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In dairy, the usual way to measure feed efficiency is through the residual feed intake (RFI) method. However, this
method is, in its classical form, a linear regression, which, by construction, does not take into account the evolution
of the RFI components across time, inducing approximations in the results.We present here a new approach that in-
corporates the dynamic dimension of the data. Using amultitrait random regressionmodel, the correlations between
milk, live weight, DM intake (DMI) and body condition score (BCS) were investigated across the lactation. In addi-
tion, at each time point, by a matrix regression on the variance–covariance matrix and on the animal effects from
the three predictor traits, a predicted animal effect for intakewas estimated, which, by differencewith the actual an-
imal effect for intake, gave a RFI estimation. This model was tested on historical data from the Aarhus University ex-
perimental farm (1 469 lactations out of 740 cows). Correlations between animal effects were positive and high for
milk and DMI and for weight and DMI, with a maximummid-lactation, stable across time at around 0.4 for weight
and BCS, and slowly decreasing along the lactation for milk and weight, DMI and BCS, and milk and BCS. At the Le-
gendre polynomial coefficient scale, the correlations were estimated with a high accuracy (averaged SE of 0.04, min
= 0.02, max = 0.05). The predicted animal effect for intake was always extremely highly correlated with the milk
production and highly correlated with BW for the most part of the lactation, but only slightly correlated with BCS,
with the correlation becoming negative in the second half of the lactation. The estimated RFI possessed all the char-
acteristics of a classical RFI, with a mean at zero at each time point and a phenotypic independence from its predic-
tors. The correlation between the averaged RFI over the lactation and RFI at each time point was always positive and
above 0.5, and maximum mid-lactation (>0.9). The model performed reasonably well in the presence of missing
data. This approach allows a dynamic estimation of the traits, free from all time-related issues inherent to the tradi-
tional RFI methodology, and can easily be adapted and used in a genetic or genomic selection context.
© 2020 The Authors. Published by Elsevier Inc. on behalf of The Animal Consortium. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Implications

This paper proposes a new methodology to estimate feed efficiency
in a continuous manner across the lactation. The efficiency is evaluated
from a residual feed intake derived from amultitrait random regression
model, which allows the coefficients to vary over time. This approach al-
lows a dynamic estimation of the traits and their correlations, free from
all time-related issues inherent to the traditional methodology, and can
easily be adapted and used in a genetic or genomic selection context.

Introduction

With feed costs representing above 50% of the total costs of dairy
production (European Commission, 2018), the issue of feed efficiency
sevier Inc. on behalf of The A
has become a priority for the sector. The notion of feed efficiency refers
to improving the balance between output (production) and input (feed
intake). The most common way to determine feed efficiency in dairy
cattle is through residual feed intake (RFI). First proposed by Koch
et al. (1963), RFI is the difference between the actual feed intake of an
animal and its predicted feed intake based on its performance, i.e. the
intake necessary to cover the demands of the different energy sinks, es-
timated by regression. By construction, this method benefits from the
RFI being phenotypically independent (or genetically in case of genetic
regression) from its predictors, which theoretically allows RFI to reflect
digestive and metabolic variabilities (Archer et al., 2002; Berry and
Crowley, 2013).

Although this definition of RFI is widely used in dairy cattle (Connor,
2015), some issues remainwith this approach. First of all, the time influ-
ence on RFI is a key question. RFI is usually measured between two
given days. If the trial duration is too short, the number of measures
will be low and the results of the prediction will not be accurate. On
nimal Consortium. This is an open access article under the CC BY license
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the other hand, different biological processes are involved at the differ-
ent lactation stages, in particular body reserve mobilization in early lac-
tation and reserves accretion associated with pregnancy. Therefore,
regression coefficients associatedwith the different predictors are likely
to vary when taken at different lactation stages, leading to a biased as-
sessment of RFI when estimated from point measures over the whole
lactation (Li et al., 2017). Moreover, with the advent of precision farm-
ing technologies, high-frequency time series measures are becoming
available and thereby increasingly offer the opportunity to track effi-
ciency. Key questions in this context are how to deal with changes
over time, when to measure RFI and for how long. A second issue
comes from the nature of RFI itself. Being a residual, in addition to the
actual animal efficiency, it contains all the modeling and measurement
errors.Within this context, Fischer et al. (2018) used random regression
on the individual level to isolate the cow-specific part of RFI. However,
they faced some difficulties due to strong correlations between their
predictors (correlations that changed over time during the lactation),
which, combined with a limited data set size, restricted their modeling
and conclusions.

