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Highlights 28 

Vis-NIRS and MIRS coupled with PLS can detect the cultivar composition of mixed 29 

purees. 30 

MIRS evaluated with a high confidence the quality characteristics of formulated 31 

purees by PLS. 32 

Spectra of individual puree cultivars can be used to control the quality of formulated 33 

apple purees. 34 

MIRS coupled with MCR-ALS can reconstruct the puree mixture using the 35 

concentration profiles. 36 

37 
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 38 

Abstract 39 

Vis-NIRS, MIRS, and a combination of both coupled with PLS and machine learning 40 

were applied to i) trace the composed proportions of different apple varieties in 41 

formulated purees and ii) predict the quality characteristics of formulated purees from 42 

spectral information of initial puree cultivars. The PLS models could estimate 43 

proportions of each apple cultivar in puree mixtures using MIR spectra 44 

(RMSEP<8.1%, RPD> 3.6), especially for Granny Smith (RMSEP=2.7%, RPD=11.4). 45 

The concentration profiles from multivariate curve resolution-alternative least squares 46 

(MCR-ALS) made possible to reconstruct spectra of formulated purees. MIRS 47 

technique was evidenced to predict the final puree quality, such as viscosity 48 

(RPD>4.0), contents of soluble solids (RPD=4.1), malic acid (RPD=4.7) and glucose 49 

(RPD=4.3), based only on the spectral data of composed puree cultivars. Infrared 50 

technique should be a powerful tool for puree traceability, even for multicriteria 51 

optimization of final products from the characteristics of composed puree cultivars 52 

before formulation.  53 

 54 

Key word: Malus domestica Borkh., Vis-NIR, MIR, machine learning, MCR-ALS 55 

 56 

57 
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 58 

1. Introduction 59 

Apple puree is an ideal source of healthy constituents such as polyphenols and fibers 60 

(Le Bourvellec et al., 2011) and antioxidants such as polyphenols with their major 61 

polymeric form, procyanidins (Loncaric, Dugalic, Mihaljevic, Jakobek, & Pilizota, 62 

2014; Oszmiański, Wolniak, Wojdyło, & Wawer, 2008; Rembiałkowska, Hallmann, & 63 

Rusaczonek, 2007). It can be used as an intermediate for smoothies, fruit sauce, pie 64 

fillings and fruit-based baby food (Opatová, Voldřich, Dobiáš, & Čurda, 1992). The 65 

industrial production of apple purees consists typically in cooking at 93 - 98℃ for 66 

about 4 - 5 min, refining to remove seeds and skin pieces and then pasteurization at 67 

90℃ around 20 min to obtain a shelf life of 6 months at room temperature 68 

(Oszmiański, Wolniak, Wojdyło, & Wawer, 2008). Puree quality characteristics vary 69 

with fruit genetics (Rembiałkowska, Hallmann, & Rusaczonek, 2007), storage 70 

(Loncaric, Dugalic, Mihaljevic, Jakobek, & Pilizota, 2014), cooking parameters 71 

(Picouet, Landl, Abadias, Castellari, & Viñas, 2009), grinding intensity (Espinosa et 72 

al., 2011) and refining (Lan, Jaillais, Leca, Renard, & Bureau, 2020). In order to reach 73 

an apple puree with anticipated and constant taste and texture, a mixture of 74 

proportions of different apple varieties is generally done, presenting also the most 75 

economic and efficient strategies for manufacturers (O'sullivan, 2016). Most papers 76 

dealing with the apple processing have not considered this practice insofar as they 77 

have been focused only on one apple cultivar (Espinosa et al., 2011; Picouet, Landl, 78 

Abadias, Castellari, & Viñas, 2009; Keenan, Brunton, Butler, Wouters, & Gormley, 79 
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2011). Thus, developing rapid and reliable approaches to determine the puree 80 

formulation, including fruit cultivars and the proportions of each one, could be highly 81 

beneficial for fruit processed products and traceability control.  82 

Infrared spectroscopy (visible-near and mid infrared) known as a rapid, relatively 83 

cheap, easy-to-use, non-destructive and automatable technique, has been applied for 84 

the quality analysis of apple based-products, such as juices (Kelly & Downey, 2005; 85 

