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Abstract 1 

In perennial plants, the annual phenological cycle is subdivided into successive stages whose 2 

completion will lead directly to the onset of the following one. A critical point is the transition 3 

between the apparent vegetative growth and the cryptic dormancy. To date, the initial date for 4 

chilling accumulation (DCA) is arbitrarily set using various rules such as fixed or dynamic dates 5 

depending on environmental variables. These rules led to tremendous variability across studies 6 

and sites (from late summer until late autumn). To test the relevancy of different DCA, we used 7 

a dataset combining dormancy release dates, budburst dates and frost hardiness measurements 8 

from 50 years in various orchards across France and Spain for J. regia cv Franquette. Many of 9 

the tested DCA provided accurate results for the calibration and validation datasets (RMSEP < 10 

10 and 8 days for endodormancy release and budburst dates, respectively). However, for frost 11 

hardiness, only the DCA provided by the DORMPHOT model provided accurate results 12 

(RMSEP < 3°C). The best DCA was thus selected using a composite index for all three processes. 13 

Testing the prediction under current and future climatic scenario showed that in, up to 25% of 14 

French territory under RCP 8.5 scenario, ecodormancy stage is likely to be delayed although 15 

temperature is decreasing. Overall, less average frost damages are expected although decennial 16 

risk (i.e. return period of ten years) is likely to increase in autumn in 15% of French territory. 17 

In southern part of France, delayed dormancy induction and release would induce delayed 18 

budburst and blooming altering flower and fruit production, whereas North East and Massif 19 

Central parts of France may suffer higher frost risks from late frost acclimation. Finally, this 20 

study describes relationships between climatic variables and plant phenological processes to 21 

build metamodels predicting next century’s phenological cycles at the global scale.  22 

 23 

Keywords: Chilling, Frost acclimation, Frost damages, Forcing, Photoperiod, Phenology, Risk 24 

assessment, Tree.  25 
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Introduction 26 

In frost-exposed environments, deciduous trees have to timely adjust their biology and 27 

increase frost resistance by anticipating unfavorable conditions before the winter period. As 28 

observed for most stresses, avoidance and tolerance are two complementary processes driving 29 

frost resistance (Charrier et al., 2011). The protection of shoot apical meristems under bud 30 

scales can be considered as an avoidance strategy. This is achieved through physiological 31 

changes allowing the transition from an apparently active (e.g. primary and secondary growth, 32 

leaf expansion, fruit maturation) towards a ‘dormant’ period (e.g. endodormancy and 33 

ecodormancy; Lang et al., 1987). During this transition, different phenologically-related 34 

processes that are either visible (e.g. leaf fall, growth cessation, lignification or budset) or 35 

invisible (e.g. dormancy induction and release) take place. In parallel, trees transiently increase 36 

their frost tolerance through frost acclimation / deacclimation process (Charrier et al., 2011). 37 

In autumn, endodormancy release and frost acclimation are induced by the same 38 

environmental factors, namely decreasing temperature and photoperiod (Welling et al., 2002; 39 

Arora et al., 2003; Maurya & Bahlerao, 2017). After endodormancy was released, ecodormancy 40 

and frost deacclimation also occurs in parallel, under the control of warm temperature, in most 41 

species, eventually modulated by photoperiod in photosensitive species, such as late 42 

successional species (Basler & Körner, 2012). Process-based models using these variables as 43 

input have been developed to simulate the dormancy release and budburst dates (Chuine et al., 44 

2016), as well as frost hardiness (e.g. Leinonen 1996; Ferguson et al., 2011; Charrier et al., 45 

2018).  46 

Under the context of global change, it is particularly critical to accurately predict future 47 

trends in warmer climates. Since the first empirical model describing the relation between 48 

temperature and plant development, through the thermal-time concept (Réaumur, 1735), 49 

budburst and blooming models were only computing accumulation of growth-effective 50 
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temperature i.e. growth degree days (GDD). As the starting point was set at the coldest period 51 

of the year (i.e. January 1st or July 1st in northern and southern hemisphere, respectively), these 52 

models provided accurate results. However, this type of model was not efficient under warmer 53 

winter areas, where temperate crop species were attempted to grow (e.g. Northern Africa, 54 

Middle East or South America; Balandier et al., 1993). In this context, temperate perennial 55 

crops did exhibit lack of chilling and insufficient endodormancy release (Weinberger, 1950). 56 

The process of endodormancy, and related chilling accumulation, had thus been introduced into 57 

models (Weinberger, 1956; Vegis 1964). In the recent decades, naturally growing trees have 58 

also been affected by a reduction in chilling exposure throughout winter, enhancing the interest 59 

into the endodormancy stage (Gauzere et al., 2019).  60 

Two-step models, simulating endo- and ecodormancy stages, are now commonly used to 61 

predict budburst dates (Chuine et al., 2016). Frost acclimation models use similar formalism 62 

with direct linkage between frost acclimation and exposure to chilling temperatures followed 63 

by frost deacclimation and exposure to forcing temperatures, respectively. In perennial plants, 64 

the completion of a stage will directly drive the onset of the following ones (Hänninen & 65 