With the aimof solving these two issues, we investigate in this paper
the relationship between intake and its predictors across the lactation
using a multitrait random regression model on experimental data.
With such a model, based on the variance–covariance functions, it is
possible to predict intake from other traits and to compare this predic-
tion with actual intake. This leads to a consistent definition of RFI,
with regression coefficients free to vary over time.

Material and methods

Population resources and feeding management

Datawere collected between 2002 and 2016 at the Danish Cattle Re-
search Centre (Foulum, Denmark) and shared as part of the GenTORE
project (https://www.gentore.eu). Animals were Holstein cows with
lactation rank ranging from first to third lactation. Cows were housed
in a freestall barn with cubicles and slatted floor and milked in an auto-
matic milking system (AMS; DeLaval, Tumba, Sweden) allowing free
cow traffic. Data were collected during various trial periods, and cows
were not nested within trial. They had ad libitum access to a partial
mixed ration (PMR) varying in nutritional content in accordance with
the particular trial in which the cows were involved. The PMR diets
used during this period contained the following ingredients (typical
g/kg DM): rapeseed meal (106), barley (135), dried sugerbeet pulp
(51), grass silage (264), maize silage (422), urea (7) and minerals
(18). The corresponding chemical composition was (typical g/kg DM):
CP (158), NDF (340), starch (195), sugar (46), crude fat (39), ash (74),
with a Net Energy of Lactation (NEL) of 6.9MJ/kg DM. Across the differ-
ent feeding trials carried out during this period, diet differences did not
exceed+8% of the average value for CP and likewise+15% for NEL. The
nutritional values of the PMR were all within the range of typically rec-
ommended requirements, formulated to support the milk yield level of
the herd and allocated in amounts allowing approximately 10% orts to
ensure ad libitum intake. In addition, cows were supplemented daily
with a maximum of 3 kg of concentrate to ensure voluntary access to
the AMS. These feeding data were already described in previous studies
(e.g. Li et al., 2016; Byskov et al., 2017).

Phenotypes and data editing

Data from 1 469 lactations of 740 cows were collected. A weekly
measurement of average daily milk yield per cow was obtained from
the average of daily milk yield records per cow in each week. Milk sam-
ples were taken weekly for analyses of fat and protein. On the same
basis, the DM contents in PMR and concentrates were analyzed regu-
larly and the compositions were aligned and merged with feed intake
2

records to obtain weekly DM intake (DMI) values for individual cows.
Animals were also automatically weighed at each milking so that BW
records were averaged to obtain a weekly record of BW per cow in
each week. Body condition score (BCS) was evaluated every 2 weeks
and scored on a scale from 1 to 5.

A corrected milk (cmilk) trait was created following the FAO for-
mula which defines as a standard milk with 4.0% fat and 3.3% protein
(FAO [Food and Agriculture Organization of the United Nations], 2010):

Corrected milk kgð Þ ¼ raw milk kgð Þ∗ 0:337þ 0:116∗Fat content %ð Þð

þ0:06∗Protein content %ð ÞÞ

To avoid non-sensical performances, a filter was used to discard re-
cords that differed too much from the previous record registered in
the same lactation for that animal. Therefore, records implying differ-
ences between two consecutive records higher than 12 l for cmilk, 50
kg for the liveweight, 7 kg for the daily DM intake and one unit of BCS
were discarded. These threshold values were defined after studying a
previous data set with similar performance level. Less than 2% of the
data was discarded for cmilk and BCS and about 4% for weight and
DMI. A second step of filtering wasmade on the duration of data collec-
tion for each lactation independently: only animals that had been re-
corded for a minimum duration of 200 days during their lactation
were kept. This data set, that was used to conduct the main analyses,
contains 40 619 records of cmilk, 40 662 records of weight, 42 177 re-
cords of DMI and 19 661 records of BCS, which represents about 73%
of the overall records. Additionally, the overall records were used to as-
sess the robustness of our model in case of missing data, and the details
of this analysis are presented in Supplementary Material S1.