León, Kelly, & Downey, 2005; Reid, Woodcock, O’Donnell, Kelly, & Downey, 2005) 86 

and wine (Peng, Ge, Cui, & Zhao, 2016). For fruit purees, the studies have mainly 87 

aimed at detecting adulterations in mixed purees of different fruit species (Contal, 88 

León, & Downey, 2002; Defernez, Kemsley, & Wilson, 1995; Kemsley, Holland, 89 

Defernez, & Wilson, 1996). Particularly, the MIR technique combined with partial 90 

least squares discrimination analysis (PLS-DA) detects the presence of apple starting 91 

at 20% in apple-raspberry mixed purees (Kemsley, Holland, Defernez, & Wilson, 92 

1996). Similar detectable limits are obtained using Vis-NIRS coupled with a principal 93 

component analysis (PCA) and a linear discriminant analysis (LDA) in 94 

apple-strawberry mixed purees (Contal, León, & Downey, 2002). The infrared 95 

spectroscopy (Vis-NIR and MIR) appears as a potential tool to access the composition 96 

of purees prepared with several fruit species. However, so far, there has been no 97 

attempt to use such approaches for more advanced works on purees of apples only, 98 

but resulting from various proportions of different cultivars. 99 

Further, for fruit processors, the ever-increasing variability of raw fruits may mean 100 

that their empirical knowhow may not be sufficient to produce expected and constant 101 



6 

 

final purees. The challenge is therefore to provide specific guidance for formulation of 102 

final purees based on information of individual batches of single cultivar puree. 103 

Multivariate curve resolution-alternative least square (MCR-ALS) has been widely 104 

used to simultaneously elucidate the pure spectra of different species present in 105 

processed products and their concentration profiles (de Juan & Tauler, 2006), such as 106 

edible oils from different vegetable sources (Le Dréau, Dupuy, Artaud, Ollivier, & 107 

Kister, 2009) and fruit juices with various organic acids (Silva, Lourenço, & de 108 

Araujo, 2018). The interest of this approach is to reconstruct the spectra of final 109 

processed products (in our case, formulated purees) according to the relative spectra 110 

of individual components (single cultivar purees) by MCR-ALS. If so, the predictive 111 

models of processed puree quality traits (physical and chemical) using the 112 

reconstructed spectra dataset could open the possibility to provide a multicriteria 113 

optimization of puree formulation based on the prior information of single cultivar 114 

purees. 115 

Partial least squares (PLS), a typical linear algorithm, has been used to successfully 116 

determine the global quality parameters of apple purees using NIRS information, such 117 

as titratable acidity, dry matter and soluble solids (Lan, Jaillais, Leca, Renard, & 118 

Bureau, 2020). However, the overlapping of absorption bands linked to non-linear 119 

rheological variations gave poor prediction of puree's texture by PLS regression. 120 

Machine learning approaches, such as random forest (RF) and Cubist, have been 121 

specially constructed to address large and complex nonlinear systems. Indeed, RF 122 

algorithm allows a better detection of adulteration in formulated oils than PLS (de 123 
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Santana, Borges Neto, & Poppi, 2019). Cubist regression working as decision tree 124 

models, gives a higher prediction accuracy than RF and PLS regression in palm-based 125 

cooking oil (Goh et al., 2019). 126 

Accordingly, Vis-NIRS, MIRS and the combination of both (CB) infrared spectra 127 

coupled with machine learning (RF and Cubist) and PLS regressions were applied in 128 

our work on apples to: i) assess the possibility to detect the proportions of specific 129 

cultivar purees in the formulated purees and evaluate the limits of the detection; ii) 130 

build models to evaluate the quality parameters of formulated purees obtained from 131 

