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Abstract 1 

Background and Aims  2 

In perennial plants, the annual phenological cycle is sub-divided into successive stages whose 3 

completion will lead directly to the onset of the following event. A critical point is the transition 4 

between the apparent vegetative growth and the cryptic dormancy. To date, the initial date for 5 

chilling accumulation (DCA) is arbitrarily set using various rules such as fixed or dynamic dates 6 

depending on environmental variables. These rules led to tremendous variability across studies 7 

and sites (from late summer until late autumn).  8 

Methods  9 

To test the relevancy of different DCA, a dataset combining 34 dormancy release dates and 77 10 

budburst dates in independent locations and/or years and 111 frost hardiness measurements in 11 

various orchards across France and Spain for the walnut Juglans regia L. cv Franquette. 12 

Key Results  13 

Many of the tested DCA provided accurate results for the calibration and validation datasets 14 

(RMSEP < 10 and 8 days for endodormancy release and budburst dates, respectively). 15 

However, for frost hardiness, only the DCA provided by the DORMPHOT model provided 16 

accurate results (RMSEP < 3°C). The best DCA was thus selected using a composite index for 17 

all three processes.  18 

Testing the prediction under current and future climatic scenario showed that in, up to 25% of 19 

French territory under RCP 8.5 scenario, ecodormancy stage is likely to be delayed although 20 

temperature is increasing. Overall, less average frost damages are expected although decennial 21 

risk (i.e. return period of ten years) is likely to increase in autumn in 15% of French territory. 22 

Conclusions  23 



3 

 

In southern part of France, delayed dormancy induction and release would induce delayed 1 

budburst and blooming altering flower and fruit production, whereas North East and Massif 2 

Central parts of France may suffer higher frost risks from late frost acclimation. Finally, this 3 

study describes relationships between climatic variables and plant phenological processes to 4 

build metamodels predicting next century’s phenological cycles at the global scale.  5 

 6 

Keywords: Chilling, Frost acclimation, Frost damages, Juglans regia L, Photoperiod, 7 

Phenology, Projection, Risk assessment, Trees.  8 
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Introduction 1 

In frost-exposed environments, deciduous trees have to timely adjust their biology and 2 

increase frost resistance by anticipating unfavorable conditions before the winter period. As 3 

observed for most stresses, avoidance and tolerance are two complementary processes driving 4 

frost resistance (Charrier et al., 2011). The protection of shoot apical meristems under bud 5 

scales can be considered as an avoidance strategy. This is achieved through physiological 6 

changes allowing the transition from an apparently active (e.g. primary and secondary growth, 7 

leaf expansion, fruit maturation) towards a ‘dormant’ period. In temperate species, dormancy 8 

is a two-stage period with respect to the inhibiting factor. During endodormancy (formerly 9 

called dormancy), growth is inhibited by intrinsic factors to the bud (‘endo’) whereas during 10 

ecodormancy (formerly called quiescence), growth is limited by environmental factors (‘eco’; 11 

Lang et al., 1987). During this transition, different phenologically-related processes that are 12 

either visible (e.g. growth cessation, leaf fall, lignification or budset) or invisible (e.g. dormancy 13 

induction and release) take place. In parallel, trees transiently increase their frost tolerance 14 

through frost acclimation / deacclimation process (Charrier et al., 2011). 15 

In autumn, endodormancy release and frost acclimation are induced by the same 16 

environmental factors, namely decreasing temperature and photoperiod (Welling et al., 2002; 17 

Arora et al., 2003; Maurya & Bahlerao, 2017). After endodormancy was released, ecodormancy 18 

and frost deacclimation also occurs in parallel, under the control of warm temperature, in most 19 

species, eventually modulated by photoperiod in photosensitive species, such as late 20 

successional species (Basler & Körner, 2012). Process-based models using these variables as 21 

input have been developed to simulate the dormancy release and budburst dates (Chuine et al., 22 

2016), as well as frost hardiness (e.g. Leinonen 1996; Ferguson et al., 2011; Charrier et al., 23 

2018).  24 
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Under the context of global change, it is particularly critical to accurately predict future 1 

trends in warmer climates. Since the first empirical model describing the relation between 2 

temperature and plant development, through the thermal-time concept (Réaumur, 1735), 3 

budburst and blooming models were only computing accumulation of growth-effective 4 

temperature (i.e. growth degree days GDD). As the starting point was set at the coldest period 5 

of the year (i.e. January 1st or July 1st in northern and southern hemisphere, respectively), these 6 

models provided accurate results. However, this type of model was not efficient under warmer 7 

winter areas, where temperate crop species were attempted to grow (e.g. Northern Africa, 8 

Middle East or South America; Balandier et al., 1993). In this context, temperate perennial 9 

crops did exhibit lack of chilling and insufficient endodormancy release (Weinberger, 1950). 10 

The process of endodormancy, and related chilling accumulation, had thus been introduced into 11 

models (Weinberger, 1956; Vegis 1964). In the recent decades, naturally growing trees have 12 

also been affected by a reduction in chilling exposure throughout winter, enhancing the interest 13 

into the endodormancy stage (Gauzere et al., 2019).  14 

Two-step models, simulating endo- and ecodormancy stages, are now commonly used to 15 

predict budburst dates (Chuine et al., 2016). Frost acclimation models use similar formalism 16 

with direct linkage between frost acclimation and exposure to chilling temperatures followed 17 

by frost deacclimation and exposure to forcing temperatures, respectively. In perennial plants, 18 

the completion of a stage is concomitant with the onset of the following one (Hänninen & 19 

