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Abstract 17 

 18 

In dairy, the usual way to measure feed efficiency is through the residual feed intake 19 

(RFI) method. However, this method is, in its classical form, a linear regression, 20 

which, by construction, does not take into account the evolution of the RFI 21 

components across time, inducing approximations in the results. We present here a 22 

new approach that incorporates the dynamic dimension of the data. Using a multi-23 

trait random regression model, the correlations between milk, live weight, dry matter 24 

intake (DMI) and body condition score (BCS) were investigated across the lactation. 25 
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In addition, at each time point, by a matrix regression on the variance-covariance 26 

matrix and on the animal effects from the three predictor traits, a predicted animal 27 

effect for intake was estimated, which, by difference with the actual animal effect for 28 

intake, gave a RFI estimation. This model was tested on historical data from the 29 

Aarhus University experimental farm (1 469 lactations out of 740 cows). Correlations 30 

between animal effects were positive and high for milk and DMI and for weight and 31 

DMI, with a maximum mid-lactation, stable across time at around 0.4 for weight and 32 

BCS, and slowly decreasing along the lactation for milk and weight, DMI and BCS, 33 

and milk and BCS. At the Legendre polynomial coefficient scale, the correlations 34 

were estimated with a high accuracy (averaged standard error of 0.04, min=0.02, 35 

max=0.05). The predicted animal effect for intake was always extremely highly 36 

correlated with the milk production and highly correlated with body weight for the 37 

most part of the lactation, but only slightly correlated with BCS, with the correlation 38 

becoming negative in the second half of the lactation. The estimated RFI possessed 39 

all the characteristics of a classical RFI, with a mean at zero at each time point and a 40 

phenotypic independence from its predictors. The correlation between the averaged 41 

RFI over the lactation and RFI at each time point was always positive and above 0.5, 42 

and maximum mid lactation (>0.9). The model performed reasonably well in the 43 

presence of missing data. This approach allows a dynamic estimation of the traits, 44 

free from all time-related issues inherent to the traditional RFI methodology, and can 45 

easily be adapted and used in a genetic or genomic selection context. 46 

 47 
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 51 

Implications 52 

This paper proposes a new methodology to estimate feed efficiency in a continuous 53 

manner across the lactation. The efficiency is evaluated from a Residual Feed Intake 54 

derived from a multi-trait random regression model, which allows the coefficients to 55 

vary over time. This approach allows a dynamic estimation of the traits and their 56 

correlations, free from all time-related issues inherent to the traditional methodology 57 

and can easily be adapted and used in a genetic or genomic selection context. 58 

 59 

Introduction 60 

With feed costs representing above 50% of the total costs of dairy production 61 

(European Commission, 2018), the issue of feed efficiency has become a priority for 62 

the sector. The notion of feed efficiency refers to improving the balance between 63 

output (production) and input (feed intake). The most common way to determine feed 64 

efficiency in dairy cattle is through residual feed intake (RFI). First proposed by Koch 65 

et al. (1963), RFI is the difference between the actual feed intake of an animal and its 66 

predicted feed intake based on its performance, i.e. the intake necessary to cover the 67 

demands of the different energy sinks, estimated by regression. By construction, this 68 

method benefits from the RFI being phenotypically independent (or genetically in 69 

case of genetic regression) from its predictors, which theoretically allows RFI to 70 

reflect digestive and metabolic variabilities (Archer et al., 2002; Berry and Crowley, 71 

2013). 72 

Although this definition of RFI is widely used in dairy cattle (Connor, 2015), some 73 

issues remain with this approach. First of all, the time influence on RFI is a key 74 

question. RFI is usually measured between two given days. If the trial duration is too 75 



short, the number of measures will be low and the results of the prediction will not be 76 

accurate. On the other hand, different biological process are involved at the different 77 

lactation stages, in particular body reserve mobilisation in early lactation and 78 

reserves accretion associated with pregnancy. Therefore, regression coefficients 79 

associated with the different predictors are likely to vary when taken at different 80 

lactation stages, leading to a biased assessment of RFI when estimated from point 81 

measures over the whole lactation (Li et al., 2017). Moreover, with the advent of 82 

precision farming technologies, high-frequency time-series measures are becoming 83 

available, and thereby increasingly offer the opportunity to track efficiency. Key 84 

questions in this context are how to deal with changes over time, when to measure 85 