Statistical analysis

Multitrait random regression model
To analyze the relationship of the four traits along the lactation, a

multitrait random regression analysis was performed using the Wom-
bat software (Meyer, 2007). The model used was as follows:

yilmr ¼ ci þ ∑
3

n¼0
βlnφnr tð Þ þ ∑

2

n¼0
αmnφnr tð Þ þ eilmr

where yilmr is the observation of the rth trait, ci is the fixed effect of the
ithmonth–year combination corresponding to the record date, βln is the
nth fixed regression coefficient specific to parity class l, αmn is the nth
random regression coefficient of the animal m, φnr(t) is the nth coeffi-
cient of Legendre polynomial of degree (d = 2 for the animal effect
and d=3 for the parity class), evaluated at day inmilk (DIM) t, and eilmr

is the random residual effect. Residual effects were assumed to have a
homogenous residual variance. Successive lactations of the same animal
were considered separately, as if they were from different animals, im-
plicitly ignoring any permanent environmental effect across lactations.

From the random part of the equation, we get as outputs the three
coefficients of the Legendre polynomial at each time point, as well as
the animal solutions. For each trait, we can then obtain at each time
and for each cow an estimated animal effect. These animal effects will
be denoted acmilk(t), aweight(t), aDMI(t) and aBCS(t) in the article.

Variance–covariance components of the random regression were
obtained and gathered into a 12 by 12 matrix, corresponding to the
four traits with three Legendre coefficients each. Variances (Vtrait1(t))
and covariances (Ctrait1, trait2(t)) for each time point were estimated by
pre- and post-multiplying the variance–covariancematrix by the corre-
sponding time coefficients of the Legendre polynomials using the fol-
lowing formulas:

https://www.gentore.eu


Table 1
Means, SD,minima (Min.), maxima (Max.) and 5% and 95% centiles for the raw data of the
four considered traits of dairy cattle, animal effects (atrait) and RFI.

Type of
data

Trait Mean SD Min. Max. 5%
centile

95%
centile

Raw data Milk (kg of
corrected milk)

33.4 7.8 3.1 68.9 21.1 46.9

Weight (10 kg)1 64.3 7.5 39.9 98.3 52.7 77.2
DMI (kg) 21.7 3.4 6.0 38.7 16.3 27.4
BCS (scale of 10 to
50)1

31.3 3.40 15.0 47.5 25.0 37.5

Computed
data

acmilk 0.20 5.89 −28.61 24.05 −9.12 10.27
aweight −0.11 6.75 −22.02 29.91 −10.27 11.65
aDMI 0.08 2.74 −14.72 12.61 −4.16 4.69
aBCS −0.03 2.43 −10.88 13.48 −3.78 3.88
RFI 0.04 1.37 −18.26 7.16 −1.99 2.21

RFI: Residual Feed Intake.
DMI: DM Intake.
BCS: Body Condition Score.

1 The original scalewas divided (forWeight) ormultiplied (for BCS) by 10 in order to have
raw data in the multiple trait analysis with similar orders of magnitude for the 4 traits.
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Vtrait1 tð Þ ¼ l0 tð Þ l1 tð Þ l2 tð Þ½ �
σ2

a0 trait1
σa0a1trait1 σa0a2trait1

σa0a1trait1 σ2
a1 trait1

σa1a2trait1

σa0a2trait1 σa1a2trait1 σ2
a2 trait1

2
664

3
775

l0 tð Þ
l1 tð Þ
l2 tð Þ

2
64

3
75

Ctrait1,trait2 tð Þ ¼ l0 tð Þ l1 tð Þ l2 tð Þ½ �

σa0a0trait1,trait2 σa0a1trait1,trait2 σa0a2trait1,trait2

σa0a1trait1,trait2 σa1a1trait1,trait2 σa1a2trait1,trait2

σa0a2trait1,trait2 σa1a2trait1,trait2 σa2a2trait1,trait2

2
64

3
75 l0 tð Þ

l1 tð Þ
l2 tð Þ

2
64

3
75

These variance–covariance components were then used to calculate
correlations between traits across the lactation.

