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Abstract 14 

The initial date for chilling accumulation (DCA) is often set arbitrarily using various rules and 15 

leading to a tremendous variability between studies and sites. To test the relevancy of different 16 

calculation rules, sequential models taking into account, or not, the negative effect of warm 17 

temperature) were optimized on 34 endodormancy release and 77 budbreak dates of walnut cv 18 

Franquette across France. The flexible DCA was more efficient than using functions that 19 

compute negative chilling accumulation at warm temperature. Most of the DCA tested provided 20 

an accurate fit to the calibration datasets for budbreak, but less for endodormancy release. 21 

Among the rules, the DORMPHOT model, integrating temperature and photoperiod control on 22 

endodormancy induction, was the most efficient (RMSEP < 10 and 8 days for endodormancy 23 

release and budburst, respectively). The projections of the best model under different climate 24 

(current  and RCP scenarii) revealed a tipping point at a mean annual temperature of 13.86°C, 25 

beyond which the advance in ontogenic development during ecodormancy does not compensate 26 

the delay in endodormancy release. The relationships between climate variables and plant 27 

phenological processes would help to predict future phenological cycles on a global scale. 28 

Keywords: Budburst, Chilling, Dormancy induction, Endodormancy release, Forcing, Juglans 29 

regia L, Photoperiod, Phenology, Trees.  30 



3 

 

Introduction 31 

In frost-exposed environments, deciduous trees have to timely adjust their phenology to 32 

anticipate unfavorable conditions during the winter period. To avoid exposure to frost events, 33 

meristems switch from an apparently active period to a ‘dormant’ period, characterized by the 34 

inability to grow even under favorable conditions. In temperate species, bud dormancy is 35 

divided into three stages depending on the inhibiting factor (Lang et al., 1987). During 36 

paradormancy, other organs such as apical bud or leaves inhibit meristem growth. During 37 

endodormancy, growth is inhibited by factors intrinsic to the bud (‘endo’) whereas during 38 

ecodormancy, growth is limited by environmental factors (‘eco’). During the transition from 39 

growth to dormancy, different phenological stages are visible (e.g. growth cessation, leaf fall, 40 

lignification or budset), whereas others are cryptic (e.g. endodormancy induction and release). 41 

In autumn, endodormancy release is under the control of decreasing temperature and 42 

photoperiod (Welling et al., 2002; Arora et al., 2003; Maurya & Bahlerao, 2017). After 43 

endodormancy is released, cryptic growth of ecodormant buds progresses under the control of 44 

warm temperature, in most species, eventually modulated by photoperiod in photosensitive 45 

species, such as late successional species (Basler & Körner, 2012). Process-based models using 46 

these variables as input have been developed to simulate the endodormancy release and 47 

budbreak dates (Caffarra et al., 2011a; Chuine et al., 2016).  48 

In the context of global change, it is particularly critical to accurately predict future trends 49 

in warmer climates. Since the first empirical model describing the relation between temperature 50 

and plant development, through the concept of thermal-time (Réaumur, 1735), budbreak and 51 

flowering models have only computed the accumulation of growth-effective temperature (i.e. 52 

growth degree days GDD). As the starting point is set at the coldest time of the year (i.e. January 53 

1st or July 1st in the northern and southern hemispheres, respectively), these models provide 54 

accurate results. However, this type of model is not effective in regions with warmer winters, 55 
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where attempts have been made to grow temperate crop species (e.g. in North Africa, the 56 

Middle East or South America; Balandier et al., 1993). In this context, temperate perennial 57 

crops exhibit q lack of chilling and insufficient endodormancy release (Weinberger, 1950). The 58 

process of endodormancy, and the related chilling accumulation, had therefore been introduced 59 

into the models (Weinberger, 1956; Vegis 1964). Different chilling accumulation functions 60 

have been developed, depending on the species. An important difference is the consideration 61 

of a delaying effect on endodormancy release for warm temperature (e.g. Utah model; 62 

Richardson et al., 1974) or not (e.g. Chilling hours; Weinberger, 1967). In recent decades, 63 

naturally growing trees have also been affected by a reduction in chilling exposure throughout 64 

winter, increasing interest in the endodormancy stage (Gauzere et al., 2019).  65 

Two-step models, simulating endo- and ecodormancy stages, are now commonly used to 66 

predict budbreak dates (Chuine et al., 2016). In perennial plants, the completion of one stage is 67 

concomitant with the onset of the following one (Hänninen & Tanino, 2011). However, the 68 

initial date for chilling accumulation (DCA) is usually set arbitrarily with various rules resulting 69 

in huge variability between studies (from late summer until late autumn). Four different 70 

concepts of DCA were used (see Tab. S1): 71 

- Fixed date across years and locations: from 1 September  (Chuine et al., 2016) to 1 72 

November (Weinberger, 1967) for the northern hemisphere, 73 

- Flexible date through a simple climatic threshold: critical temperature (e.g. date of first frost; 74 

Landsberg, 1974) or photoperiod (Welling et al., 1997), 75 

- Flexible date through a mathematic function using a single variable such as the date of 76 

minimum chilling units computed by the Utah model (Richardson et al., 1974), 77 

- Flexible date through a mathematic function using interacting variables (temperature and 78 

photoperiod) simulating leaf fall date (Delpierre et al., 2009) or endodormancy induction 79 

(DORMPHOT; Caffarra et al., 2011a). 80 
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By aggregating data from 1975 until 2019 in different orchards across France for J. regia cv 81 

Franquette, different computations were tested to simulate the effects of the onset of chilling 82 

accumulation DCA on the predictive accuracy of endodormancy release and budbreak dates. 83 

Specifically, we tested whether the use of dynamic DCA could account for the delaying effect 84 

of warm temperature on endodormancy release by comparing positive and positive/negative 85 

chilling functions. In a second step, the optimal model was evaluated for the prediction of future 86 

climate over France under three contrasting climatic scenarii.  87 

Material and methods  88 

Dormancy depth and endodormancy release 89 

Endodormancy release dates were measured using the one-node-cutting ‘forcing’ test of 90 

Rageau (1982). Sampling was performed every three weeks from October to March and 48 one-91 

node cuttings were prepared per sampling date. Buds were isolated from other parts of plant to 92 

avoid correlative inhibitions (Dennis, 2003). On each sampling date, one-year-old stems were 93 

sampled from five individual trees and cut into 7-cm long pieces, bearing only one node at the 94 

top or less than 1 cm below the upper end, for terminal and axillary buds, respectively. For 95 

axillary buds, the top of the cutting was covered with paraffin to prevent desiccation. The bases 96 

of the cuttings were immersed in tap water, changed weekly. Forty-eight cuttings were exposed 97 

to optimal conditions for growth resumption (i.e. 16/8 hours Day/Night and 25°C constant) and 98 

observed individually every 3 days. Mean time until budbreak (stage 09 BBCH; Meier, 2001) 99 

was computed from individual time until budbreak for each cutting. After endodormancy 100 

release, buds of J. regia cv Franquette break out after 20 days under optimal conditions 101 