RFI and for how long. A second issue comes from the nature of RFI itself. Being a 86 

residual, in addition to the actual animal efficiency, it contains all the modeling and 87 

measurement errors. Within this context, Fischer et al. (2018) used random 88 

regression on the individual level to isolate the cow-specific part of RFI. However, 89 

they faced some difficulties due to strong correlations between their predictors 90 

(correlations that changed over time during the lactation), which, combined with a 91 

limited dataset size, restricted their modeling and conclusions. 92 

With the aim of solving these two issues, we investigate in this paper the relationship 93 

between intake and its predictors across the lactation using a multi-trait random 94 

regression model on experimental data. With such a model, based on the variance-95 

covariance functions, it is possible to predict intake from the other traits and to 96 

compare this prediction with actual intake. This leads to a consistent definition of RFI, 97 

with regression coefficients free to vary over time. 98 

 99 

 100 



Material and methods 101 

 102 

Population resources and feeding management  103 

Data were collected between 2002 and 2016 at the Danish Cattle Research Centre 104 

(Foulum, Denmark) and shared as part of the GenTORE project 105 

(https://www.gentore.eu). Animals were Holstein cows with lactation rank ranging 106 

from first to third lactation. Cows were housed in a freestall barn with cubicles and 107 

slatted floor and milked in an automatic milking system (AMS; DeLaval, Tumba, 108 

Sweden) allowing free cow traffic. Data were collected during various trial periods 109 

and cows were not nested within trial. They had ad libitum access to a partial mixed 110 

ration (PMR) varying in nutritional content in accordance with the particular trial in 111 

which the cows were involved. The PMR diets used during this period contained the 112 

following ingredients (typical g/kg DM):  rapeseed meal (106), barley (135), dried 113 

sugerbeet pulp (51), grass silage (264), maize silage (422), urea (7), and minerals 114 

(18).  The corresponding chemical composition was (typical g/kg dry matter):  crude 115 

protein (158), neutral-detergent fibre (340), starch (195), sugar (46), crude fat (39), 116 

ash (74), with a Net Energy of Lactation (NEL) of 6.9 MJ/kg DM.  Across the different 117 

feeding trials carried out during this period, diet differences did not exceed +8% of 118 

the average value for crude protein and likewise +15% for NEL. The nutritional 119 

values of the PMR were all within the range of typically recommended requirements, 120 

formulated to support the milk yield level of the herd, and allocated in amounts 121 

allowing approximately 10% orts to ensure ad libitum intake. In addition, cows were 122 

supplemented daily with a maximum of 3 kg of concentrate to ensure voluntary 123 

access to the AMS. These feeding data were already described in previous studies 124 

(e.g. Li et al., 2016; Byskov et al., 2017). 125 



 126 

Phenotypes and data editing 127 

Data from 1 469 lactations of 740 cows were collected. A weekly measurement of 128 

average daily milk yield per cow was obtained from the average of daily milk yield 129 

records per cow in each week. Milk samples were taken weekly for analyses of fat 130 

and protein. On the same basis, the dry matter contents in PMR and concentrates 131 

were analyzed regularly and the compositions were aligned and merged with feed 132 

intake records to obtain weekly dry matter intake (DMI) values for individual cows. 133 

Animals were also automatically weighed at each milking so that BW records were 134 

averaged to obtain a weekly record of body weight (BW) per cow in each week. Body 135 

Condition Score (BCS) was evaluated every two weeks and scored on a scale from 1 136 

to 5. 137 

A corrected milk (cmilk) trait was created following the FAO formula which defines as 138 

a standard a milk with 4.0% fat and 3.3% protein (FAO, 2010): 139 

Corrected milk (kg) = raw milk (kg) * (0.337 + 0.116 * Fat content (%) + 0.06 * Protein 140 

content (%)) 141 

To avoid nonsensical performances, a filter was used to discard records that differed 142 

too much from the previous record registered in the same lactation for that animal. 143 

Therefore, records implying differences between two consecutive records higher than 144 

12 L for cmilk, 50 kg for the liveweight, 7 kg for the daily dry matter intake and one 145 

unit of BCS were discarded. These threshold values were defined after studying a 146 

previous dataset with similar performance level. Less than 2% of the data were 147 

discarded for cmilk and BCS and about 4% for weight and DMI. A second step of 148 

filtering was made on the duration of data collection for each lactation independently: 149 

only animals that had been recorded for a minimum duration of 200 days during their 150 



lactation were kept. This dataset, that was used to conduct the main analyses, 151 

contains 40 619 records of cmilk, 40 662 records of weight, 42 177 records of DMI 152 

and 19 661 records of BCS, which represents about 73% of the overall records. 153 