Derivation of residual feed intake
Using elements from the 12 by 12 variance–covariance matrix and

the animal effects for cmilk, weight and BCS, it is possible to estimate
a predicted intake from the other variables by a matrix regression. If
we use the following notation for the variance–covariance matrix at a
given time:

VDMI CDMI,cmilk CDMI,weight CDMI,BCS
� �

CDMI,cmilk

CDMI,weight

CDMI,BCS

2
664

3
775

Vcmilk Ccmilk,weight Ccmilk,BCS

Ccmilk,weight Vweight Cweight,BCS

Ccmilk,BCS Cweight,BCS VBCS

2
664

3
775

2
66664

3
77775 ¼ B11 B21

B12 B22

� �

then a predicted animal effect for DMI can be calculated from a regres-
sion similarly to what was proposed by Kennedy et al. (1993), but in its
matrix form with:

ba∗eDMI tð Þ ¼ B12 tð Þ∗B−1
22 tð Þ∗

acmilk tð Þ
aweight tð Þ
aBCS tð Þ

2
64

3
75

where ba∗eDMI is the predicted animal effect for DMI at time t. Finally,
we can construct a RFI estimate which is the difference between the
actual animal effect for DMI and the one predicted from the three
other variables:

RFI tð Þ ¼ aDMI tð Þ−ba∗eDMI tð Þ

As this RFI is dependent on time, we also defined RFItot as the aver-
aged RFI of each animal over the whole lactation.

Use of the outputs to study changes between times
One could also consider that changes of BCS are more important

than BCS itself in the estimation of RFI. To examine this point, we
also estimated RFIΔBCS(t) where all the occurrences of BCS-related
variables are replaced by ΔBCS-related variables. ΔBCS(t) is defined
as the difference of BCS between two consecutive time points. In
the above formulas, it translates as a difference of Legendre polyno-
mial coefficients as follows for the animal effects, the variances and
covariances, respectively:

aΔBCS tð Þ ¼ l0 tð Þ−l0 t−1ð Þ½ �∗âc0_BCS þ l1 tð Þ−l1 t−1ð Þ½ �∗âc1_BCS
þ l2 tð Þ−l2 t−1ð Þ½ �∗âc2_BCS

VΔBCS tð Þ ¼ l0 tð Þ−l0 t−1ð Þ l1 tð Þ−l1 t−1ð Þ l2 tð Þ−l2 t−1ð Þ½ �
σ2

a0 BCS
σa0a1BCS σa0a2BCS

σa0a1BCS σ2
a1 BCS

σa1a2BCS

σa0a2BCS σa1a2BCS σ2
a2 BCS

2
664

3
775

l0 tð Þ−l0 t−1ð Þ
l1 tð Þ−l1 t−1ð Þ
l2 tð Þ−l2 t−1ð Þ

2
64

3
75
3

CΔBCS,trait2 tð Þ ¼ l0 tð Þ l1 tð Þ l2 tð Þ½ �

σa0a0ΔBCS,trait2 σa0a1ΔBCS,trait2 σa0a2ΔBCS,trait2

σa1a0ΔBCS,trait2 σa1a1ΔBCS,trait2 σa1a2ΔBCS,trait2

σa2a0ΔBCS,trait2 σa2a1ΔBCS,trait2 σa2a2ΔBCS,trait2

2
64

3
75 l0 tð Þ−l0 t−1ð Þ

l1 tð Þ−l1 t−1ð Þ
l2 tð Þ−l2 t−1ð Þ

2
64

3
75

2
64

3
75

And therefore, the predicted animal effect for DMI is calculated
from:

ba∗eDMI tð Þ ¼ B12 tð Þ∗B−1
22 tð Þ∗

acmilk tð Þ
aweight tð Þ
aΔBCS tð Þ

2
64

3
75

where the B matrix contains the ΔBCS-related variances and
covariances.

The same transformation was also performed on changes of BW.

Results

Descriptive statistics

Descriptive statistics, averaged over the lactation, are reported
in Table 1 for the raw data of the four estimated traits, the four an-
imal effects and the RFI. The four traits are variable, with a large
range of values. Some values are especially low (e.g. 3.06 kg/d of
cmilk or 6.02 kg/d of DM), but they are unlikely measurement errors
because, first, data were averaged on a weekly basis and, second,
they are relatively close to the previous value for the same animal
(due to the filtering step). These extreme values are possibly due
to health issues.

