
HAL Id: hal-03073497
https://hal.inrae.fr/hal-03073497v1

Submitted on 27 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

DeepForest: A Python package for RGB deep learning
tree crown delineation

Ben G. Weinstein, Sergio Marconi, Mélaine Aubry-Kientz, Gregoire Vincent,
Henry Senyondo, Ethan White

To cite this version:
Ben G. Weinstein, Sergio Marconi, Mélaine Aubry-Kientz, Gregoire Vincent, Henry Senyondo, et al..
DeepForest: A Python package for RGB deep learning tree crown delineation. Methods in Ecology and
Evolution, 2020, Machine Learning Virtual Issue, 11 (12), pp.1743-1751. �10.1111/2041-210X.13472�.
�hal-03073497�

https://hal.inrae.fr/hal-03073497v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Methods in Ecology and Evolution

This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process, which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1111/2041-210X.13472
 This article is protected by copyright. All rights reserved

DR BEN  WEINSTEIN (Orcid ID : 0000-0002-2176-7935)

DR ETHAN P WHITE (Orcid ID : 0000-0001-6728-7745)

Article type      : Application

Corresponding author mail id: benweinstein2010@gmail.com

Handling editor: Dr Sydne Record

DeepForest: A Python package for RGB deep learning 

tree crown delineation
Ben. G. Weinstein1, Sergio Marconi1, Mélaine Aubry-Kientz2, Gregoire Vincent2, Henry 

Senyondo1, Ethan White1

1Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, 

USA

2AMAP, IRD, CNRS, INRA, Univ Montpellier, CIRAD, 34000 Montpellier, France

Abstract

1. Remote sensing of forested landscapes can transform the speed, scale, and cost of 

forest research. The delineation of individual trees in remote sensing images is an 

essential task in forest analysis. Here we introduce a new Python package, 

DeepForest, that detects individual trees in high resolution RGB imagery using deep 

learning.A
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2. While deep learning has proven highly effective in a range of computer vision tasks, it 

requires large amounts of training data that are typically difficult to obtain in ecological 

studies. DeepForest overcomes this limitation by including a model pre-trained on 

over 30 million algorithmically generated crowns from 22 forests and fine-tuned using 

10,000 hand-labeled crowns from 6 forests.

3. The package supports the application of this general model to new data, fine tuning 

the model to new datasets with user labeled crowns, training new models, and 

evaluating model predictions. This simplifies the process of using and retraining deep 

learning models for a range of forests, sensors, and spatial resolutions.

4. We illustrate the workflow of DeepForest using data from the National Ecological 

Observatory Network, a tropical forest in French Guiana, and street trees from 

Portland, Oregon.

Keywords: Remote Sensing, Forests, Tree Crowns, Crown Delineation, NEON, Deep 

learning, RGB

Introduction
Airborne individual tree delineation is a central task for forest ecology and the management 

of forested landscapes. The growth in sensor quality and data availability has raised hopes 

that airborne tree maps can complement traditional ground-based surveys (Hamraz et al. 

2016). Most approaches to tree delineation in remote sensing use three-dimensional LIDAR 

data (Coomes et al. 2017), which is currently available for only a small fraction of the Earth’s 

surface. In contrast, high resolution RGB data has widespread coverage from commercial 

and government sources and is readily collected using unmanned aerial vehicles. As a 

result, there is an increasing need for RGB-based tree delineation approaches with easy to 

use open-source implementations.

The introduction of deep neural networks has greatly enhanced the performance of 

remote sensing solutions for detecting objects in geospatial images (Zhu et al. 2017). Deep 

learning models use a series of hierarchical layers to learn directly from training data instead A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

of using expert designed features. Initial layers learn general representations, such as colors 

and shapes, and subsequent layers learn specific object representations. There are several 

barriers to applying deep learning to ecological applications including insufficient technical 

expertise, a lack of large amounts of training data, and the need for significant computational 

resources. DeepForest provides easy access to deep learning for tree delineation by 

creating a simple interface for training object detection models, using them to make 

predictions, and evaluating the accuracy of those predictions. DeepForest also includes a 

prebuilt model (based on Weinstein et al. 2020) pre-trained on tens of millions of LiDAR 

generated crowns and fine-tuned using over 10,000 hand-labeled crowns from diverse 

forests in the National Ecological Observatory Network. Users can apply this model to detect 

trees in new imagery or provide additional hand-labeled data to fine-tune performance for a 

specific site or forest type. Predictions from the model for an average 1km2 tile can be made 

in 7 minutes on a single CPU and DeepForest has built-in support for running on GPU 

resources to dramatically increase the speed of prediction at large scales.