different proportions of single cultivar purees; and then iii) use information of single 132 

cultivar purees to reconstruct spectra of formulated purees by MCR-ALS and 133 

investigate the possibility to develop regression models to guidance the quality of 134 

final purees. 135 

2. Material and methods 136 

2.1 Apple purees 137 

2.1.1 Purees processing 138 

Apples of four varieties: ‘Golden Delicious’(GD), ‘Granny Smith’(GS), 139 

‘Braeburn’(BR) and ‘Royal Gala’(GA) (all abbreviations are shown in Table 1) were 140 

harvested at a commercial maturity from La Pugère experimental orchard (Mallemort, 141 

Bouches du Rhône, France) in 2019, and stored for up to 2 months at 4 °C and around 142 

90% relative humidity to ensure starch regression. After sorting and washing, on three 143 

consecutive weeks, a batch of each apple cultivar (2 kg) was processed into purees in 144 

a multi-functional processing system (Roboqbo, Qb8-3, Bentivoglio, Italy) following 145 
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a Hot Break recipe: cooked at 95°C for 5 min at a 1500 rpm grinding speed, then 146 

cooled down to 65°C while maintaining the grinding speed. Finally, processed purees 147 

were conditioned in two hermetically sealed cans: one was cooled in a cold room 148 

(4°C) before formulation, while the other was stored at -20°C for biochemical 149 

measurement of individual sugars (fructose, sucrose and glucose) and malic acid.  150 

2.1.2 Puree formulations 151 

After processing the single-cultivar purees, a total of 6 experimental groups (named A 152 

to E) were prepared, each, with two apple cultivars (Figure 1). Each group (A-F) 153 

included 9 samples with different formulated proportions of weight, was divided into 154 

two subsets: the first including 6 proportions (10%-90%, 25%-75%, 50%-50%, 155 

75%-25%, 90%-10%, 95%-5%) for the modeling set, while the second with 3 156 

proportions (80%-20%, 33%-67%, 14%-86%) for the external prediction set. Finally, 157 

spectral measurements (Vis-NIR and MIR), chemical (soluble solids, titratable acidity, 158 

pH, dry matter) and physical (color and rheological tests) characterizations were 159 

performed on each sample (single and formulated purees). 160 

2.2 Determination of quality traits 161 

2.2.1 Physical characterizations 162 

The puree color was determined three times through a dedicated glass cuvette using a 163 

CR-400 chromameter (Minolta, Osaka, Japan) and expressed in the CIE 1976 L*a*b* 164 

color space (illuminant D65, 0° view angle, illumination area diameter 8 mm). The 165 

puree rheological measurements, as flow curves, were carried out using a Physica 166 

MCR-301 controlled stress rheometer (Anton Paar, Graz, Austria) and a 6-vane 167 



9 

 

geometry (FL100/6W) with a gap of 3.46 mm, at 22.5°C. The flow curves were 168 

performed after a pre-shearing period of 1 minute at a shear rate of 50 s-1, followed by 169 

5 minutes at rest. The viscosity was then measured at a controlled shear rate range of 170 

[10; 250] s-1 on a logarithmic ramp. The values of viscosity at 50 s-1 and 100 s-1 (η50 171 

and η100 respectively) were kept as final indicators of the puree texture linked to 172 

sensory characteristics during consumption (Chen & Engelen, 2012). 173 

2.2.2 Biochemical analyses 174 

Soluble solids content (SSC) was determined with a digital refractometer (PR-101 175 

ATAGO, Norfolk, VA, USA) and expressed in °Brix at 20°C. Titratable acidity (TA) 176 

was determined by titration up to pH 8.1 with 0.1 mol/L NaOH and expressed in 177 

mmol H+ kg−1 of fresh weight (FW) using an autotitrator (Methrom, Herisau, 178 

Switzerland). Individual sugars and malic acid were quantified using colorimetric 179 

enzymatic kits (glucose: No. 10716251035; fructose: No. 10139106035, sucrose: No. 180 