The second half of the table presents the animal effects for the
four traits estimated from the model and RFI. The animal effect cor-
responds to the deviation of this animal from the curve fitted to de-
scribe the time course of the performance of an average animal for a
given trait × parity group, after correction for the other fixed effects.
The fixed effects curves are presented in Supplementary Figure S1.
For the four traits, the averages of the animal effects obtained
from the model are exactly zero, at each time and overall. The statis-
tics presented in Table 1 were obtained only from animal effects for
which corresponding raw data existed. By construction, the model
can extrapolate and estimate animal effects for each animal at
time points beyond the range of data for that animal, even though
there was no corresponding raw data. As these extrapolations



Fig. 2. Correlations between the predicted animal effect for intake (ba∗eDMIÞ and the four
original animal effects (corrected milk (cmilk), weight, DM intake (DMI) and body
condition score (BCS)) in the considered dairy herd.
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were discarded to compute these statistics, it is expected that the
means in Table 1 are not exactly zero. The exact same phenomenon
occurs for the RFI estimates, with a mean of 0.04.

Correlations between animal effects across time

The correlations between the animal effects for the four traits across
the lactation are presented in Fig. 1. The curves of correlation between
DMI and cmilk and between DMI and weight showed an increase in
early lactation and a decrease in late lactation. The correlations be-
tween DMI and cmilk were always higher by 0.1 or 0.2. However,
the correlation between cmilk and weight steadily decreased along
the lactation up to a point where it became slightly negative at the
extreme end of lactation. Animals that produce more milk than
average in early lactation are heavier than average, benefiting from
a higher intake capacity, but these higher producing animals are
less persistent. The correlation between cmilk and BCS was negative
throughout the lactation, meaning that those who produce more
milk always have a lower BCS than average, and more so in late lac-
tation (they may lose more in early lactation and then have difficulty
to rebuild body reserves at the end). The correlation between weight
and BCS remained stable over time at around 0.4, reflecting the
weight equivalent of a unit BCS (animals having more reserves are
heavier at every time point). Finally, the correlation between DMI
and BCS started around zero and slowly decreased down to −0.2
in late lactation. At the Legendre polynomial coefficient scale, the
correlations are estimated with a high accuracy (averaged SE of
0.04, min = 0.02, max = 0.05), which correspond to variance esti-
mation errors (averaged on the lactation) of below 5% for milk, 1%
for BW, 7% for intake and 4% for BCS.

Correlations between animal effects at different time points
within each trait are presented in Supplementary Figure S2. The
pattern is the same for the four traits with only positive correlations
and with higher correlations between animal effects that are close
in time. Correlations were always high for weight (>0.8), which is
a cumulative trait, while they were a little more variable for the
three other traits (correlations>0.4). The largest changes were
mostly at the beginning or end of the lactation, and the middle
part was very stable (correlations>0.8). These correlations are
very accurate with sampling errors being below 4% for intake, 2%
for milk and BCS and 1% for BW.

Correlations between the predicted animal effect of DM Intake and the
other traits

Correlations between the predicted animal effect for intake (ba∗eDMIÞ
and the four original animal effects were calculated at each time and are
presented in Fig. 2. Among thepredictors,ba∗eDMI was veryhighly correlated
Fig. 1. Time trends of the correlations between the animal effects (i.e. the animal
differences from the average at any given time point, across the lactation of dairy cattle)
of the corrected milk (cmilk), the body weight, the DM intake (DMI) and the body
condition score (BCS).

4

with the animal effect for cmilk, the correlation being always above 0.8
and almost 1 at the beginning of lactation. The second largest correlations
were with the animal effect for weight, which starts at 0.7 and slowly de-
creases down to 0.4 along the lactation. Finally, the correlation with the
animal effect for BCS was always very low, starting positive but below
0.2 in early lactation and decreasing down to−0.4 at the end of lactation.
The correlation between ba∗eDMI and aDMI was between 0.6 and 0.8 in early
lactation and then remained above 0.8 after 50 days of lactation.