(Mauget, 1980; Charrier et al., 2011). The endodormancy release dates were therefore obtained 102 

by linear interpolation between the two dates giving a time to budbreak greater than (or equal 103 

to) and less than (or equal to) 20 days, respectively.  104 

Budbreak dates  105 
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Budbreak in the field was monitored every two to three days at the different sites, on five 106 

individual trees until 50% of buds reached the BBCH stage 09. The different sites and number 107 

of annual observations are shown in Table 1. 108 

Climatic data 109 

The models were fit using the daily average and minimal temperatures observed by the weather 110 

stations, mostly located in the same orchard and within 10km distance (Tab. 1). For prediction, 111 

temperatures, calculated according to the CNRM-ALADIN52 model and corrected by a Q-Q 112 

method (Déqué et al., 2007), were used from 8462 sites across France (Safran grid at 64km² 113 

spatial resolution; MétéoFrance). Four datasets were used as input variable: the reference period 114 

(1950-2005) and three contrasting climate scenarii (RCP 2.6, RCP 4.5 and RCP 8.5) for the 115 

future period: short-term (2006-2051) and long-term (2051-2100). For each site, day length was 116 

computed as a function of latitude and day of year.  117 

Endodormancy induction and onset of chilling accumulation  118 

The initial date for chilling accumulation (DCA) was computed using different functions:  119 

i) Fixed date as a Julian Day. 120 

ii) Flexible date based on threshold values reached by minimum temperature (Tmin), mean 121 

temperature (Tmean), first frost (FF) or photoperiod. 122 

iii) Date of minimum chilling units (CUmin) computed according to the Utah model (originally 123 

developed on Prunus persica L. Batsch) which computes the negative chilling effect for 124 

temperature above 16°C (Richardson et al., 1974). Daily CU were summed from DOY 182 125 

(1 July) until DOY 365 (31 December) using the Utah_Model function (ChillR package; 126 

Luedeling, 2019) as follows:  127 
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𝐶𝑈[𝜃(𝑡)] =

{
 
 
 

 
 
 

0𝑖𝑓𝜃(𝑡) < 1.4

0.5𝑖𝑓1.5𝜃(𝑡) < 2.4

1𝑖𝑓2.5 < 𝜃(𝑡) < 9.1

0.5𝑖𝑓9.2 < 𝜃(𝑡) < 12.4

0𝑖𝑓12.5 < 𝜃(𝑡) < 15.9

−0.5𝑖𝑓16 < 𝜃(𝑡) < 18

−1𝑖𝑓𝜃(𝑡) > 18

 (1) 128 

with θ(t) the daily mean temperature. 129 

iv) Predicted leaf fall dates (BBCH 97) computed according to the thermal (LFT) and 130 

photothermal (LFPT) models developed by Delpierre et al. (2009) for Quercus and 131 

Quercus + Fagus, respectively. Below a critical photoperiod Pstart and for a temperature 132 

colder than a threshold Tb, the variable Rsen, modulated by a photoperiod function in the 133 

case of the LFPT model, is summed up to a critical value (Ycrit), corresponding to the leaf 134 

fall date. Both LFT and LFPT models were computed using the original or optimized 135 

parameter sets: LF(P)Tori and LF(P)Tadj, respectively. 136 

𝑅𝑠𝑒𝑛[𝜃(𝑡); 𝑃(𝑡)] = {

0𝑖𝑓𝑃(𝑡) ≥ 𝑃𝑠𝑡𝑎𝑟𝑡
0𝑖𝑓𝜃(𝑡) ≥ 𝑇𝑏

[𝜃(𝑡) − 𝑇𝑏]
2 × (1 −

𝑃(𝑡)

𝑃𝑠𝑡𝑎𝑟𝑡
)
𝑦
𝑖𝑓𝜃(𝑡) < 𝑇𝑏

 (2) 137 

with θ(t) the daily mean temperature and P(t) the photoperiod. The parameter y was set to 0 and 138 

2 for LFT and LFPT models, respectively.  139 

v) The endodormancy induction state (DS) was computed according to the DORMPHOT 140 

model developed for Betula pubescens Ehrh. by Caffarra et al. (2011a). The two sigmoidal 141 

response functions to low temperature and photoperiod interact to compute DS. When ΣDS 142 

reaches Dcrit, the date is reported as DCA. Both the original (DPori) and optimized (DPadj) 143 

parameter sets were used. 144 

𝐷𝑆[𝜃(𝑡); 𝑃(𝑡)] =
1

1+𝑒𝑎𝐷(𝜃(𝑡)−𝑏𝐷)
×

1

1+𝑒10(24−𝑃(𝑡)−𝐷𝐿𝑐𝑟𝑖𝑡)
 (3) 145 

with θ(t) the daily mean temperature, P(t) the photoperiod, aD a coefficient for the effect of 146 

temperature, bD a critical temperature and DLcrit a critical photoperiod. 147 
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Endodormancy release and budburst 148 

From DCA, the effect of chilling temperature was simulated according to the inverse of the 149 

Richardson function (Richardson et al., 1974). This function was defined as the best function 150 

predicting endodormancy release dates in walnut trees, although it does take into account the 151 

negation of chilling at warm temperature (Chuine et al., 2016; Charrier et al., 2018). According 152 

to the sequential paradigm, the date at which CU(t) reaches the critical CUcrit threshold 153 

(arbitrary chilling units, CU) is the date of endodormancy release (DER), or the transition from 154 

endodormancy to ecodormancy: 155 

𝐶𝑈(𝑡 + 1) = 𝐶𝑈(𝑡) + 𝑀𝑎𝑥[𝑀𝑖𝑛(𝑇ℎ𝑖𝑔ℎ − 𝜃(𝑡); 𝑇ℎ𝑖𝑔ℎ − 𝑇𝑙𝑜𝑤); 0] (4) 156 

with CU(t) the chilling unit on day t, Thigh the temperature above which CU(t) is 0 and Tlow the 157 

temperature below which CU(t) is maximum; CU(t) is linear between Tlow and Thigh. 158 

Alternatively, the smoothed-Utah function, a smoothed version of the Utah function proposed 159 

by Richardson et al. (1974), takes into account the negation of chilling on warm days 160 

(Bonhomme et al., 2010). 161 

𝐶𝑈(𝑡 + 1) = 𝐶𝑈(𝑡) +

{
 
 
 
 

 
 
 
 

1

1+𝑒
−4

𝜃(𝑡)−Tm1
Topt−Tm1

 if 𝜃(𝑡) > Tm1

0.5(𝜃(𝑡)−Topt)²

(Tm1−Topt)²
if Tm1 < 𝜃(𝑡) < Topt

1 − (1 − min)
0.5(𝜃(𝑡)−Topt)²

(Tm1−Topt)²
if Topt < 𝜃(𝑡) < Tn2

min+
1−min

1+𝑒
−4

Tn2−𝜃(𝑡)
Tn2−Topt

if Tn2 < 𝜃(𝑡)

 (5) 162 

with CU(t) the chilling unit at day t, Topt the optimal temperature for chilling, Tm1 the slope of 163 

the cold efficiency at a colder temperature than Topt, Tn2 the temperature warmer than Topt 164 

which has half the efficiency of Topt to release endodormancy; min the effect of warm 165 

temperature to delete previously accumulated CU. 166 
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The ontogenetic development during ecodormancy stage was modeled according to a 167 

sigmoid function (Caffarra et al., 2011a). The date when FU(t) reaches the critical threshold 168 