10716260035, malic acid: No. 10139068035) according to the manufacturer’s 181 

instructions (R-biopharm, Darmstadt, Germany), respectively. The content of glucose, 182 

fructose, sucrose and malic acid were expressed in g kg−1 FW. These measurements 183 

were performed with a SAFAS flx-Xenius XM spectrofluorimeter (SAFAS, Monaco) 184 

at 570 nm for the sugars and 450 nm for malic acid. The dry matter content (DMC) 185 

was estimated from the weight of freeze-dried samples upon reaching a constant 186 

weight (freeze-drier, 5 days). The individual sugars (fructose, glucose, sucrose) and 187 

malic acid contents of formulated puree samples were calculated based on the 188 

measured values of processed single cultivar purees. 189 
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2.3 Spectrum acquisition  190 

The Vis-NIR spectral data of purees was acquired with a multi-purpose analyzer 191 

spectrometer (Bruker Optics®, Wissembourg, France) at 23°C, which provides 192 

diffuse reflectance measurements with a spectral resolution of 8 cm-1 from 12500 to 193 

4000 cm-1 (wavelength from 400 to 2500 nm). For each spectrum, 32 scans were 194 

recorded and averaged. The spectral acquisition and instrument adjustments were 195 

controlled by OPUS software Version 5.0 (Bruker Optics®). Puree were transferred 196 

into 10 mL glass vials (5 cm height x 18 mm diameter) which were placed on the 197 

automated sample wheel of the spectrophotometer. Each puree sample was measured 198 

three times on different aliquots. A reference background measurement was 199 

automatically activated before each data set acquisition using an internal Spectralon 200 

reference. 201 

The MIR spectra of purees was collected at 23°C using a Tensor 27 FTIR 202 

spectrometer (Bruker Optics®, Wissembourg, France) equipped with a horizontal 203 

attenuated total reflectance (ATR) sampling accessory and a deuterated triglycine 204 

sulphate (DTGS) detector. Three replications of spectral measurement were 205 

performed on different aliquots. The purees were placed at the surface of a zinc 206 

selenide (ATR-ZnSe) crystal with six internal reflections. Spectra with 32 scans for 207 

ATR-ZnSe were collected from 4000 cm-1 to 650 cm-1 with a 4 cm-1 resolution and 208 

were corrected against the background spectrum of air. 209 

The whole spectral dataset of Vis-NIR or MIR included 36 spectra (3 replicates × 3 210 

processing weeks × 4 varieties) of single-cultivar purees, 324 spectra of formulated 211 
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purees spectra for the modelling set (3 replicates × 3 processing weeks × 6 formulated 212 

puree groups × 6 proportions) and 162 spectra for the external prediction set (3 213 

replicates × 3 processing weeks × 6 formulated puree groups × 3 proportions) 214 

described in 2.2.1 and Figure 1. 215 

2.4 Statistical analyses of reference data 216 

After ensuring normal distribution with a Shapiro-Wilk test (α=0.05), the reference 217 

data of processed purees were presented as mean values and the data dispersion 218 

within our experimental dataset expressed as standard deviation values (SD). Analysis 219 

of variance (ANOVA) was carried out to determine the significant differences due to 220 

the different single apple varieties (Table S-1) or formulated puree groups (Table S-2) 221 

using XLSTAT (version 2018.5.52037, Addinsoft SARL, Paris, France) data analysis 222 

toolbox. And the pairwise comparison between means was performed using Tukey’s 223 

test. Principal component analysis (PCA) was carried out on all reference data of 224 

single-cultivar purees or of formulated purees to evaluate their discriminant 225 

contributions using Matlab 7.5 (Mathworks Inc. Natick, MA, USA) software. 226 

2.5 MCR-ALS and spectra reconstruction 227 

MCR-ALS (multivariate curve resolution-alternative least square) is an effective 228 

multivariate self-modelling curve resolution method developed by Tauler (de Juan & 229 