Additionally, the overall records were used to assess the robustness of our model in 154 

case of missing data and the details of this analysis are presented in supplementary 155 

material S1.  156 

 157 

 158 

Statistical analysis 159 

Multi-trait random regression model.  160 

To analyze the relationship of the four traits along the lactation, a multi-trait random 161 

regression analysis was performed using the Wombat software (Meyer, 2007). The 162 

model used was as follow: 163 

 164 

����� = �� +  
 ���������
���  +  
 ���������

��� + ����� 165 

 166 

Where ����� is the observation of the r-th trait, �� is the fixed effect of the i-th month-167 

year combination corresponding to the record date, ��� is the n-th fixed regression 168 

coefficient specific to parity class l, ��� is the n-th random regression coefficient of 169 

the animal m, ����� is the n-th coefficient of Legendre polynomial of degree (d = 2 170 

for the animal effect and d= 3 for the parity class), evaluated at day in milk (DIM) t,  171 

and ����� is the random residual effect. Residual effects were assumed to have a 172 

homogenous residual variance. Successive lactations of the same animal were 173 



considered separately, as if they were from different animals, implicitly ignoring any 174 

permanent environmental effect across lactations. 175 

From the random part of the equation, we get as outputs the three coefficients of the 176 

Legendre polynomial at each time point, as well as the animal solutions. For each 177 

trait, we can then obtain at each time and for each cow an estimated animal effect. 178 

These animal effects will be denoted  ������(t), �������(t), �� !(t) and �"#$(t) in the 179 

article.  180 

Variance-covariance components of the random regression were obtained and 181 

gathered into a 12 by 12 matrix, corresponding to the four traits with three Legendre 182 

coefficients each. Variances (%��&��'���� and covariances ((��&��',��&������� for each 183 

time point were estimated by pre- and post-multiplying the variance-covariance 184 

matrix by the corresponding time coefficients of the Legendre polynomials using the 185 

following formulas: 186 

%��&��'��� = *+��t� +'�t� +��t�- . /&0� ��&��' /&0&1��&��' /&0&2��&��'/&0&1��&��' /&1� ��&��' /&1&2��&��'/&0&2��&��' /&1&2��&��' /&2� ��&��'
3 4+��t�+'�t�+��t�5 187 

 (��&��',��&������ = 188 

*+��t� +'�t� +��t�- 6/&0&0��&��',��&��� /&0&1��&��',��&��� /&0&2��&��',��&���/&0&1��&��',��&��� /&1&1��&��',��&��� /&1&2��&��',��&���/&0&2��&��',��&��� /&1&2��&��',��&��� /&2&2��&��',��&���7 4+��t�+'�t�+��t�5 189 

 190 

These variance-covariance components were then used to calculate correlations 191 

between traits across the lactation.  192 

 193 

Derivation of Residual Feed Intake.  194 



Using elements from the 12 by 12 variance-covariance matrix and the animal effects 195 

for cmilk, weight and BCS, it is possible to estimate a predicted intake from the other 196 

variables by a matrix regression. If we use the following notation for the variance-197 

covariance matrix at a given time:  198 

 199 

899
9: %� ! *(� !,����� (� !,������ (� !,"#$-
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 201 

then a predicted animal effect for DMI can be calculated from a regression similarly to 202 

what was proposed by Kennedy et al. (1993), but in its matrix form with: 203 

 204 

aBCDEF∗ �t) = ?'��t� ∗ ?��HI �t� *4  ��JK+L�t� �M�KNℎ��t��P(Q�t� 5 205 

 206 

Where aBCDEF∗  is the predicted animal effect for DMI at time t. Finally, we can construct 207 

a RFI estimate which is the difference between the actual animal effect for DMI and 208 

the one predicted from the three other variables:  209 

RFI(t) = �� !(t) - aBCDEF∗ �t) 210 

 211 

As this RFI is dependent on time, we also defined RFItot as the averaged RFI of each 212 

animal over the whole lactation. 213 

 214 

Use of the outputs to study changes between times.  215 

One could also consider that changes of BCS are more important than BCS itself in 216 

the estimation of RFI. To examine this point, we also estimated RFI∆BCS(t) where all 217 



the occurrences of BCS-related variables are replaced by ∆BCS-related variables. 218 