Tanino, 2011). However, the initial date for chilling accumulation (DCA) is usually arbitrarily 66 

set with various rules leading to tremendous variability across studies (from late summer until 67 

late autumn). Four different concepts of DCA have been used (see Tab. S1): 68 

- Fixed date across years and locations: from September 1st (Chuine et al., 2016) until 69 

November 1st (Weinberger, 1967), for northern hemisphere, 70 

- Dynamic date through a simple climatic threshold: critical temperature (e.g. date of the first 71 

frost; Landsberg, 1974) or photoperiod (Welling et al., 1997), 72 

- Dynamic date through a mathematic function using a single variable such as the date of 73 

minimum chilling units computed by the Utah model (Richardson et al., 1974), 74 
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- Dynamic date through a mathematic function using interacting variables (temperature and 75 

photoperiod) simulating leaf fall date (Delpierre et al., 2009) or dormancy induction 76 

(DORMPHOT; Caffarra et al., 2011a). 77 

These different approaches have mainly been used for phenological cycle prediction. Thanks 78 

to a large dataset combining data from 50 years in various orchards across France and Spain for 79 

J. regia cv Franquette, we tested different formalism to compute the effects of the onset of 80 

chilling accumulation DCA on the accuracy of three related processes (endodormancy, 81 

ecodormancy and frost acclimation/deacclimation). The optimal model was subsequently 82 

assessed for future climate prediction over France following three contrasted scenarii.  83 

Material and methods  84 

Endodormancy release and budburst dates 85 

Endodormancy release dates were measured using the one-node-cutting ‘forcing’ test of 86 

Rageau (1982). Samplings were performed every three weeks from October until May and 48 87 

one-node cuttings prepared per sampling date. Buds were isolated from other parts of plant to 88 

prevent correlative inhibitions (Dennis, 2003). At each sampling date, one-year-old stems were 89 

cut in 7-cm long pieces, bearing only one node at the top or less than 1 cm below the top end, 90 

for terminal and axillary buds, respectively. For axillary buds, the top of the cutting was covered 91 

by paraffin wax to prevent desiccation. The bases of the cuttings were immersed into tap water, 92 

weekly changed. Cuttings were exposed to optimal conditions for growth resumption (i.e. 16/8 93 

D/N and 25°C) and individually observed every 3 days. Mean time until budburst (stage 09 94 

BBCH) were computed from individual time until budburst for each cutting. After 95 

endodormancy release, buds of J. regia cv Franquette break out after 20 days under optimal 96 

conditions (Mauget, 1980; Charrier et al., 2011). Endodormancy release dates were thus 97 

obtained by linear interpolation between the two dates giving a time to budburst higher (or equal 98 
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to) and lower (or equal to) than 20 days, respectively. Budburst in the field was monitored every 99 

two to three days in the different sites until 50% of buds reached the stage 09 of the BBCH 100 

scale. 101 

Frost hardiness 102 

Frost hardiness was measured from September until budburst on one-year-old branches in 103 

different orchards (Tab. 1) using the electrolyte leakage method (Charrier & Améglio 2011). 104 

Samples were cut into six 7-cm-long segments without buds and exposed to four different 105 

freezing temperatures among this set of temperatures: -5, -10, -15, -20, -30 and -40 °C. 106 

Depending on the season, either the highest or the lowest temperatures were not used. Two 107 

supplementary subsamples were exposed to control (+5 °C) and maximal freezing temperature 108 

(-80 °C). Freezing and thawing rates were set to 5 K h-1.  109 

Relative electrolytic leakage (REL) was calculated as (C1/C2) as described in Zhang & 110 

Willison (1987). We assumed a sigmoidal relationship between REL and temperature (θ) for 111 

each sample: 112 

𝑅𝐸𝐿 =
𝑎

1+𝑒𝑏(𝑐−𝜃)
+ 𝑑 (1) 113 

where parameters a and d define asymptotes of the function, and b is the slope at the inflection 114 

point c.  115 

Frost hardiness was defined as the temperature of the inflection point (c) of the adjusted logistic 116 

sigmoid function (Repo & Lappi 1989), whereas frost sensitivity was considered to be estimated 117 

by the parameter b in percent damage per Celsius degree. 118 

Climate data 119 

Models were fit using observed daily mean and minimal temperature monitored by weather 120 

station, located most of the time in the same orchard and closer than 10km distance (Table 1). 121 
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For predictive purpose, the temperature, calculated according to the CNRM-ALADIN52 model 122 

and corrected by a Q-Q method (Déqué et al., 2007), were used from 8462 sites across France 123 

(Safran grid at 8km spatial resolution; MétéoFrance). Four datasets were used as input variable: 124 

reference period (1950-2005) and three contrasted climatic scenarii (RCP 2.6, RCP 4.5 and 125 

RCP 8.5) for the future period (2005-2100). For each site and day, day and night length were 126 

computed depending on the latitude and day of year.  127 

Endodormancy induction and onset of chilling accumulation  128 

Date of the onset of chilling accumulation (DCA) was computed through different functions:  129 

i) Fixed DCA every ca. 10 days from DOY 182 (July 1st) until DOY 335 (November 30th). 130 

ii) Dynamic DCA based on threshold values reached by minimum temperature (Tmin), mean 131 

temperature (Tmean), first frost (FF) or photoperiod. 132 

iii) Date of minimum chilling units (CUmin) were computed according to the Utah model 133 