Tanino, 2011). However, the initial date for chilling accumulation (DCA) is usually arbitrarily 20 

set with various rules leading to tremendous variability across studies (from late summer until 21 

late autumn). Four different concepts of DCA have been used (see Tab. S1): 22 

- Fixed date across years and locations: from September 1st (Chuine et al., 2016) until 23 

November 1st (Weinberger, 1967), for northern hemisphere, 24 
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- Dynamic date through a simple climatic threshold: critical temperature (e.g. date of the first 1 

frost; Landsberg, 1974) or photoperiod (Welling et al., 1997), 2 

- Dynamic date through a mathematic function using a single variable such as the date of 3 

minimum chilling units computed by the Utah model (Richardson et al., 1974), 4 

- Dynamic date through a mathematic function using interacting variables (temperature and 5 

photoperiod) simulating leaf fall date (Delpierre et al., 2009) or dormancy induction 6 

(DORMPHOT; Caffarra et al., 2011a). 7 

These different approaches have mainly been used for phenological cycle prediction. Thanks 8 

to a large dataset combining data from 50 years in various orchards across France and Spain for 9 

J. regia cv Franquette, different formalism were tested to compute the effects of the onset of 10 

chilling accumulation DCA on the accuracy of three related processes (endodormancy, 11 

ecodormancy and frost acclimation/deacclimation). The optimal model was subsequently 12 

assessed for future climate prediction over France following three contrasted scenarii.  13 

Material and methods  14 

Endodormancy release and budburst dates 15 

Endodormancy release dates were measured using the one-node-cutting ‘forcing’ test of 16 

Rageau (1982). Samplings were performed every three weeks from October until May and 48 17 

one-node cuttings prepared per sampling date. Buds were isolated from other parts of plant to 18 

prevent correlative inhibitions (Dennis, 2003). At each sampling date, one-year-old stems were 19 

sampled from five individual trees and cut in 7-cm long pieces, bearing only one node at the 20 

top or less than 1 cm below the top end, for terminal and axillary buds, respectively. For axillary 21 

buds, the top of the cutting was covered by paraffin wax to prevent desiccation. The bases of 22 

the cuttings were immersed into tap water, weekly changed. Forty-eight cuttings were exposed 23 

to optimal conditions for growth resumption (i.e. 16/8 hours Day/Night and 25°C constant) and 24 
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individually observed every 3 days. Mean time until budburst (stage 09 BBCH; Meier, 2001) 1 

were computed from individual time until budburst for each cutting. After endodormancy 2 

release, buds of J. regia cv Franquette break out after 20 days under optimal conditions 3 

(Mauget, 1980; Charrier et al., 2011). Endodormancy release dates were thus obtained by linear 4 

interpolation between the two dates giving a time to budburst higher (or equal to) and lower (or 5 

equal to) than 20 days, respectively. Budburst in the field was monitored every two to three 6 

days at the different sites on five individual trees until 50% of buds reached the stage 09 of the 7 

BBCH scale. The different locations and number of yearly observation are indicated in Table 8 

1. 9 

Frost hardiness 10 

Frost hardiness was measured from September until budburst on five one-year-old branches 11 

from different individual trees in different orchards (Tab. 1) using the electrolyte leakage 12 

method (Charrier & Améglio 2011). Samples were cut into six 7-cm-long segments without 13 

buds. Four of them were exposed for one hour to four different freezing temperatures among 14 

this set of temperatures: -5, -10, -15, -20, -30 and -40 °C. Depending on the season, either the 15 

highest or the lowest temperatures were not used. Two supplementary subsamples were 16 

exposed to control (+5 °C) and maximal freezing temperature (-80 °C). Freezing and thawing 17 

rates were set to 5 K h-1.  18 

Relative electrolytic leakage (REL) was calculated as (C1/C2) as described in Zhang & 19 

Willison (1987). A sigmoidal relationship between REL and temperature (θ) was assumed for 20 

each sample: 21 

𝑅𝐸𝐿 =
𝑎

1+𝑒𝑏(𝑐−𝜃)
+ 𝑑 (1) 22 

where parameters a and d define asymptotes of the function, and b is the slope at the inflection 23 

point c.  24 
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Frost hardiness was defined as the temperature of the inflection point (c) of the adjusted logistic 1 

sigmoid function (Repo & Lappi 1989), whereas frost sensitivity was considered to be estimated 2 

by the parameter b in percent damage per Celsius degree. The different locations and number 3 

of years and sampling dates are indicated in Table 1. 4 

Climate data 5 

Models were fit using observed daily mean and minimal temperature monitored by weather 6 

station, located most of the time in the same orchard and closer than 10km distance (Tab. 1). 7 

For predictive purpose, the temperature, calculated according to the CNRM-ALADIN52 model 8 

and corrected by a Q-Q method (Déqué et al., 2007), were used from 8462 sites across France 9 

(Safran grid at 64km² spatial resolution; MétéoFrance). Four datasets were used as input 10 

variable: reference period (1950-2005) and three contrasted climatic scenarii (RCP 2.6, RCP 11 

4.5 and RCP 8.5) for the future period (2005-2100). For each site and day, day and night length 12 

were computed depending on the latitude and day of year.  13 

Endodormancy induction and onset of chilling accumulation  14 

Date of the onset of chilling accumulation (DCA) was computed through different functions:  15 

i) Fixed DCA every ca. 10 days from DOY 182 (July 1st) until DOY 335 (November 30th). 16 

ii) Dynamic DCA based on threshold values reached by minimum temperature (Tmin), mean 17 

temperature (Tmean), first frost (FF) or photoperiod. 18 

iii) Date of minimum chilling units (CUmin) were computed according to the Utah model 19 

(originally developed on Prunus persica L. Batsch) that computes negative chilling effect 20 

for temperature higher than 16°C (Richardson et al., 1974). Daily CU started were summed 21 

from DOY 182 (July 1st) until DOY 365 (December 31st) using the Utah_Model function 22 