DeepForest Software
DeepForest is an open source (MIT license) Python package supporting Python 3.6 and 

Python 3.7 and has been tested on Windows, macOS, and Linux operating systems. It can 

be installed using the Python Package Index (https://pypi.org/project/deepforest/) or using 

the conda package manager for Windows, Linux and OSX (https://github.com/conda-

forge/deepforest-feedstock). The software is openly developed on GitHub 

(https://github.com/weecology/DeepForest) with automated testing and each release is 

archived on Zenodo (https://doi.org/10.5281/zenodo.2538143). All DeepForest functions are 

documented online with reproducible examples (https://deepforest.readthedocs.io/) and 

video tutorials.

Prebuilt model

DeepForest currently includes one prebuilt model (available by running 

deepforest.use_release) that was trained on data from the National Ecological A
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Observatory Network (NEON) using a semi-supervised approach outlined in Weinstein et al. 

(2019, 2020) (Figure 1). The model was pretrained on data from 22 NEON sites using an 

unsupervised LiDAR based algorithm (Silva et al. 2016) to generate millions of moderate 

quality annotations for model pretraining. The pretrained model was then retrained based on 

over 10,000 hand-annotations of RGB imagery from six sites (MLBS, NIWO, OSBS, SJER, 

TEAK, LENO; see NEON site abbreviations S1). The full workflow is shown in Figure 1. 

While LIDAR data is used to facilitate data generation for the prebuilt model, prediction relies 

only on RGB data, allowing the model to be used to detect trees using RGB imagery alone. 

This prebuilt model extends the methods from Weinstein et al. (2019, 2020) by pretraining 

on a much larger number of trees (30 million LIDAR-generated crowns compared to 10 

million in Weinstein et al. 2020) and diversity of sites (22 instead of 4 in Weinstein et al. 

2020). Additional details on the modeling approach, data generation, and model evaluation 

are available in Weinstein et al (2019, 2020) and a brief summary is provided in S2. This 

model can be used directly to make predictions for new data or used as a foundation for 

retraining the model using labeled data from a new application.

Training

Tree crown delineation is a challenging task and a single model cannot realistically be 

expected to capture the tremendous taxonomic diversity at a global scale. This means that 

to perform optimal crown delineation for a particular forest requires training or fine-tuning 

using data from a local area. A key advantage of DeepForest’s neural network structure is 

that users can retrain the prebuilt model to learn new tree features and image backgrounds 

while leveraging information from the existing model weights based on data from a diverse 

set of forests. Fine-tuning neural networks starting from an initial model requires less training 

data to produce reasonable results (Shin et al. 2016). Known as “transfer learning”, this 

ability is important because training deep learning models from scratch often requires tens of 

thousands of labeled data points for ecological tasks (Weinstein 2018). In contrast, fine-
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tuning the prebuilt model with as few as 1000 hand labeled trees can provide significant 

improvement and be accomplished in approximately 8-10 hours (Weinstein et al. 2020).

The standard training process starts with generating local training data by hand-

labeling trees in images by placing a bounding box around each visible tree (Figure 2). This 

can be done using either image labeling tools (e.g., RectLabel) or GIS software (e.g., 

ArcGIS, QGIS) and DeepForest includes helper functions to convert common formats (XML 

and shapefiles) into a csv format. Annotations can be made on images of any size, but 

training the model requires images with fixed standard dimensions. The prebuilt model was 

trained on square crops of length 400px (40m at 0.1m resolution), which provides a good 

balance between image size and providing the model landscape context for prediction. 

