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Abstract

In previous studies, we have extended the conceptual

graph model, which is a knowledge representation model

belonging to the family of semantic networks, to be able to

represent fuzzy values. The basic conceptual graph model

has a logical interpretation in first-order logic. In this pa-

per, we focus on the logical interpretation of the conceptual

graph model extended to fuzzy values: we use logical im-

plications stemming from fuzzy logic, so as to extend the

logical interpretation of the model to fuzzy values and to

comparisons between fuzzy conceptual graphs.

1. Introduction

Our research takes place in the framework of a national

project that aims at building a tool for the analysis of mi-

crobial risks in food products. In this scope, a relational

database has been built in order to store information from

microbiological publications. It is completed by a concep-

tual graph knowledge base [1], which is used to store infor-

mation that do not conform to the structure of the relational

database (we call them weakly structured data in the follow-

ing). The data stored in both bases may be imprecise, then

represented by possibility distributions. Moreover, they are

consulted using queries that express the user’s preference

levels, by means of fuzzy sets [2]. One of the reasons of

this choice is to ensure compatibility and uniformity be-

tween the representations of both imprecise data and flex-

ible queries.

Therefore, we have proposed a way of representing fuzzy

values, and introduced fuzzy mechanisms in both bases. In

particular, we have extended the conceptual graph model to

take into account fuzzy values [3, 4]. In this paper, we focus

on a particular aspect of this extended model: its logical in-

terpretation, which is one of the strong points of the model.

The basic conceptual graph model has a logical interpreta-

tion in first-order logic. Our purpose is to extend this logical

interpretation to take into account fuzzy values.

In Section 2, we briefly present the classic conceptual

graph model. In Section 3, we recall our choices for repre-

senting fuzzy values in the conceptual graph model and for

comparing fuzzy conceptual graphs. In Section 4, which

involves the main contribution of the paper, we propose

to extend the logical interpretation of the conceptual graph

model to take into account fuzzy values and comparisons

between fuzzy conceptual graphs.

2. The classic conceptual graph model

The weakly structured data of the application are repre-

sented using the conceptual graph model, which is a knowl-

edge representation model based on labelled graphs, intro-

duced by Sowa [1]. In the following, and more generally in

our work, we use the formalization presented in [5].

In the conceptual graph model, knowledge is divided into

two parts: a terminological part, called the support, and

an assertional part represented by the conceptual graphs,

which are labelled graphs. In this section, we briefly and

intuitively present the conceptual graph model through the

example of our application.

2.1. The support

The support provides the ground vocabulary used to

build the knowledge base: the types of concepts used, the

instances of these types, and the types of relations linking

the concepts. It also describes the hierarchical organization

of these elements.

The set of concept types is partially ordered by the “a

kind of” relation. Universal and Absurd are respectively its



greatest and lowest elements. Figure 1 presents a part of

the set of concept types used in the application. The in-

formation stored in the application describes the behaviour

of pathogenic germs (increase, decrease or stability of the

concentration of pathogens such as Listeria for instance) in

food products, during food transformation processes (heat-

ing, cutting, storage, mixing, etc.).

Datum

Nisin

Bacteriocin

Listeria Scott A

Listeria

Pathogen Germ

Germ

Reduction Stability

Expe Result Experiment

Action

CFU/ml U/ml

Conc.M.U.

Degree

Temp. M.U.

Hour

Time M.U.

Measure Unit

Universal

Interaction

Absurd

E.Coli

Whole milk

Half

skim

milk

Milk Meat

Substrate Temperature

Duration
Concentration

Experimental datum

Skim

milk

Poultry

Beef Pork

Pasteurized

milk Pasteurized

whole milk

Figure 1. A part of the concept type set for the

microbial application

The concepts can be linked by means of relations. The

set of relation types is also partially ordered by the “a kind

of” relation. Each relation type is characterized by an arity,

and a signature which specifies the maximal concept types

that a given relation can link together. The set of relation

types we use contains relation types such as Agt (Agent),

which is a binary relation having (Action, Germ) as a sig-

nature. It means that “an action has for agent a germ” (for

example, an interaction can have a bacterium as an agent).

The third set of the support is the set of individual mark-

ers. Each individual marker represents an instance of a con-

cept. For example, Celsius degree can be an instance of

Degree. The generic marker (noted �) is a particular marker

referring to an unspecified instance of a concept.