(ChillR package; Luedeling, 2019). 23 
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iv) Predicted leaf fall dates (BBCH 97) were computed according to the thermal (LFT) and 1 

photothermal (LFPT) models developed by Delpierre et al. (2009) and developed in 2 

Quercus and Quercus + Fagus, respectively. Below a critical photoperiod, temperature 3 

colder than a threshold, modulated by a photoperiod function in the case of the LFPT 4 

model, are summed up to a critical value (Ycrit), corresponding to the leaf fall date. Both 5 

LFT and LFPT model were computed using the original or a modified set of parameters: 6 

LF(P)Tori and LF(P)Tmod, respectively. 7 

v) The dormancy induction state (DS) was computed according to the DORMPHOT model 8 

developed in Betula pubescens Ehrh. by Caffarra et al. (2011a). The two sigmoidal response 9 

function to low temperature and photoperiod, respectively interact through sigmoidal 10 

functions. The original (DPori) and two modified (DPE and DPL, for early and late, 11 

respectively) sets of parameters were used. 12 

Endodormancy release and budburst 13 

Starting from DCA, the sum of CU was modeled according to the inverse of the Richardson 14 

function (Richardson et al., 1974) which was defined as the best function predicting 15 

endodormancy release dates in walnut trees (Chuine et al., 2016; Charrier et al., 2018). 16 

According to the sequential paradigm, the date where CU(t) reaches the critical threshold CUcrit 17 

(arbitrary chilling units, CU) is the date of endodormancy release (DER), or the transition 18 

between endodormancy and ecodormancy! 19 

𝐶𝑈(𝑡 + 1) = 𝐶𝑈(𝑡) + 𝑀𝑎𝑥(𝑀𝑖𝑛(𝑇ℎ𝑖𝑔ℎ − 𝜃(𝑡); 𝑇ℎ𝑖𝑔ℎ − 𝑇𝑙𝑜𝑤); 0) (2) 20 

with CU(t), the chilling unit at day t, Thigh, both the temperature above which CU equals 0 and 21 

the amount of CU when temperature equals Tlow or lower; CU being linear between Tlow and 22 

Thigh.  23 
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The ontogenetic development during ecodormancy stage was modeled according to a 1 

sigmoid function (Caffarra et al., 2011a). The date when FU(t) reaches the critical threshold 2 

FUcrit (arbitrary forcing units, FU) is the budburst date (DBB). 3 

𝐹𝑈(𝑡 + 1) = 𝐹𝑈(𝑡) +
1

1+𝑒−𝑠𝑙𝑝(𝜃(𝑡)−𝑇50)
 (3) 4 

with FU(t), the forcing unit at day t, slp, the slope of the function at the temperature inducing 5 

half of the maximal apparent growth rate T50.  6 

Frost hardiness and frost damages 7 

Frost hardiness and subsequent frost damages were computed using a photothermal model 8 

developed on Pinus sylvestris L. (Leinonen, 1996) and adapted on Juglans regia (Charrier et 9 

al., 2018). Shortly, hardening ability (CR) changes in relation to the different stage of the annual 10 

cycle (endodormancy induction, endodormancy release, ecodormancy and growth). During 11 

endodormancy and growth stages, CR was set to 1 and 0, respectively. During endodormancy 12 

induction, CR was either considered gradually increasing from 0 to 1 during the 30 days before 13 

the onset of chilling accumulation (Fixed DCA). For simple dynamic DCA, CR was set to 0 until 14 

the threshold was reached (CUmin, FF, Tmin, Tmean or Photoperiod). For models describing 15 

continuous process, CR was defined as the ratio between the related variable and its critical 16 

threshold (LF, LFPT and DP models). From the interaction between hardening, temperature 17 

and photoperiod, a dynamic potential state of hardiness is computed throughout the year. Daily 18 

changes in actual frost hardiness (FH) tend to reduce the difference between potential state of 19 

hardiness and FH with a temporal lag (see complete description of the model in the original 20 

publication). Frost damages are computed on a daily basis through the relation between FH, 21 

frost sensitivity (FS, slope at FH) and minimum temperature θmin as: 22 

𝐹𝐷 =
1

1+𝑒𝐹𝑆(𝐹𝐻−𝜃𝑚𝑖𝑛)
 (4) 23 

Model calibration depending on the onset of chilling accumulation 24 
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Three different sub-models, namely endodormancy release, ecodormancy release and frost 1 

hardiness, were calibrated one after the other, as they were interrelated. To minimize sums of 2 

square between observed and predicted values, the nls function was used (Gauss-Newton 3 

algorithm), with different sets of starting values at minimum, average and maximum ranges of 4 

parameter realistic values.  5 

For endodormancy release model, one parameter was optimized (Tab. S2): CUcrit 6 

corresponding to the sum of chilling units to release endodormancy. The other parameters were 7 

set to the values defined by Chuine et al. (2016). The dataset was split into calibration and 8 

validation datasets containing 18 observations from 6 sites and 16 observations from 5 sites, 9 

respectively (Tab. 1). 10 

For ecodormancy model, one parameter was optimized (Tab. S2): FUcrit corresponding to 11 

the sum of forcing units to break buds. The endodormancy model used to predict DER was the 12 

best from the previous step and the other parameters set to the values described in Charrier et 13 

al. (2018). The dataset was split into calibration and validation datasets containing 41 14 

observations from 7 sites and 36 observations from 4 sites, respectively (Tab. 1). 15 

For frost hardiness model, seven parameters were optimized (Tab. S2): T1 (Upper limit of 16 

the efficient temperature range), T2 (Lower limit of the efficient temperature range), NL1 17 

