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The paper describes a method for measuring a set of quantitative parameters - structural 8 

parameters (area, perimeter, diameters, shape factors) and parameters depending on gray-9 

levels (average luminance and fiber type) in muscle fiber sections. Analysis is performed on a 10 

set of serially cut, transverse sections, obtained after a biopsy. A field selected on a serial 11 

cutting set is numerized with a CCD black and white video camera. It produces a set of 12 

monochrome digital images which are the input data for a model. The method first delineates 13 

each fiber section on the image called the reference cutting, calculates the structural 14 

parameters and then attempts to follow them on the other images of the set to integrate the 15 

other desired parameters -i.e, those depending on gray-levels. The method is semi-automatic. 16 

The two main steps - fiber section extraction and fiber section following - are designed to be 17 

used on the same principle : first, a completely automatic result is computed using appropriate 18 

digital image processing; second, this result is presented to the operator in order to be 19 

interactively validated. The software called RACINE - which implements the method - has 20 

been used successfully for several years by different laboratories of the French National 21 

Abstract 
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Institute of Agronomic Research -INRA- on several kinds of animal muscles - pork, chicken, 22 

trout, beef, rabbit, mutton and turkey. The method allows measurements at fibre section scale 23 

on samples as large as several thousand fibres, providing improvements in speed, accuracy 24 

and statistical reliability of analyses. The main applications concern meat quality control 25 

during livestock production and genetic selection. 26 

 27 

 28 

1. Introduction 29 

 30 

Meat quality control is a subject of growing interest for industrial countries where the market 31 

has reached a quantitative saturation point. The French National Institute of Agronomic 32 

Research - INRA - decided to develop research programs in this direction several years ago. In 33 

this context, biologists needed tools to acquire quantitative parameters to describe muscle 34 

from histological material in an objective manner. For example, our method has been used by 35 

biologists to analyze influence of breeding and slaughtering conditions on meat quality in 36 

Fernandez et al (1994). 37 

 38 

Muscle is composed of fibers - 75 to 90 % of the muscle volume - and several tissues. Muscle 39 

fibers are elongated cells several centimeters long and between 20 and 100 m in diameter. A 40 

muscle is composed of several thousand fibers organized in parallel.  41 

 42 

Meat acidification phenomena after slaughtering have a great importance to explain meat 43 

quality and meat behaviour in industrial processing. For example, post-mortem pH evolution 44 

Keywords: Image analysis, animal production, quantitative histology, meat quality 
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explains 50% of the variability of the transformation efficiency to produce ham. To analyse 45 

meat acidification, biologists study the ATP regeneration mechanism in the fibre. ATP - 46 

adenosine triphosphate - is a molecule which contains the stock of energy of the living cell. 47 

Regeneration is done using the energy found in the food - called glycogen. The regeneration 48 

process can be done by two ways : the glycolitic and the oxidative ways. 49 

By the glycolitic way, glycogen is transformed into lactic acid and ATP. By the oxidative way, 50 

glycogen combined with oxygen is transformed into ATP, water and carbon dioxide. After 51 

slaughtering, the oxygen way is stopped, but the glycolitic one continues to work. Due to the 52 

fact that blood circulation is stopped, the lactic acid stays in the cell. Consequently, the post-53 

mortem regeneration process by the glycolitic way determines the meat acidification. 54 

 55 

Biologists classify cells by histoenzymology in order to determine their behavior in ATP 56 

regeneration. Two kinds of classification are mainly used : 57 

 revealing SDH activity on a particular cutting. SDH - succinate deshydrogenase - is an 58 

enzyme which permits to identify oxidative cells. 59 

 revealing ATPase activity at different pH inhibiting or not inhibiting this activity according 60 

to Brooke and Kaiser (1970) or Ashmore and Doerr (1971). ATPase is an enzyme which 61 

transforms ATP in energy. On each cutting, ATPase activity is revealed for only one pH 62 

value. The classification of each fiber is obtained combining the coloration intensity 63 

measured inside the fiber section in different cuttings -i.e for different pH values. In 64 

general, 3 cuttings -i.e 3 pH values- are used to classify the fibers. 65 

 66 

A final fiber classification is obtained integrating SDH or ATPase activities measured on 67 

contiguous cuttings realized perpendicularly to the fiber elongation axis. This is defined as a 68 
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serial cutting set - see Fig. 1. A transverse section of the same fiber can be found on each 69 

cutting of the set. 70 

In a standard serial cutting set, 3 types of cutting are to be distinguished - see Fig. 2:  71 

 the reference cutting used to delineate the fiber section, 72 

 the typing colorations used to classify the fibers, 73 

 the additional parameter cuttings revealing different chemical components. For the 74 

moment, glycogen has been most frequently analyzed because of its great importance in 75 

meat quality determination. 76 

 77 

The biologist’s requirement was to have a system which would provide cross-sectional areas 78 

and parameter cutting values for each fiber type. To extract this information from the 79 

histological cuttings, two problems needed to be solved - see Fig. 3 -: 80 

 fiber section individualization on the reference cutting, 81 

 fiber section following from the reference cutting to each other cutting of the set to take 82 

account of all the informations describing the same fiber. 83 

The objective of our research is to develop a system which permits biologists to treat easily 84 

and rapidly a large sample of fiber sections in order to obtain reliable statistical results. 85 

In this paper, a method is proposed which is based on numerical image analysis. 86 

 87 

2. Previous research 88 

Until now, biologists have used different techniques to solve the problem of fiber section 89 

individualization: 90 

 A first method (Marinova et al (1991)) consists in cutting up with a chisel the fiber sections 91 

on a photograph. The fibers made of paper are then weighed and this information is 92 

converted into area using a calibration relationship between paper weight and fiber area. 93 
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 A second method consists in delineating the fiber sections on a photograph manually using 94 

a cursor on a digital tablet. This system is coupled to a computer which quantifies the areas 95 

(Dudley et al (1983), Wong (1983), Pernus and Erzen (1991)).  96 

 97 

These two methods are used to quantify the fiber section areas but do not solve the problem of 98 

classifying fibers. Usually, each fiber is assigned to a type by a visual analysis of the 99 

photography as in Pernus et al (1986). In other cases, the coloration intensity - information 100 

used to classify the fibers - is measured by a classification based on coloration using 101 

spectrophotomicroscopy as in Bye et al (1989). The system measures the optical density inside 102 

each fiber. 103 

 104 

All these methods allow the desired information to be quantified but they are very time-105 

consuming because a lot of work must be done manually. Therefore, the analyzed samples are 106 

generally very small: 59 fibers in Bye et al (1989) for instance. 107 

 108 

The development of relatively inexpensive equipment for image capture and processing has 109 

boosted the experimental work using this technique (Jain 1980; Ranft et al 1983; Henckel 110 