∆BCS(t) is defined as the difference of BCS between two consecutive time points. In 219 

the above formulas, it translates as a difference of Legendre polynomial coefficients 220 

as follows for the animal effects, the variances and covariances, respectively: 221 

�∆"#$���= *+��t� − +���H'�- ∗  â��_VWX + *+'�t� − +'��H'�- ∗  â�'_"#$ + *+��t� − +���H'�- ∗  â��_"#$ 222 

 223 

%∆"#$���224 

= *+��t� − +���H'� +'�t� − +'��H'� +��t� − +���H'�- . /&0� "#$ /&0&1"#$ /&0&2"#$/&0&1"#$ /&1� "#$ /&1&2"#$/&0&2"#$ /&1&2"#$ /&2� "#$
3 4+��t� − +���H'�+'�t� − +'��H'�+��t� − +���H'�5 225 

 226 

(∆"#$,��&������ = 227 
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 229 

And therefore, the predicted animal effect for DMI is calculated from: 230 

aBCDEF∗ �t) = ?'��t� ∗ ?��HI �t� *4  ��JK+L�t� �M�KNℎ��t��∆P(Q�t� 5 231 

where the B matrix contains the ∆BCS-related variances and covariances. 232 

The same transformation was also performed on changes of BW. 233 

 234 

 235 

Results 236 

 237 

Descriptive statistics 238 

Descriptive statistics, averaged over the lactation, are reported in Table 1 for the raw 239 

data of the four estimated traits, the four animal effects and the RFI. The four traits 240 



are variable, with a large range of values. Some values are especially low (for 241 

example 3.06 kg/d of cmilk or 6.02 kg/d of dry matter) but they are unlikely 242 

measurement errors because first, data were averaged on a weekly basis and 243 

second, they are relatively close to the previous value for the same animal (due to 244 

the filtering step). These extreme values are possibly due to health issues.  245 

The second half of the table presents the animal effects for the four traits estimated 246 

from the model and RFI. The animal effect corresponds to the deviation of this animal 247 

from the curve fitted to describe the time-course of the performance of an average 248 

animal for a given trait x parity group, after correction for the other fixed effects. The 249 

fixed effects curves are presented in Supplementary Figure S1. For the four traits, 250 

the averages of the animal effects obtained from the model are exactly zero, at each 251 

time and overall. The statistics presented in Table 1 were obtained only from animal 252 

effects for which corresponding raw data existed. By construction, the model can 253 

extrapolate and estimate animal effects for each animal at time-points beyond the 254 

range of data for that animal, even though there was no corresponding raw data. As 255 

these extrapolations were discarded to compute these statistics, it is expected that 256 

the means in Table 1 are not exactly zero.  The exact same phenomenon occurs for 257 

the RFI estimates, with a mean of 0.04.  258 

 259 

Correlations between animal effects across time 260 

The correlations between the animal effects for the four traits across the lactation are 261 

presented in Figure 1. The curves of correlation between DMI and cmilk and 262 

between DMI and weight showed an increase in early lactation and a decrease in 263 

late lactation. The correlations between DMI and cmilk were always higher by 0.1 or 264 

0.2. However, the correlation between cmilk and weight steadily decreased along the 265 



lactation up to a point where it became slightly negative at the extreme end of 266 

lactation. Animals that produce more milk than average in early lactation are heavier 267 

than average, benefiting from a higher intake capacity, but these higher producing 268 

animals are less persistent.  The correlation between cmilk and BCS was negative 269 

throughout the lactation, meaning that those who produce more milk always have a 270 

lower BCS than average, and more so in late lactation (they may lose more in early 271 

lactation and then, have difficulty to rebuild body reserves at the end). The correlation 272 

between weight and BCS remained stable over time at around 0.4, reflecting the 273 

weight equivalent of a unit BCS (animals having more reserves are heavier at every 274 

time point). Finally, the correlation between DMI and BCS started around zero and 275 

slowly decreased down to -0.2 in late lactation. At the Legendre polynomial 276 

coefficient scale, the correlations are estimated with a high accuracy (averaged 277 

standard error of 0.04, min=0.02, max=0.05), which correspond to variance 278 

estimation errors (averaged on the lactation) of below 5% for milk, 1% for body 279 

weight, 7% for intake and 4% for BCS. 280 

Correlations between animal effects at different time points within each trait are 281 

presented in Supplementary Figure S2. The pattern is the same for the four traits 282 

with only positive correlations and with higher correlations between animal effects 283 

that are close in time. Correlations were always high for weight (>0.8), which is a 284 

cumulative trait, while they were a little more variable for the three other traits 285 