(Lower limit of the efficient nyctiperiod range), NL2 (Upper limit of the efficient nyctiperiod 18 

range), δ (Part of FHMax under temperature control), τ (Time constant) and FUcritR (Amount of 19 

forcing units for hardening competence). The endodormancy and ecodormancy models used to 20 

predict DER and DBB, were the best from the previous steps and the other parameters set to the 21 

values described in Charrier et al. (2018). The dataset was split into calibration and validation 22 

datasets containing 60 observations (6 winter periods) from 2 sites and 51 observations (5 23 

winter periods) from 5 sites, respectively (Tab. 1). 24 
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The quality of the fit and the predictive ability of the models depending on DCA were assessed 1 

for calibration and validation datasets computing Root Mean Square Error (RMSE) and 2 

Predictive Root Mean Square Error (RMSEP), respectively: 3 

𝑅𝑀𝑆𝐸(𝑃) = √
∑ (𝑦𝑖−𝑦𝑖)

2𝑛
𝑖=1

𝑛
 (5) 4 

with ŷi the predicted values for an observation I and yi the observed values for an observation i 5 

As the different DCA provided contrasted results among models, a composite performance index 6 

was used, defined as : 7 

𝑃𝐼 =
𝑅𝑀𝑆𝐸𝑒𝑛𝑑𝑜𝐷𝑖

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑒𝑛𝑑𝑜𝐷)
+

𝑅𝑀𝑆𝐸𝑒𝑐𝑜𝐷𝑖

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑒𝑐𝑜𝐷)
+

𝑅𝑀𝑆𝐸𝐹𝐻𝑖

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑃𝐹𝐻)
+

𝑅𝑀𝑆𝐸𝑃𝑒𝑛𝑑𝑜𝐷𝑖
𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑃𝑒𝑛𝑑𝑜𝐷)

+8 

𝑅𝑀𝑆𝐸𝑃𝑒𝑐𝑜𝐷𝑖

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑃𝑒𝑐𝑜𝐷)
+

𝑅𝑀𝑆𝐸𝑃𝐹𝐻𝑖

𝑚𝑎𝑥(𝑅𝑀𝑆𝐸𝑃𝐹𝐻)
 (6) 9 

Results 10 

Effects of DCA on model accuracy 11 

Fixed DCA only had a relatively small effect on the quality of the fit (12.3 < RMSEendoD < 12 

15.1 days; coefficient of variation CV = 6.8% for a 153 days range) and the predictive ability 13 

of DER (8.3 < RMSEPendoD < 11.8 days; CV = 11.7%). Fixed DCA between DOY 223 (Aug. 11th) 14 

and 274 (Oct. 1st) are relatively efficient to simulate CU accumulation with respect to DER. The 15 

effect of various DCA on the prediction of DBB was also relatively low for the quality of the fit 16 

(7.1 < RMSEecoD < 8.6 day; CV = 6.1%) and the predictive ability (6.9 < RMSEPecoD < 8.1 17 

days; CV = 4.7%). A wider range of fixed DCA, i.e. between 223 and 325 (Nov. 21st), similarly 18 

performed for DBB prediction. Annual phenological cycle (DER and DBB) was thus best predicted 19 

when DCA was set to DOY 254 (i.e. Sep. 11th). For frost hardiness, fixed DCA earlier than DOY 20 

305 (Nov. 1st) provided highly efficient fit (RMSE < 2.0°C). However, the prediction was not 21 

accurate enough, as RMSEP was almost twice higher (3.2 < RMSEP < 3.9°C). 22 
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The DCA returned by the various dynamic functions were highly different across France: 1 

from DOY 182 ± 5 to 312 ± 14 (median ± SD; Fig. 1A). Four groups of earliness can be defined: 2 

very early (Tmin and photoperiod), early (DPE, LFPTmod and LFTmod), intermediate (CUmin) and 3 

late (LFTori, LFPTori, DPori, DPL and FF). All the dynamic DCA computed via different functions 4 

exhibited highly significant correlation with mean annual temperature of the site (Fig. 1B-D).  5 

Simple temperature thresholds, such as Tmin or Tmean did not provide accurate phenological 6 

(RMSEP > 11.5 and 8.0 days for DER and DBB, respectively) nor FH prediction (RMSEP > 7 

3.3°C; Tab. 2). The DCA calculated via a photoperiodic threshold was relatively efficient to 8 

predict DBB (RMSEP = 6.8 days), but not DER (RMSEP = 10.2 days) nor FH (RMSEP = 3.5°C).  9 

The DCA computed using the Utah function did not provide accurate prediction for any 10 

variable of interest (RMSEP = 14.1 days, 7.8 days and 3.5°C for DER, DBB and FH, 11 

respectively). The leaf fall thermal function (LFT), using either the original (LFTori) or the 12 

modified sets of parameters (LFTmod), was relatively efficient to predict DBB (RMSEP = 7.23 13 

days) but less efficient for DER and FH (RMSEP ≥ 9.2 and 3.2 for DER and FH, respectively). 14 

The leaf fall photothermal function (LFPT) provided accurate predictions for phenological 15 

dates (RMSEP ≤ 8.8 and 6.9 days for DER and DBB respectively) but not for FH (RMSEP > 3.2 16 

°C). The DCA computed using the DORMPHOT function were the most efficient to predict DER, 17 

DBB and FH, in the original and ‘Late’ versions of the function (DPori, and DPL, respectively). 18 

Finally, the performance index (PI) accounting for all the models and methods of computing 19 