Tauler, 2006). The relative contributions given by MCR-ALS were obtained for both, 230 

the Vis-NIR (400-2500 nm) and MIR (900-1800 cm-1) spectral information, using the 231 

formulated purees and their corresponding single-cultivar purees (Figure 2). For the 232 

formulated samples, one matrix D (n× λ) was made up with the number of samples (n) 233 
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and the intensity at each wavenumbers or wavelengths (λ). The ST matrix (s× λ) is the 234 

spectroscopic matrix describing the ‘pure’ infrared spectra (λ) of all single-cultivar 235 

purees (s). The D matrix can be mathematically decomposed into the individual 236 

contributions related to the spectral information of ‘pure’ purees in matrix ST 237 

according to Eq. (1) and is interactively transformed using an alternative least square 238 

(ALS) procedure as Eq (2).  239 

       (1) 240 

        (2) 241 

Matrix C (n× q) is the concentration matrix describing the contribution of every 242 

single-cultivar purees (q) in reconstructed purees (n). E is the error matrix that 243 

provides the data variation not explained by their contributions. The matrix (ST)+ is the 244 

pseudo-inverse matrix of ST. A general constraint used in curve resolution method is 245 

the non-negativity on the concentration profiles. 246 

Once the concentration profiles (matrix C) for each single-cultivar spectrum, 247 

including Golden Delicious (CGD), Granny Smith (CGS), Braeburn (CBR) and Royal 248 

Gala (CGA), were obtained, they were used to reconstruct a new spectroscopic matrix 249 

R (n × k) for monitoring all formulated purees. Each row Ri. (i=1,…n) was made up 250 

of a reconstructed spectrum. And each column R.j (j=1,…k) gave the reconstructed 251 

spectral intensity at a wavenumber of MIRS or a wavelength of Vis-NIRS based on 252 

the corresponding pure puree spectra of Golden Delicious (λGD), Granny Smith (λGS), 253 

Braeburn (λBR) and Royal Gala (λGA), following Eq (3).  254 

        (3) 255 
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2.6 Spectral multivariate regression 256 

Spectral pre-processing and multivariate regression were performed with several 257 

packages (‘prospectr’ (Stevens & Ramirez-Lopez, 2013), ‘pls’ (Mevik, Wehrens, & 258 

Liland, 2019), ‘Cubist’ (Kuhn, Weston, Keefer, Coulter, & Quinlan, 2014) and ‘caret’ 259 

(Kuhn, 2015)) of the R software (version 2.6.2) (R Core Team, 2019). As 260 

demonstrated in previous works (Bureau et al., 2013; Ncama, Opara, Tesfay, Fawole, 261 

& Magwaza, 2017), the wavelengths from 400 to 2500 nm of Vis-NIR and the 262 

wavenumbers from 900 to 1800 cm-1 in MIR were selected (Figure 3). For all 263 

spectral datasets, standard normal variate (SNV), resampling (intervals= 5, 10, 15), 264 

and derivative transform calculation (Savitzky–Golay method, gap size = 11, 21, 31, 265 

41) of first or second order were compared before multivariate regression. SNV 266 

pre-processing applied on the Vis-NIR and MIR data had the best performances to 267 

predict puree quality and was then systematically used. 268 

The partial least square (PLS), Cubist and RF regression models were developed to i) 269 

detect the proportions of each apple varieties in puree samples (Table 2) and predict 270 

the quality characteristics of formulated purees based on ii) the acquired Vis-NIR, 271 

MIR and their combined infrared spectra (CB) (Table 3) or iii) the reconstructed 272 

Vis-NIR, MIR and CB spectra (Table 4). All aforementioned spectral matrices 273 

(Vis-NIRS, MIRS and CB) corresponded to the same reference dataset. The set of all 274 

modelling spectra (324 spectra) was randomly split, with two-thirds of the dataset 275 

(216 spectra) used for calibration and a third (108 spectra) for internal validation. 276 