(originally developed on Prunus persica) that computes negative chilling effect for 134 

temperature higher than 16°C (Richardson et al., 1974). Daily CU started were summed 135 

from DOY 182 (July 1st) until DOY 365 (December 31st) using the Utah_Model function 136 

(ChillR package; Luedeling, 2019). 137 

iv) Predicted leaf fall dates (BBCH 97) were computed according to the thermal (LFT) and 138 

photothermal (LFPT) models developed by Delpierre et al. (2009) and developed in Quercus 139 

and Quercus + Fagus, respectively. Below a critical photoperiod, temperature colder than a 140 

threshold, modulated by a photoperiod function in the case of the LFPT model, are summed 141 

up to a critical value (Ycrit), corresponding to the leaf fall date. Both LFT and LFPT model 142 

were computed using the original or a modified set of parameters: LF(P)Tori and LF(P)Tmod, 143 

respectively. 144 

v) The dormancy induction state (DS) was computed according to the DORMPHOT model 145 

developed in Betula pubescens by Caffarra et al. (2011a). The two sigmoidal response 146 
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function to low temperature and photoperiod, respectively interact through sigmoidal 147 

functions. The original (DPori) and two modified (DPE and DPL, for early and late, 148 

respectively) sets of parameters were used. 149 

Endodormancy release and budburst 150 

Starting from DCA, the sum of CU was modeled according to the inverse of the Richardson 151 

function (Richardson et al., 1974) which was defined as the best function predicting 152 

endodormancy release dates in walnut trees (Chuine et al., 2016; Charrier et al., 2018). 153 

According to the sequential paradigm, the date where CU(t) reaches the critical threshold CUcrit 154 

(arbitrary chilling units, CU) is the date of endodormancy release (DER), or the transition 155 

between endodormancy and ecodormancy! 156 

𝐶𝑈(𝑡 + 1) = 𝐶𝑈(𝑡) + 𝑀𝑎𝑥(𝑀𝑖𝑛(𝑇ℎ𝑖𝑔ℎ − 𝜃(𝑡); 𝑇ℎ𝑖𝑔ℎ − 𝑇𝑙𝑜𝑤); 0) (2) 157 

with CU(t), the chilling unit at day t, Thigh, both the temperature above which CU equals 0 and 158 

the amount of CU when temperature equals Tlow or lower; CU being linear between Tlow and 159 

Thigh.  160 

The ontogenetic development during ecodormancy stage was modeled according to a 161 

sigmoid function (Caffarra et al., 2011a). The date when FU(t) reaches the critical threshold 162 

FUcrit (arbitrary forcing units, FU) is the budburst date (DBB). 163 

𝐹𝑈(𝑡 + 1) = 𝐹𝑈(𝑡) +
1

1+𝑒−𝑠𝑙𝑝(𝜃(𝑡)−𝑇50)
 (3) 164 

with FU(t), the forcing unit at day t, slp, the slope of the function at the temperature inducing 165 

half of the maximal apparent growth rate T50.  166 

Frost hardiness and frost damages 167 

Frost hardiness and subsequent frost damages were computed using a photothermal model 168 

developed on Pinus sylvestris (Leinonen, 1996) and adapted on Juglans regia (Charrier et al., 169 
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2018). Shortly, hardening ability (CR) changes in relation to the different stage of the annual 170 

cycle (endodormancy induction, endodormancy release, ecodormancy and growth). During 171 

endodormancy and growth stages, CR was set to 1 and 0, respectively. During endodormancy 172 

induction, CR was either considered gradually increasing from 0 to 1 during the 30 days before 173 

the onset of chilling accumulation (Fixed DCA). For simple dynamic DCA, CR was set to 0 until 174 

the threshold was reached (CUmin, FF, Tmin, Tmean or Photoperiod). For models describing 175 

continuous process, CR was defined as the ratio between the related variable and its critical 176 

threshold (LF, LFPT and DP models). From the interaction between hardening, temperature 177 

and photoperiod, a dynamic potential state of hardiness is computed throughout the year. Daily 178 

changes in actual frost hardiness (FH) tend to reduce the difference between potential state of 179 

hardiness and FH with a temporal lag (see complete description of the model in the original 180 

publication). Frost damages are computed on a daily basis through the relation between FH, 181 

frost sensitivity (FS, slope at FH) and minimum temperature θmin as: 182 

𝐹𝐷 =
1

1+𝑒𝐹𝑆(𝐹𝐻−𝜃𝑚𝑖𝑛)
 (4) 183 

Model calibration depending on the onset of chilling accumulation 184 

Three different sub-models, namely endodormancy release, ecodormancy release and frost 185 

hardiness, were calibrated one after the other, as they were interrelated. To minimize sums of 186 

square between observed and predicted values, we used the nls function (Gauss-Newton 187 

algorithm), with different sets of starting values at minimum, average and maximum ranges of 188 

parameter realistic values.  189 

For endodormancy release model, one parameter was optimized: CUcrit corresponding to the 190 

sum of chilling units to release endodormancy. The other parameters were set to the values 191 

defined by Chuine et al. (2016). The dataset was split into calibration and validation datasets 192 
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containing 18 observations from 6 sites and 16 observations from 5 sites, respectively (Table 193 