(correlations >0.4). The largest changes were mostly at the beginning or end of the 286 

lactation and the middle part was very stable (correlations >0.8). These correlations 287 

are very accurate with sampling errors being below 4% for intake, 2% for milk and 288 

BCS and 1% for body weight. 289 

 290 



Correlations between the predicted animal effect of Dry Matter Intake and the 291 

other traits 292 

Correlations between the predicted animal effect for intake (aBCDEF∗ � and the four 293 

original animal effects were calculated at each time and are presented in Figure 2. 294 

Among the predictors, aBCDEF∗  was very highly correlated with the animal effect for 295 

cmilk, the correlation being always above 0.8 and almost 1 at the beginning of 296 

lactation. The second largest correlations were with the animal effect for weight, 297 

which starts at 0.7 and slowly decreases down to 0.4 along the lactation. Finally, the 298 

correlation with the animal effect for BCS was always very low, starting positive but 299 

below 0.2 in early lactation and decreasing down to -0.4 at the end of lactation. The 300 

correlation between aBCDEF∗  and aDMI was between 0.6 and 0.8 in early lactation and 301 

then remained above 0.8 after 50 days of lactation.  302 

Correlations of the animal effects for all the traits with RFI were also calculated. As 303 

expected, by construction, correlations between RFI and the three predictors, as well 304 

as with the predicted intake, were zero all along the lactation. The correlation 305 

between RFI and aDMI started at almost 0.8 and decreased down to 0.5 during the 306 

first third of lactation and then remained stable until 250 DIM where it slightly 307 

increased to 0.6 at the end of lactation. 308 

 309 

Evolution of Residual Feed Intake across the lactation 310 

Various individual profiles of RFI across lactation were observed, with some animals 311 

being efficient/non-efficient during the whole lactation while others were efficient in 312 

early lactation and non-efficient at the end or the opposite. In order to evaluate the 313 

possibility to measure only a part of the lactation and predict the overall RFI, we 314 

calculated correlations between RFI at each time and the RFI averaged over the 315 



entire lactation (RFItot). Results are presented in Figure 3. The correlation starts at 316 

0.45, increases up to 0.9 at 92 DIM where it remains stable until 197 DIM, decreasing 317 

down to 0.6 afterwards. These results suggests that RFI in the middle of lactation is a 318 

good predictor of the mean RFI over the whole lactation.  319 

 320 

Using changes rather than the trait itself 321 

Correlations over time points between RFI and RFI∆BCS and between RFI and RFI∆BW, 322 

are presented in Figure 4. Between RFI and RFI∆BCS, the correlations were high 323 

(>0.87), reaching 0.99 both at the beginning and the end of the lactation, indicating 324 

that RFI and RFI∆BCS are almost the same trait. Between RFI and RFI∆BW, the 325 

correlations are also always high (>0.7), especially in early lactation. This suggests 326 

that changes are already taken into account by the use of the three Legendre 327 

polynomial coefficients (the changes being the derivatives of the trait). The 328 

dramatically high correlation at the beginning (and end of the lactation for BCS) could 329 

also indicate that, during these lactation stages, changes are more important than the 330 

trait itself, as we do not lose information when considering only changes as predictor. 331 

However, this is not true in the middle of lactation where changes are less important 332 

and where the traits bring additional values per se.  333 

 334 

 335 

Discussion 336 

 337 

Contribution of the proposed model to the current methodology 338 

In this study, we proposed a modeling strategy which allows the integration of time-339 

series data to compute RFI, not only as repeated differences between the end and 340 



the beginning of arbitrary periods, but by considering all traits dynamically. The 341 

traditional way of defining RFI - by linear regression – is not appropriate to jointly 342 

describe a dairy cow’s non-linear trajectories of relevant traits during her entire 343 

lactation (Li et al., 2017). Indeed, the allocation of energy varies among the different 344 

energy sinks across the lactation, leading to changes in regression coefficients over 345 

time.  As a result, feed efficiency in dairy cows is usually computed over short time 346 

periods (Prendiville et al., 2011; Fischer et al., 2018). This implies that results are 347 

based on a small number of data points and therefore are highly sensitive to 348 

measurement errors or one-time events (e.g., mastitis). In addition, even on short 349 

time periods, RFI estimates may still be subject to approximations due to fixed 350 

