009).
Within the framework of model comparison, RR-BLUP tended to
outperform Bayes A, Bayes B, Bayes C, BL and BRR for six traits out
of 10. RR-BLUP proved to be the best-performing statistical model
notably for traits controlled by several QTL that explain each a
small amount of the phenotypic variance. In addition, RR-BLUP is
more efficient with regards its computational speed in comparison
to Bayesian models (Tan et al. 2017). Bayes B showed a superior
prediction performance compared to RR-BLUP for Hue.g where a
QTL accounts for a large proportion of the phenotypic variation.
The aforementioned outcome is in agreement with (Daetwyler
et al. 2010), in which Bayes B gave higher accuracies than GBLUP
when the number of QTL NQTL was low. However, this trend
diminished as NQTL increased past the equivalence point where NQTL

equates to independently segregating chromosome segmentsMe. The
deviation from superiority of RR-BLUP for oligogenic traits is likely
due to the model over-parameterization as a response to fitting a large
number of SNPs to model variation within a trait controlled by few
major QTL (Resende et al. 2012b). Moreover, the performance of
RR-BLUP is due to genetic relatedness captured by markers, due to a
higher proportion of shared alleles between full-sibs as compared to
genetically distant individuals within the training set (Habier et al.
2007). Further, a study driven by Heslot et al. (2012) focused on
comparison of GS models revealed that if predictive performance of
a given model is mainly grounded on kinship such as RR-BLUP,
accuracy decreases much faster in comparison to models based on LD

Figure 7 Evaluation of the multi-trait genomic prediction framework where missing values included within the training partition, with an increasing
missing rate ranging from 0 to 90% of focal traits (Ethylene, Sucrose, Glucose, Fructose, Citric.A. and Malic.A.) predicted using proxy traits
(F.Weight, Hue.G, RI and TA). Multi-trait strategy was modeled using either phenotypic values (multi-trait model) or genomic estimated breeding
values (model-based index) in comparison with single-trait GBLUP model.
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between SNPs and QTL such as Bayesian approaches. This trend is
due to an increase in inbreeding at a faster pace for kinship-based
models compared to LD-based models, owing to the decay of genetic
relationships. Therefore, RR-BLUP is not recommended to approx-
imate marker effects since the contribution of genetic relationships to
the prediction performance is halved each generation. Conversely,
accuracy due to LD pattern is more persistent (Habier et al. 2007).

Impact of training population size: Lowering the TP size led to a
decay in PA. Accordingly, further improvement on PA could be
attained by increasing the total training population size, as a larger
reference set provides more acurate predictions due to less biased
estimation of marker effects. Furthermore, besides the prominent
effect of the size of training set, the design of the reference population
in respect of resemblance between training and validation partitions,
depicts a potent factor that considerably affects prediction perfor-
mance. Thereby, closer relationships between training and validation
populations has been reported to lead to a higher PA. Conversely,
adding genetic diversity within the reference population lead to a
reduction in PA compared with smaller training populations in-
cluding highly related individuals (Riedelsheimer et al. 2013;
Lehermeier et al. 2014; Lorenz and Smith 2015). More importantly,
highly related individuals share long haplotypes and linkage blocks
due to limited recombination events and thereby lead to minor bias
while computing GEBVs within the validation set (Lorenzana and
Bernardo 2009; Hickey et al. 2014; Lozada et al. 2019). Hence, higher
accuracies linked to richer information issued from closely related
individuals rather than distant individuals arise from more precise
estimation of marker effects. Therefore, higher degree of IBD sharing
between full-sibs is likely to provide accurate estimation of genetic
variation for quantitative traits exempt from confounding non-
genetic factors in comparison to genetically distant individuals
(Visscher et al. 2006).