2.2. The conceptual graphs

The conceptual graphs, built upon the support, express

the factual knowledge. They are composed of two kinds

of vertices: (i) the concept vertices (noted in rectangles or

in brackets), which represent the entities, attributes, states,

events; (ii) the relation vertices (noted in ovals or in paren-

theses), which express the nature of the relations between

concepts.

The label of a concept vertex is a pair defined by the type

of the concept and a marker (individual or generic) of this

type. The label of a relation vertex is its relation type.

For example, the conceptual graph given in Figure 2 is a

representation of the information: “the experiment E1 car-

ries out an interaction I1 between Nisin and Listeria Scott

A in full milk and the result is reduction”.

1 2
Experiment : E1 Obj Interaction : I1

1

2
Agt Nisin : *

1

2
ObjListeria Scott A:*

1 2
Res Reduction : *

1

2
Char Skim milk : *

Figure 2. An example of a conceptual graph

2.3. Specialization relation, projection operation

The set of conceptual graphs is partially ordered by the

specialization relation (noted �), which can be computed

by the projection operation (a kind of graph morphism al-

lowing a restriction of the vertex labels authorized in the

support): G0 � G if and only if there is a projection of G

into G0. An example is given in Figure 3.

Since it allows the search for conceptual graphs which

are specializations of (which contain more precise informa-

tion than) another conceptual graph, the projection opera-

tion is widely used for the querying of conceptual graph

knowledge bases. We then call a “query graph” a con-

ceptual graph that we try to project into each graph of the

knowledge base, called “factual graphs”.

1 2
Experiment  : E1 Obj Interaction  : I1

1

2
Agt Nisin : *

1

2
ObjListeria Scott A:*

1 2
Res Reduction : *

Interaction  : *
1 2

Agt Bacteriocin : *
12

ObjPathogen Germ : *G

G ’

Figure 3. There is a projection from G into

G

0, G0 � G (G0 is a specialization of G). The

meaning of the arrows is: “can be projected

into”.

2.4. Logical interpretation of the classic conceptual
graph model

In the classic conceptual graph model, the support, the

conceptual graphs, and the specialization relation, have a

logical interpretation in first-order logic.

The support of the conceptual graph model has a logical

interpretation, represented by several first-order logic for-

mulas. In particular, the kind of relation between types is



represented by a logical implication. For instance, any indi-

vidual marker of type “Skim milk” is also a kind of “Milk”.

This is translated by the following formula:

8t

1

; t

2

2 T

C

; suh that t

2

< t

1

: 8x t

2

(x) ! t

1

(x):

Each conceptual graph also has a logical interpretation

which is a first-order logic formula. In this formula, each

generic marker is associated with a distinct variable, each

individual marker with a constant, each concept type with

a unary predicate applied to its marker, each relation type

with a predicate applied to the markers of the concept ver-

tices it links. The formula associated with the conceptual

graph is then the existential closure of the conjunction of all

atoms. For instance, the logical interpretation of the con-

ceptual graph represented in Figure 2, is the following :

9x; y; z; t ListeriaSottA(x) ^ Nisin(y) ^

Experiment(E1) ^ Interation(I1) ^ Redution(z) ^

SkimMilk(t)^Obj(I1; x)^Agt(I1; y)^Obj(E1; I1)^

Res(I1; z) ^ Char(I1; t).

The specialization relation, and thus the projection oper-

ation, between two graphs, is equivalent to the logical im-

plication between their corresponding formulas, provided

that they are in normal form [5]: each individual marker ap-

pears at most once in the same graph. This is due to the fact

that, given two conceptual graphs G and H , H more spe-

cific than G means that, in the formula associated with G,

it is possible to find a substitution [6] of each term or atom

by a more specific one (with the meaning of the logical im-

plication), that appears in the formula associated with H .

For example, in Figure 3, Listeria Scott A is a substitution

of Pathogen Germ, I1 is a substitution of *, etc.

3. The conceptual graph model extended to

fuzzy values

In our previous works [3, 4], we have introduced fuzzy

values in the conceptual graph model. We briefly present

them in Section 3.1. Then, we have proposed two differ-

ent approaches to compare conceptual graphs that possibly

include fuzzy values. The first approach, presented in Sec-

tion 3.2, is an all-or-nothing process based on the notion of

inclusion. The second approach, presented in Section 3.3,

is a more flexible process based on the notion of graded

matching.

3.1. Fuzzy markers, fuzzy types

We have introduced the notion of fuzzy type, which is a

fuzzy set defined on the concept type set of the support, and

the notion of fuzzy marker, which is a fuzzy set defined on

the set of markers of the support.