1989). A video CCD camera is plugged into a microscope’s photo output to obtain a 111 

numerical gray level image representing the observed field. Henckel (1989) proposes a 112 

solution for both problems: fiber section individualization and following. In the 113 

individualization step, he thresholds the gray level (0-255) image interactively to detect the 114 

inter-fiber section network on the reference cutting. Henckel makes the hypothesis that there 115 

is no distortion between cuttings. Therefore the fiber following step is only solved on very 116 

small fields - around 50 fiber sections. The inter-fiber network is stored in the overlay 117 

graphics. A classifying coloration is then put on the microscope. Under video live mode, the 118 
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operator tries to match the classifying coloration field against the inter-fiber network stored in 119 

the overlay graphics. 120 

At the INRA, biologists desire to make experiments on large sets of samples - several 121 

thousand fibers. Therefore, it is very important to design a parameter extraction process which 122 

is as automatic as possible. Henckel’s method is very interesting. The interface with the 123 

operator is well-designed, but no special effort has been made to provide automatic tools for 124 

the image analysis step. The analyzed fields are relatively small - around 50 fiber sections - 125 

because the software does not take into account local distortions between cuttings. With our 126 

method, it is possible to process greater fields - between 150 and 300 fiber sections. Manual 127 

interaction is needed only to validate automatic processing for each of the two main steps - 128 

fiber individualization and fiber following. The degree of automation of our software allowed 129 

us to carry out experiments on more than 300 000 fibers - see section 5.5. 130 

 131 

3. Materials 132 

 133 

The biologist carries out biopsy on the animal - a sample of 0.5 x 0.5 x 1 cm - perpendicular 134 

to the elongation axis of the fibers. The sample is then immediately frozen in liquid nitrogen 135 

and stored at -80°C until histological examination can take place. Several serial 10 m thick 136 

transverse muscle sections are obtained from each sample with a cryostat at -20°C. For 137 

instance, for the second experiments presented in section 5.5, the biologist prepared four serial 138 

cuttings, one stained in red with azorubine - the reference cutting - , one processed according 139 

to the myosin ATPase technique following preincubation at pH 4.35, one stained for SDH 140 

activity and the last processed to reveal glycogen.  141 

 142 
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For image processing, the operational system - see Fig. 4 - consists of an optical microscope 143 

equipped with a CCD black and white camera - Sony XC77CE for instance -, an image 144 

analysis board - Datacell - and a standard workstation computer - Sun 4/75 with 48 Mb central 145 

memory and a color display - running under the Unix system and Motif window manager. The 146 

image analysis board is composed of a graphic memory, an analogue-digital converter linked 147 

to the camera and a digital-analogue converter linked to a display output - monitor - to 148 

visualize images. This board is plugged into the S-bus and driven by the workstation. 149 

 150 

The serial cuttings are numerized sequentially. Each field is represented by a 512 x 512 pixels 151 

image. Each pixel ranges from 0 to 255, according to the luminance measured by the camera. 152 

The reference cutting is first numerized using a green filter to enhance contrast between the 153 

fiber, stained in red, and the unstained inter-fiber material. Large structures belonging to the 154 

interfiber connective tissue network of the reference stain are stored, after a rapid interactive 155 

thresholding, into a graphic memory to match roughly the other stained cuttings. Then, the 156 

operator tries to match in video live mode, as well as possible, these large structures with 157 

those present in the other stained cuttings of the set. Each serial cutting set is available as a set 158 

of images. It will be processed using the methods described in the next section to obtain the 159 

desired parameters. 160 

 161 

162 
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4. Methods 163 

 164 

4.1 Fiber section extraction step 165 

 166 

The aim is to delineate each fiber section only once, on the reference cutting. On this cutting, 167 

the fiber sections are coloured in black - see Fig. 2. Finding the interfiber network - which is 168 

coloured in white - is equivalent to solving the problem of delineating each fiber section. On 169 

the image, this network can be described as a large size object (hundreds of pixels), composed 170 

of interconnected thin branches. On the whole image, the object/background contrast - i.e. 171 

network/fibers contrast - is important and the illumination intensity is homogeneous - easy to 172 

obtain with microscope lamps -. These two conditions are very important for obtaining 173 

satisfactory results with image analysis. Generally, a real effort must be made to enhance the 174 

staining quality. The azorubine staining used to reveal the interfiber network is red, therefore 175 

the operator uses a green filter to enhance the contrast between fiber and connective tissue. 176 

Lamp light intensity is interactively adjusted on the video monitor to obtain the best possible 177 

interfiber/fibers contrasts. 178 

Based on these properties, an automatic algorithm was designed to extract the interfiber 179 

network in two steps: image thresholding and interfiber network branch closing. 180 

 181 

4.1.1 Image thresholding 182 

 183 

Generally, gray level distribution in the image is not bimodal. The thresholding methods based 184 

on the histogram analysis are not appropriate. Inspired by Kolher (1981), the good properties 185 

of object/background contrast and illumination homogeneity have led us to detect the 186 

luminosity on which the average gradient in the whole image reaches the maximum. For each 187 
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pixel on the image, a discrete approximation of the gradient was computed using the Sobel 188 

method. For a pixel called *: 189 

 190 

A3 A2 A1 

A4 * A0 

A5 A6 A7 

 191 

with A0, A1, ..., A7, its 8 neighbours. The processes to obtain the gradient in X and Y 192 

directions are: 193 

 194 

grad X =  (A1 + 2 A0 + A7) - (A3 + 2 A4 + A5)   195 

grad Y = (A3 + 2 A2 + A1) - (A5 + 2 A6 + A7)   196 

 197 

The gradient amplitude is given by: 198 

 199 

grad(*) = (((grad X)
2
+(grad Y)

2
)/32)

1/2
  200 

 201 

Then, for each gray level on the initial image, a computation was made of the average 202 

associated gradient, accumulating the gradient values of all the positions in the image where 203 

this gray level was observed. The threshold is chosen as the luminance associated with the 204 

maximum average gradient - see Fig. 5 -. This threshold computation is global - all pixels of 205 

the image contribute to its evaluation - which enhances the robustness of the result. The pixels 206 

of a gray level higher than to this threshold are considered as belonging to the interfiber 207 

network. Generally, 90% of the interfiber network is obtained using this technique - see Fig. 6 208 