Impact of the number of markers: The number of markers used to
train prediction equation represents a prominent factor that affects
the prediction performance. Hence, the larger the set of markers the
higher the probability to be in LD with QTL controlling target traits,
which provided richer genomic information. This trend has been
shown by de los Campos et al. (2013) who highlighted that the
inclusion of all available markers resulted in a considerable increase of
the proportion of variance explained. Thereby on a broader scope, the
number of SNPs required to obtain accurate predictions depends on
the number of independently segregating chromosome segments Me

as well as the span of LD within the study population (Goddard 2009;
Daetwyler et al. 2010). Nevertheless, in the present study, the PA
tended to reach a plateau for 6,103 SNPs, indicating that only 10% of
the initial markers set were sufficient to capture SNPs-QTL LD,
related to several traits. Our results are consistent with those of
Covarrubias-Pazaran et al. (2018) who showed that a mediummarker
density (500 to 750 SNPs) was sufficient to achieve high accuracy due
to extensive LD typically present in biparental populations. Similarly,
phenotypic records collected in maize biparental populations that
were closely related to the selection candidates, only a small number
of SNPs (200 – 500) and relatively small number of phenotypes
(1,000) were needed to achieve accurate predictions of GEBVs.
Otherwise, in more distantly related populations, 10,000 SNPs as
well as 5,000 to 20,000 records are needed (Hickey et al. 2014). In our
study, no accuracy gain was noted beyond 6,103 SNPs. Similarly,
Hickey et al. (2014) reported no benefit in terms of PA beyond 10,000
SNPs. Further, in an Eucalyptus breeding population of 949 F1

hybrids, no significant accuracy improvement was obtained using
more than 5,000 SNPs to predict growth and wood traits (Tan et al.
2017). In this latter study, only 500 to 1,000 informative, non-
redundant and randomly distributed markers were needed to reach
sufficient coverage of the genome (Tan et al. 2017). More impor-
tantly, our study showed that higher marker density can lead to a
reduction in PAwhatever the trait. This decrease in accuracy might be
attributed to multicollinearity between SNPs due to overfitted pre-
diction models, overestimating the marker effects (Meuwissen et al.
2001; Muir 2007).

Genomic prediction optimization

Optimization of the GS models: The genomic prediction including
QTL mapping outcomes considerably depends on the genetic archi-
tecture of the traits under consideration. Hence, this study showed
that the magnitude of accuracy gain in prediction was heterogeneous
across the traits studied. For instance, for Hue.g, a significantly higher
accuracy was obtained as a result of the inclusion of two QTL that
represent more than 58% of phenotypic variation, compared to
models where all markers were fit as random effects. Similar patterns
were observed for RI and contents in sucrose and fructose due to the
large proportion of genetic variance captured by fixed factors in the
prediction models. Hence, accounting for prior genomic information
provided a steeper increase in accuracy for traits controlled by major
QTL such as Hue.g, fructose, sucrose and RI compared to the other
fruit quality metrics controlled by several QTL explaining lower
proportion of phenotypic variance. Our findings are in agreement
with those of Morgante et al. (2018), who showed that the integration
of a priori information on the genetic architecture underlying quan-
titative trait variation resulted in a valuable increase in accuracy
within samples of unrelated individuals. Similarly, Zhang et al. (2014)
reported that GBLUP informed by the genetic architecture in rice
diversity panel an increased the accuracy by 5.4%. However, when
QTL were modeled as fixed effects in models, a slight decrease in
prediction for fruit weight, glucose and TA was observed, since these
traits are controlled by QTL covering only a small proportion of
variation. An additional feature of these QTL was their instability
across years.