DCA could not distinguish between DPori and DPL (PI = 6.31). 20 

Finally, the different processes exhibited contrasted thickness linkage with DCA. For 21 

ecodormancy, a wide range of fixed date (100 days range: Aug. 11th until Nov. 21st) and all the 22 

computations using photoperiod as an input variable, provided good fit and predictive 23 

accuracies (RMSEEcoD and RMSEEndoD lower than 8 and 7.6 days, respectively). Endodormancy 24 

release was slightly more restrictive with the best predictions either provided by fixed calendar 25 
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dates (Aug. 11th until Oct. 1st) or dynamic functions integrating the interaction between 1 

temperature and photoperiod (LFPT and DP). Frost hardiness was the most restrictive, with 2 

excellent predictive accuracy when using DCA computed by DORMPHOT model (DPori and 3 

DPL; RMSEP < 3.0°C) compared to all the other computations. 4 

Although both DPori and DPL performed almost equally for the three variables of interest 5 

(DER, DBB and FH), DPL exhibited a slightly better correlation to predict the dynamic of Mean 6 

Time until budburst (MTB) during the period of dormancy induction (R² = 0.262 and 0.282 for 7 

DPori and DPL, respectively; Fig. 2 A-C). Furthermore, as FH was slightly better predicted using 8 

DPL (RMSEP = 2.6°C), DCA predicted by this function was selected to predict the current and 9 

future frost risks (Fig. 3).  10 

Predictions under current and future climates for Juglans regia cv Franquette 11 

Using DCA computed from DPL endodormancy release dates under current climate exhibited 12 

a structured geographical pattern across France. Endodormancy release dates spanned over a 13 

60 days range (Fig. 3A): earlier in mountain area (Early December) and later on the 14 

Mediterranean (South-East Mid-February) and southwestern coasts (Late January). Budburst 15 

dates exhibited an opposite pattern over a 77 days range (Fig. 3B): from Mid-April in Southern 16 

and Western parts until late June in mountainous area. Endodormancy release and budburst 17 

dates were highly correlated to mean annual temperature, although through different functions 18 

(exponential and cubic function for endodormancy release and budburst, respectively; Fig. 3C-19 

D). 20 

The geographic structure was less obvious for frost damages, with very low predicted 21 

damages during autumn (Fig. 4A) and spring (Fig. 4C), except in high mountain area. During 22 

the winter period, higher frost damages are predicted in the northeastern part of France 23 

(Burgundy, Alsace, Lorraine), in mountain areas and in the north of Rhone valley (Fig. 4B). 24 

Average predicted damages in autumn and spring were highly correlated to the date of first (<-25 
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4°C) and last frost event (< 0°C), respectively (Fig. 4D; F), whereas maximum winter damages 1 

were correlated to absolute annual temperature (Fig. 4E). 2 

For J. regia cv Franquette, similar trends are observed under future climate predictions, with 3 

high delay in both the onset of dormancy and release for mean annual temperature higher than 4 

5°C (Fig. 5A, B). However, the delay affecting endodormancy stage does not carry over toward 5 

budburst with earlier budburst with increasing temperature for lower mean annual temperature 6 

than 10°C (Fig. 5C). It should be noted that similar or earlier budburst is likely to happen for 7 

higher temperature, and this may be observed in up to one quarter of France at the end of the 8 

XXIst century: from 5 (RCP 4.5) to 27% (RCP8.5 scenario) of the French territory in 2051-2100 9 

(Fig. 6). The results are geographically consistent with the use of a fixed DCA, but through a 10 

wider range in 2051-2100 (Fig. S3). Although such a delay is not forecasted within the ‘Noix 11 

de Grenoble’ Protected Designation of Origin area (Middle East), budburst would be delayed 12 

in most of the ‘Noix du Périgord’ area (Middle West) under RCP8.5 scenario (75.1% 2006-13 

2050 and 94.2% 2051-2100). Overall, frost damages are expected to decrease, on average, all 14 

over France (Fig. S1). However, in North East and Massif Central, higher decennial risks are 15 

predicted under RCP 2.6 scenario (2006-2051; Fig. S2). 16 

Discussion 17 

Defining the initial date for cyclical processes is a critical issue. To predict annual 18 

phenological cycle in perennial organisms, such as trees, various empirical rules have been used 19 

so far. The onset of chilling accumulation during endodormancy stage (DCA) had, for instance, 20 

been arbitrarily set using fixed dates across years and locations (Chuine et al., 2016) or, under 21 

the dependence of environmental factors controlling the induction of dormancy (Caffarra et al., 22 

2011b). In the current study, long-term observations of phenological stages (endodormancy 23 

release and budburst) and related processes (frost acclimation and deacclimation) were used in 24 
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various environmental conditions and showed that the DORMPHOT model was the most 1 

relevant to predict winter biology in walnut trees.  2 

Depending on the studied process, not all computation performed equally (Tab. 2). The 3 

effect of DCA on ecodormancy and budburst was buffered during endodormancy release. From 4 

a budburst perspective, various rules for DCA computation can thus be considered as valid, 5 

although they all consider a potential effect of photoperiod, either directly or indirectly via fixed 6 

date (Welling et al., 1997; Chuine and Régnière, 2017). A narrower range of fixed date and 7 

fewer dynamic computations of DCA (DORMPHOT and LFPT models) provided accurate 8 

predictions for endodormancy release dates. However, providing predictive rules only based on 9 

one or two phenological stages, even though with a large number of measurements (more than 10 

100 dates, combining endodormancy and budburst, in the present study) does not provide 11 

sufficient details for continuous process modeling. Introducing frost hardiness as a co-variable 12 

of dormancy induction and release provided higher temporal resolution into these concurring 13 

processes (Welling & Palva, 2006; Charrier et al., 2011; Hanninen, 2016). Through a multi 14 

criterion analysis, the DCA simulated by the DORMPHOT model provided the most accurate 15 

predictions. This model, originally developed in Betula pubescens, is thus relevant for other 16 

deciduous species such as Juglans regia. The conceptual development of this model is indeed 17 

based on experimental results combining photoperiod and temperature manipulation (Caffarra 18 

et al., 2011b), whereas other formalisms were based on empirical observations (e.g. leaf fall). 19 