Annotation time depends on the experience of the observer and density of trees, but a 1km 

tile of densely forested areas can be drawn in 8-10 hours. DeepForest includes a 

preprocess.split_raster function that creates a set of appropriately sized images for 

training using a sliding window approach. The size of these input windows is optimized for 

the 10cm data used in training the prebuilt model. The upper resolution limit for tree crown 

delineation is currently unknown, as well as the optimal size of the input windows when 

performing predictions at coarser scales. 

Training can be performed by fine-tuning the prebuilt model or training only using the 

local training data (using deepforest.train). Training deep learning models requires a 

number of parameter choices such as batch size and number of epochs. For users less 

familiar with training deep learning models, DeepForest comes with a standard configuration 

file with reasonable defaults. While some parameter exploration will always be helpful, our 

aim is to make these innovations available even to novice users. Optional GPU support and 

model customization allow more experienced users to quickly develop and test larger and 

more complex models. Data augmentation to randomly crop and flip training images is also 

supported. This strategy is often useful to reduce overfitting when training on small datasets 

(Zoph et al. 2019) but has not been extensively tested for tree crown delineation. For 

additional recommendations for optimal model training see the online documentation 

(https://deepforest.readthedocs.io/) and Appendix S2.  A
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Evaluation

Deep neural networks have millions of parameters and can readily overfit, producing high 

scores on training data, while performing poorly on new images. This makes it essential to 

evaluate performance on held-out test data. To evaluate a set of annotations, users follow 

the same pattern as with training data: 1) Annotate one or more images of trees; 2) Cut the 

images into smaller windows for evaluation; and 3) Format annotations into a csv file using 

DeepForest’s utility functions. The deepforest.evaluate_generator method can then 

be used to evaluate the performance of the predictions for this test data using the mean 

average precision (mAP). mAP combines precision and recall into a single metric measuring 

the area under the precision-recall curve resulting in a score ranging from 0 to 1. In our 

experience, mAP scores above 0.5 are usable for scientific application, but the appropriate 

value depends on the particular research goal and application.

Prediction

After a model has been trained and evaluated, it can be applied to a larger collection of 

images to estimate the locations of trees at larger scales. High resolution images covering 

wide geographic extents cannot fit into memory during prediction and would yield poor 

results due to the size and density of bounding boxes. DeepForest has a 

deepforest.predict_tile method for automating the process of splitting the tile into 

smaller overlapping windows, performing prediction on each of the windows, and then 

reassembling the resulting annotations. Each bounding box annotation is returned with its 

xmin, ymin, xmax, ymax coordinates, and predicted probability score (the probability that the 

bounding box represents a tree) ranging from 0-1, with higher values indicating greater 

confidence in the prediction. To reduce overcounting among overlapping tiles, DeepForest 

sorts predictions by confidence scores and removes lower scoring overlapping boxes (i.e., 

non-max suppression).
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Case Studies

National Ecological Observatory Network

To evaluate model performance across a range of forest types, we used data from the 

National Ecological Observatory Network to predict crowns in sites across the United States. 

This dataset consists of 212 images containing 5852 trees from 22 sites that is part of an 

upcoming tree crown benchmark data package (Weinstein et al. 2020). Training and 

evaluation data are separated by at least 1 km when they occur at the same site. Evaluation 

data were created by viewing RGB images and manually delineating tree crown boxes for all 

visible trees. Annotations were cross-referenced with field collected positions of tree stems 

(from the NEON Vegetation Structure dataset; NEON ID: DP1.10098.001) within each plot 

when available. Following Weinstein et al. (2019, 2020), we used precision, defined as the 

fraction of predicted crowns match real trees, and recall, defined as the fraction of all 

evaluation trees that are correctly detected for evaluation. Following the standard evaluation 

for object detection in the computer vision literature (Ren et al. 2015), we considered 

predictions with Intersection over Union (IoU) scores of 0.5 as true positives. IoU, also 

known as the Jaccard Index, is the area of intersection between the prediction and 

evaluation crown, divided by the joint area of the combined prediction and evaluation 

crowns. We assessed the performance of the prebuilt model at all 22 NEON sites and also 

compared the performance to a previous version of this model (Weinstein et al. 2020) that 

was only trained on data from 4 NEON sites.