FUcrit (arbitrary forcing units, FU) is the budburst date (DBB). 169 

𝐹𝑈(𝑡 + 1) = 𝐹𝑈(𝑡) +
1

1+𝑒−𝑠𝑙𝑝(𝜃(𝑡)−𝑇50)
 (6) 170 

with FU(t) the forcing unit at day t, slp the slope of the function at the temperature inducing 171 

half of the maximal apparent growth rate T50.  172 

Model calibration depending on the onset of chilling accumulation 173 

For a given DCA rule, endodormancy release date was calibrated first and the best set of 174 

parameters was used to calibrate the bud break date. The nls function (using Gauss-Newton 175 

algorithm, R ver.3.6.2; R development Core Team, 2019) was used to minimize the sums of 176 

square between the observed and predicted values with different sets of starting values at the 177 

minimum, average and maximum ranges of realistic parameter values. In order to maximize the 178 

variability within the datasets, half of the observation per site was assigned to the calibration 179 

dataset, the other half to the validation dataset. Two independent calibration procedure were 180 

performed using symmetrical datasets. For an odd number of observations per site, one more 181 

observation per site was included in the calibration set #1. 182 

For the endodormancy release model, in addition to the parameters defining DCA, three 183 

parameters were optimized: Tlow and Thigh corresponding to the temperature thresholds and 184 

CUcrit the sum of chilling units to release endodormancy.  185 

For the ecodormancy model, one parameter was optimized: FUcrit corresponding to the sum 186 

of forcing units for bud break. The endodormancy model used to predict DER was the best from 187 

the previous step and the other parameters (slp and T50) set to the values described in Charrier 188 

et al. (2018). 189 
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The quality of the fit and predictive ability of the models in relation to the DCA were assessed 190 

for calibration and validation datasets by computing Root Mean Square Error (RMSE), 191 

Predictive Root Mean Square Error (RMSEP) and Akaike Index Criterion (AICC): 192 

𝑅𝑀𝑆𝐸(𝑃) = √
∑ (𝑦𝑖−𝑦𝑖)

2𝑛
𝑖=1

𝑛
 (7) 193 

with ŷi the predicted values for an observation i and yi the observed values for an observation i 194 

𝐴𝐼𝐶𝐶 = 2𝑛 [𝑙𝑜𝑔(𝑅𝑀𝑆𝐸) +
𝑘

𝑛−𝑘−1
] (8) 195 

with k the number of parameters, n the number of observations. 196 

Correlations between simulated and climate variables 197 

Correlations between the mean endodormancy onset date, mean endodormancy release date 198 

(DER) and mean budbreak date (DBB) per site (8462 sites at 64km² spatial resolution) and mean 199 

annual temperature were fitted by minimizing the sums of squares using a non-linear regression 200 

procedure (function nls in R). Different functions were tested: linear, sigmoid, exponential, 201 

power, second, third or fourth degree polynomial) and selected according to RMSE and AICC. 202 

Results 203 

Dormancy stages 204 

During the endodormancy induction stage, the time to bud break generally increased by 20 days 205 

between August and October and reaches a maximum value (50-80 days) between October and 206 

December (Figure 1). The endodormancy release is observed when the time to bud break 207 

gradually decreased to 20 days. The transition from endodormancy to ecodormancy is marked 208 

by a breaking point in the curves between mid-December and mid-February. Significant 209 

correlations were observed between the onset of endodormancy and the date of maximum depth 210 

of dormancy (P = 0.005; Fig. 1B) and between the date of maximum depth of dormancy and 211 
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the date of endodormancy release (DER; P = 0.030; Fig. 1C). However, no correlation was 212 

observed between the onset of endodormancy and DER (P = 0.387; Fig. 1D). 213 

Effects of DCA on endodormancy release date 214 

The use of different rules to compute the initial date for chilling accumulation (DCA) had a 215 

relatively small effect on the prediction of DER (Tab. 2). The use of a positive chilling function 216 

was overall more efficient than functions that take into account the delaying effect of warm 217 

temperature (positive and negative). For most rules, 75% of the RMSEs were within 2-3 days: 218 

between 11.5 and 13.3 days and between 7.2 and 9.5 days for dataset #1 and #2, respectively. 219 

However, the uses of FF and CUmin ori were not effective for both datasets. The predictive 220 

ability was relatively good for most of the DCA, with 75% RMSEP between 8.3 and 11.6 days 221 

and between 12.9 and 14.4 days for dataset #1 and #2, respectively. Finally, considering the 222 

rule that provided values below 125% of the minimum for RMSE and RMSEP in both datasets, 223 

only a few rules appeared satisfactory: Photoperiod and LFPT adj (positive only), CUmin adj 224 

(positive & negative), LFPT ori, DORMPHOT ori and DORMPHOT adj (positive only and 225 

positive & negative). By increasing the stringency to 110%, only DORMPHOT adj (positive 226 

only) could be considered an accurate and robust model. 227 

Effects of DCA on budburst date 228 

The accuracy of the fits was slightly better for budbreak date (DBB) than for DER (Tab. 3), 229 

although the effect of the different rules on DBB was relatively similar to that observed for DER. 230 

The use of the positive chilling function was more effective than positive & negative functions. 231 

For most of the DCA, 75% of the RMSEs were within a 2-3 days range: between 7.4 and 9.6 232 

days and between 6.8 and 8.6 days for dataset #1 and #2, respectively. The uses of FF and CUmin 233 

ori were also less efficient. The predictive ability was less than one week for most DCA, with 234 

75% of RMSEP between 6.7 and 9.3 days and between 6.9 and 8.2 days for dataset #1 and #2, 235 

respectively. Considering the DCA that had values below 125% of the minimum for RMSE and 236 
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RMSEP for both datasets, most of the rules, with the exception of FF and CUmin ori, appeared 237 

satisfactory. By increasing the stringency to 110%, several rules remained accurate and robust: 238 

Julian day and photoperiod, LFPT adj (positive only), LFT ori (positive & negative), LFPT ori 239 

and DORMPHOT ori (positive only and positive & negative). Finally, with the exception of FF 240 

and CUmin ori, all models provided relatively accurate phenological predictions for DER 241 

(RMSEP <15 days) and DBB (RMSEP < 8 days), but DORMPHOT adj (positive only) can be 242 

considered the best.  243 

Predictions under current and future climates for Juglans regia cv Franquette 244 

DORMPHOT adj (positive only) was used to explore the current and future phenology trend. 245 

DCA, DER and DBB have a structured geographical distribution across France (Fig. 2). DCA 246 

spanned a range of 43 days: earlier in the mountain areas (Mid-August) and later on the 247 

Mediterranean (South East; Late September) and south-western coasts (Late August – Mid-248 

September). DER had a similar distribution but over a wider range (84 days): from the beginning 249 

of December in mountain areas to the end of February on the Mediterranean coast. DBB showed 250 

an opposite distribution over a period of 72 days: from mid-April in the southern and western 251 

regions to the end of June in the mountainous areas.  252 

DCA, DER and DBB were strongly correlated with the mean annual temperature (MAT), 253 

although following different functions (exponential for DCA and DER and cubic function for 254 