regression coefficients not being able to reflect biological changes, for instance a 351 

switch between loss and gain of body reserves. With the approach presented here, 352 

the number of measurements included in the system limits its sensitivity to one-time 353 

errors or disturbance. Moreover, it allows a permanent readjustment of the relevant 354 

coefficients over time, leading to estimations of RFI that avoid the biases inherent to 355 

the traditional RFI estimation methodology. As the model accounts for changes in 356 

variance for each trait over time, it also enables the correlations between traits to 357 

change over time, giving us a better overview of the relationships between the four 358 

traits across lactation.   359 

Various studies already tried to explore further the methodology of RFI or the 360 

relationships between its components. For example, a multi-trait random regression 361 

model was previously developed by Manzanilla Pech et al. (2014) to investigate the 362 

relationship between DMI, milk and live weight over time but RFI was not estimated. 363 

Lu et al. (2015) used a modified Cholesky decomposition from a multi-trait linear 364 

model that allowed greater accuracy in genetic merit prediction in case of partially 365 



missing data. Strathe et al. (2014) proposed a RFI derived from a bivariate random 366 

regression model for body weight and cumulative feed intake in pigs. More recently, 367 

Islam et al. (2020) used a Bayesian multivariate random regression to analyse DMI, 368 

energy corrected milk, BW and BCS and derived a genetic RFI from it. The approach 369 

presented here is an additional step on the way to improving the modeling of feed 370 

efficiency. 371 

 372 

Evolution of the correlations between traits across the lactation 373 

The approach used here gives us an overview of the evolution of correlations 374 

between traits over the lactation. Such results are still rarely available in the literature 375 

where most studies calculated correlations on specific time-points, on a fixed period 376 

of the lactation, and not in a continuous, dynamic way. The work of Veerkamp and 377 

Thompson (1999), Spurlock et al. (2012), Liinamo et al. (2012) and Manzanilla Pech 378 

et al. (2014) are some of the rare exceptions. In addition, most of the studies 379 

describing correlations include pedigree information and therefore are able to split 380 

the animal effect between a genetic component and a permanent environmental 381 

effect, which was not our case. Even though the animal effects studied here are not 382 

exactly the same as additive genetic effects, some similar patterns with genetic 383 

correlations reported in the literature can be observed. 384 

Similarly to what was found here, Manzanilla-Pech et al. (2014) reported that genetic 385 

correlations within traits across the lactation were generally positive and maximum 386 

during mid-lactation, and that correlations taken between times further apart were 387 

smaller. The very high positive correlations were also in accordance with previous 388 

studies (Koenen and Veerkamp, 1998; Veerkamp and Thompson, 1999 and  Liinamo 389 

et al., 2012 for live weight; Tetens et al., 2014 for DMI; and Veerkamp and 390 



Thompson, 1999 and  Hüttmann et al., 2009 for milk production). However, 391 

Manzanilla-Pech et al. (2014) reported slightly negative genetic correlations (-0.2) 392 

between milk in early lactation and milk during the rest of the lactation and similarly 393 

for DMI, while our correlations between animal effects were always positive. 394 

Correlations observed here for animal effects of the four traits at the same time point 395 

were also in general accordance with the literature. High positive genetic correlations 396 

were reported by Veerkamp and Thompson (1999) and Spurlock et al. (2012) 397 

between DMI and weight. Hüttmann et al. (2009) found that the genetic correlation 398 

between these two traits was changing over time with an almost null correlation 399 

between 31 to 60 DIM and a correlation of 0.4 between 121 and 180 DIM, while 400 

Manzanilla Pech et al. (2014) reported the correlation to be maximum at 34 DIM 401 

(0.56) and minimum at 153 DIM (0.29). Our results are showing a pattern similar to 402 

what Hüttmann et al. (2009) found but our correlations are always higher and closer 403 

to the values proposed by the other studies. In the literature, general positive genetic 404 

correlations (rg) were also reported between milk and DMI (van Elzakker and van 405 

Arendonk, 1993: rg=0.46; Veerkamp and Brotherstone, 1997: rg=0.34 ; Vallimont et 406 

al., 2010: rg=0.52). However, Manzanilla Pech et al. (2014) found a negative 407 

correlation between milk and DMI in early lactation that become positive and high 408 