Correlations of the animal effects for all the traits with RFI were also
calculated. As expected, by construction, correlations between RFI and
the three predictors, as well as with the predicted intake, were zero all
along the lactation. The correlation between RFI and aDMI started at al-
most 0.8 and decreased down to 0.5 during the first to third of lactation
and then remained stable until 250 DIM where it slightly increased to
0.6 at the end of lactation.
Evolution of residual feed intake across the lactation

Various individual profiles of RFI across lactation were observed,
with some animals being efficient/non-efficient during the whole lacta-
tion, while others were efficient in early lactation and non-efficient at
the end or the opposite. In order to evaluate the possibility to measure
only a part of the lactation and predict the overall RFI, we calculated cor-
relations between RFI at each time and the RFI averaged over the entire
lactation (RFItot). Results are presented in Fig. 3. The correlation starts at
0.45, increases up to 0.9 at 92 DIM where it remains stable until 197
DIM, decreasing down to 0.6 afterwards. These results suggests that
RFI in the middle of lactation is a good predictor of the mean RFI over
the whole lactation.
Fig. 3. Correlation between the averaged residual feed intake (RFI) over the whole
lactation and the RFI calculated at any given time point in the considered dairy herd.



Fig. 4. Correlation between the residual feed intake (RFI) calculated using the trait as a
predictor and the RFI calculated using changes of this trait as a predictor, for both
weight and body condition score (BCS) in the considered dairy herd.
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Using changes rather than the trait itself

Correlations over time points between RFI and RFIΔBCS and between
RFI and RFIΔBW are presented in Fig. 4. Between RFI and RFIΔBCS, the cor-
relations were high (>0.87), reaching 0.99 both at the beginning and
the end of the lactation, indicating that RFI and RFIΔBCS are almost the
same trait. Between RFI and RFIΔBW, the correlations are also always
high (>0.7), especially in early lactation. This suggests that changes
are already taken into account by the use of the three Legendre polyno-
mial coefficients (the changes being the derivatives of the trait). The
dramatically high correlation at the beginning (and end of the lactation
for BCS) could also indicate that, during these lactation stages, changes
are more important than the trait itself, as we do not lose information
when considering only changes as predictor. However, this is not true
in the middle of lactation where changes are less important and
where the traits bring additional values per se.

Discussion

Contribution of the proposed model to the current methodology

In this study, we proposed a modeling strategy which allows the in-
tegration of time series data to compute RFI, not only as repeated differ-
ences between the end and the beginning of arbitrary periods, but also
by considering all traits dynamically. The traditional way of defining RFI
– by linear regression – is not appropriate to jointly describe a dairy
cow's non-linear trajectories of relevant traits during her entire lacta-
tion (Li et al., 2017). Indeed, the allocation of energy varies among the
different energy sinks across the lactation, leading to changes in regres-
sion coefficients over time. As a result, feed efficiency in dairy cows is
usually computed over short time periods (Prendiville et al., 2011;
Fischer et al., 2018). This implies that results are based on a small
number of data points and therefore are highly sensitive to mea-
surement errors or one-time events (e.g., mastitis). In addition,
even on short time periods, RFI estimates may still be subject to ap-
proximations due to fixed regression coefficients not being able to
reflect biological changes, for instance a switch between loss and
gain of body reserves. With the approach presented here, the num-
ber of measurements included in the system limits its sensitivity to
one-time errors or disturbance. Moreover, it allows a permanent re-
adjustment of the relevant coefficients over time, leading to estima-
tions of RFI that avoid the biases inherent to the traditional RFI
estimation methodology. As the model accounts for changes in var-
iance for each trait over time, it also enables the correlations be-
tween traits to change over time, giving us a better overview of
the relationships between the four traits across lactation.

Various studies already tried to explore further the methodology of
RFI or the relationships between its components. For example, a
5

multitrait random regression model was previously developed by
Manzanilla Pech et al. (2014) to investigate the relationship between
DMI, milk and live weight over time but RFI was not estimated. Lu
et al. (2015) used a modified Cholesky decomposition from a multitrait
linear model that allowed greater accuracy in genetic merit prediction
in case of partially missing data. Strathe et al. (2014) proposed a RFI de-
rived from a bivariate random regressionmodel for BW and cumulative
feed intake in pigs. More recently, Islam et al. (2020) used a Bayesian
multivariate random regression to analyze DMI, energy-corrected
milk, BW and BCS and derived a genetic RFI from it. The approach pre-
sented here is an additional step on theway to improving themodeling
of feed efficiency.