DBB; Fig. 3). Similar trends were observed in future climate predictions, with close relationships 255 

between MAT and DCA, DER or DBB (Fig. 4). The functions describing the relationships between 256 

MAT and DCA and DER were monotonic. Warmer temperatures, as predicted by the different 257 

climate scenario, are therefore expected to delay the onset of chilling accumulation by 5-6 days 258 

until 2050 and, by the end of the century, by up to 20 days according to the RCP 8.5 scenario 259 

(Fig. 4A; G). Consequently, endodormancy release would be delayed by 6-7 days until 2050 260 

and, by the end of the century, by up to 24 days under the RCP 8.5 scenario (Fig. 4B; H). 261 
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However, the delay in the release of endodormancy did not directly affect the DBB. The 262 

relationship between DBB and temperature shows a tipping point i.e. a temperature higher than 263 

13.83°C would induce later DBB (Fig. 3C). DBB would occur only 3-4 days earlier until 2050 264 

(Fig. 4C; I).  By the end of the century, bud break is expected to be earlier under RCP 4.5 265 

scenario (-6.4 days) than under the warmer RCP 8.5 scenario (-3.5 days). Finally, a later bud 266 

break than today is likely to occur in an increasing portion of the France at the end of the 21st 267 

century: from 5.6 (RCP 4.5) to 33.8% (RCP8.5) of the French territory in 2051-2100 (Fig. 5). 268 

Considering the main French production areas, i.e. ‘Noix de Grenoble’ (Middle East) and ‘Noix 269 

du Périgord’ (Middle West) Protected Designation of Origin (PDO) areas, bud break would be 270 

delayed in most of the ‘Noix du Périgord’ area (96.8% in RCP 8.5 2051-2100) but not in the 271 

‘Noix de Grenoble’ area. 272 

The current annual variability in phenological stages is similar for DCA and DER (variance of 273 

about. 5 days; Fig 4D, E). The future climate would increase the variance in DCA and DER 274 

considrerably, especially for RCP 8.5 in the 2051-2100 period (about 10 days). However, the 275 

pattern is reversed for DBB, with variance of 10 days in the current period, while 5-7 days are 276 

expected in the future climate (Fig 4F). In both PDO areas, the variance in DBB would decrease 277 

by 2-3 days (RCP 8.5 scenario).  278 

Discussion 279 

The definition of the initial date for simulating cyclic processes is a key issue. To predict the 280 

annual phenological cycle in perennial organisms, such as trees, various empirical rules have 281 

been used so far. The onset of chilling accumulation during the endodormancy stage (DCA) had, 282 

for instance, been arbitrarily set using fixed dates regardless of year and location (Chuine et al., 283 

2016) or depending of environmental factors controlling the induction of endodormancy 284 

(Caffarra et al., 2011b). In the current study, long-term observations of phenological stages 285 

(endodormancy release DER and bud break DBB) were used to define the most efficient rule 286 
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under various environmental conditions. For most computations, the different rules for defining 287 

DCA did not have a large impact on the accuracy of endodormancy release and bud break dates 288 

(ca. 2-3 days; Tab. 2-3). Overall, using a function that computes the negative effect of warm 289 

temperature, such as the Utah model, did not improve accuracy. Using a relevant DCA is 290 

therefore more robust than negating early chilling accumulation in walnut in France as was also 291 

observed using a fixed DCA date (Chuine et al., 2016). 292 

Across years and sites, the large ranges of variation for the date of endodormancy induction, 293 

date of maximum dormancy and date of endodormancy release (more than 2 month) suggest 294 

that they cannot be predicted by a simple trigger such as a fixed date or photoperiod (Caffarra 295 

et al., 2011a). Furthermore, the strong correlation between the onset of endodormancy induction 296 

(August - October) and the maximum depth of dormancy (October – December) indicates that 297 

the duration of endodormancy is generally 2 month with a relatively small effect of 298 

environmental conditions (Fig. 1). In contrast, the maximum depth of endodormancy and 299 

endodormancy release are less correlated although significant, temperature being the main 300 

driver of endodormancy release (Weinberger, 1959). However, it is not clear whether chilling 301 

temperature actually acts only during endodormancy release or already during the induction of 302 

endodormancy.  303 

The optimization of the different models showed that the different rules for defining the DCA 304 

do not induce large variations in the predicting of DER and DBB from September to November. 305 

However, the date of the first frost event and the date of CUmin were less efficient than the other 306 

rules. All relevant rules for dataset #2 considered a potential effect of photoperiod, either 307 

directly or indirectly via the fixed date (Welling et al., 1997; Chuine and Régnière, 2017). The 308 

DORMPHOT model, originally developed in Betula pubescens, is relevant for other deciduous 309 

species such as Juglans regia. The optimal date for chilling accumulation is in late summer 310 

(mean date 28 August), suggesting that buds actually integrate information from chilling 311 
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exposure during budset although MTB is only beginning to increase. The use of a critical 312 

photoperiod (e.g. 12h observed on September 21st) or a fixed date (e.g. 1 September; Chuine et 313 

al., 2016) is therefore relatively relevant, although it may be shifted by 20 days in the future 314 

climate (Fig. 4).  315 

The conceptual development of the DORMPHOT model is based on experimental results 316 

combining the manipulation of photoperiod and temperature (Caffarra et al., 2011b), whereas 317 

other formalisms were based on empirical observations (e.g. leaf fall; Delpierre et al., 2009). 318 

Temperature and photoperiod are closely correlated over the seasons. However, temperature 319 

fluctuations are much larger at a given time of the year, which could induce greater variability 320 

in the onset of endodormancy if it were the only controlling factor (Fig.1). As the induction of 321 

endodormancy is a lengthy process (ca. 2 month), perennial plants cannot rely solely on 322 

temperature changes that may be too sudden to induce winter dormancy in time (Caffarra et al., 323 

2011a). Photoperiod and temperature variables therefore affect the annual phenological cycle 324 

of perennial plants, although to different extents in different species. For example, photoperiod 325 

is dominant in Populus (Kalcsits et al., 2009) and Vitis (Fennel & Hoover, 1991), while 326 

temperature is dominant in Malus, Pyrus (Heide & Prestrud, 2005) and Sorbus (Heide, 2011). 327 

The interaction between photoperiod and temperature has been demonstrated in Prunus (Heide, 328 

2008). It has been hypothesized that the modulation of photoperiod sensitivity by temperature 329 

might be related to the thermal effect on day length perception by phytochromes (Mølmann et 330 

al., 2005). 331 

The rule selected for the DCA predicted a delayed onset of chilling accumulation in warmer 332 

locations in France (> 7°C MAT; Fig. 3A). Warmer temperature indeed delays the induction of 333 

endodormancy in different species (Beil et al., 2021). Such a delay would further delay the 334 

release of endodormancy (Fig. 3 B; Caffarra et al., 2014; Chuine et al., 2016). However, after 335 

endodormancy release, cold temperature would limit ontogenetic development during 336 
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ecodormancy, providing a negative spatial picture of DBB compared to DER (Fig. 2B-C). Under 337 

current climatic conditions, chilling requirements are generally fulfilled annually and therefore 338 

play a minor role in DBB variations (Gauzere et al., 2017). Using a sensitivity analysis with a 339 

fixed DCA, Gauzere et al. (2019) also observed a minor role of DCA in predicting DBB only. 340 