1). 194 

For ecodormancy model, one parameter was optimized: FUcrit corresponding to the sum of 195 

forcing units to break buds. The endodormancy model used to predict DER was the best from 196 

the previous step and the other parameters set to the values described in Charrier et al. (2018). 197 

The dataset was split into calibration and validation datasets containing 41 observations from 7 198 

sites and 36 observations from 4 sites, respectively (Table 1). 199 

For frost hardiness model, seven parameters were optimized: T1, T2, NL1, NL2, δ, τ and 200 

FUcritR. The endodormancy and ecodormancy models used to predict DER and DBB, were the 201 

best from the previous steps and the other parameters set to the values described in Charrier et 202 

al. (2018). The dataset was split into calibration and validation datasets containing 60 203 

observations (6 winter periods) from 2 sites and 51 observations (5 winter periods) from 5 sites, 204 

respectively (Table 1). 205 

The quality of the fit and the predictive ability of the models depending on DCA were assessed 206 

for calibration and validation datasets computing Root Mean Square Error (RMSE) and 207 

Predictive Root Mean Square Error (RMSEP), respectively: 208 

𝑅𝑀𝑆𝐸(𝑃) = √
∑ (𝑦𝑖−𝑦𝑖)

2𝑛
𝑖=1

𝑛
 (5) 209 

with ŷi the predicted values for an observation I and yi the observed values for an observation i 210 

As the different DCA provided contrasted results among models, we used a composite 211 

performance index defined as : 212 

𝑃𝐼 =
𝑅𝑀𝑆𝐸𝑒𝑛𝑑𝑜𝐷𝑖

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑒𝑛𝑑𝑜𝐷)
+

𝑅𝑀𝑆𝐸𝑒𝑐𝑜𝐷𝑖

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑒𝑐𝑜𝐷)
+

𝑅𝑀𝑆𝐸𝐹𝐻𝑖

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑃𝐹𝐻)
+

𝑅𝑀𝑆𝐸𝑃𝑒𝑛𝑑𝑜𝐷𝑖
𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑃𝑒𝑛𝑑𝑜𝐷)

+213 

𝑅𝑀𝑆𝐸𝑃𝑒𝑐𝑜𝐷𝑖

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑃𝑒𝑐𝑜𝐷)
+

𝑅𝑀𝑆𝐸𝑃𝐹𝐻𝑖

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑃𝐹𝐻)
 (6) 214 
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Results 215 

Effects of DCA on model accuracy 216 

Fixed DCA only had a relatively small effect on the quality of the fit (12.3 < RMSEendoD < 217 

15.1 days; coefficient of variation CV = 6.8% for a 153 days range) and the predictive ability 218 

of DER (8.3 < RMSEPendoD < 11.8 days; CV = 11.7%). Fixed DCA between DOY 223 (Aug. 11th) 219 

and 274 (Oct. 1st) are relatively efficient to simulate CU accumulation with respect to DER. The 220 

effect of various DCA on the prediction of DBB was also relatively low for the quality of the fit 221 

(7.1 < RMSEecoD < 8.6 day; CV = 6.1%) and the predictive ability (6.9 < RMSEPecoD < 8.1 222 

days; CV = 4.7%). A wider range of fixed DCA, i.e. between 223 and 325 (Nov. 21st), similarly 223 

performed for DBB prediction. Annual phenological cycle (DER and DBB) was thus best predicted 224 

when DCA was set to DOY 254 (i.e. Sep. 11th). For frost hardiness, fixed DCA earlier than DOY 225 

305 (Nov. 1st) provided highly efficient fit (RMSE < 2.0°C). However, the prediction was not 226 

accurate enough, as RMSEP was almost twice higher (3.2 < RMSEP < 3.9°C). 227 

The DCA returned by the various dynamic functions were highly different across France: 228 

from DOY 182 ± 5 to 312 ± 14 (median ± SD; Fig. 1A). Four groups of earliness can be defined: 229 

very early (Tmin and photoperiod), early (DPE, LFPTmod, and LFTmod), intermediate (CUmin) and 230 

late (LFTori, LFPTori, DPori, DPL and FF). All the dynamic DCA computed via different functions 231 

exhibited highly significant correlation with mean annual temperature of the site (Fig. 1B-D).  232 

Simple temperature thresholds, such as Tmin or Tmean did not provide accurate phenological 233 

(RMSEP > 11.5 and 8.0 days for DER and DBB, respectively) nor FH prediction (RMSEP > 234 

3.3°C; Tab. 1). The DCA calculated via a photoperiodic threshold was relatively efficient to 235 

predict DBB (RMSEP = 6.8 days), but not DER (RMSEP = 10.2 days) nor FH (RMSEP = 3.5°C).  236 

The DCA computed using the Utah function did not provide accurate prediction for any 237 

variable of interest (RMSEP = 14.1 days, 7.8 days and 3.5°C for DER, DBB and FH, 238 
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respectively). The leaf fall thermal function (LFT), using either the original (LFTori) or the 239 

modified sets of parameters (LFTmod), was relatively efficient to predict DBB (RMSEP = 7.23 240 

days) but less efficient for DER and FH (RMSEP ≥ 9.2 and 3.2 for DER and FH, respectively). 241 