Then, calibrated models were further validated with the external prediction set (162 277 
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spectra). The procedure was repeated 10 times in order to obtain the dispersion of 278 

values giving an idea of the model stability and robustness. The developed models 279 

performance was then described by the 10-times averaged values of the determination 280 

coefficients of internal validation (Rv
2) and external prediction (Rp

2), root mean 281 

square error of prediction (RMSEP), RPD (Residual Predictive Deviation) value as 282 

described by Nicolai (Nicolai et al., 2007). During model training, the variable 283 

importance (VIP) for each puree characteristics were computed using the ‘varImp’ 284 

function by ‘caret’ package in R software (Kuhn, 2015), which could be applied both 285 

on PLS and machine learning regressions (Parmley, Higgins, Ganapathysubramanian, 286 

Sarkar, & Singh, 2019).  287 

3. Results and discussion 288 

3.1 Characteristics of single-cultivar purees and formulated purees 289 

After puree processing, the four different cultivars provided a large variability of 290 

appearance, in particular color and texture (Figure S-1). According to PCA results 291 

taking into account their rheological and biochemical characteristics (Figure S-2), 292 

‘Royal Gala’ (GA) purees were clearly discriminated from the other purees along the 293 

first principal component (PC1), with significantly (p <0.001) lower TA, pH, glucose, 294 

malic acid and viscosity (η50 and η100) (Table S-1). Particularly, the values of 295 

viscosity at a shear rate of 50 s-1 (η50), which is commonly used to describe the 296 

in-mouth texture perception of fluid foods (Chen & Engelen, 2012), were much more 297 

lower in GA purees (547 ± 13 Pa.s-1) than in ‘Golden Delicious’ (GD) (839 ± 53 Pa.s-1) 298 

and ‘Granny Smith’ (GS) (904 ± 31 Pa.s-1) purees (Table S-1). As expected, the 299 
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viscosity and global quality (SSC and TA) of the formulated purees were affected 300 

when prepared with GA purees (Figure S-3). For example, the formulated GA-GD 301 

(group C) or GA-GS purees (group E) provided a high range of viscosity (Figure 302 

S-3c and d) and composition (Figure S-3e and f), but with a limited variation of 303 

color (a* and b* values) (Figure S-3a and b). 304 

Remarkable changes (p <0.001) of color parameters (L*, a* and b*) allowed the 305 

separation of ‘Braeburn’ (BR) purees and the others along the second principal 306 

component (Figure S-2 and Table S-2). Particularly the redness (a* values) of 307 

formulated puree groups (Figure S-3a), the admixture of BR (groups B, D and F) 308 

introduced more intensive variations (from -4.33 to 2.35) than the others (groups A, C 309 

and E, from -4.77 to -1.52). The limited variations of yellowness (b* values) in 310 

formulated GD-GA purees resulted in differences below the visual detection threshold 311 

(Figure S-3b). Consequently, different strategies of puree formulation, especially the 312 

mixtures with ‘Royal Gala’ or with ‘Braeburn’ purees, could provide variability in 313 

taste, texture and color. 314 

3.2 Characteristics of formulated purees: determination of composed 315 

single-cultivar puree proportions 316 

In this part, the ability of SNV pre-processed Vis-NIR, MIR and CB coupled with 317 

PLS, Cubist and RF regressions was compared to estimate the proportions of 318 

single-cultivar in all formulated purees (Table 2). 319 

Both, Vis-NIR and MIR techniques were potentially able to estimate the proportions 320 

of single-variety puree in the formulated purees with good models presenting robust 321 
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determination coefficients for both internal validation (Rv
2) and external validation 322 

(Rv
2), acceptable RMSEP (<10%) and RPD values at least higher than 2.5 (Nicolai et 323 

al., 2007). For Vis-NIR technique, two regression methods, PLS and RF, showed an 324 

acceptable ability to estimate proportions of GS (RP
2> 0.92, RPD> 3.4, RMSEP< 325 