The conceptual graph represented in Figure 4 includes a

concept with a fuzzy marker, of type NumericalValue.

NumericalValue : 1
HoldingTemperature : * NumVal

2

340

1

36 38 41

Unit Degree : *

1

2

Figure 4. An example of a concept with a fuzzy

marker

Figure 5 gives an example of a concept with a fuzzy type:

its concept type is a fuzzy set defined on the concept type

set of the support, and its marker is generic.

:     *
0

1

Whole milk Half skim milk

0,5

Figure 5. An example of a concept with a fuzzy

type

3.2. Extended specialization relation

We then have redefined the specialization relation in or-

der to take into account the fuzzy types and fuzzy markers

introduced. The notion of specialization for fuzzy sets is

based on the inclusion relation. Given two fuzzy sets A and

B, A is a specialization of B if and only if A is included in

B: the membership function of A is under the membership

function of B on the whole domain.

An example of specialization involving fuzzy markers is

given in Figure 6.

HoldingTemperature : *Cond NumVal
1 2 1 2

Experiment : E1

NumericalValue : 
1

Temperature : * NumVal
2

35
0

1

50 65 80

Unit

Degree : *

1

2

NumericalValue : 

450

1

55 60 70

UnitDegree : *

1
2

Figure 6. An example of specialization involv

ing fuzzy markers

3.3. A more flexible comparison operation charac
terized by matching degrees

We finally have relaxed the all-or-nothing projec-

tion operation by defining a more flexible comparison



operation characterized by two compatibility degrees:

the possibility degree of matching and the necessity

degree of matching, that we use here to compare two

graphs. Given two fuzzy sets A and B defined on a

domain X , with membership functions �
A

and �

B

, B is

compatible with A with the possibility degree �(A ;B)

[7] and the necessity degree N(A ;B) [8] given by:

�(A ;B) = sup

x2X

min(�

A

(x); �

B

(x)):

N(A ;B) = 1� sup

x2X

min(1� �

A

(x); �

B

(x))

= inf

x2X

max(1� �

A

(x); �

B

(x))):

An example is given in Figure 7.

30 35 40 47
0

1

37 42 43 48
0

1

m’ is compatible with m with the possibility degree Π(m ; m’) and the necessity 

degree N(m ; m’) obtained as follows :

m m’

m m’

Π(m ; m’)

complement of m m’
N(m ; m’)

Figure 7. Flexible comparison of two markers

m and m’

The min operator is used for the conjunction [9] of the

compatibility degrees of all the elements of the graphs.

4. Logical interpretation of the conceptual

graph model extended to fuzzy values

In this part, we present the impact of the introduction

of fuzzy values, on the logical interpretation of the model.

Two issues have to be considered: (i) how to represent fuzzy

markers and fuzzy types in the logical formula associated

with a conceptual graph ? (ii) can the extended specializa-

tion relation and the flexible comparison operation still be

expressed as logical implications ?

4.1. Logical interpretation of the fuzzy conceptual
graphs

In the conceptual graph model extended to fuzzy values,

we have to take into account the logical interpretation of two

new cases: fuzzy markers and fuzzy types. Compared to

the classic interpretation, predicates associated with fuzzy

types, and constants associated with fuzzy markers, now

need to be extended.

Definition 1 The logical interpretation of a fuzzy type is

composed of two parts:

� a unary predicate P in first-order logic;

� an interpretation of P as a fuzzy set defined on the

predicates associated with the types of the support.

For instance, the fuzzy type of Figure 5 is asso-

ciated with the predicate UnskimmedMilk. The

conceptual graph of Figure 5, which is reduced to a

single concept, has the following logical interpretation:

8

<

:

9x UnskimmedMilk(x)

UnskimmedMilk =

1=WholeMilk

+0:5=HalfSkimMilk

(1)

Remark 1 A classic concept type t can be considered as a

particular case of a fuzzy type: its associated predicate is

the fuzzy set defined on one element, the predicate t (with

the degree 1).

Definition 2 The logical interpretation of a fuzzy marker is

composed of two parts:

� a constant ;

� an interpretation of  as a fuzzy set defined on the con-

stants associated with the markers of the support.