Evolution of the correlations between traits across the lactation

The approach used here gives us an overview of the evolution of cor-
relations between traits over the lactation. Such results are still rarely
available in the literature where most studies calculated correlations
on specific time points, on a fixed period of the lactation, and not in a
continuous, dynamic way. The works of Veerkamp and Thompson
(1999), Spurlock et al. (2012), Liinamo et al. (2012) and Manzanilla
Pech et al. (2014) are some of the rare exceptions. In addition, most of
the studies describing correlations include pedigree information and
therefore are able to split the animal effect between a genetic compo-
nent and a permanent environmental effect, which was not our case.
Even though the animal effects studied here are not exactly the same
as additive genetic effects, some similar patterns with genetic correla-
tions reported in the literature can be observed.

Similarly to what was found here, Manzanilla Pech et al. (2014)
reported that genetic correlations within traits across the lactation
were generally positive and maximum during mid-lactation and
that correlations taken between times further apart were smaller.
The very high positive correlations were also in accordance with
previous studies (Koenen and Veerkamp, 1998; Veerkamp and
Thompson, 1999; and Liinamo et al., 2012 for live weight; Tetens
et al., 2014 for DMI; and Veerkamp and Thompson, 1999 and
Hüttmann et al., 2009 for milk production). However, Manzanilla
Pech et al. (2014) reported slightly negative genetic correlations
(−0.2) between milk in early lactation and milk during the rest of
the lactation and similarly for DMI, while our correlations between
animal effects were always positive.

Correlations observed here for animal effects of the four traits at the
same time point were also in general accordance with the literature.
High positive genetic correlations were reported by Veerkamp and
Thompson (1999) and Spurlock et al. (2012) between DMI and weight.
Hüttmann et al. (2009) found that the genetic correlation between
these two traits was changing over timewith an almost null correlation
between 31 and 60 DIM and a correlation of 0.4 between 121 and 180
DIM, while Manzanilla Pech et al. (2014) reported the correlation to
bemaximum at 34 DIM (0.56) andminimum at 153 DIM (0.29). Our re-
sults are showing a pattern similar to what Hüttmann et al. (2009)
found, but our correlations are always higher and closer to the values
proposed by the other studies. In the literature, general positive genetic
correlations (rg) were also reported between milk and DMI (van
Elzakker and van Arendonk, 1993: rg = 0.46; Veerkamp and
Brotherstone, 1997: rg = 0.34; Vallimont et al., 2010: rg= 0.52). How-
ever, Manzanilla Pech et al. (2014) found a negative correlation be-
tween milk and DMI in early lactation that become positive and high
(>0.7) only after 38 DIM and reached a maximum at 195 DIM (rg =
0.91). Our results are essentially different at the onset of the lactation
and similar after. It may be due to differences in animal management
around calving or to genetic differences between the data sets. Our evo-
lution of the correlation betweenmilk andweight over time is also very
different to what was reported by Manzanilla Pech et al. (2014). These
authors found a slightly negative correlation (−0.1) both at the begin-
ning and the end of lactation and a positive correlation of about 0.3 in
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mid-lactation. In contrast, our results were similar to what those re-
ported by Karacaören et al. (2006) with a correlation decreasing with
time and becoming negative at the end of lactation.

Body condition score is usually not among the traits considered in
these kind of studies, and therefore, estimated correlations are scarce.
It is expected that cows mobilize body reserves in early lactation,
while being in a situation of negative energy balance (Tamminga
et al., 1997; Grummer, 2007). In the present study, the negative correla-
tion between animal effects on milk and BCS is in accordance with this
as higher than average milk production is associated with lower than
average BCS. The stable correlation between weight and BCS supports
the suggestion made in previous studies that live weight change can
be a good indicator of body reserve mobilization (Thorup et al., 2013;
Manzanilla Pech et al., 2014).

Use of the residual feed intake

With the methodology proposed in this paper, we obtain a RFI
changing through time for every single animal. This affords new possi-
bilities. First, we identified that the averaged RFI over the lactation is
highly correlated with RFI measured in mid-lactation, in accordance
with Prendiville et al. (2011) and Connor et al. (2012). If the objective
is to identify animals which are on average the most efficient, then the
costly measure of intake could be done only during a fewweeks during
mid-lactation (ideally between 115 and 175 dim based on our results)
with only a small loss of information, rather than during the entire
lactation.