-. A pretreatment, applied to the initial image before thresholding, enhances the quality of 209 
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results. A histogram equalization - which is generally used to enhance the contrast for display 210 

purposes - strengthens in our particular application the contrast between fiber sections and the 211 

interfiber network. 212 

 213 

After thresholding, the binary resulting image is not perfect. Artefacts are present in the 214 

interfiber network - dark stains due to coloration in black in Fig. 6 - and inside the fibers - 215 

freezing points in white in Fig. 6. To reduce this noise due to global thresholding, we 216 

eliminate the black connected components of size below 50 pixels - to eliminate holes inside 217 

the fiber sections. This threshold is chosen small , therefore we are sure not to eliminate 218 

connected components belonging to the interfiber network which are in general large 219 

connected components -several thousand connected pixels. In order to close the little broken 220 

branches of the interfiber network, we apply a morphological closing, see Coster and 221 

Chermant (1989), of small size (size of 2). 222 

 223 

4.1.2 Interfiber network branch closing 224 

 225 

At this step, the interfiber network is still not entirely detected. Some long branches - size > 226 

10 pixels - have been lost during global thresholding. To close them, we identify in the 227 

interfiber network image the pixels where the breaks occur.These are called extremity points. 228 

To do so, the interfiber network skeleton image is calculated. Then, from each extremity 229 

point, a possible closing is sought. 230 

 231 

1. Interfiber network skeletization - This homotopic transformation - which preserves 232 

interfiber network connectivity - simplifies the interfiber network structure. All the 233 

branches are 1 pixel width. Therefore, the extremity points are defined as pixels belonging 234 
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to the skeleton so that the sum of their 8 neighbour pixels is equal to 1 - assuming that 235 

pixels belonging to the skeleton are coded 1 and those belonging to the background 0. 236 

2. Possible closing search - First, a short distance closing process was attempted. A point 237 

belonging to the skeleton is sought in a small rectangular neighbourhood - size 10x7 pixels 238 

- starting from the extremity point and oriented in the inertial axis of the opened branch. 239 

The opened branch is defined as the set of 8-connected pixels starting from the extremity 240 

point and ending at the first node of the interfiber network. If a point is found in this 241 

neighbourhood, a segment joining the extremity point and this point is added. After this 242 

process, a more costly long distance algorithm is used to close the larger broken branches. 243 

The idea is to follow the watershed - the central axis of the interfiber network - in the gray 244 

level image starting from the extremity point. A dynamic programming process scans some 245 

possible paths - in the direction given by the inertial axis of the branch - but keeps only the 246 

5 best lanes, maximizing the cumulated luminance intensity in the gray level image -see 247 

Fig. 7 -. The explored lanes may be long - up to 50 pixels in length -. As in the short 248 

distance process, if a point is found, a segment joining the extremity point and this point is 249 

added. 250 

 251 

252 
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4.1.3 Conclusion on the interfiber network extraction step 253 

 254 

Global thresholding and branch closing steps are completely automatic processes. The 255 

algorithm provides an interfiber network image - see Fig. 8 - that the operator may validate 256 

interactively. Two cases can be distinguished:  257 

1. in the first case, the interfiber network is homogeneous in thickness in the entire image. 258 

Then, considering that this interfiber space is artificial - due to azorubine staining which 259 

stretches the interfiber space -, the interfiber skeleton is considered as a good estimation of the 260 

cell borders. 261 

2. In the second case, fibers are grouped in bunches which are separated by real interfiber 262 

space - interfiber tissues hierarchically organised. So the operator may merge an intermediate 263 

image - called the big structure image - into the skeleton of the interfiber network image. The 264 

big structure image is a cleaned binary image stored after the global thresholding used during 265 

the automatic step. The operator may also use a graphic tool to delineate and fill interactively 266 

the thick interfiber space 267 

  268 

A graphic editor was also developed to add or remove branches on the interfiber network. 269 

When the interfiber network is validated, the morphometrical parameters describing each fiber 270 

section are computed - area, perimeter, diameter. Diameters correspond to the principal axes 271 

of the fibers. These axes are the eigenvectors of the covariance matrix obtained by using the 272 

pixels within the fiber as random variables. The two eigenvectors of the covariance matrix 273 

point in the direction of maximal fiber spread, subject to the constraint that they are 274 

orthogonal. 275 

 276 

4.2 Fiber section following step 277 
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 278 

The aim in this step is to locate, in the other cuttings of the set, each fiber section extracted on 279 

the reference cutting. As a first approximation, fibers are considered as nearly cylindrical 280 

objects. It can be affirmed that distortions coming from the biological object - the muscle - 281 

and the experimental technology are negligible compared to the acceptable lack of precision in 282 

the fiber following step. Then, the only geometrical transformation between the reference 283 

cutting and the other cuttings to be superimposed is a combination of rotation and translation - 284 

which are the two degrees of freedom of the microscope. As shown in previous work, Buche 285 

and Camillerapp (1991), this is not sufficient, because local distortions appear between the 286 

serial cuttings, due to different reasons: 287 

 some adipocyte cells may appear in the interfiber network in one cutting and not in the 288 

others, 289 

 some fibers may be crushed by the cutting system, 290 

 some fibers may be contracted or expanded by a particular staining and not by the others. 291 

 292 

Therefore, to solve the fiber following step, it is first necessary to define a geometrical 293 

transformation model adapted to our class of images in order to follow the fiber sections as 294 

precisely as possible. Second, a method must be defined to evaluate the model parameters for 295 

a given pair of images to match. 296 

 297 

298 
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4.2.1 Geometrical transformation for the fiber following 299 

 300 

The aim in the fiber following step is to measure the luminant intensity observed in the cutting 301 

to match, either in a little window - 5x5 pixels for instance - centered on the fiber’s estimated 302 

barycenter, or inside a little belt located in the interior border of the fiber section, depending 303 

on the staining type. This is because some stainings are very homogeneously distributed 304 

throughout the fiber section - ATPase for instance - and some others reveal an activity mainly 305 

located on the border of the fiber - like SDH. In the first case, fiber following does not need 306 

great precision. A geometrical model, which can locate the fiber section barycenter - 307 

calculated in the reference cutting image - inside the fiber section on the cutting to be 308 

superimposed, is sufficient. In the second case, each fiber section border - calculated in the 309 

interfiber network extraction step - must be located as precisely as possible in the coloration to 310 

match. Consequently, this paper proposes two global transformation models well-adapted to 311 

each case. 312 

When luminant intensity is measured around the fiber’s estimated barycenter, we propose a 313 

polynomial transformation because it can take into account one or two local distortions in 314 

the image field. It is assumed that the coordinates of a set of n points on the two images to 315 

match are known : 316 

 317 

 S X Y i ni i1 1 1 1 ( , ), ( ,.., )  (1) 318 

 S X Y i ni i2 2 2 1 ( , ), ( ,.., )  (2) 319 

 320 

where (X1i, Y1i) is the point in image 1 which corresponds to (X2i, Y2i) in image 2. 321 