The leaf fall photothermal function (LFPT) provided accurate predictions for phenological 242 

dates (RMSEP ≤ 8.8 and 6.9 days for DER and DBB respectively) but not for FH (RMSEP > 3.2 243 

°C). The DCA computed using the DORMPHOT function were the most efficient to predict DER, 244 

DBB and FH, in the original and ‘Late’ versions of the function (DPori, and DPL, respectively). 245 

Finally, the performance index (PI) accounting for all the models and methods of computing 246 

DCA could not distinguish between DPori and DPL (PI = 6.31). 247 

Finally, the different processes exhibited contrasted thickness linkage with DCA. For 248 

ecodormancy, a wide range of fixed date (100 days range: Aug. 11th until Nov. 21st) and all the 249 

computations using photoperiod as an input variable, provided good fit and predictive 250 

accuracies (RMSEEcoD and RMSEEndoD lower than 8 and 7.6 days, respectively). Endodormancy 251 

release was slightly more restrictive with the best predictions either provided by fixed calendar 252 

dates (Aug. 11th until Oct. 1st) or dynamic functions integrating the interaction between 253 

temperature and photoperiod (LFPT and DP). Frost hardiness was the most restrictive, with 254 

excellent predictive accuracy when using DCA computed by DORMPHOT model (DPori and 255 

DPL; RMSEP < 3.0°C) compared to all the other computations. 256 

Although both DPori and DPL performed almost equally for the three variables of interest 257 

(DER, DBB and FH), DPL exhibited a slightly better correlation to predict the dynamic of Mean 258 

Time until budburst (MTB) during the period of dormancy induction (R² = 0.262 and 0.282 for 259 

DPori and DPL, respectively; Figure 2). Furthermore, as FH was slightly better predicted using 260 

DPL (RMSEP = 2.6°C), DCA predicted by this function was selected to predict the current and 261 

future frost risks (Fig. 3).  262 

Predictions under current and future climates  263 
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Using DCA computed from DPL endodormancy release dates under current climate exhibited 264 

a structured geographical pattern across France. Endodormancy release dates spanned over a 265 

60 days range (Fig. 3A): earlier in mountain area (Early December) and later on the 266 

Mediterranean (Mid-February) and southwestern coasts (Late January). Budburst dates 267 

exhibited an opposite pattern over a 77 days range (Fig. 3B): from Mid-April in Southern and 268 

Western parts until late June in mountainous area. Endodormancy release and budburst dates 269 

were highly correlated to mean annual temperature, although through different functions 270 

(exponential and cubic function for endodormancy release and budburst, respectively; Fig. 3C-271 

D). 272 

The geographic structure was less obvious for frost damages, with very low predicted 273 

damages during autumn (Fig. 4A) and spring (Fig. 4C), except in high mountain area. During 274 

the winter period, higher frost damages are predicted in the northeastern part of France 275 

(Burgundy, Alsace, Lorraine), in mountain areas and in the north of Rhone valley (Fig. 4B). 276 

Average predicted damages in autumn and spring were highly correlated to the date of first (<-277 

4°C) and last frost event (< 0°C), respectively (Fig. 4D; F), whereas maximum winter damages 278 

were correlated to absolute annual temperature (Fig. 4E). 279 

Similar trends are observed under future climate predictions, with high delay in both the 280 

onset of dormancy and release for mean annual temperature higher than 5°C (Fig. 5A, B). 281 

However, the delay affecting endodormancy stage does not carry over toward budburst with 282 

earlier budburst with increasing temperature for lower mean annual temperature than 10°C (Fig. 283 

5C). It should be noted that similar or earlier budburst is likely to happen for higher temperature, 284 

and this may be observed in up to one quarter of France at the end of the XXIst century: from 5 285 

(RCP 4.5) to 27% (RCP8.5 scenario) of the French territory in 2051-2100 (Fig. 6). Although 286 

such a delay is not forecasted within the ‘Noix de Grenoble’ Protected Designation of Origin 287 

area, budburst would be delayed in most of the ‘Noix du Périgord’ area under RCP8.5 scenario 288 
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(75.1% 2006-2050 and 94.2% 2051-2100). Overall, frost damages are expected to decrease, on 289 

average, all over France (Fig. S1). However, in North East and Massif Central, higher decennial 290 

risks are predicted under RCP 2.6 scenario (2006-2051; Fig. S2). 291 

Discussion 292 

Defining the initial date for cyclical processes is a critical issue. To predict annual 293 

phenological cycle in perennial organisms, such as trees, various empirical rules have been used 294 

so far. The onset of chilling accumulation during endodormancy stage (DCA) had, for instance, 295 

been arbitrarily set using fixed dates across years and locations (Chuine et al., 2016) or, under 296 

the dependence of environmental factors controlling the induction of dormancy (Caffarra et al., 297 

2011b). In the current study, we used long-term observations of phenological stages 298 