However, the question of what type of animal is desirable to se-
lect for is still valid. Efficient animals on average are also the ones
that are more efficient in mid-lactation because this is the longest
stable period of the lactation without dramatic changes. But be-
cause energy sinks and their relative importance are changing
over the lactation, efficient animals in mid lactation are not neces-
sarily the ones which are the most efficient in early or late lactation.
It clearly appears that during the lactation, the first 5 to 7 weeks are
the most challenging period for the cows, during which they have to
face a huge increase of milk production associated with a pro-
nounced mobilization of their body reserves. This pronounced neg-
ative energy balance increases the risk of health issues and reduces
fertility (Esposito et al., 2014), and it is particularly important not to
increase the occurrence of health and fertility issues. Therefore, it is
critical to make sure that animals we are selecting for do not have a
deep body reserve mobilization in early lactation. Because BCS
(and/or its changes) was included in the RFI model, the two traits
are phenotypically independent but this may not be the case genet-
ically. In addition, the influence of some health events may have
been discarded in the analyses with the data filtering or because an-
imals with dramatic health or reproductive issues were culled.
Therefore, the importance of BCS in the overall efficiency (including
from an economic point of view) may have been underestimated in
the model. The relationship between efficiency and resilience or ro-
bustness needs to be further investigated in order to make better
choices in selection.

Furthermore, we now get individual trajectories of RFI which are
highly variable from one animal to another. An obvious next step
would be to perform a cluster analysis to see if we could identify specific
types of animals. This could help scientists and breeding companies to
determine what is the most suitable type of animals overall.

Other issues and future improvement

If this approach and the associated results are very promising,
numerous questions are still to be explored. First, the adaptability
of the model in more general situations needs to be tested. For in-
stance, the model should be able to perform well when mixing
data from different farms, or when animals are subject to diet
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changes during the lactation. The diet is indeed a major component
of interest when studying feed efficiency because individual diges-
tive efficiency varies with diet composition. This influence of the
diet was observed, for example, by Tempelman et al. (2015) and
Lu et al. (2017), who determined substantial variability in partial
regression coefficients between different rations. Several studies
have already addressed this question. Durunna et al. (2011a) and
Cassady et al. (2016) found moderate phenotypic correlations of
0.33 and 0.40, respectively, between RFI of young beef cattle deter-
mined under both growing and finishing diets. Manafiazar et al.
(2015) reported a correlation of 0.30 for RFI between dry-lot condi-
tions and pasture. Estimate of genetic correlations between RFI of
the same animals in different situations is rare. They generally
give higher values than phenotypic correlations (0.50 in Durunna
et al., 2011b; 0.83 in Martin et al., 2019). These results suggest the
existence of a genotype-by-environment interaction, both in the
case of diet changes and variable systems of production, as
discussed by Berry and Crowley (2013) in their review. A test of
the ability of the present model to take different diets, or situations,
into account is therefore of primary interest.

Then, the mathematical modeling itself could be improved and
adapted to situations and data sets. For instance, one could use splines
instead of Legendre polynomials for the random regression or a hetero-
geneous variance for the residual effects.

A main point is also how animals with records for more than one
lactation should be taken into account. In its present form, the
model considers two lactations from the same animal as being inde-
pendent, which may have slightly influenced the figures, but with-
out changing any conclusion. As the first aim of this work was to
present the method, the focus was not on the RFI of individuals.
When the interest is on ranking animals, one can incorporate a
between-lactation (permanent environment) animal effect. More-
over, to be more accurate, all relationships among animals should
be taken into account when pedigree or genomic information is
available, which was not the case here. In addition, pedigree data
or genotypes are particularly interesting as it would allow to split
the animal effect into a genetic part and a permanent environmen-
tal part, as showed by Manzanilla Pech et al. (2014) in a model close
to ours. It is important to note that this new way of computing RFI
could indeed be used in genetic or genomic evaluations.

Conclusion

Wehave shown that it is possible to derive RFI from amultitrait ran-
dom regression model applied to DMI and its predictors, allowing for a
dynamic estimation of the traits, free from all time-related issues inher-
ent to the traditional RFI methodology. The model allows a better un-
derstanding of the correlations between the predictors during the
lactation, and it can be adapted and used in a genetic or genomic selec-
tion context.
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