(>0.7) only after 38 DIM and reached a maximum at 195 DIM (rg=0.91). Our results 409 

are essentially different at the onset of the lactation and similar after. It may be due to 410 

differences in animal management around calving or to genetic differences between 411 

the datasets. Our evolution of the correlation between milk and weight over time is 412 

also very different to what was reported by Manzanilla-Pech et al. (2014). These 413 

authors found a slightly negative correlation (-0.1) both at the beginning and the end 414 

of lactation and a positive correlation of about 0.3 in mid-lactation. In contrast, our 415 



results were similar to what those reported by Karacaören et al. (2006) with a 416 

correlation decreasing with time and becoming negative at the end of lactation.  417 

Body condition score is usually not among the traits considered in these kind of 418 

studies and therefore, estimated correlations are scarce. It is expected that cows 419 

mobilize body reserves in early lactation, while being in a situation of negative energy 420 

balance (Tamminga et al., 1997; Grummer, 2007). In the present study, the negative 421 

correlation between animal effects on milk and BCS is in accordance with this as 422 

higher than average milk production is associated with lower than average BCS. The 423 

stable correlation between weight and BCS supports the suggestion made in 424 

previous studies that live weight change can be a good indicator of body reserve 425 

mobilization (Thorup et al., 2013; Manzanilla Pech et al., 2014). 426 

 427 

Use of the Residual Feed Intake 428 

With the methodology proposed in this paper, we obtain a RFI changing through time 429 

for every single animal. This affords new possibilities. First, we identified that the 430 

averaged RFI over the lactation is highly correlated with RFI measured in mid-431 

lactation, in accordance with Prendiville et al. (2011) and Connor et al. (2012). If the 432 

objective is to identify animals which are on average the most efficient, then the 433 

costly measure of intake could be done only during a few weeks during mid-lactation 434 

(ideally between 115 and 175 dim based on our results) with only a small loss of 435 

information, rather than during the entire lactation.  436 

However, the question of what type of animal is desirable to select for is still valid. 437 

Efficient animals on average are also the ones that are more efficient in mid-lactation 438 

because this is the longest stable period of the lactation without dramatic changes. 439 

But because energy sinks and their relative importance are changing over the 440 



lactation, efficient animals in mid lactation are not necessarily the ones which are the 441 

most efficient in early or late lactation. It clearly appears that during the lactation, the 442 

first 5 to 7 weeks are the most challenging period for the cows, during which they 443 

have to face a huge increase of milk production associated with a pronounced 444 

mobilization of their body reserves. This pronounced negative energy balance 445 

increases the risk of health issues and reduces fertility (Esposito et al., 2014) and it is 446 

particularly important not to increase the occurrence of health and fertility issues. 447 

Therefore, it is critical to make sure that animals we are selecting for do not have a 448 

deep body reserve mobilization in early lactation. Because BCS (and/or its changes) 449 

was included in the RFI model, the two traits are phenotypically independent but this 450 

may not be the case genetically. In addition, the influence of some health events may 451 

have been discarded in the analyses with the data filtering, or because animals with 452 

dramatic health or reproductive issues were culled. Therefore, the importance of BCS 453 

in the overall efficiency (including from an economic point of view) may have been 454 

underestimated in the model. The relationship between efficiency and resilience or 455 

robustness needs to be further investigated in order to make better choices in 456 

selection. 457 

Furthermore, we now get individual trajectories of RFI which are highly variable from 458 

one animal to another. An obvious next step would be to perform a cluster analysis to 459 

see if we could identify specific types of animals. This could help scientists and 460 

breeding companies to determine what is the most suitable type of animals overall. 461 

 462 

Other issues and future improvement 463 

If this approach and the associated results are very promising, numerous questions 464 

are still to be explored. First, the adaptability of the model in more general situations 465 



needs to be tested. For instance, the model should be able to perform well when 466 

mixing data from different farms, or when animals are subject to diet changes during 467 

the lactation. The diet is indeed a major component of interest when studying feed 468 

efficiency, because individual digestive efficiency varies with diet composition. This 469 

influence of the diet was observed, for example, by Tempelman et al. (2015) and Lu 470 

et al. (2017), who determined substantial variability in partial regression coefficients 471 

between different rations. Several studies have already addressed this question. 472 

Durunna et al. (2011a) and Cassady et al. (2016) found moderate phenotypic 473 

correlations of 0.33 and 0.40 respectively between RFI of young beef cattle 474 

determined under both growing and finishing diets. Manafiazar et al. (2015) reported 475 

a correlation of 0.30 for RFI between dry-lot conditions and pasture. Estimate of 476 

genetic correlations between RFI of the same animals in different situations are rare. 477 