Comparison of the two phenological stages showed that the role of DCA was more important in 341 

predicting DER than DBB (Tab.2-3). As many studies are based on DB, only, without information 342 

on DER, many different formalisms seem valid and are commonly used for phenological 343 

modeling (Tab. S1). However, the use of experimental results to fit phenological models is 344 

essential to ensure that the fitted functions remain realistic (Chuine et al., 2016; Hänninen et 345 

al., 2019). Finally, the DCA simulated by the DORMPHOT model provided the most accurate 346 

predictions for DER and DBB in both datasets.  347 

Under future climate conditions as predicted by the RCP scenarii, the tipping point for DBB 348 

(MAT = 13.86°C) would be reached in a larger fraction of France. Above the 13.86°C threshold, 349 

induction and release of endodormancy would be more delayed than ecodormancy hastened, 350 

resulting in delayed bud break compared to the current period. Delayed bud break would thus 351 

cover up to one quarter of France under RCP 8.5 scenario in 2051-2100 (Fig. 5). Such a lack 352 

of chilling during endodormancy has also been assumed for apricot in the UK (Martínez-353 

Lüscher et al., 2017). Interestingly, in the future climate, the annual variability in DBB is 354 

expected to be lower. The trend towards a more uniform DBB has already been observed in 355 

recent decades (Vitasse et al., 2018). A more uniform phenology would act as a stabilizing 356 

factor for fruit production by synchronizing pollination and ripening. However, the lack of 357 

chilling temperature during endodormancy induces severe agronomic issues such as erratic 358 

patterns of blooming, floribondity, and potential dischronism with anthesis (Campoy et al., 359 

2011). An accurate assessment of temperature response during endodormancy is therefore 360 

necessary to complement the experimental data obtained during the ecodormancy stqge 361 
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(Charrier et al., 2011).   It would clarify the future of the French walnut production area. The 362 

two PDO areas would indeed face distinct threats as they are on opposite sides of the tipping 363 

point. In the Périgord, chilling requirements are likely not to be fulfilled and varieties with 364 

lower chilling requirements need to be developed, as current varieties do not exhibit variability 365 

for this trait (Charrier et al., 2011). In Grenoble, earlier budbreak dates are expected, leading to 366 

greater exposure to late frost events, and varieties with higher forcing requirements can help 367 

stabilize production (Charrier et al., 2018).  368 

Conclusions and perspectives 369 

This study highlighted the relevance of using flexible dates to initiate chilling accumulation 370 

rather than functions that compute the negative chilling accumulation at warm temperature. The 371 

DORMPHOT model, integrating the control of endodormancy induction by temperature and 372 

photoperiod, is the most efficient in predicting endodormancy and ecodormancy stages. The 373 

tipping point of phenological processes will probably be reached during the 21st century with 374 

chilling requirements that are likely to be fulfilled later or not at all. Although these results are 375 

important for walnut production, the observed correlation between MAT and phenological 376 

stages represents a relevant tool for building meta-models valid in many species at the global 377 

scale.  378 



18 

 

REFERENCES 

Arora, R., Rowland, L. J., & Tanino, K. (2003). Induction and release of bud dormancy in 

woody perennials: a science comes of age. HortScience, 38(5), 911-921. 
Balandier, P., Gendraud, M., Rageau, R., Bonhomme, M., Richard, J. P., & Parisot, E. (1993). 

Bud break delay on single node cuttings and bud capacity for nucleotide accumulation as 

parameters for endo-and paradormancy in peach trees in a tropical climate. Scientia 

Horticulturae, 55(3-4), 249-261. 
Basler, D., & Körner, C. (2012). Photoperiod sensitivity of bud burst in 14 temperate forest tree 

species. Agricultural and Forest Meteorology, 165, 73-81. 
Beil, I., Kreyling, J., Meyer, C., Lemcke, N., & Malyshev, A. V. (2021). Late to bed, late to 

rise—Warmer autumn temperatures delay spring phenology by delaying dormancy. Global 

Change Biology. 
Caffarra, A., Donnelly, A., Chuine, I., & Jones, M. B. (2011a). Modelling the timing of Betula 

pubescens budburst. I. Temperature and photoperiod: a conceptual model. Climate 

Research, 46(2), 147-157. 
Caffarra, A., Donnelly, A., & Chuine, I. (2011b). Modelling the timing of Betula pubescens 

budburst. II. Integrating complex effects of photoperiod into process-based models. Climate 

research, 46(2), 159-170. 
Caffarra, A., Zottele, F., Gleeson, E., & Donnelly, A. (2014). Spatial heterogeneity in the timing 

of birch budburst in response to future climate warming in Ireland. International journal of 

biometeorology, 58(4), 509-519. 
Campoy, J. A., Ruiz, D., & Egea, J. (2011). Dormancy in temperate fruit trees in a global 

warming context: a review. Scientia Horticulturae, 130(2), 357-372. 
Charrier, G., Bonhomme, M., Lacointe, A., & Améglio, T. (2011). Are budburst dates, 

dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or 

environmental control?. International journal of biometeorology, 55(6), 763-774. 
Charrier, G., Chuine, I., Bonhomme, M., & Améglio, T. (2018). Assessing frost damages using 

dynamic models in walnut trees: exposure rather than vulnerability controls frost risks. 

Plant, Cell & Environment, 41(5), 1008-1021. 
Chuine, I., & Régnière, J. (2017). Process-based models of phenology for plants and animals. 

Annual Review of Ecology, Evolution, and Systematics, 48, 159-182. 

Chuine, I., Bonhomme, M., Legave, J. M., García de Cortázar‐Atauri, I., Charrier, G., Lacointe, 

A., & Améglio, T. (2016). Can phenological models predict tree phenology accurately in the 

future? The unrevealed hurdle of endodormancy break. Global Change Biology, 22(10), 

3444-3460. 
Delpierre, N., Dufrêne, E., Soudani, K., Ulrich, E., Cecchini, S., Boé, J., & François, C. (2009). 

Modelling interannual and spatial variability of leaf senescence for three deciduous tree 

species in France. Agricultural and Forest Meteorology, 149(6-7), 938-948. 
Dennis, F. G. (2003). Problems in standardizing methods for evaluating the chilling 

requirements for the breaking of dormancy in buds of woody plants. HortScience, 38(3), 

347-350. 

Déqué, M., Rowell, D. P., Lüthi, D., Giorgi, F., Christensen, J. H., Rockel, B., ... & van den 

Hurk, B. J. J. M. (2007). An intercomparison of regional climate simulations for Europe: 

assessing uncertainties in model projections. Climatic Change, 81(1), 53-70. 
Gauzere, J., Delzon, S., Davi, H., Bonhomme, M., de Cortazar-Atauri, I. G., & Chuine, I. 

(2017). Integrating interactive effects of chilling and photoperiod in phenological process-

based models. A case study with two European tree species: Fagus sylvatica and Quercus 

petraea. Agricultural and Forest Meteorology, 244, 9-20. 