Multi-trait genomic prediction: Within the multivariate genomic
predictions, our findings highlighted that prediction models target-
ing multiple traits are greatly dependent upon genetic correlations.
Thereby, we showed that multivariate models generally provided
more accurate predictions compared to univariate models for
genetically highly correlated traits. Nevertheless, accuracies showed
an equivalent or slight decrease under a low genetic correlation
framework. Similar outcomes were reported by several studies. For
instance, in bread wheat, Michel et al. (2018) exploited the avail-
ability of easy-to-measure traits such as the protein content, which
is genetically highly correlated with costly and labor-intensive traits
linked to baking quality in order to breed for superior genotypes. In
addition, our results are in accordance with those of Calus and
Veerkamp (2011) where the accuracy gain ranged from 0.03 to 0.14,
when genetic correlation of target traits varied from 0.25 to 0.75.
However, multivariate models grounded on phenotypic values per-
formed poorly in comparison to model-based index which accounted
for estimated genetic values despite phenotypic information. An
exception was noted for the prediction of sucrose content informed
by RI, where multi-trait model outperformed the two previously cited
models, given that genetic correlation between sucrose and RI is very
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close to 1, so that the residual correlation between these two traits
is almost null. Besides their superiority with respect to prediction
performance, model-based selection index are computationally less
demanding than phenotype-based multivariate models (Michel et al.
2018). More importantly, the accuracy gain is more pronounced for
slightly heritable traits that are genetically correlated with a highly
heritable trait such as sucrose content (H2 = 0.56), which is highly
genetically correlated to RI (Jia and Jannink 2012; Guo et al. 2014;
Karaman et al. 2018). Furthermore, the drop-off in PA for traits
that are not genetically correlated is attributed to the residual
correlation which potentially adds noise to predictions with respect
to single trait models and thus leads to biased computation of
GEBVs. Our results are in agreement with Covarrubias-Pazaran
et al. (2018), which showed no benefit over single-trait models
under a low genetic correlation framework. Therefore, broad
phenotypic information provided at high-throughput on easy-
to-measure traits such as F.weight, Hue.g, RI and TA could offer
the opportunity to enlarge the selection candidate population. This
potentially enhance the PA for costly and labor-intensive traits.
Hence, multivariate prediction grounded on easy-to-phenotype
traits might help selection decisions and thus potentially deliver
genetic progress notably for perennial species for which the length
of breeding cycles is a significant impediment to genetic improve-
ment process.

CONCLUSION
Our findings highlighted that GS holds a valuable potential with
reference to prediction of fruit quality within a biparental design in
apricot. Indeed, genomic prediction yielded interesting outcomes in
terms of PA which encourages further investigations about valuing
whole-genome information with the aim of assessing agronomical
relevant traits in apricot and potentially orienting strategies toward
the implementation of GS within breeding schemes. Furthermore, the
outcomes of this study provided insights into the genetic architecture
of apricot fruit quality whose integration in prediction models led to a
higher PA. As expected, PA gain is higher for the traits that are
governed by QTL explaining a substantial part of phenotypic vari-
ation. Besides, genomic predictions might be improved by optimizing
factors controlling the predictive performance of GS models such as
larger training populations, for example. However, with reference to
markers’ density, only 6,103 SNPs were enough to reach accurate
predictions. In terms of prediction modeling, RR-BLUP outper-
formed Bayesian models and provided a valuable compromise be-
tween statistical performance and computational time. Moreover,
optimal accuracies were obtained under a multivariate prediction
framework for fruit quality traits that are strongly and positively
correlated to their different proxies, and thus predictions of ethylene
content informed by Hue.g, organic acids by TA and sugars by RI are
more accurate than univariate predictions.

In terms of prospects, regarding that the response of phenotypes
to genomic prediction is tightly linked to the observed variability
within the study population, a greater attention should be paid to
orchard management practices through mastering source-sink rela-
tionships in order to optimize the potential performance of geno-
types. In addition to that, in the present study, conclusions on the
efficiency of GS in apricot were drawn for a biparental design in
which genotypes share the same LD pattern and relatedness between
training partition and validation partition is high. Therefore, further
evidence ought to be assessed in a genetic diversity panel potentially
covering a broader range of allelic combinations of traits of agro-
nomical interest.
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