Photoperiod and temperature are intimately related in controlling annual weather dynamics. 20 

However, temperature fluctuation is much higher at a given date of the year which could induce 21 

high variability in the onset of the winter season (see e.g. Fig.1). Since dormancy induction and 22 

frost acclimation are lengthy processes (e.g. ca. 1-2 month), perennial plants cannot only rely 23 

on temperature changes that can be too sudden for the onset of winter rest (Caffarra et al., 24 

2011a). Both photoperiod and temperature variables thus affect annual phenological cycle in 25 
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perennial plants, although at different ratio across species. Photoperiod is for instance 1 

predominant in Populus (Kalcsits et al., 2009) and Vitis (Fennel & Hoover, 1991), while 2 

temperature in Malus and Pyrus (Heide & Prestrud, 2005) and Sorbus (Heide, 2011). The 3 

interaction of both photoperiod and temperature has been showed in Prunus (Heide, 2008). 4 

Integrating both variables is an interesting strategy to prevent dormancy induction during cold 5 

late summer (without frost risks) while maintaining physiological activity under extended warm 6 

periods. It has been hypothesized that the modulation of photoperiod sensitivity by temperature 7 

may be related by thermal effect on phytochrome perception of day length (Mølmann et al., 8 

2005). 9 

The selected rule for DCA, predicting a delayed chilling accumulation in warmer locations 10 

(> 7°C MAT; Fig. 1C; 5A) would further delay endodormancy release in such area (Fig. 3 A, 11 

C). However, cold weather would limit ontogenetic development during ecodormancy, 12 

providing a negative picture of DER vs DBB (Fig. 3). Under future climatic conditions such as 13 

predicted by RCPs scenarii, this picture is likely to be blurred as the tipping point for budburst 14 

of J. regia cv Franquette would be achieved (ca. 14°C MAT). Below 14°C, endodormancy 15 

would be released and warmer temperature of the winter-spring period lead to earlier budburst.  16 

Date of first frost (< 0°C), minimum temperature and date of late frost (<-4°C) appear as 17 

good proxies to predict early, maximum and late frost damages, respectively (Fig. 4D-F). 18 

Predicted minimal temperature are expected to decrease as well and, even though flushing buds 19 

would be highly vulnerable to late frost, they are likely not to be exposed to damaging 20 

temperature (Fig. 4). Although climate models agree on the average trend, they are still unclear 21 

on the climate extreme events such as early and late frost events. Notably, the decennial 22 

damages (i.e. maximum damage occurring every ten years) may increase in North East and 23 

Massif Central area (Fig. S2). The relative balance between photo- and thermosensitivity is 24 

likely to be a critical trait explaining this trend. In the near future in these areas, minimum 25 
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temperature are still likely to happen while dormancy induction and frost acclimation would be 1 

delayed by mean temperature increase. 2 

Above the 14°C threshold, endodormancy induction and release would be more delayed than 3 

ecodormancy hastened, resulting in delayed budburst due to a lack of chilling, compared to the 4 

present situation. This situation would cover up to one quarter of France under RCP 8.5 scenario 5 

(Fig. 6). Although it would significantly reduce frost damages, even under false spring scenarii, 6 

lack of chilling would induce severe agronomic troubles such as erratic patterns of blooming, 7 

floribondity, and potential dischronism with anthesis. A similar pattern is also expected using 8 

fixed date (see Fig S3).  9 

With respect to French nuts production, both IGP regions would face distinct threats as they 10 

stand on both sides of the 14°C MAT tipping point. In the Périgord, chilling requirements are 11 

likely not to be met and lower chilling varieties have to be selected, as the current ones do not 12 

exhibit variability for this trait (Charrier et al., 2011). In Grenoble, earlier budburst dates are 13 

expected, leading to higher exposure to frost events, and varieties with higher forcing 14 

requirements may help to stabilize the production (Charrier et al., 2018). However, both regions 15 

seem relatively safe with respect to frost damages. 16 

Conclusions and perspectives 17 

This study highlighted the relevance of dynamic dates for simulating annual phenological 18 

cycle and frost acclimation. The DORMPHOT model, integrating temperature and 19 

photoperiodic control of dormancy induction, is the most efficient for all studied processes. On 20 

one hand, higher decennial damages would be observed in the near future on ca. 15% of French 21 

territory because of late frost acclimation. On the other hand, the tipping point for phenological 22 

processes is likely to be reached during the XXIst century with chilling requirements that are 23 
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likely not to be fulfilled. The correlation between MAT, phenological stages and frost damages 1 

is an important tool, to build relevant meta-models at the global scale. 2 
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Figure captions 1 

Figure 1. A Distribution of date at the onset of chilling accumulation T0 across France 2 
over the 1950-2005 period according to different computations: Tmin minimum 3 
temperature (lower than 15.28°C), DP DORMPHOT model from different sets of 4 
parameters (O: original, E early, L Late), LFTmod Leaf Fall model (thermal version 5 

modified), LFPT Leaf Fall model Photothermal version Original and modified. B, C and 6 
D T0 depending on mean annual temperature.  7 

Figure 2 Mean time until budbreak at 25°C (MTB) depending on the day after 8 

September 1st (A), Dormancy stage computed according to the DORMPHOT model 9 
(B original version, C, late version).  10 