If one calls: 322 
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 S X Y i ni i' ( ' , ' ), ( ,.., )2 2 2 1   (3) 323 

the set of points resulting from the application of the polynomial transformation to the set of 324 

points S1, the following correspondence is given: 325 

X’2i = f(X1i, Y1i) (4) 326 

Y’2i = g(X1i, Y1i) (5) 327 

with f and g two polynomial functions of degree n (n  1). 328 

Two independent transformations are applied in the x and y directions to leave more freedom 329 

to the model. For instance, for n=2, the f function is such that: 330 

X’2i = a1 + a2 X1i + a3 Y1i + a4 X1i Y1i + a5 X1i
2
 + a6 Y1i

2
  (6) 331 

The Euclidean distance between the observed points (X2i, Y2i) and the estimated ones (X’2i, 332 

Y’2i) is defined : 333 

 334 

dXi = (X2i - f(X1i, Y1i))
2
 and dYi = (Y2i - g(X1i, Y1i))

2
. (7) 335 

The coefficients aj ( ( ,..., ))j n 1 are calculated in order to minimize the global differences 336 

independently: 337 

DX dX

DY dY

i

i

n

i

i

n













1

1

 338 

using the least squares method. 339 

The second solution proposes a thin plate spline transformation which holds in the model 340 

more information about the local distortions than the polynomial transformation. This model 341 
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has been presented by Bookstein (1989) and applied on lateral cephalograms - X-rays images 342 

of the head from the side. The f and g functions are now defined as thin plate spline functions. 343 

Equation (6) is replaced by the following: 344 

 345 

X’2i = a1 + a2 X1i + a3 Y1i + w U X Y X Yj j j i i

j

n

( ( ) ( , ) ),1 1 1 1

1




  (8) 346 

where U(r) = r
2
 log r

2
 and ( ) ( , ),X Y X Yj j i i1 1 1 1  is the Euclidean distance between both points 347 

(X1i, Y1i) and (X1j, Y1j). 348 

 349 

The coefficients (a1, a2, a3) and wj ( ( ,..., ))j n 1 are calculated to minimize a bending energy 350 

function. The thin plate spline model is inspired by physical science. It uses a thin plate 351 

distortion model under constraints applied at different spots. This model has the property of 352 

defining the thin plate physical configuration which minimizes its bending energy. The idea is 353 

to use this model to solve a bidimensional interpolation problem. Attempts are made to find 354 

the function which permits the superimposition of the set of S1 points to the set of S2 points, 355 

minimizing the needed bending energy as if the discards between homologous points of S1 356 

and S2 had been applied orthogonally to the image plane - considered as a physical thin plate - 357 

rather than to the image plane itself. 358 

Write rij = ( , ) ( , )X Y X Yi i j j1 1 1 1  for the distance between points i and j in S1. 359 

360 



 17 

Bookstein (1989) defines the matrices:  361 

K
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The equation 363 

 L Y W a a a
T 1

1 2 3  364 

permits the computation of the functions f and g coefficients : 365 

 366 

X X i n

Y Y i n

w

X w

Y w

i i

i i

i

i

n

i i

i

n

i i

i

n

' , ( ,.., ) ( )

' , ( ,.., ) ( )

2 2

2 2

1

1

1

1

1

1 9

1 10

0

0

0

  

  



































 367 



 18 

4.2.2 Evaluation of the model parameters 368 

 369 

To obtain an accurate estimation of the transformation model parameters - polynomial or 370 

spline - it is necessary to find a large number of homologous points -e.g. 25 pairs of points for 371 

a degree 3 polynomial function- on both images to match. Generally, biologists seek to 372 

superimpose four serial cuttings on the reference one, which required 100 pairs for one set. 373 

This is very time consuming if done manually. To solve this problem, we have developed a 374 

method to find homologous points in images to match automatically. 375 

 376 

Our goal in this step is to obtain homologous points, homogeneously distributed in the image 377 

to be sure to take all possible distortions into account. This step is completely automatic, 378 

therefore few erroneous couples of points are expected. 379 

Based on these criteria, the algorithm is composed of the three following steps: 380 

 primitive extraction in the images to match, 381 

 matching of these primitives to generate homologous points, 382 

 homologous points validation. 383 

 384 

385 
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4.2.2.1 Primitive extraction on the cuttings 386 

 387 

There are two kinds of objects in our images: fiber sections and the interfiber network. 388 

Intuitively, when the operator is searching interactively for homologous points, he very often 389 

selects intersections of branches belonging to the interfiber network. Consequently, our idea is 390 

to extract the intersections automatically on both kinds of images: the reference cutting and 391 

the cuttings to match on it. 392 

 393 

Interfiber network extraction on the reference cutting has been explained in section 4.1. On 394 

the other cuttings of the set, the available network information is made of thin branches  - as 395 

in the reference cutting - and transitions between uniform gray-level regions - see Fig. 2. A 396 

recursive edge detection filter was used (Deriche 1987) which generates an image including 397 

jumps of the gray level function. These jumps are particularly marked on thin branches and on 398 

transitions between uniform gray level regions. This new image checks the main hypothesis 399 

on which the interfiber network extraction on the reference cutting is based : 400 

 the illumination intensity is homogenous on the whole image (because this image is the 401 

result of an edge detection filter), 402 

 the available interfiber network information is composed of thin branches (because regions 403 

of different gray level intensities have been replaced by jumps between them). 404 

Therefore, the same algorithm as for the reference cutting is used to obtain the available 405 

interfiber network information in the edge detection image. On both kinds of images - 406 

reference and the other cuttings - the triple points of the interfiber network skeleton which 407 

define the center of the intersections are extracted. In the following, an intersection is defined 408 

as a triple point of the interfiber network plus the three thin branches starting from it - 16 409 

pixels long. 410 
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 411 

4.2.2.2 Matching pairs of homologous points 412 

 413 

It is hypothesized that distortions between images can be locally assimilated to translations. 414 

Then each intersection in the reference cutting is associated with a list of potential 415 

homologous intersections in the cutting to match - see Fig. 9. These intersections are searched 416 

in the cutting to match in a window of 64 x 64 pixels centered on the reference cutting 417 

intersection - i.e. the triple point (x,y) position. To find accurate matching, two kinds of 418 

information are applied : the intersection shape and the compatibility with distortion 419 

information, available around the analyzed reference cutting intersection. 420 

 421 

A shape criterion based on the calculus of the differences between matched branches has been 422 

defined - see Fig. 10 -. This criterion is sensitive to angular and shape differences between 423 

branches. Calling O - resp. O’ - the triple point of the considered intersection in the reference 424 

cutting - resp. the cutting to match - and (B1, B2, B3) - resp. (B’1, B’2, B’3) - its branches, O 425 

and O’ are superimposed and for each couple of matched branches (Bi, B’i), the sum of the 426 

square differences of the pixel coordinates is calculated : 427 

d dist P B P Bi

k

L B L B

k i k i

i i

  