19 

 

Gauzere, J., Lucas, C., Ronce, O., Davi, H., & Chuine, I. (2019). Sensitivity analysis of tree 

phenology models reveals increasing sensitivity of their predictions to winter chilling 

temperature and photoperiod with warming climate. Ecological Modelling, 411, 108805. 
Hänninen, H., Kramer, K., Tanino, K., Zhang, R., Wu, J., & Fu, Y. H. (2019). Experiments are 

necessary in process-based tree phenology modelling. Trends in Plant Science, 24(3), 199-

209. 
Hänninen, H., & Tanino, K. (2011). Tree seasonality in a warming climate. Trends in plant 

science, 16(8), 412-416. 
Heide, O. M. (2008). Interaction of photoperiod and temperature in the control of growth and 

dormancy of Prunus species. Scientia Horticulturae, 115(3), 309-314. 
Heide, O. M. (2011). Temperature rather than photoperiod controls growth cessation and 

dormancy in Sorbus species. Journal of experimental botany, 62(15), 5397-5404. 
Heide, O. M., & Prestrud, A. K. (2005). Low temperature, but not photoperiod, controls growth 

cessation and dormancy induction and release in apple and pear. Tree physiology, 25(1), 

109-114. 

Kalcsits, L. A., Silim, S., & Tanino, K. (2009). Warm temperature accelerates short 

photoperiod-induced growth cessation and dormancy induction in hybrid poplar (Populus× 

spp.). Trees, 23(5), 971-979. 
Landsberg, J. J. (1974). Apple fruit bud development and growth; analysis and an empirical 

model. Annals of Botany, 38(5), 1013-1023. 

Lang, G. A., Early, J. D., Martin, G. C., & Darnell, R. L. (1987). Endo-, para-, and 

ecodormancy: physiological terminology and classification for dormancy research. 

HortScience, 22(3), 371-377. 
Luedeling, E. (2019) Statistical Methods for Phenology Analysis in Temperate Fruit Trees, 

chillR Package. 

Martínez-Lüscher, J., Hadley, P., Ordidge, M., Xu, X., & Luedeling, E. (2017). Delayed chilling 

appears to counteract flowering advances of apricot in southern UK. Agricultural and Forest 

Meteorology, 237, 209-218. 
Mauget, J. C., (1980). Dormance et précocité de débourrement des bourgeons chez quelques 

cultivars de Noyer (Juglans regia L.). 

Maurya, J. P., & Bhalerao, R. P. (2017). Photoperiod-and temperature-mediated control of 

growth cessation and dormancy in trees: a molecular perspective. Annals of botany, 120(3), 

351-360. 
Meier, U. (2001). Growth stages of mono- and dicotyledonous plants. BBCH Monograph. doi: 

10.5073/bbch0515. 

Mølmann, J. A., Asante, D. K., Jensen, J. B., Krane, M. N., Ernstsen, A., Junttila, O., & Olsen, 

J. E. (2005). Low night temperature and inhibition of gibberellin biosynthesis override 

phytochrome action and induce bud set and cold acclimation, but not dormancy in PHYA 

overexpressors and wild‐type of hybrid aspen. Plant, Cell & Environment, 28(12), 1579-

1588. 
R Development Core Team (2019) R: A Language and Environment for Statistical computing. 

https://www.r-project.org/ 

Rageau, R. (1982). Etude expérimentale des lois d’action de la température sur la croissance 

des bourgeons floraux du pêcher (Prunus persica L. Batsch) pendant la postdormance. 

Réaumur, R. A. F. d. 1735. Observations du thermomètre, faites à Paris durant l'année 1735, 

comparées avec celles qui ont été faites sous la ligne, à l'isle de France, à Alger et quelques 

unes de nos isles de l'Amérique. Mémoires de l'Académie des Sciences de Paris. 

Richardson, E. A., EA, R., SD, S., & DR, W. (1974). A model for estimating the completion of 

rest for" Redhaven" and" Elberta" peach trees. 

Vegis, A. (1964). Dormancy in higher plants. Annual review of plant physiology, 15(1), 185-

224. 



20 

 

Vitasse, Y., Signarbieux, C., & Fu, Y. H. (2018). Global warming leads to more uniform spring 

phenology across elevations. Proceedings of the National Academy of Sciences, 115(5), 

1004-1008. 
Weinberger, J. H. (1950). Chilling requirements of peach varieties. In Proceedings. American 

Society for Horticultural Science (Vol. 56, pp. 122-8). 
Weinberger, J. H. (1956). Prolonged dormancy trouble in peaches in the southeast in relation 

to winter temperatures. Journal of the American Society for Horticultural Science,6 7, 107-

112.  

Weinberger, J. H. (1967). Some temperature relations in natural breaking of the rest of Peach 

flower buds in the San Joaquin Valley, California. Proceedings of the American Society for 

Horticultural Science, 51, 84-89.  
Welling, A., Kaikuranta, P., & Rinne, P. (1997). Photoperiodic induction of dormancy and 

freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiologia 

Plantarum, 100(1), 119-125. 

Welling, A., Moritz, T., Palva, E. T., & Junttila, O. (2002). Independent activation of cold 

acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiology, 

129(4), 1633-1641. 

  



21 

 

Acknowledgements 

The author wants to acknowledge the essential contribution of Marc Bonhomme, Aline Faure, 

Jean-Claude Mauget, Remi Rageau, Jean-Pierre Richard for dormancy release date 

measurements. Phenological data and stem materials were provided by Neus Aleita, Romain 

Baffoin, Fabrice Lheureux, Marianne Naudin and Eloise Tranchand. The author is also thankful 

to Thierry Améglio, André Lacointe and Heikki Hänninen for constructive comments on 

preliminary versions of the manuscript. Part of the collected data were supported by the Pôle 

National de Données de la Biodiversité (a.k.a SOERE Tempo) and by a ‘Pari Scientifique’ grant 

from the division Agroecosystem of INRAE. 
  



22 

 

Figure captions 

Table 1 Site and dataset descriptions. 

Table 2. Quality of the prediction of endodormancy release dates (ER) using different 
functions and two different calibration datasets. RMSE, RMSEP and AIC lower than 
110% of the minimum RMSE or RMSEP are indicated in bold. Dates for onset of 
chilling accumulation (DCA) were either fixed (Julian Day) or computed according to: 
date of first frost (FF), minimum temperature (Tmin), mean temperature (Tmean), 
photoperiod, minimum chilling unit (CUmin), leaf fall using temperature (LFT) or 
temperature and photoperiod (LFPT) and dormancy induction state using the 
DORMPHOT model (DP). Ori and adj refer to the original published version (ori) or 
adjusted to the data (adj). Chilling effect were only positive, using the reverse 
Richardson function, or positive at low temperature and negative at warm temperature, 
using the smoothed Utah function. 

Table 3. Quality of the prediction of budburst dates (BB) using different functions and 
two different calibration datasets. RMSE, RMSEP and AIC lower than 110% of the 
minimum RMSE or RMSEP are indicated in bold. Dates for onset of chilling 
accumulation (DCA) were either fixed (Julian Day) or computed according to date of 
first frost (FF), minimum temperature (Tmin), mean temperature (Tmean), photoperiod, 
minimum chilling unit (CUmin), Leaf fall using temperature (LFT) or temperature and 
photoperiod (LFPT) and DORMPHOT (DP). Ori and Adj refer to the original published 
version (ori) or adjusted to the data (adj). Chilling effect were only positive or positive 
at low temperature and negative at warm temperature, using the reverse Richardson 
and smoothed Utah functions respectively.  