Across all sites the average recall per image for the prebuilt model was 72% and the 

precision was 64%. Model performance varies across NEON sites, but most sites have both 

precision and recall values greater than 50% (Figure 3). The model performs similarly 

regardless of whether there was hand-annotated training data from the same site (Figure 3). 

Visual assessment of predictions across forest types reveals good overall correspondence 

between predicted bounding boxes and observations, with most errors resulting from 

insufficient overlap between observed and predicted tree crowns, rather than the model 

missing a tree entirely (Figure 4). The prebuilt model used by DeepForest was fit to data A
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from 22 NEON sites and outperforms the previous 4 site model (Weinstein et al. 2020) at 19 

of 22 sites for recall and 16 of 22 sites for precision, demonstrating that increasing the 

diversity and amount of training data has improved the performance of the model. These 

results demonstrate that the prebuilt model can make reasonable predictions in forests 

ranging from deciduous forests of the Northeast, to southern pinelands, to coniferous forests 

of the mountain west.

The site with the worst performance is Onaqui, Utah (ONAQ), which is a desert scrub 

site with a different vegetation structure from any of the training data. The site is almost 

treeless and includes trees with short and gnarled stature. This highlights the importance of 

using local training data to reduce uncertainty when working with data that is not well 

represented in the training data for the prebuilt model. In these contexts, the value of the 

prebuilt model is that it reduces the needed training sizes when applied to new conditions. 

This has the potential to support training with small amounts of data for applications to a 

wide array of questions surrounding tree health and ecology. For example, training a model 

specific to bare trees could allow studies of broad-scale pest outbreaks or timing of 

deciduous phenology. Initial tests at the Soaproot Saddle, CA site (‘SOAP’ in Figure 4, 3rd 

row) show the prebuilt model can detect standing dead trees when visible. Adding additional 

training data could allow broad scale analysis of tree health when comparing images across 

time.

French Guiana Tropical Forest

The DeepForest prebuilt model was trained on data from the United States that was 

collected using fixed-winged aircraft at 10cm resolution and provided as 1km2 orthomosaics. 

Therefore, two key questions are: 1) Does this model generalize to images collected in new 

locations or using different acquisition hardware; and 2) how useful are the (re)training 

features of the software for improving performance in novel contexts? It is also important to 

understand how the DeepForest RGB model compares to LiDAR-based models from 

recently published work.
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To address these questions, we used data from a recently published competition 

comparing LIDAR tree segmentation algorithms using remote sensing from French Guiana 

(Aubry-Kentz et al. 2019). In the original competition, each team was sent unlabeled data to 

predict and the evaluation data was kept private. This process was repeated for this paper, 

with the third author (Aubry-Kientz) running evaluation scores for the DeepForest predictions 

made by the corresponding author (Weinstein). Predictions were run on a Mac laptop with a 

3.1 GHz Intel Core i5 processor. Predictions from each algorithm were compared to hand-

delineated evaluation crowns based on field observation and manual comparison with RGB 

and LiDAR data. Validation crowns were delineated as polygons, rather than the rectangular 

bounding boxes generated by DeepForest. This case study also provides information on 

whether DeepForest’s approach of predicting rectangular bounding boxes leads to lower 

prediction accuracy than methods producing polygons. Algorithm recall was scored based 

on the proportion of labeled trees predicted with IoU scores of greater than 0.5. Precision 

was not calculated because not all crowns in the test imagery were delineated (see Figure 

5).

We used DeepForest to detect tree crowns using three approaches 1) the prebuilt 

DeepForest model with no local training; 2) a model fit solely to 5018 local hand-annotated 

crowns (annotated by BW using only the RGB data on tiles separate from the evaluation 

data)  and 3) the prebuilt model fine-tuned using the local annotations. RGB tiles were 

divided into 800px windows for model training and evaluation. The default patch size of 

400px was increased to 800px to minimize the edge effect of overlapping crowns. Models 2 

and 3 were trained for 7 epochs with a runtime of approximately 11 minutes/CPU on a 

laptop, which demonstrates that while advanced GPU hardware is convenient for training 

large datasets, fine-tuning and training on small datasets can be done locally on CPU.

The prebuilt model performed well on this novel data with a recall of 0.64, close to the 

0.71 recall for the best performing LIDAR based algorithm from Aubry-Kientz et al. (2019). 