 8

1

2
min( ( ), ( ' ))

( , ' ' )  428 

with L(Bi) - resp L(B’i) - the length of branch B - resp. B’ - and dist8 the D8 distance (so-429 

called chessboard distance) between Pk (Pk.x, Pk.y) and Pk (P’k.x, P’k.y) - is defined as : 430 

dist8(Pk, P’k) = max (|Pk.x-P’k.x|, |Pk.y-P’k.y|). 431 

This calculus is normalized - di / n  di where n = min (L(Bi),L(B’i)) - and iterated on the 432 

three branches: 433 
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d di
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


1
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 434 

In a first approximation, it is considered that the right solution corresponds to the couple of 435 

intersections which minimizes d. But the direct use of this criterion produces a large number 436 

of errors because genuine matching is sometimes a secondary minimum of this similarity 437 

function. To enhance this result, the decision process includes available information about the 438 

local distortion in the analyzed intersection neighbourhood. For each intersection to match, a 439 

probability is associated with each potential matching using the similarity criterion. If in the 440 

neighbourhood of the intersection, many potential matchings in a given direction with a great 441 

probability are found, the matching probability in this direction for the analyzed intersection is 442 

enhanced and the matching probability in the orthogonal direction is reduced. To implement 443 

this idea, a relaxation process inspired by Barnard and Thompson (1980) was used defining a 444 

probability initialisation, a neighbourhood interaction function and an iteration process. 445 

 446 

For a considered intersection i in the reference cutting, an initial probability is associated with 447 

each potential matching intersection l in the cutting to superimpose. Wi(l) is termed : 448 

 449 
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

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451 
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Let p l w li l l
i

0 1( ) max ( ( ))*
* 


be the initial probability of « no matching » for the intersection 452 

i. Baye’s rule is applied to obtain an initial estimate of the probability associated with label l.: 453 

 454 

p l p l
i

p li i i
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with p l
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w l
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( )
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


        456 

 and l
*
non matching label 457 

Two neighbourhoods are considered : 458 

 A spatial neighbourhood to select intersections: 459 

j is the neighbour of i - ie j V i ( )  - if max(|xi-xj|, |yi-yj|)  Dspatial 460 

 A label neighbourhood: l’ is a neighbour of l if max(|lx-l’x|, |ly-l’y|)  Dlabel. 461 

lx and l’x - resp. ly and l’y - are the vectors joining the considered pair of intersections to 462 

match in x -resp. y - direction. 463 

 464 

Two interaction coefficients are computed : q
+
 which measures the compatible matchings in 465 

the neighbourhood and q
- 
 the incompatible ones. These are defined as follows: 466 
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where k represents the iteration step.  468 

 469 

470 
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The final interaction coefficient is: 471 

q
q

q
i

k i

k

i

k




1
 472 

 473 

The initial probabilities are updated at each step using the interaction coefficient: 474 

 475 

 p l p l A B q li

k

i

k

i

k    1( ) ( ) ( )  476 

 477 

where  A is the regulation factor - fixed to 0.0025 - and B controls the updating speed - fixed 478 

to 2.5 -. Then, the probabilities are normalised: 479 
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 482 

The relaxation is processed until stabilisation, reached generally after 10 iterations -see Fig. 483 

11. The couple of matched intersections associated with the best probability is then selected 484 

but will be validated in the next step. 485 

 486 

4.2.2.3 Validation of pairs of homologous points 487 

 488 

The matching process generates a large number of homologous points on most images to 489 

superimpose on the reference cutting - between 100 and 300 -. These points are used to 490 

evaluate the geometrical transformation model coefficients - polynomial or spline. Models are 491 

very sensitive to erroneous homologous points - especially the polynomial model, see Fig. 12. 492 
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Therefore, it is important to check the relevance of homologous points obtained by the 493 

automatic process. Three criteria are applied to filter the homologous points: 494 

 495 

1. Only homologous points with 0.8 matching probability score are selected. 496 

2. Only around 100 homologous points uniformly distributed on the whole image are retained 497 

to be sure of taking into account all possible distortions. 498 

3. The relevance of homologous points to the polynomial model is analyzed. In a first 499 

approach (Buche and Camillerapp (1991)), we eliminated aberrant homologous points 500 

according to the residues using the least squares method. If these residues were higher than 501 

a given threshold - computed according to the residues’ standard deviation - we suppressed 502 

the homologous points pair corresponding to the largest residue. Then, the polynomial 503 

coefficients and residues were recalculated to detect other aberrant couples. This method is 504 

not very robust and is valid only if there are few aberrant homologous points. For this 505 

reason, a filter inspired by a robust regression method called the least-median-of-squares 506 

method was implemented - LMedS - (Meer et al (1991)) instead of the least squares 507 

method. 508 

 509 

The goal of this method is to identify outliers in data, that is, points greatly deviating from the 510 

model. LMedS is a method that remains reliable if less than half of the data are contaminated. 511 

 512 

513 
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In this method, the parameters are estimated by solving the nonlinear minimization problem: 514 

min
1

2

 i n
imed r  515 

where med means the median value and 516 

r X X Y Yi i i i i

2

2 2

2

2 2

2   ( ) ( )' '  517 

where ( , ) ;( , )' ' 'X Y S X Y S
i i i i2 2 2 2 2 2   as defined by Eq. 2 and 3. 518 

The time-complexity of the basic algorithm is very high. If n is the number of homologous 519 

points and p the number of polynomial model coefficients, then the complexity is 520 

O n np( log )1 , which is prohibitively large. Use was made of a random-sampling version of 521 

the algorithm which reduces the time-complexity to O mn n( log )  where m is the number of 522 

p-tuples chosen randomly. 523 

 524 

The probability P that all m different p-tuples chosen at random will contain at least one or 525 

more outliers is : 526 

  P p
m

   1 1 1 )  527 

where   is the fraction of data contaminated by outliers. For instance, for p = 3, m = 100, 528 

    05 159 10 6. , .P , which is a very low probability. 529 

 530 

The robust estimate of the standard deviation is: 531 
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Based on the robust LMedS model and the standard deviation estimate, homologous pairs of 533 

points    ( , ) ;( , ) , ,..,X Y X Y i n
i i i i1 1 2 2 1  are filtered as follows: 534 