(endodormancy release and budburst) and related processes (frost acclimation and 299 

deacclimation) in various environmental conditions and showed that the DORMPHOT model 300 

was the most relevant to predict winter biology in walnut trees.  301 

Depending on the studied process, not all computation performed equally (Tab. 2). The 302 

effect of DCA on ecodormancy and budburst was buffered during endodormancy release. From 303 

a budburst perspective, various rules for DCA computation can thus be considered as valid, 304 

although they all consider a potential effect of photoperiod, either directly or indirectly via fixed 305 

date (Welling et al., 1997; Chuine and Régnière, 2017). A narrower range of fixed date and 306 

fewer dynamic computations of DCA (DORMPHOT and LFPT models) provided accurate 307 

predictions for endodormancy release dates. However, providing predictive rules only based on 308 

one or two phenological stages, even though with a large number of measurements (more than 309 

100 dates, combining endodormancy and budburst, in the present study) does not provide 310 

sufficient details for continuous process modeling. Introducing frost hardiness as a co-variable 311 

of dormancy induction and release provided higher temporal resolution into these concurring 312 



15 

 

processes (Welling & Palva, 2006; Charrier et al., 2011; Hanninen, 2016). Through a multi 313 

criterion analysis, the DCA simulated by the DORMPHOT model provided the most accurate 314 

predictions. This model, originally developed in Betula pubescens, is thus relevant for other 315 

deciduous species such as Juglans regia. The conceptual development of this model is indeed 316 

based on experimental results combining photoperiod and temperature manipulation (Caffarra 317 

et al., 2011b), whereas other formalisms were based on empirical observations (e.g. leaf fall).  318 

Photoperiod and temperature are intimately related in controlling annual weather dynamics. 319 

However, temperature fluctuation is much higher at a given date of the year which could induce 320 

high variability in the onset of the winter season (see e.g. Fig.1). Since dormancy induction and 321 

frost acclimation are lengthy processes (e.g. ca. 1-2 month), perennial plants cannot only rely 322 

on temperature changes that can be too sudden for the onset of winter rest (Caffarra et al., 323 

2011a). Both photoperiod and temperature variables thus affect annual phenological cycle in 324 

perennial plants, although at different ratio across species. Photoperiod is for instance 325 

predominant in Populus sp (Kalcsits et al., 2009) and Vitis sp (Fennel & Hoover 1991), while 326 

temperature in Malus sp and Pyrus sp (Heide & Prestrud, 2005) and Sorbus sp (Heide, 2011). 327 

The interaction of both photoperiod and temperature has been showed in Prunus sp (Heide 328 

2008).  Integrating both variables is an interesting strategy to prevent dormancy induction 329 

during cold late summer (without frost risks) while maintaining physiological activity under 330 

extended warm periods. It has been hypothesized that the modulation of photoperiod sensitivity 331 

by temperature may be related by thermal effect on phytochrome perception of day length 332 

(Mølmann et al., 2005). 333 

The selected rule for DCA, predicting a delayed chilling accumulation in warmer locations 334 

(> 7°C MAT; Fig. 1C; 5A) would further delay endodormancy release in such area (Fig. 3 A, 335 

C). However, cold weather would limit ontogenetic development during ecodormancy, 336 

providing a negative picture of DER vs DBB (Fig. 3). Under future climatic conditions such as 337 
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predicted by RCPs scenarii, this picture is likely to be blurred as the tipping point for budburst 338 

would be achieved (ca. 14°C MAT). Below 14°C, endodormancy would be released and 339 

warmer temperature of the winter-spring period lead to earlier budburst.  340 

Date of first frost (< 0°C), minimum temperature and date of late frost (<-4°C) appear as 341 

good proxies to predict early, maximum and late frost damages, respectively (Fig. 4D-F). 342 

Predicted minimal temperature are expected to decrease as well and, even though flushing buds 343 

would be highly vulnerable to late frost, they are likely not to be exposed to damaging 344 

temperature (Fig. 4). Although climate models agree on the average trend, they are still unclear 345 

on the climate extreme events such as early and late frost events. Notably, the decennial 346 

damages (i.e. maximum damage occurring every ten years) may increase in North East and 347 

Massif Central area (Fig. S2). The relative balance between photo- and thermosensitivity is 348 

likely to be a critical trait explaining this trend. In the near future in these areas, minimum 349 

temperature are still likely to happen while dormancy induction and frost acclimation would be 350 

delayed by mean temperature increase. 351 

Above the 14°C threshold, endodormancy induction and release would be more delayed than 352 

ecodormancy hastened, resulting in delayed budburst due to a lack of chilling, compared to the 353 

present situation. This situation would cover up to one quarter of France under RCP 8.5 scenario 354 

(Fig. 6). Although it would significantly reduce frost damages, even under false spring scenarii, 355 

lack of chilling would induce severe agronomic troubles such as erratic patterns of blooming, 356 

floribondity, and potential dischronism with anthesis. A similar pattern is also expected using 357 

fixed date (see Fig S3).  358 

With respect to French nuts production, both IGP regions would face distinct threads. In the 359 

Périgord, chilling requirements are likely not to be met, and lower chilling varieties have to be 360 

selected, as the current ones do not exhibit variability for this trait (Charrier et al., 2011). In 361 

Grenoble, earlier budburst dates are expected, leading to higher exposure to frost events, and 362 
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varieties with higher forcing requirements may help to stabilize the production (Charrier et al., 363 