9.2%) and of BR (RP
2> 0.95, RPD> 4.2, RMSEP< 7.9%) varieties in all formulated 326 

purees, based on the VIP wavelengths at 412 nm, 524 nm and 672 nm (Figure S-4b 327 

and c). The predictive errors obtained here for the mixture of two cultivars of the 328 

same species, apple, were lower than those obtained earlier for the mixture of two 329 

species, namely  apple/raspberry (11.3%) (Contal, León, & Downey, 2002). The 330 

poor Vis-NIRS prediction results for GD (RMSEP> 17.4%, RPD< 1.7) and GA 331 

(RMSEP> 16.2%, RPD< 2.1) were probably due to their similar color (Figure S-1). 332 

As the VIP wavelengths of Vis-NIR models were mainly dominated in the visible 333 

spectral region (412-672 nm), the color variations were not enough to be used for 334 

prediction of proportions in formulated purees, especially in the group C (GD-GA) 335 

(Figure S-3a & b).  336 

MIR provided a better prediction of the proportions of single-cultivar purees in the 337 

formulated purees than Vis-NIR. Moreover, the regression method affected the 338 

prediction results of MIR. PLS gave better prediction results (RMSEP<8.1%, RPD> 339 

3.6) than Cubist (RMSEP<15.1%, RPD> 2.3) and RF (RMSEP<10.6%, RPD> 2.7). 340 

Particularly, MIRS combined with PLS reached the lowest determination error 341 

(RMSEP=2.7%, RPD=11.4) for GS compared with other cultivars (GD, GA, BR). 342 

The highest VIP values (Figure S-5c) at 1723 cm-1, 1065 cm-1 and 1034 cm-1 343 
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attributed respectively to malic acid, fructose and glucose (Bureau, Cozzolino, & 344 

Clark, 2019; Clark, 2016), were consistent with the existence of marked differences in 345 

chemical composition (SD and significance) between purees containing GS (Table 346 

S-2). The excellent PLS predictions obtained for BR (RMSEP=4.3%, RPD=7.7) were 347 

based on the VIP wavenumbers at 998 cm-1 and 1084 cm-1 related to sucrose and 348 

fructose (Bureau, Cozzolino, & Clark, 2019) (Figure S-5b). Besides the 349 

aforementioned spectral signal, the satisfactory assessments of GD and GA 350 

proportions (RMSEP<8.1%, RPD>3.6) were linked to the MIRS region between 1750 351 

and 1650 cm-1 related to organic acids, pectins, proteins, phenolics and absorbed water 352 

(Figure S-5a & d) (Abidi, Cabrales, & Haigler, 2014; Canteri, Renard, Le Bourvellec, 353 

& Bureau, 2019; Kačuráková et al., 1999).  354 

The CB spectra, including Vis-NIR and MIR regions, coupled with PLS (RPD>2.8, 355 

RMSEP<11.5%) and RF (RPD>3.0, RMSEP<9.5%) provided a satisfactory 356 

assessment of the proportions of single-cultivar purees (Table 2). However, the results 357 

on CB were not as good as for MIR only. 358 

Consequently, to predict proportions of single-cultivar purees, Vis-NIR was suitable 359 

for the formulated samples presenting large diversity in the color range, with the use 360 

of Braeburn and Granny Smith apples for example, and under vacuum processing 361 

conditions providing a good puree color preservation. MIRS coupled with PLS was 362 

evidenced as a powerful tool to provide excellent estimations of puree proportions, 363 

mainly based on differing concentrations of individual sugars and acid. Combining 364 

Vis-NIR and MIR did not improve prediction. 365 
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3.3 Characteristics of formulated purees: prediction of quality traits 366 