1. binary weights wi are associated with each homologous pair of points  535 
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 537 

2. homologous pairs having wi = 1 are considered as belonging to the assumed model, 538 

homologous pairs having wi = 0 are considered as outliers. 539 

 540 

5. Results 541 

 542 

This section presents the results obtained from two kinds of muscle, chicken and pork. First, 543 

the different steps of our method were applied to 20 cutting sets of chicken muscle (i.e 3763 544 

fibers) made of 2 cuttings: 1 reference and 1 typing coloration -ATPase. Second, the method 545 

was applied to 20 cutting sets of pork muscle (i.e 3252 fibers) made of 3 cuttings: 1 reference 546 

and 2 typing colorations - ATPase and SDH. 547 

 548 

5.1 Time consumed per set 549 

 550 

The average number of fiber sections per cuttings set is 163 for pork muscle and 188 for 551 

chicken muscle. For pork, there are two cuttings to match on the reference, therefore the 552 

respective following correction times are referred to as b1 and b2. The complete processing 553 



 27 

time includes automatic processing time plus interactive correction time. The results are 554 

presented in Table 1. 555 

 556 

5.2 Error rates 557 

The erroneous or missing branches rate is a mean rate obtained by dividing the number of 558 

erroneous or missing branches by the total number of branches for each reference cutting. The 559 

erroneous homologous points rate is obtained by dividing the number of erroneous 560 

homologous points - deleted by the operator - by the total number of automatically found 561 

homologous points. The added homologous points rate is the number of homologous points 562 

interactively added by the operator -in the fiber following step- divided by the total number of 563 

homologous points. The results are presented in Table 2. 564 

 565 

5.3 Accuracy in the following step 566 

 567 

The distortion models -splines and polynomial- are efficient and complementary because most 568 

of the distortions encountered are correctly estimated using one of these models. The kind of 569 

distortion in the image leads to the model choice: 570 

 571 

 Case 1: one or two local distortions in the image 572 

 In this case, if the homologous points are uniformly distributed in the image, the 573 

polynomial model gives a good estimation of the distortion. It has been shown in Buche 574 

and Camillerapp (1991) that a degree 3 polynomial model gives the best precision. The 575 

model precision is defined as the standard residual deviation - measured in pixels - of the 576 

homologous points. 4.43 pixels on x-axis  were obtained and 4.15 pixels on y-axis. Fig. 13 577 
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shows an example which illustrates the typical use of a polynomial model. A little 578 

distortion is taken into account in the upper right corner of the image. 579 

  580 

 Unlike the polynomial model, the homologous points density must be higher for the spline 581 

model. Therefore, this model is not advised for small distortions because the operator has 582 

to add more homologous points interactively than with the polynomial model. 583 

  584 

 Case 2: several local distortions in the image 585 

It can be noted first that spline model offers a greater degree of liberty than the polynomial 586 

one to fit local distortions. Second, it is certain the homologous control points belong to the 587 

estimated network - cf. eq. 9 and 10. Thirdly, the network can be locally distorted by 588 

adding locally several homologous points- without disturbing superimposition in the 589 

neighbouring zones -in opposition to the polynomial model. Fig. 14 and 15 present a 590 

typical case when using the same set of control points, the thin plate spline model is clearly 591 

better than the polynomial one to fit local distortions. The costs of these improvements are: 592 

 593 

1. the homologous points density -especially in the distortion zone- must be high to fit all 594 

the local distortions, 595 

2. the processing time is higher for the spline model (about 30 seconds) than for the 596 

polynomial one. The performance had been estimated on a Sun Sparc 4/75 Station. 597 

 598 

599 
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5.4 Results interpretation 600 

 601 

1- Network extraction step 602 

 603 

Interfiber network interative validation time and erroneous branches rates come up to 604 

biologists’ expectations. However, the worse rate for chicken muscle may be explained by the 605 

presence of different noises -ignored in our model hypothesis. These noises are the results of 606 

cuttings, chemical treatments and image acquisition steps: 607 

 Fiber sections and the interfiber network are not homogeneous in grayscale -resulting in 608 

coloration problems. Therefore, in the thresholding step, fiber sections and the interfiber 609 

network are not well detected. 610 

 During the image acquisition stage, the illumination was not homogeneous on all the field 611 

area. This problem comes from bad thresholding. 612 

 Fiber sections contain characterized freezing points which appear in white on the image -613 

the same luminance as the interfiber network. This case does not disturb the thresholding 614 

because, after this step, the algorithm eliminates components which are not connected to 615 

the interfiber network. But it disturbs the long distance closings. Indeed, the dynamic 616 

programming process keeps the lanes maximizing the accumulated luminance intensities. 617 

The freezing points appear in this image and then induce erroneous closing branches. 618 

 619 

620 
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2- Fiber section following step 621 

 622 

The matching process gives satisfactory results: 623 

 The low rates of erroneous homologous points prove that the robust regression method is 624 

an efficient filter after relaxation process, 625 

 The low rates of added homologous points prove that the used primitives -intersections - 626 

are significant. Indeed, these primitives permit the matching method to find many well-627 

distributed homologous points in the entire image. 628 

  629 

However, as in network extraction step, the results are less satisfactory in this step for some 630 

sets of chicken muscle compared to pork. The reason is that in some chicken cuttings to 631 

match, there is less interfiber information than in swine cuttings. Therefore, the algorithm 632 

finds fewer  intersections. For the relaxation process, the lower the number of intersections, 633 

the higher the probability of obtaining badly-matched intersections. 634 

Our method was initially developed for pork muscle fibers. Consequently, the results are 635 

better for this muscle than for that of chicken. But, our method has been judged robust enough 636 

to be used on several types of muscle, such as trout, beef, rabbit, mutton or turkey. 637 

 638 

5.5 Two examples of biological results obtained with this method 639 

 640 

This section introduces two concrete biological applications of our method, which underline 641 

two of its significant qualities. The first one, coming from animal genetic selection, shows that 642 

the degree of method automation allows work on a very large number of samples. The second 643 

one, coming from meat quality control, illustrates that it is possible with this method to 644 

analyze differents parameters on the fibers simultaneously. 645 
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 646 

5.5.1 Comparison analysis of selected lines of chicken 647 

 648 

Two lines of chickens sharing the same genetic origin were studied (Remignon 1993): one fast 649 

and one slow-growing. The aim of the study was the analysis of the influence of selection on 650 

the total number of fibers, myofiber types and cross-sectional areas of the different fiber types. 651 