Figure 1. A. Time to break buds under forcing conditions for one node cuttings of 
Juglans regia cv Franquette. Different colors represent the different phenological 
stages based on the dynamics in time to break buds. B-D. Correlations between the 
onset of endodormancy induction, the maximum endodormancy depth and 
endodormancy release. 

Figure 2. Average dates of onset of chilling accumulation (A), endodormancy release 
(B) and budburst (C) predicted across France under current climatic conditions. 

Figure 3. A-C. Average date of onset of chilling accumulation (A), endodormancy 
release (B) and budburst (C) depending on mean annual temperature across France 
under different climatic scenarii. Exponential (A, B) and cubic (C) functions were 
represented in black dashed lines. 

Figure 4 A-C Distribution of the mean (A-C) and variance (D-E) in the date of onset of 
chilling accumulation (A, D), endodormancy release (B, E) and budburst (C, F) in the 
current period (Ref) or RCP scenario in the early (2006-2050) and late part of the XXI 
century (2051-2100) in France. G-I Distribution of the variation compared to the 
reference period in the mean date of onset of chilling accumulation (G), endodormancy 
release (H) and budburst (I). The box represents the upper and lower quartile with the 
median indicated by a thick black line, the whiskers represents the 1st and 9th decile, 
outliers were not represented. Different letters indicate a significantly different 
distribution across scenario according to the non-parametric Kruskal Wallis test. 

Figure 5. Relative change compared to the present period in average budburst dates 
across France according to different climatic scenarii (RCP2.6, RCP4.5 and RCP 8.5) 
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and time periods (2006-2050 and 2051-2100). Earlier and later budburst dates than 
the current climate are represented in blue and red, respectively. 
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Supplementary material 

Table S1. Formalisms used to define the onset of chilling accumulation (DCA) across various 

studies aiming at modeling phenology in various species and location: fixed or flexible date. 

Chilling models are sigmoid (Hanninen, 1990), normal (Chuine, 2000; Chuine et al., 2003), 

Utah (Richardson et al., 1974) and variations (smoothed Utah: Bonhomme et al., 2010, 

Positive Utah and positive Chill Unit for low chilling varieties: Gilreath and Buchanan, 1981), 

Dynamic (Fishman et al., 1987a,b), Chilling Hours (Weinberger; 1967), Bidabé (Bidabé, 1965a, 

b), Growing Degree Day (Ritchie and NeSmith, 1991). NH and SH mean northern and southern 

hemisphere, respectively. 

Figure S1. Average dates of onset of chilling accumulation predicted across France under 

future climatic scenarii (A, D RCP 2.6; B, E RCP 4.5 and C, F RP 8.5). The higher and lower 

maps represent the short term (A-C 2006-2050) and the long term period (D-F 2050-2100), 

respectively. 

Figure S2. Average dates of endodormancy release predicted across France under future 

climatic scenarii (A, D RCP 2.6; B, E RCP 4.5 and C, F RP 8.5). The higher and lower maps 

represent the short term (A-C 2006-2050) and the long term period (D-F 2050-2100), 

respectively. 

Figure S3. Average dates of budburst predicted across France under future climatic scenarii 

(A, D RCP 2.6; B, E RCP 4.5 and C, F RP 8.5). The higher and lower maps represent the short 

term (A-C 2006-2050) and the long term period (D-F 2050-2100), respectively. 
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Table 1. Site and dataset descriptions 

Location Elevation 

(m asl.) 

Latitude 

° 

Longitude 

° 

Mean 

annual 

temperature 

(°C) 

Minimum 

temperature 

(°C) 

Absolute 

minimum 

temperature 

(°C) 

Number 

of 

freezing 

events 

First 

Frost 

(Autumn) 

DOY 

Last 

Frost 

(Spring) 

DOY 

Number of observations 

Endodormancy Release Budburst 

Dataset 1 

(C/V) 

Dataset 2 

(C/V) 

Dataset 1 

(C/V) 

Dataset 2 

(C/V) 

Balandran 69 43.758 4.516 16.90 12.00 -3.78 14.5 340 50 1/1 1/1 0/0 0/0 

Chatte 304 45.143 5.282 13.62 8.15 -9.39 61.7 308 102 0/0 0/0 12/11 11/12 

Creysse 115 44.887 1.597 14.65 8.52 -8.50 52.4 309 104 0/0 0/0 13/12 12/13 

Crouël 340 45.779 3.142 13.25 9.26 -11.51 59.6 302 108 13/12 12/13 4/4 4/4 

Orcival 1150 45.683 2.842 12.92 7.72 -12.13 97.4 291 126 1/1 1/1 1/0 0/1 

Terrasson 90 45.136 1.300 14.61 8.96 -9.69 47.4 311 100 1/1 1/1 1/0 0/1 

Theix 945 45.706 3.021 9.70 6.22 -15.11 100.3 282 129 1/1 1/1 1/0 0/1 

Toulenne 22 44.557 -0.263 15.38 10.56 -6.09 25.9 325 74 1/0 0/1 9/9 9/9 
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Table 2. Quality of the prediction of endodormancy release dates (ER) using different 1 

functions and two different calibration datasets. RMSE, RMSEP and AIC lower than 110% of 2 

the minimum RMSE or RMSEP are indicated in bold. Dates for onset of chilling accumulation 3 

(DCA) were either fixed (Julian Day) or computed according to: date of first frost (FF), minimum 4 

temperature (Tmin), mean temperature (Tmean), photoperiod, minimum chilling unit (CUmin), leaf 5 

fall using temperature (LFT) or temperature and photoperiod (LFPT) and dormancy induction 6 

state using the DORMPHOT model (DP). Ori and adj refer to the original published version 7 

(ori) or adjusted to the data (adj). Chilling effect were only positive, using the reverse 8 

Richardson function, or positive at low temperature and negative at warm temperature, using 9 

the smoothed Utah function. 10 

Onset of chilling 
accumulation DCA 

Chilling effect k 
Dataset 1 Dataset 2 

n RMSE RMSEP AIC n RMSE RMSEP AIC 

Julian Day 
Positive only 4 18 12.16 11.57 97.9 17 8.96 13.58 82.6 

Positive & negative 6 18 12.50 11.49 102.9 17 9.51 14.26 88.6 

Mean Temp 
Positive only 4 18 12.63 11.18 99.3 17 9.36 13.46 84.0 

Positive & negative 6 18 13.24 11.00 105.0 17 10.39 19.22 91.6 

Min Temp 
Positive only 4 18 12.64 10.47 99.3 17 9.53 13.50 84.7 

Positive & negative 6 18 12.92 9.32 104.1 17 9.40 14.31 88.2 

First Frost 
Positive only 3 18 17.12 13.30 108.3 17 13.28 17.76 93.9 

Positive & negative 5 18 14.78 12.58 106.9 17 11.22 15.58 92.2 

Photoperiod 
Positive only 4 18 12.31 10.31 98.4 17 7.80 13.90 77.8 

Positive & negative 6 18 14.39 12.85 108.0 17 8.57 14.31 85.0 

CUmin ori 
Positive only 3 18 15.02 12.82 103.5 17 11.23 16.21 88.2 

Positive & negative 1 18 44.35 47.87 138.5 17 51.32 40.07 135.9 

CUmin adj 
Positive only 7 18 12.77 10.56 105.7 17 10.28 13.36 93.2 

Positive & negative 9 18 13.27 8.30 111.1 17 8.68 13.48 91.5 

Leaf Fall Thermal ori 
Positive only 3 18 12.88 10.30 98.0 17 9.21 13.98 81.5 

Positive & negative 5 18 12.83 10.12 101.9 17 9.11 14.19 85.1 

Leaf Fall Thermal adj 
Positive only 6 18 11.91 10.77 101.2 17 7.79 13.59 81.8 

Positive & negative 8 18 11.86 13.29 105.0 17 7.75 14.43 85.6 

Leaf Fall Photothermal ori 
Positive only 3 18 13.23 8.54 99.0 17 8.08 13.98 77.0 