2018). However, both regions seem relatively safe with respect to frost damages. 364 

Conclusions and perspectives 365 

This study highlighted the relevance of dynamic dates for simulating annual phenological 366 

cycle and frost acclimation. The DORMPHOT model, integrating temperature and 367 

photoperiodic control of dormancy induction, is the most efficient for all studied processes. On 368 

one hand, higher decennial damages would be observed in the near future on ca. 15% of French 369 

territory because of late frost acclimation. On the other hand, the tipping point for phenological 370 

processes is likely to be reached during the XXIst century with chilling requirements that are 371 

likely not to be fulfilled. The correlation between MAT, phenological stages and frost damages 372 

is an important tool, to build relevant meta-models at the global scale. 373 

  374 
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Figure captions 495 

Figure 1. A Distribution of date at the onset of chilling accumulation T0 across France over the 1950-2005 period according to different 496 

computations: Tmin minimum temperature (lower than 15.28°C), DP DORMPHOT model from different sets of parameters (O: original, 497 
E early, L Late), LFTmod Leaf Fall model (thermal version modified), LFPT Leaf Fall model Photothermal version Original and modified. 498 

B, C and D T0 depending on mean annual temperature.  499 

Figure 2 MTB depending on Day after September 1st (A), DS according to DPori (B), DS according to DPL (C).  500 

Figure 3. A-B. Average dates of endodormancy release (A) and budburst (B) predicted across France under current climatic 501 
conditions. C-D. Average dates of endodormancy release (C) and budburst (D) depending on mean annual temperature (°C) across 502 

France. 503 

Figure 4. A-C. Average frost damages predicted across France under current climatic conditions in autumn (A), winter (B) and 504 

spring (C). D. Average early frost damages depending on the average date of the first frost lower than 0°C. E. Average maximum 505 

frost damages depending on the average annual minimum temperature. F. Average late frost damages depending on the average 506 

date of the last frost lower than -4°C. 507 

Figure 5. A-C. Average date of onset of dormancy (A), endodormancy release (B), budburst (C) over France depending on the 508 

mean annual temperature under current climate (gray), RCP 2.6 (2006-2051 cyan, 2051-2100 blue), RCP 4.5 (2006-2051 green, 509 
2051-2100 yellow), and RCP 8.5 scenarii (2006-2051 purple, 2051-2100 red). D. Average predicted autumn early frost damages 510 

depending on the date of first frost (<0°C) E. Average predicted maximum winter frost damages depending on the mean absolute 511 
minimum temperature F. Average predicted spring late frost damages depending on the date of last frost (<-4°C). Each dot 512 

represent the average of the considered period at 8 x 8km spatial resolution, black line represent the best non-linear regression.  513 

Figure 6. Relative change in predicted average budburst date across France according to different climatic scenarii and time periods 514 

(earlier and later budburst dates than the mean are represented in blue and red, respectively).  515 

 516 

  517 
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Table 1. Site and dataset description 518 

Location Elevation 
(m asl.) 

Latitude 
° 

Longitude 
° 

Mean 
annual 

temperature 
(°C) 

Minimum 
temperature 

(°C) 

Absolute 
minimum 

temperature 
(°C) 

Number 
of 

freezing 
events 

First 
Frost 

(Autumn) 
DOY 

Last 
Frost 

(Spring) 
DOY 

Number of observations (years and number of dates in brackets) 

Endodormancy 
Release 

Budburst Frost Hardiness 

Calibration Validation Calibration Validation Calibration Validation 

Balandran 69 43.758 4.516 16.90 12.00 -3.78 14.5 340 50 1 1 0 0 0 0 
Chatte 304 45.143 5.282 13.62 8.15 -9.39 61.7 308 102 0 0 12 11 0 1 (6) 

Creysse 115 44.887 1.597 14.65 8.52 -8.50 52.4 309 104 0 0 13 12 0 1 (8) 
Crouël 340 45.779 3.142 13.25 9.26 -11.51 59.6 302 108 13 12 4 4 5 (49) 2 (21) 
Orcival 1150 45.683 2.842 12.92 7.72 -12.13 97.4 291 126 1 1 1 0 0 0 
Terrasson 90 45.136 1.300 14.61 8.96 -9.69 47.4 311 100 1 1 1 0 0 0 
Theix 945 45.706 3.021 9.70 6.22 -15.11 100.3 282 129 1 1 1 0 1 (11) 1 (9) 
Toulenne 22 44.557 -0.263 15.38 10.56 -6.09 25.9 325 74 1 0 9 9 0 0 
Mas Bové  112 41.170 1.169 15.87 10.81 -4.05 14.9 343 47 0 0 0 0 0 1 (7) 

 519 

  520 
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Table 2. Quality assessment of different models. RMSE(P) less than 15% higher than minimum RMSE or RMSEP are indicated in 521 

bold. 522 

 

 

Endodormancy 

Release Date 

Budburst 

Date 

Frost 

Hardiness 

PI  

Type Function DCA 

RMSE 

(days) 

RMSEP 

(days) 

RMSE 

(days) 

RMSEP 

(days) 

RMSE 

(°C) 

RMSEP 

(°C) 