Training only on the 5018 local annotations resulted in a poorer recall of 0.35. Retraining the 

prebuilt model with the local annotations produced the best results with a recall of 0.78, 

slightly better than the highest performing LiDAR algorithm from Aubry-Kientz et al. (2019). A
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This analysis is not sufficient to draw general conclusions about RGB versus LiDAR-based 

methods, but these results do suggest that DeepForest is competitive with state-of-the-art 

LiDAR-based approaches. Overall, the case study demonstrates the utility of DeepForest 

both using the prebuilt model and using local retraining to improve crown delineation based 

on local conditions.

Portland Street Trees

DeepForest’s use of widely available RGB data provides the potential for it to be used 

across very large spatial extents. Scaling up is challenging because algorithms need to 

handle large ranges of habitat types and because the resolution of the data available over 

large areas is typically coarser. To explore how DeepForest performs using coarser 

resolution data in unique habitats, we applied both the prebuilt model and a retrained model 

to crown delineation of street trees in an urban environment. The locations of urban trees 

are important for ecological, sociological and public infrastructure applications. In addition, 

the urban environment is very different from the natural environments on which the prebuilt 

model was trained. The image data from the Oregon Statewide Imagery Program is also 

coarser at 0.3m spatial resolution (1ft), a resolution that is widely available as part of the 

National Agriculture Imagery Program (NAIP - https://www.fsa.usda.gov/programs-and-

services/aerial-photography/imagery-programs/naip-imagery/).

We used imagery from the Portland metro area that overlapped with the Portland 

Street Trees dataset (http://gis-pdx.opendata.arcgis.com/datasets/street-trees). The street 

trees dataset contains geospatial information for the majority of trees accessible from public 

roads in the metro area. Not all trees in an image are labeled, since many trees occur on 

private property and are not mapped. We divided the RGB imagery into geographically 

distinct training and test datasets and used the street trees dataset to guide hand-annotation 

of a small number of tree crowns (n=1033). Annotation by hand took approximately three 

hours and covered a small geographic area of mixed urban development, empty lots and 

ballfields (Figure 6). The street trees data was collected prior to the RGB images and was 

cleaned to remove trees that had been cut down or were obvious errors (e.g. trees located in A
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the middle of buildings). To evaluate the street tree case study, we used field collected 

location of the tree stems to measure tree recall and the rate of undersegmentation. Recall 

was defined as the proportion of street tree locations that were contained within a predicted 

tree bounding box. Undersegmentation rate was defined as the proportion of predicted 

boxes that matched more than one street tree. Minimizing undersegmentation is challenging 

because trees growing close together can appear to be a single tree from above and is 

therefore best evaluated against ground collected data.

We found that evaluating and retraining on data with coarser resolution than the 

prebuilt model required careful choosing of the size of the focal view. The prebuilt model was 

originally trained on a 40m focal view (400px windows with 0.1m data). Data exploration on 

the coarser data source showed that larger focal views of 60-120m performed better than 

maintaining the original 40m view, and 60m was chosen for this analysis. In general, we 

expect that the focal view size should increase with coarser resolution data, but this remains 

an area of further exploration.

As with the tropical forest case study, we found that the prebuilt model performed 

reasonably well (recall = 0.55; undersegmentation = 0.25) and retraining with a small 

amount of local training data significantly improved algorithm performance with an increase 

in recall and decrease in undersegmentation (recall = 0.72; undersegmentation = 0.17; 

Figure 7). Visual inspection shows that many of the errors in using the retrained model are 

for small trees difficult to resolve in the imagery, or tree types not present in the limited 

training data (e.g. ornamental trees with a deep purple hue).