For instance, the fuzzy marker of Figure 4 is associated

with the constant HumanBodyV alue. The conceptual

graph of Figure 4 has the following logical interpretation:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

9y; z HoldingTemperature(y) ^

NumerialV alue(HumanBodyV alue) ^Degree(z)

^ NumV al(y;HumanBodyV alue) ^ Unit(y; z)

HumanBodyV alue =

R

[�1;34℄

0=x +

R

[34;36℄

(0:5x� 17)=x +

R

[36;38℄

1=x + (2)

R

[38;40℄

(�0:33x+ 13:67)=x +

R

[40;1℄

0=x

The notations used in (1) and (2) indicate the degree as-

sociated with each element in a fuzzy set, respectively for a

discrete and a continuous domain.

Remark 2 A classic individual marker m can be consid-

ered as a particular case of a fuzzy marker: its associated

constant is the fuzzy set that associates the value 1 with the

constant m and 0 elsewhere.

In the following, we focus on the logical interpretation of

the two approaches we have proposed to compare concep-

tual graphs that possibly include fuzzy values. As we will



see in Sections 4.2 and 4.3 respectively, the first approach

(an all-or-nothing process based on the notion of inclusion)

can be handled using one implication degree, whereas the

second approach (a more flexible process based on the no-

tion of graded matching) can be handled using two other

implication degrees.

4.2. Logical interpretation of the extended special
ization relation

We have to show that the extended specialization rela-

tion that we have introduced for fuzzy values has a logical

foundation, that is, given two conceptual graphs G and H ,

H more specific than G still means that, in the formula as-

sociated with G, it is possible to find a substitution of each

term or atom by a more specific one (with the meaning of

the logical implication [10]), that appears in the formula as-

sociated with H .

In order to decide if a predicate in the formula associated

with G, called Prediate1, may be substituted by a predi-

cate in the formula associated with H , called Prediate2,

we must know if Prediate2 implies Prediate1 with the

meaning of a logical implication. In the same way, in order

to determine if a given marker m2 in H is more specific

than a marker m1 in G, we must know if m2 implies m1

with the meaning of a logical implication.

In this part, we are going to explain why this extended

specialization relation corresponds to Rescher-Gaines’s im-

plication, which extends the classic implication.

In our definition of the specialization relation extended

to fuzzy values, Prediate2 is said to be more specific

than Prediate1, if and only if Prediate2 is included in

Prediate1, with the meaning of the fuzzy sets inclusion

relation. Let �
1

and �
2

be the respective membership func-

tions of Prediate1 and Prediate2. We must examine

if �
2

is under �
1

in every point of the domain. For a given

point x of the domain, the truth value of “�
2

is under �
1

”, is

precisely the result given by Rescher-Gaines’s implication,

which takes the value 1 if �
2

(x) is smaller than �
1

(x), and 0

otherwise. On the whole domain, “Prediate2 is included

in Prediate1” is true if and only if �
2

is under �
1

in ev-

ery point, that is, if Rescher-Gaines’s implication takes the

value 1 in every point. The infimum of Rescher-Gaines’s

implication on the whole domain (or Rescher-Gaines’s im-

plication degree), must be 1.

Deciding if Prediate2 is more specific than

Prediate1, in the extended specialization relation

we have defined, is equivalent to evaluating Rescher-

Gaines’s implication degree between Prediate2 and

Prediate1, which is equal to 0 or 1. The same reasoning

also applies to markers.

We can now redefine the substitution mechanism in order

to extend it to the predicates and constants that are respec-

tively associated with fuzzy types and fuzzy markers.

Definition 3 A predicate P2 (resp. a constant 2) is a pos-

sible substitution of a predicate P1 (resp. a constant 1) if

and only if the interpretation of P2 (resp. 2) as a fuzzy set

implies the interpretation of P1 (resp. 1) as a fuzzy set,

with the meaning of Rescher-Gaines’s implication.

For example, the conceptual graphs of Fig-

ure 6 have the following logical interpretations:
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

9y; z Temperature(y) ^

NumerialV alue(RequestedV alue) ^ Degree(z)

^ NumV al(y;RequestedV alue) ^ Unit(y; z)

RequestedV alue =

R

[�1;35℄

0=x +

R

[35;50℄

(0:07x� 2:33)=x +

R

[50;65℄

1=x +

R

[65;80℄

(�0:07x+ 5:33)=x +

R

[80;1℄

0=x

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

9t; u Experiment(E1) ^ HoldingTemperature(t)

^ NumerialV alue(ObservedV alue) ^ Degree(u)

^ Cond(E1; t) ^ NumV al(t; ObservedV alue) ^

Unit(t; u)

ObservedV alue =

R

[�1;45℄

0=x +

R

[45;55℄

(0:1x� 4:5)=x +

R

[55;60℄

1=x +

R

[60;70℄

(�0:1x+ 7)=x +

R

[70;1℄

0=x

The substitutions corresponding to the projection of

the first graph into the second one are the following:

f(Temperature, HoldingTemperature), (y, t), (Numeri-

calValue, NumericalValue), (RequestedValue, Observed-

Value), (Degree, Degree), (z, u), (NumVal, NumVal),

(Unit, Unit)g. RequestedV alue can be substituted by

ObservedV alue because the fuzzy set interpretation of

ObservedV alue implies the fuzzy set interpretation of

RequestedV alue with the meaning of Rescher-Gaines’s

implication.