 652 

The experimental sampling was designed as follows: 653 

Three muscles were studied: pectoralis major is a muscle mainly composed of glycolitic 654 

fibers; anterior latissimus dorsi is mainly composed of oxidative fibers and sartorius is a 655 

mixed muscle composed of oxidative and glycolitic fibers. Samples have been taken at 6 ages 656 

(0, 1, 3, 5, 11, 55 weeks), on twelve animals per age and per line. Three fields - 250 fibers - 657 

have been analysed per muscle, animal and age. The total number of analysed fibers was 658 

therefore around 324 000 fibers. 659 

 660 

Different results were obtained: 661 

 662 

1. There is a higher total number of fibers (+20%) for the fast-growing line in anterior 663 

latissimus dorsi. 664 

2. At hatching, cross-sectional areas of the different fiber types are the same. After one week, 665 

fibers are twice as large in the fast-growing line. Thereafter, during growth, the difference 666 

remains constant between the two lines. 667 

3. The myofiber type distribution was the same in the two selected lines. 668 

 669 



 32 

Therefore, it seems that genetic selection for the divergent growth rates modifies the 670 

quantitative but not qualitative properties. 671 

 672 

5.5.2 Meat quality control of pork muscles 673 

 674 

The aim of this study (Fernandez 1993) was to observe the fall in pH in slaughtered animal’s 675 

muscles, because this has a great influence on meat quality parameters like colour, water-676 

holding capacity and tenderness. The fall of pH is mainly determined by muscle glycogen 677 

content after slaughtering. Therefore, the precise objectives were the study of the effect of a 678 

24h-fasting and behavioral stress (meetings of pairs of animals) on glycogen variation. 679 

Two muscles were studied: longissimus dorsi (a muscle mainly glycolitic) and semispinalis (a 680 

muscle mainly oxidative). Measures were carried out on subsamples coming from the same 681 

samples at two levels: 682 

 a global level, using an enzymeatic method on muscle homogenates 683 

 a detailed level, using histology and our image analysis method on muscle fibers. 684 

The first result is a glycogen contents comparison between the two muscles using both 685 

methods - at global and detailed levels - In Fig. 16 are shown the contents of glycogen, 686 

measured in micromole per gram of fresh tissue, using the global level method. Fig. 17 shows 687 

the average luminance intensities measured on glycogen stainings using our detailed level 688 

method. The higher the luminance, the lower the rate of glycogen in the fiber. Comparing 689 

those results, a generally high level of concordance can be observed. 690 

 691 

The second one (Fernandez et al (1994)) is an analysis of both factors - fasting and stress 692 

effects - depending on the fiber types. These original results could only be obtained at the 693 

detailed level using our method. In Fig. 18 (resp. Fig.19), four groups of average luminance 694 
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intensities are represented, measured on glycogen stainings for longissimus dorsi muscle 695 

(resp. semispinalis muscle). The first column is the total number of fibers and the three others 696 

represent the three fiber types considered (R,  W and R). R (for red) represents oxidative 697 

fiber type. W (for white) represents glycolitic fiber type. Subtypes for red fibers indicate the 698 

contraction speediness of fibers ( for fast and  for slow). The area percentages for each type 699 

of fiber are also given under the figures for each group. 700 

ATP regeneration is faster in glycolitic fibers than in oxidative fibers. On the contrary, 701 

oxidative fibers are more efficient than glycolitic ones in the total amount of ATP made for 702 

one quantity of glycogen. For this reason, a red muscle like semispinalis, mainly composed of 703 

oxidative fibers, plays an important function in posture and movements under the position of 704 

rest, by contrast with glycolitic muscle like longissimus dorsi, which is mainly recruited 705 

during acute physical response. This is the reason why during fasting, semispinalis has to rely 706 

on its endogeneous substrates, glycogen, more than longissimus dorsi. This interpretation is 707 

consistent with the fact that in longissimus dorsi, there is also a trend toward an increase in 708 

glycogen luminance in red fibers (R and R). 709 

 710 

As for stress effect, results are different in both muscles. In longissimus dorsi, there is a 711 

significant effect for fasted animals but not for fed animals especially in fast twitch fibers (R 712 

and W), which are the most active fibers during physical activity associated with aggressive 713 

interaction between animals. In semispinalis, there is also a significant effect for fed animals 714 

in fast twitch fibers and no effect on fasted animals. 715 

 716 

To conclude with these results, we can say that the use of our method allows further 717 

examination at the fiber type level and not only at the global level. 718 

 719 
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6. Discussion 720 

 721 

6.1 Interfiber network extraction 722 

 In rare cases, the interfiber network result is completely erroneous. It happens for example 723 

when the background is not homogeneous. It is difficult to find a completely automatic 724 

algorithm able to generate optimal results for all types of muscles and cutting preparations. 725 

It was therefore decided to develop an interactive tool which contains classical and 726 

morphological operators -lowpass and highpass filters, opening and closing, tophat, global 727 

interactive thresholding ...- plus specific parts of the extraction step algorithm - thinning, 728 

short distance closing .... This toolbox is used in an interactive mode when the operator 729 

judges that it will be more rapid to extract the interfiber network using it rather than to 730 

correct the automatic result. 731 

 At present, in order to make restitution of the interfiber network thickness, dilatations are 732 

applied on the interfiber skeleton  and merged with the big structure image - an 733 

intermediate image stored after image thresholding in the automatic extraction step. 734 

Unfortunately, the result is not very accurate for two reasons. First, branch thickness is not 735 

homogeneous. Therefore homogeneous dilatation of the interfiber skeleton is not sufficient. 736 

Second, the gray level in the interfiber network is sometimes not homogeneous - due to 737 

freezing points for instance. Therefore, the big structure image is not useful because too 738 

many freezing points appear as belonging to the interfiber network. It would seem likely 739 

that a region growing algorithm -starting from the thin branches and stopping on gray level 740 

intensity jumps- will improve the restitution of interfiber network thickness. 741 

 742 

6.2 The choice of the transformation model 743 

 744 
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In the case of large-scale local distortions, the poor results of the polynomial model led us to 745 

test a more appropriate one. Two approaches were considered : 746 

 The first idea, inspired by the Adaptative Mapping algorithm -Flusser (1991)- was to 747 

subdivide the image into several regions -the subdivisions depending on local distortions-. 748 

In each region, the algorithm calculates a polynomial distortion model. After several tests, 749 

it was noted that the Adaptative Mapping algorithm generates on our class of images large 750 

scale discontinuities on region boundaries. Therefore, this method was rejected. 751 

 The second idea was the Bookstein (1989) algorithm based on spline functions. The very 752 

interesting property of this model is the preservation of spatial continuity between regions 753 

of local distortions. 754 

 755 

756 
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6.3 Fibers following 757 