Figure 3. A-B. Average dates of endodormancy release (A) and budburst (B) 11 
predicted across France under current climatic conditions. C-D. Average dates of 12 
endodormancy release (C) and budburst (D) depending on mean annual temperature 13 
(°C) across France. 14 

Figure 4. A-C. Average frost damages predicted across France under current 15 

climatic conditions in autumn (A), winter (B) and spring (C). D. Average early frost 16 

damages depending on the average date of the first frost lower than 0°C. E. Average 17 

maximum frost damages depending on the average annual minimum temperature. F. 18 

Average late frost damages depending on the average date of the last frost lower 19 

than -4°C. 20 

Figure 5. A-C. Average date of onset of dormancy (A), endodormancy release (B), 21 
budburst (C) over France depending on the mean annual temperature under current 22 

climate (gray), RCP 2.6 (2006-2051 cyan, 2051-2100 blue), RCP 4.5 (2006-2051 23 
green, 2051-2100 yellow), and RCP 8.5 scenarii (2006-2051 purple, 2051-2100 red). 24 

D. Average predicted autumn early frost damages depending on the date of first frost 25 
(<0°C) E. Average predicted maximum winter frost damages depending on the mean 26 
absolute minimum temperature F. Average predicted spring late frost damages 27 

depending on the date of last frost (<-4°C). Each dot represent the average of the 28 
considered period at 8 x 8km spatial resolution, black line represent the best non-29 

linear regression.  30 

Figure 6. Relative change in predicted average budburst date across France 31 
according to different climatic scenarii and time periods (earlier and later budburst 32 

dates than the mean are represented in blue and red, respectively).  33 

 34 
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Table 1. Site and dataset description 1 

Location Elevation 
(m asl.) 

Latitude 
° 

Longitude 
° 

Mean 
annual 

temperature 
(°C) 

Minimum 
temperature 

(°C) 

Absolute 
minimum 

temperature 
(°C) 

Number 
of 

freezing 
events 

First 
Frost 

(Autumn) 
DOY 

Last 
Frost 

(Spring) 
DOY 

Number of observations (years and number of dates in brackets) 

Endodormancy 
Release 

Budburst Frost Hardiness 

Calibration Validation Calibration Validation Calibration Validation 

Balandran 69 43.758 4.516 16.90 12.00 -3.78 14.5 340 50 1 1 0 0 0 0 
Chatte 304 45.143 5.282 13.62 8.15 -9.39 61.7 308 102 0 0 12 11 0 1 (6) 

Creysse 115 44.887 1.597 14.65 8.52 -8.50 52.4 309 104 0 0 13 12 0 1 (8) 
Crouël 340 45.779 3.142 13.25 9.26 -11.51 59.6 302 108 13 12 4 4 5 (49) 2 (21) 
Orcival 1150 45.683 2.842 12.92 7.72 -12.13 97.4 291 126 1 1 1 0 0 0 
Terrasson 90 45.136 1.300 14.61 8.96 -9.69 47.4 311 100 1 1 1 0 0 0 
Theix 945 45.706 3.021 9.70 6.22 -15.11 100.3 282 129 1 1 1 0 1 (11) 1 (9) 
Toulenne 22 44.557 -0.263 15.38 10.56 -6.09 25.9 325 74 1 0 9 9 0 0 
Mas Bové  112 41.170 1.169 15.87 10.81 -4.05 14.9 343 47 0 0 0 0 0 1 (7) 

 2 

  3 
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Table 2. Quality assessment of different models. RMSE(P) less than 15% higher than minimum RMSE or RMSEP are indicated in bold. Dates for 1 

onset of chilling accumulation (DCA) were either fixed or computed according to date of first frost (FF), minimum temperature (Tmin), mean 2 

temperature (Tmean), photoperiod, minimum chilling unit (CUmin), Leaf fall using temperature (LFT) and temperature and photoperiod (LFPT) and 3 
dormphot (DP). Ori and mod refer to the original published version (ori) or modified for walnut (mod), E and L for Early and Late. 4 

 

 

Endodormancy 

Release Date 

Budburst 

Date 

Frost 

Hardiness 

PI  

Type Function DCA 

RMSE 

(days) 

RMSEP 

(days) 

RMSE 

(days) 

RMSEP 

(days) 

RMSE 

(°C) 

RMSEP 

(°C) 

 