Conclusion
DeepForest provides an open source software package for: 1) delineating tree crowns in 

RGB imagery, 2) evaluating the performance of that crown delineation using hand labeled 

evaluation data, and 3) training new models and fine-tuning of the included prebuilt model to 

support prediction tailored to specific forest types. The inclusion of a prebuilt model allows 

users to benefit from the strengths of deep learning without needing to deal with many of the 

challenges. Given the enormous diversity of tree appearance at a global scale, defining a A
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single unified model for tree crown delineation is challenging. To address this, DeepForest 

provides an explicit retraining method to improve performance for specific use cases. This 

allows the user to decide what level of accuracy is required for the target question, and then 

annotate local data and retrain the model to produce predictions with sufficient accuracy for 

their use case. We recommend defining a clear evaluation dataset, setting a threshold for 

desired performance before training, and using evaluation data that is geographically 

separate from the training data to ensure that the prediction threshold holds outside of the 

training region. 

The minimal spatial resolution for accurate tree prediction using this software remains 

unknown and may ultimately relate to the desired ecological or management question. 

Analysis of the NEON data show that individual tree segmentation is achievable at 10cm.  

The Portland Street trees example shows that 30 cm data (which is publicly available for 

many states and counties) provides reasonable delineations. However, the accuracy will not 

be as high as with higher resolution data, and further analysis at this resolution is necessary. 

One meter resolution imagery is increasingly available at near continental scales (e.g., NAIP 

1m imagery which provides nearly complete coverage of the United States; 

https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-

programs/naip-imagery/). It is unlikely that these data will be effective at distinguishing small 

individual trees, but it may be useful in identifying large trees or clusters of trees in sparse 

landscapes.

To support the broad application of predictions from DeepForest, these predictions 

can be easily exported for use in further analysis and combination with other sensor 

products for forest research. Individual tree crown delineation is often the first step in key 

remote sensing analyses of forested landscapes, including biomass estimation (Kamoske et 

al. 2019), species classification (Maschler et al. 2018), and leaf-trait analysis (Marconi et al. 

2019). DeepForest both ingests and outputs crowns in an easily accessible, standardized 

annotation format, and will facilitate further improvements in the prebuilt model based on 

community contributions.
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Data Availability
DeepForest source code is available on GitHub (https://github.com/weecology/DeepForest) 

and archived on Zenodo (https://doi.org/10.5281/zenodo.2538143). The code for the case 

studies is available in a separate repo (https://github.com/weecology/DeepForest_demos).  

The in-development  version of the NEONTreeEvaluation benchmark is available online 

(https://github.com/weecology/NeonTreeEvaluation) and will continue to be updated as more 

images are annotated. The Oregon RGB imagery was provided by the Oregon Statewide 

Imagery Program 2018: 1 foot orthophotography of western Oregon: State of Oregon data 

release, https://www.oregon.gov/geo/Pages/imagery_data.aspx   

Author Contributions
BW, SM, EW conceived of the project, designed the package and wrote the manuscript. 

MAK, GV, and HS performed analysis, provided package improvements and edited the 

manuscript.
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Figure Legends

Figure 1. Prebuilt model training workflow. Redrawn from Weinstein et al. (2020). 

Parallelograms in the workflow indicate input data, rectangles indicate an algorithmic step, 

and circles indicate the start and end of the workflow. The two sub-flows on the right-side of 

the figure can run in parallel and outline the pre-training and fine-tuning stages of the overall 

model fitting process.

Figure 2. Screenshot of hand-annotated RGB image from NEON site YELL near Frog Rock, 

WY. For optimal training, all crowns in an image should be annotated.

Figure 3. Precision and recall scores for hand-labeled evaluation images from the National 

Ecological Observatory Network (current prebuilt model in red, Weinstein et al. 2020 in 

blue). Sites in bold had hand-labeled data included in training the current prebuilt model. 

See S1 for site abbreviations.

Figure 4. Panel of tree predictions from a broad range of evaluation images in the National 

Ecological Observatory Network with predicted tree crown boxes are in blue. Each image is 

labeled with the NEON site abbreviation and state. See S1 for site abbreviations.

Figure 5. RGB images collected over a tropical forest in French Guiana and example of 

manually segmented crowns used to evaluate the segmentation. 

Figure 6. Predictions made on a tropical forest in French Guiana using the prebuilt model 

retrained with local annotations. Each individual tree is labeled with a blue bounding box.

Figure 7. Predictions for the Portland street tree case study. Bounding box predictions from 

the prebuilt model are in orange. Bounding box predictions from the retrained model using 

local data are in blue. Street tree locations are marked in purple. 
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