 

Fixed 

 182 (Jul. 1st) 12.84 11.84 8.58 8.08 1.79 3.52 7.31  

 192 (Jul. 11th) 12.64 11.48 8.44 7.57 1.79 3.39 7.10  

 202 (Jul.21st) 12.41 10.73 8.25 7.28 1.80 3.42 6.94  

 213 (Aug. 1st) 12.33 10.06 8.06 7.14 1.79 3.46 6.81  

 223 (Aug. 11th) 12.65 9.36 7.78 6.89 1.78 3.49 6.68  

 233 (Aug. 21st) 12.68 8.71 7.61 6.85 1.78 3.49 6.58  

 244 (Sep. 1st) 12.87 8.75 7.39 7.03 1.79 3.48 6.59  

 254 (Sep. 11th) 13.19 8.49 7.26 6.88 1.77 3.47 6.53  

 264 (Sep. 21st) 13.70 8.80 7.15 7.24 1.74 3.24 6.55  

 274 (Oct. 1st) 13.80 8.47 7.25 7.38 1.73 3.29 6.56  

 284 (Oct. 11th) 13.98 8.29 7.10 6.93 1.77 3.37 6.52  

 294 (Oct. 21st) 14.39 8.47 7.25 7.15 1.84 3.30 6.64  

 305 (Nov. 1st) 14.48 9.22 7.45 7.47 1.84 3.21 6.78  

 315 (Nov. 11th) 14.48 9.93 7.52 7.56 2.15 3.42 7.16  

 325 (Nov. 21st) 14.67 10.26 7.46 7.43 2.90 3.90 7.81  

 335 (Dec. 1st) 15.10 10.33 7.58 7.67 3.77 3.52 8.77  

Dynamic 

Simple 

FF 17.71 14.15 9.35 15.69 1.90 4.92 9.84  

Tmin 12.88 11.93 8.55 8.03 1.79 3.37 7.25  

Tmean 12.93 11.59 8.70 8.47 1.81 3.38 7.31  

Photoperiod 12.31 10.24 7.94 6.85 1.80 3.46 6.78  

Complex 

CUmin 16.32 14.08 8.22 7.78 1.78 3.48 7.74  

LFTori 12.91 10.37 8.11 7.23 1.76 3.22 6.81  

LFTmod 12.57 9.16 8.11 7.23 1.80 3.19 6.83  

LFPTori 13.34 8.67 7.42 6.72 1.83 3.24 6.51  

LFPTmod 12.66 8.81 7.43 6.89 1.78 3.50 6.57  

DPori 13.01 8.81 7.47 6.61 1.76 2.87 6.31  

DPE 12.05 8.64 7.73 7.24 1.80 3.95 6.77  

DPL 12.51 9.43 7.52 7.14 1.70 2.65 6.31  

523 
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 524 
Figure 1. A Distribution of date at the onset of chilling accumulation (DCA) across 525 
France over the 1950-2005 period according to different computations: Tmin minimum 526 

temperature (lower than 15.28°C), DP DORMPHOT model from different sets of 527 
parameters (O: original, E early, L Late), LFTmod Leaf Fall model (thermal version 528 

modified), LFPT Leaf Fall model Photothermal version Original and modified. B, C and 529 

D T0 depending on mean annual temperature.  530 

 531 
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 533 

Figure 2. Mean time until budburst in forcing test depending on Day after September 534 

1st (A), DS according to DPori (B), DS according to DPL (C).   535 
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 536 

Figure 3. A-B. Average dates of endodormancy release (A) and budburst (B) predicted 537 
across France under current climatic conditions. C-D. Average dates of endodormancy 538 

release (C) and budburst (D) depending on mean annual temperature (°C) across 539 
France. 540 
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 541 

Figure 4. A-C. Average frost damages predicted across France under current climatic 542 

conditions in autumn (A), winter (B) and spring (C). D. Average early frost damages 543 

depending on the average date of the first frost lower than 0°C. E. Average maximum 544 

frost damages depending on the average annnual minimum temperature. F. Average 545 

late frost damages depending on the average date of the last frost lower than -4°C. 546 
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  548 

Figure 5. A-C. Average date of onset of dormancy (A), endodormancy release (B), 549 
budburst (C) over France depending on the mean annual temperature under current 550 

climate (gray), RCP 2.6 (2006-2051 cyan, 2051-2100 blue), RCP 4.5 (2006-2051 551 
green, 2051-2100 yellow), and RCP 8.5 scenarii  (2006-2051 purple, 2051-2100 red). 552 

D. Average predicted autumn early frost damages depending on the date of first frost 553 
(<0°C) E. Average predicted maximum winter frost damages depending on the mean 554 

absolute minimum temperature F. Average predicted spring late frost damages 555 
depending on the date of last frost (<-4°C). Each dot represent the average of the 556 
considered period at 8 x 8km spatial resolution, black line represent the best non-linear 557 

regression.  558 
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 560 

Figure 6 Relative change in predicted average budburst date across France according 561 
to different climatic scenarii and time periods. Earlier and later budburst dates than the 562 

mean are represented in blue and red, respectively). The proportion of area showing 563 
delayed budburst is indicated for each map. 564 

 565 