Fixed 

 182 (Jul. 1st) 12.84 11.84 8.58 8.08 1.79 3.52 7.31  

 192 (Jul. 11th) 12.64 11.48 8.44 7.57 1.79 3.39 7.10  

 202 (Jul.21st) 12.41 10.73 8.25 7.28 1.80 3.42 6.94  

 213 (Aug. 1st) 12.33 10.06 8.06 7.14 1.79 3.46 6.81  

 223 (Aug. 11th) 12.65 9.36 7.78 6.89 1.78 3.49 6.68  

 233 (Aug. 21st) 12.68 8.71 7.61 6.85 1.78 3.49 6.58  

 244 (Sep. 1st) 12.87 8.75 7.39 7.03 1.79 3.48 6.59  

 254 (Sep. 11th) 13.19 8.49 7.26 6.88 1.77 3.47 6.53  

 264 (Sep. 21st) 13.70 8.80 7.15 7.24 1.74 3.24 6.55  

 274 (Oct. 1st) 13.80 8.47 7.25 7.38 1.73 3.29 6.56  

 284 (Oct. 11th) 13.98 8.29 7.10 6.93 1.77 3.37 6.52  

 294 (Oct. 21st) 14.39 8.47 7.25 7.15 1.84 3.30 6.64  

 305 (Nov. 1st) 14.48 9.22 7.45 7.47 1.84 3.21 6.78  

 315 (Nov. 11th) 14.48 9.93 7.52 7.56 2.15 3.42 7.16  

 325 (Nov. 21st) 14.67 10.26 7.46 7.43 2.90 3.90 7.81  

 335 (Dec. 1st) 15.10 10.33 7.58 7.67 3.77 3.52 8.77  

Dynamic 

Simple 

FF 17.71 14.15 9.35 15.69 1.90 4.92 9.84  

Tmin 12.88 11.93 8.55 8.03 1.79 3.37 7.25  

Tmean 12.93 11.59 8.70 8.47 1.81 3.38 7.31  

Photoperiod 12.31 10.24 7.94 6.85 1.80 3.46 6.78  

Complex 

CUmin 16.32 14.08 8.22 7.78 1.78 3.48 7.74  

LFTori 12.91 10.37 8.11 7.23 1.76 3.22 6.81  

LFTmod 12.57 9.16 8.11 7.23 1.80 3.19 6.83  

LFPTori 13.34 8.67 7.42 6.72 1.83 3.24 6.51  

LFPTmod 12.66 8.81 7.43 6.89 1.78 3.50 6.57  

DPori 13.01 8.81 7.47 6.61 1.76 2.87 6.31  

DPE 12.05 8.64 7.73 7.24 1.80 3.95 6.77  

DPL 12.51 9.43 7.52 7.14 1.70 2.65 6.31  
 5 
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Figure captions 1 

 2 
Figure 1. A Distribution of date at the onset of chilling accumulation T0 across France 3 
over the 1950-2005 period according to different computations: Tmin minimum 4 

temperature (lower than 15.28°C), DP DORMPHOT model from different sets of 5 
parameters (O: original, E early, L Late), LFTmod Leaf Fall model (thermal version 6 

modified), LFPT Leaf Fall model Photothermal version Original and modified. B, C and 7 
D T0 depending on mean annual temperature.  8 
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 1 

Figure 2 Mean time until budbreak at 25°C (MTB) depending on the day after 2 
September 1st (A), Dormancy stage computed according to the DORMPHOT model 3 

(B original version, C, late version).  4 
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 1 

Figure 3. A-B. Average dates of endodormancy release (A) and budburst (B) 2 
predicted across France under current climatic conditions. C-D. Average dates of 3 
endodormancy release (C) and budburst (D) depending on mean annual temperature 4 
(°C) across France. 5 
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 1 

2 
Figure 4. A-C. Average frost damages predicted across France under current 3 

climatic conditions in autumn (A), winter (B) and spring (C). D. Average early frost 4 

damages depending on the average date of the first frost lower than 0°C. E. Average 5 

maximum frost damages depending on the average annual minimum temperature. F. 6 

Average late frost damages depending on the average date of the last frost lower 7 

than -4°C. 8 
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 1 

Figure 5. A-C. Average date of onset of dormancy (A), endodormancy release (B), 2 
budburst (C) over France depending on the mean annual temperature under current 3 

climate (gray), RCP 2.6 (2006-2051 cyan, 2051-2100 blue), RCP 4.5 (2006-2051 4 
green, 2051-2100 yellow), and RCP 8.5 scenarii (2006-2051 purple, 2051-2100 red). 5 

D. Average predicted autumn early frost damages depending on the date of first frost 6 
(<0°C) E. Average predicted maximum winter frost damages depending on the mean 7 

absolute minimum temperature F. Average predicted spring late frost damages 8 
depending on the date of last frost (<-4°C). Each dot represent the average of the 9 
considered period at 8 x 8km spatial resolution, black line represent the best non-10 

linear regression.  11 
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 1 
Figure 6. Relative change in predicted average budburst date across France 2 
according to different climatic scenarii and time periods (earlier and later budburst 3 

dates than the mean are represented in blue and red, respectively).   4 
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Supplementary material figure captions 1 

Table S1. Examples of fixed or dynamic date of onset of chilling accumulation (DCA) across 2 
various studies aiming at modeling phenology in various species and location. Chilling models 3 
are sigmoid (Hanninen, 1990), normal (Chuine, 2000; Chuine et al., 2003), Utah (Richardson 4 
et al., 1974) and variations (smoothed Utah: Bonhomme et al., 2010, Positive Utah and positive 5 
Chill Unit for low chilling varieties: Gilreath and Buchanan, 1981), Dynamic (Fishman et al., 6 
1987a,b), Chilling Hours (Weinberger; 1967), Bidabé (Bidabé, 1965a, b), Growing Degree Day 7 
(Ritchie and NeSmith, 1991). NH and SH mean northern and southern hemisphere, 8 
respectively. 9 

Table S2 Optimized parameters for different DCA computations in Juglans regia cv Franquette 10 

Figure S1. Relative change in predicted average frost damages across France according to 11 
different climatic scenarii (RCP 2.6, RCP 4.5, RCP 8.5), seasons (Early SON, Midwinter DJF 12 
and late risks MAM) and time periods (2006-2050 and 2051-2100). Lower and higher damages 13 
than the current mean are represented in in red and blue, respectively).  14 

Figure S2. Relative change in predicted decennial frost damages across France according to 15 
different climatic scenarii (RCP 2.6, RCP 4.5, RCP 8.5), seasons (Early SON, Midwinter DJF 16 
and late risks MAM) and time periods (2006-2050 and 2051-2100). Lower and higher damages 17 
than the current 90th percentile are represented in in red and blue, respectively).  18 

Figure S3. Relative change in predicted budburst date across France according to different 19 
climatic scenarii (RCP 2.6, RCP 4.5, RCP 8.5), time periods (2006-2050 and 2051-2100) and 20 
DCA (September 1st vs DORMPHOT computation) Later and earlier budburst than currently are 21 
represented in in red and blue, respectively. The proportion of area showing delayed budburst 22 
is indicated for each map. 23 
 24 