Positive & negative 5 18 13.42 8.99 103.5 17 7.71 14.24 79.4 

Leaf Fall Photothermal adj 
Positive only 6 18 12.73 8.72 103.6 17 7.86 14.15 82.1 

Positive & negative 8 18 12.26 10.67 106.2 17 7.64 14.06 85.1 

DORMPHOT ori 
Positive only 3 18 12.77 9.08 97.7 17 8.20 13.86 77.5 

Positive & negative 5 18 13.11 9.55 102.6 17 8.87 14.38 84.2 

DORMPHOT adj 
Positive only 7 18 11.79 8.45 102.8 17 7.72 12.90 83.5 

Positive & negative 9 18 11.51 10.35 105.9 17 7.20 14.27 85.1 

 11 

  12 
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Table 3. Quality of the prediction of budburst dates (BB) using different functions and two 13 

different calibration datasets. RMSE, RMSEP and AIC lower than 110% of the minimum 14 

RMSE or RMSEP are indicated in bold. Dates for onset of chilling accumulation (DCA) were 15 

either fixed (Julian Day) or computed according to date of first frost (FF), minimum 16 

temperature (Tmin), mean temperature (Tmean), photoperiod, minimum chilling unit (CUmin), 17 

Leaf fall using temperature (LFT) or temperature and photoperiod (LFPT) and DORMPHOT 18 

(DP). Ori and Adj refer to the original published version (ori) or adjusted to the data (adj). 19 

Chilling effect were only positive or positive at low temperature and negative at warm 20 

temperature, using the reverse Richardson and smoothed Utah functions respectively. 21 

Onset of chilling 
accumulation DCA 

Chilling effect 
 Dataset 1 Dataset 2 

k n RMSE RMSEP AIC n RMSE RMSEP AIC 

Julian Day 
Positive only 5 41 8.04 7.06 180.9 39 6.92 7.27 160.9 

Positive & negative 7 41 8.15 7.25 186.1 39 7.28 7.88 168.8 

Mean Temp 
Positive only 5 41 8.10 7.31 181.5 39 7.69 7.55 169.1 

Positive & negative 7 41 8.63 7.86 190.7 39 8.86 7.89 184.1 

Min Temp 
Positive only 5 41 7.85 7.21 178.9 39 7.58 7.57 168.0 

Positive & negative 7 41 11.36 12.73 213.3 39 10.97 10.00 200.9 

First Frost 
Positive only 4 41 9.52 16.29 192.7 39 14.72 8.75 217.7 

Positive & negative 6 41 40.95 86.24 316.4 39 72.30 10.69 345.9 

Photoperiod 
Positive only 5 41 8.01 6.74 180.7 39 6.94 7.32 161.1 

Positive & negative 7 41 9.66 7.97 199.9 39 7.18 8.09 167.8 

CUmin ori 
Positive only 4 41 11.17 10.88 205.9 39 9.33 9.27 182.2 

Positive & negative 2 41 54.34 63.04 331.6 39 63.84 55.42 328.2 

CUmin adj 
Positive only 8 41 7.94 7.48 185.9 39 7.81 7.66 176.3 

Positive & negative 10 41 9.80 9.75 207.1 39 10.29 10.56 201.8 

Leaf Fall Thermal ori 
Positive only 4 41 7.67 6.88 175.0 39 7.66 7.70 166.8 

Positive & negative 6 41 7.75 6.76 179.9 39 7.36 7.41 167.7 

Leaf Fall Thermal adj 
Positive only 7 41 8.30 6.77 187.6 39 6.84 7.29 163.9 

Positive & negative 9 41 8.31 7.71 191.6 39 6.92 7.42 168.9 

Leaf Fall Photothermal ori 
Positive only 4 41 7.82 7.16 176.6 39 7.08 7.37 160.7 

Positive & negative 6 41 7.47 6.68 176.9 39 7.01 7.18 163.9 

Leaf Fall Photothermal adj 
Positive only 7 41 7.49 6.82 179.1 39 6.97 7.23 165.4 

Positive & negative 9 41 80.49 73.53 377.8 39 7.14 6.94 171.3 

DORMPHOT ori 
Positive only 4 41 7.74 6.89 175.9 39 7.13 7.63 161.3 

Positive & negative 6 41 7.39 6.82 176.0 39 7.05 7.51 164.4 

DORMPHOT adj 
Positive only 8 41 7.67 6.90 183.1 39 7.28 7.67 170.9 

Positive & negative 10 41 8.88 7.04 199.1 39 7.00 8.23 171.8 
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 25 

Figure 1. A. Time to break buds under forcing conditions for one node cuttings of Juglans 26 

regia cv Franquette. Different colors represent the different phenological stages based on 27 

the dynamics in time to break buds. B-D. Correlations between the onset of endodormancy 28 

induction, the maximum endodormancy depth and endodormancy release. 29 
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Figure 2. Average dates of onset of chilling accumulation (A), endodormancy release (B) 32 

and budburst (C) predicted across France under current climatic conditions. 33 
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 36 
Figure 3. A-C. Average date of onset of chilling accumulation (A), endodormancy release 37 

(B) and budburst (C) depending on mean annual temperature across France under different 38 

climatic scenarii. Exponential (A, B) and cubic (C) functions were represented in black 39 

dashed lines. 40 
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 42 

Figure 4 A-C Distribution of the mean (A-C) and variance (D-E) in the date of onset of 43 

chilling accumulation (A, D), endodormancy release (B, E) and budburst (C, F) in the 44 

current period (Ref) or RCP scenario in the early (2006-2050) and late part of the XXI 45 

century (2051-2100) in France. G-I Distribution of the variation compared to the reference 46 

period in the mean date of onset of chilling accumulation (G), endodormancy release (H) 47 

and budburst (I). The box represents the upper and lower quartile with the median indicated 48 

by a thick black line, the whiskers represents the 1st and 9th decile, outliers were not 49 

represented. Different letters indicate a significantly different distribution across scenario 50 

according to the non-parametric Kruskal Wallis test. 51 
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 52 

Figure 5. Relative change compared to the present period in average budburst dates 53 

across France according to different climatic scenarii (RCP2.6, RCP4.5 and RCP 8.5) and 54 

time periods (2006-2050 and 2051-2100). Earlier and later budburst dates than the current 55 

climate are represented in blue and red, respectively. 56 