They generally give higher values than phenotypic correlations (0.50 in Durunna et 478 

al., 2011b; 0.83 in Martin et al., 2019). These results suggest the existence of a 479 

genotype-by-environment interaction, both in the case of diet changes and variable 480 

systems of production, as discussed by Berry and Crowley (2013) in their review. A 481 

test of the ability of the present model to take different diets, or situations, into 482 

account is therefore of primary interest. 483 

Then, the mathematical modeling itself could be improved and adapted to situations 484 

and datasets. For instance, one could use splines instead of Legendre polynomials 485 

for the random regression or a heterogeneous variance for the residual effects. 486 

A main point is also how animals with records for more than one lactation should be 487 

taken into account. In its present form, the model considers two lactations from the 488 

same animal as being independent, which may have slightly influenced the figures, 489 

but without changing any conclusion. As the first aim of this work was to present the 490 



method, the focus was not on the RFI of individuals. When the interest is on ranking 491 

animals, one can incorporate a between-lactation (permanent environment) animal 492 

effect. Moreover, to be more accurate, all relationships among animals should be 493 

taken into account when pedigree or genomic information is available, which was not 494 

the case here. In addition, pedigree data or genotypes are particularly interesting as 495 

it would allow to split the animal effect into a genetic part and a permanent 496 

environmental part, as showed by Manzanilla-Pech et al. (2014) in a model close to 497 

ours. It is important to note that this new way of computing RFI could indeed be used 498 

in genetic or genomic evaluations.  499 

 500 

Conclusion 501 

We have shown that it is possible to derive RFI from a multi-trait random regression 502 

model applied to DMI and its predictors, allowing for a dynamic estimation of the 503 

traits, free from all time-related issues inherent to the traditional RFI methodology. 504 

The model allows a better understanding of the correlations between the predictors 505 

during the lactation and it can be adapted and used in a genetic or genomic selection 506 

context.  507 

 508 
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Table 674 

 675 

Table 1: Means, Standard Deviations (SD), minima (Min.), maxima (Max.) and 5% 676 

and 95% centiles for the raw data of the four considered traits of dairy cattle, animal 677 

effects (atrait) and RFI 678 

 679 

Type of 

data 

Trait Mean SD Min. Max. 5% 

centile 

95% 

centile 

Raw data Milk (kg of corrected milk) 33.4 7.8 3.1 68.9 21.1 46.9 

Weight (10kg)* 64.3 7.5 39.9 98.3 52.7 77.2 

DMI (kg) 21.7 3.4 6.0 38.7 16.3 27.4 

BCS (scale of 10 to 50)* 31.3 3.40 15.0 47.5 25.0 37.5 

Computed 

data 

acmilk 0.20 5.89 -28.61 24.05 -9.12 10.27 

aweight -0.11 6.75 -22.02 29.91 -10.27 11.65 

aDMI 0.08 2.74 -14.72 12.61 -4.16 4.69 

aBCS -0.03 2.43 -10.88 13.48 -3.78 3.88 

RFI 0.04 1.37 -18.26 7.16 -1.99 2.21 

*The original scale was divided (for Weight) or multiplied (for BCS) by 10 in order to 680 

have raw data in the multiple trait analysis with similar orders of magnitude for the 4 681 

traits. 682 

RFI: Residual Feed Intake 683 

DMI: Dry Matter Intake 684 

BCS: Body Condition Score 685 
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Figure captions 689 

 690 

Figure 1: Time trends of the correlations between the animal effects (i.e. the animal 691 

differences from the average at any given time-point, across the lactation of dairy 692 

cattle) of the corrected milk (cmilk), the body weight, the dry matter intake (DMI) and 693 

the body condition score (BCS). 694 

 695 

Figure 2: Correlations between the predicted animal effect for intake (aBCDEF∗ � and the 696 

four original animal effects (corrected milk (cmilk), weight, dry matter intake (DMI) 697 

and body condition score (BCS)) in the considered dairy herd. 698 

 699 

Figure 3: Correlation between the averaged residual feed intake (RFI) over the 700 

whole lactation and the RFI calculated at any given time-point in the considered dairy 701 

herd. 702 

 703 

Figure 4: Correlation between the Residual feed intake (RFI) calculated using the 704 

trait as a predictor and the RFI calculated using changes of this trait as a predictor, 705 

for both Weight and Body Condition Score (BCS) in the considered dairy herd. 706 

 707 