 758 

At present, the shape criteria used in the relaxation algorithm concern only translations. 759 

Sometimes, we observe fiber distortions including rotations. To improve the results of our 760 

algorithm, a local polynomial model will be tested to match the intersections instead of the 761 

translation model. In the relaxation method, a label will be associated with a polynomial 762 

function -instead of a vector. It will be necessary to minimize another similarity criterion 763 

between two polynomial functions of the same degree. 764 

7. Conclusion 765 

 766 

At present, the RACINE software is successfully used in a routine fashion by several 767 

laboratories on two kinds of muscle, pork and chicken, and gives promising results for rabbit 768 

and turkey. Positive tests have been obtained for mutton, trout and beef. The software presents 769 

strong advantages: 770 

 firstly, it permits biologists to obtain easily in a semi-automatic way, several structural 771 

parameters characterizing each fiber section, 772 

 secondly, thanks to its matching reliability, the software gives for each fiber section precise 773 

information extracted from cuttings to match regarding fiber types and luminances, 774 

 thirdly, the main contribution of RACINE is that its semi-automatic aspect permits 775 

application of this software to several thousands of fiber sections, which allows reliable 776 

statistical analysis. 777 

 778 

We think also that the localization of the computed data delivered by our software would help 779 

biologists to analyze spatial distributions of fiber types, for example, small fibers in trout 780 

muscles, which appear after hatching. Therefore, it can be interesting to analyze the spatial 781 
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distribution of fibers according to their size distribution. The biological aim is to analyze the 782 

relationship between the interfiber network texture and meat quality, tenderness for instance. 783 

 784 

At present, for trout muscle, our software is used to follow small fiber growth after hatching. 785 

Indeed, a special semi-automatic tool has been developed based on our fiber following 786 

algorithm which permits scientists to observe the appearance or disappearance of fiber 787 

sections between two serial cuttings. 788 

 789 

Our work will now consist in improving some parts of the software (see 6.1 and 6.3). Our goal 790 

is also to generalize the matching process -using other primitives like high curvature points-, 791 

in order to use it on other image classes for other kinds of applications as for example the 792 

matching of satellite images. 793 
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Tables 

 Complete 

processing 

Interfiber 

network 

correction 

Following  

correction  

 

Interactive 

correction  

 

Chicken 

 

 

17 min. 41 sec. 

 

 

5 min. 09 sec. 

 (a) 

 

5 min. 58 sec. 

 (b) 

 

11 min 07 sec. 

 (a)+(b) 

 

Pork 

14 min. 

 

 

2 min. 39 sec. 

 

(a) 

1 min. 25 sec. 

 

(b1) 

2 min.24 sec. 

 

(b2) 

6 min 28 sec. 

 

(a)+(b1)+(b2) 

 

Table 1 : Time consumed per set 
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Erroneous or missing 

branches rate in 

extraction step 

Erroneous homologous points 

interactively removed rate 

in fiber following step 

Homologous points interactively 

added rate  

in fiber following step 

 

Chicken 

 

 

8,20 % 

 

1,91 % 

 

16,41 % 

 

Swine 

 

 

4,76 % 

 

0,12 % 

 

0,63 % 

 

2,45 % 

 

2,35 % 

 

Table 2 :Error rates. These results have been calculated comparing interactive correction of 

branches (resp. control points) to the branches (resp. points) number obtained after automatic 

interfiber network extraction (resp. homologous points extraction). 
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Illustrations 

 
 

Fig. 1: Contiguous cuttings realized perpendicularly to the fiber length axis 
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(1) 

 

 

Fig. 2: A serial cutting image set: the reference cutting (1), 

 a typing cutting (2), a parameter cutting (3).  

The size of each image is 512 x 512 pixels. 

 
 (3) 

 
 (2) 
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Fig. 3: Fiber following from the reference cutting to each cutting of the set
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Video camera Sony

B&W-C77CE

+

Microscope Axiolab-Zeiss

Image analysis board

Datacell

Control monitor

Trinitron Sony

SBus

Storage disk

1 to 4 Gbytes

Sun Sparc station

4/75-48Mbytes RAM

color monitor 19 inches

Operating system

Solaris 2.4

Graphic environment

X11R5/Motif

Software

Visilog (Datacell driver)

 
 

Fig. 4: Material platform required for using RACINE software. 
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Fig. 5: Chosen threshold T in automatic extraction step. 
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Fig. 6: Interfiber network (in white) in the initial gray level (left) image and in the binary 

(right) image (in black) after global automatic thresholding.  

The size of each image is 512 x 512 pixels. 
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Fig. 7: Long distance branch closing step 
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Fig. 8: Interfiber network final result - in black on the image - 

The original image is the reference cutting of Fig. 6. This result is superimposed on the 

original image to observe and correct the network (addition or omission). 
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Reference cutting Cutting to match

l1

l2

l3

i

 
 

Fig. 9:  The possible matchings l1, l2 and l3 for the intersection i - in the reference cutting - 

found in a 64x64 pixels window - in the cutting to match- centered on the coordinates of the 

intersection i. 
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Fig. 10 : Similarity criterion between intersections. 
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Fig. 11: Relaxation processing convergence toward lopt.  

The homologous pair of points corresponding to lopt is selected if the matching probability 

score is superior to T (T=0.8 in our algorithm). 
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Fig. 12: The problem of polynomial transformation robustness: the interfiber network can be 

badly distorted by only a pair of erroneous homologous points 

(here control pair of points number 29) 
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Fig. 13: Interfiber network superimposition on a cutting to match with a polynomial model 



 57 

 

 
 

Fig. 14: Interfiber network superimposition on a cutting to match with a thin-plate spline 

model 
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Fig. 15: Polynomial superimposition with the same control points set as in Fig. 14. 

The result is less accurate than with thin-plate splines 
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Fig. 16: Enzymeatic determination of glycogen contents 

 in Longissimus Dorsi (LD) and Semispinalis (SS) 

 - given in micromole per gram of fresh tissue - 
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Fig. 17: Average luminance intensities measured on glycogen stainings  

in Longissimus Dorsi - LD - and Semispinalis - SS - 
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Fig. 18: Average luminance intensities measured on glycogen stainings in Longissimus Dorsi 

- LD - for the three types of fibers: (1) R, (2) W, (3) R. The percentages of area are 14% 

for  R, 77% for W and 9% for R 
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Fig. 19: Average luminance intensities measured on glycogen stainings in Semispinalis - SS - 

for the three types of fibers: (1) R, (2) W, (3) R. The percentages of area are 19% for  R, 

42% for W and 39% for R 

 