4.3. Logical interpretation of the flexible compari
son operation characterized by matching de
grees

In order to relax the all-or-nothing specialization rela-

tion, we use the possibility degree of matching and the ne-

cessity degree of matching. In this part, we aim at showing

that the comparison between two graphs using the necessity

degree of matching is equivalent to Kleene-Dienes’s impli-

cation. The one using the possibility degree of matching

is related to Mamdani’s implication, which does not extend

the classic implication.

For a given point x of the domain, Kleene-Dienes’s truth

value of “Prediate2 implies Prediate1”, is defined as

max(1� �

1

(x); �

2

(x)). On the whole domain, the degree



of “Prediate2 implies Prediate1” according to Kleene-

Dienes’s implication, is the infimum of the values obtained

for every point of the domain using Kleene-Dienes’s impli-

cation. This result is exactly the necessity degree of match-

ing between Prediate1 and Prediate2. The same rea-

soning also applies to markers.

Definition 4 A predicate P2 (resp. a constant 2) is said

to be a possible substitution of a predicate P1 (resp. a con-

stant 1) with the necessity degree d = N(P1 ;P2) (resp.

N(1 ; 2)) if and only if Kleene-Dienes’s implication de-

gree of P2! P1 (resp. 2! 1) is equal to d.

Mamdani’s truth value of “Prediate2 implies

Prediate1”, is defined as min(�

1

(x); �

2

(x)), for any

point x of the domain. If we take the supremum of the val-

ues obtained on the whole domain (instead of the infimum

chosen in the previous cases), which is an optimistic choice

for the aggregation of the results on the whole domain,

we obtain the possibility degree of matching between

Prediate1 and Prediate2. The same reasoning also

applies to markers.

Remark 3 The possibility degree has two limits: (i) it is

not based on a logical implication, as Mamdani’s implica-

tion does not extend the classic implication; (ii) it does not

consider the infimum value obtained on the domain, which

corresponds to a conjunctive aggregation, as used in im-

plication degrees, but the supremum. On the contrary, the

necessity degree is an implication degree and fits into the ex-

tension of the logical interpretation of the conceptual graph

model in a natural way.

Definition 5 A predicate P2 (resp. a constant 2) is said

to be a possible substitution of a predicate P1 (resp. a con-

stant 1) with the possibility degree d = �(P1 ;P2) (resp.

�(1 ; 2)) if and only if the supremum of Mandani’s impli-

cation of P2! P1 (resp. 2! 1) is equal to d.

For example, let us consider the first conceptual graph

of Figure 6, noted G, and the conceptual graph of Fig-

ure 4, noted H . The possible substitutions from G to H

and their respective necessity degrees are the following:

f(Temperature, HoldingTemperature, 1), (y, y, 1), (Numer-

icalValue, NumericalValue, 1), (RequestedValue, Human-

BodyValue, 0.12), (Degree, Degree, 1), (z, z, 1), (NumVal,

NumVal, 1), (Unit, Unit, 1)g. Their possibility degrees are

the following: f(Temperature, HoldingTemperature, 1), (y,

y, 1), (NumericalValue, NumericalValue, 1), (Requested-

Value, HumanBodyValue, 0.33), (Degree, Degree, 1), (z,

z, 1), (NumVal, NumVal, 1), (Unit, Unit, 1)g.

5. Conclusion

In this paper, we have focused on the logical interpre-

tation of the conceptual graph model extended to fuzzy

values, that we have developped in previous studies. We

have proposed a way of integrating fuzzy types and fuzzy

markers in the logical formula associated with a graph.

Then, we have shown that the specialization relation ex-

tended to fuzzy values that we have introduced corresponds

to Rescher-Gaines’s implication, which extends the classic

implication. Finally, we have shown that the comparison

between two graphs using the necessity degree of match-

ing is based on Kleene-Dienes’s implication. The one using

the possibility degree of matching is related to Mamdani’s

implication.
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