As previously, the different spectral areas, Vis-NIR, MIR or CB, of all formulated 367 

purees coupled with the different regression methods, PLS, Cubist and RF, were 368 

compared for their ability to predict color, rheological and biochemical characteristics 369 

of formulated purees (Table 3). MIR spectra coupled with PLS obtained the best 370 

predictions in comparison with Vis-NIR and CB, except for color. Indeed concerning 371 

the color parameters, a good prediction of a* values was obtained for all spectral areas 372 

with a RPD decreasing order Vis-NIR (RPD>4.0), CB (RPD>3.6) and MIR (RPD>3.3) 373 

for both PLS and machine learning regressions (Cubist and Random forest). 374 

Particularly, the best prediction of a* values was obtained on CB with PLS models 375 

(RP
2=0.96, RPD=5.0), slightly better than in Vis-NIR (RP

2=0.95, RPD=4.7). 376 

MIR spectra coupled with PLS gave the best prediction (RP
2>0.90, RPD>4.1) of the 377 

rheological parameters (η50 and η100) (Table 3). The identified VIP wavenumbers 378 

were 1026, 1065, 1113 and 1720 cm-1 (Figure S-6). These dominant carbohydrate 379 

bands centered at 1000-1200 cm-1, associated with C-OH and C-O-C vibration of 380 

glucose and fructose (Bureau, Cozzolino, & Clark, 2019), have also been identified to 381 

predict viscosity of tomato purees (Ayvaz et al., 2016). And an acceptable estimation 382 

of DMC was observed for all developed MIR models (RMSEP< 0.003, RPD>2.7).  383 

For biochemical parameters, MIR coupled with PLS allowed a very good prediction 384 

of SSC (RMSEP=0.1, RPD=5.1) in accordance with previous results of apple and 385 

tomato purees (Ayvaz et al., 2016; Lan, Renard, Jaillais, Leca, & Bureau, 2020). In 386 

apples, SSC is strongly correlated to the presence of sugars, namely fructose, sucrose 387 



19 

 

and glucose. The two main sugars, fructose and sucrose, were satisfactorily predicted 388 

with PLS (RPD>3.0) and the non-linear regressions, Cubist and RF (RPD>2.9). 389 

However, MIR could not predict the glucose content (RPD<2.4) (Table 3). 390 

Considering the different expressions of acidity such as pH, TA and malic acid content, 391 

MIR coupled with PLS provided their excellent prediction with RP
2>0.92 and 392 

RPD>4.0. It can be noticed that Vis-NIRS gave also acceptable prediction of TA and 393 

malic acid (RP
2>0.87, RPD>2.9), better than our previous results in NIRS on apple 394 

purees (Lan, Jaillais, Leca, Renard, & Bureau, 2020). 395 

In comparison with Vis-NIRS and MIRS, the slight improvements of using the 396 

combined spectra (CB) concerned only the prediction of a* values (Table 3). 397 

Combining Vis-NIRS and MIRS spectra offered little improvement or even degraded 398 

the results in comparison with MIRS alone for analyzing puree viscosity and chemical 399 

variations, (Table 3). These conclusions were in accordance with previous works on 400 

forage (Reeves, 1997) and beers (Iñón, Garrigues, & Guardia, 2006). They can be 401 

explained by i) the limited ability to balance the important variables after combination 402 

of two spectral domains with different resolutions (Figure S-6); and ii) the 403 

involvement of non-relevant or unimportant spectral regions which disturbed the 404 

calibration modelling by producing more noise.  405 

In summary, MIRS coupled with PLS had promising ability to well estimate viscosity, 406 

a* color parameter, DMC, SSC, pH, TA, malic acid, sucrose and glucose of 407 

formulated purees, but not for fructose. Acceptable assessments of a*, TA, malic acid 408 
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and glucose were obtained with the Vis-NIR region, in which sensors could be easily 409 

adapted for fruit processing. 410 

3.4 Characteristics of formulated purees: prediction of quality traits based on the 411 

reconstructed spectra 412 

In order to compute the concentration profiles of relevant single-cultivar puree 413 

compositions, MCR-ALS was applied on the Vis-NIR and MIR spectra of all 414 

formulated purees and of the four single-cultivar purees, using two approaches: the 54 415 

averaged formulated puree spectra and the 4 averaged single-cultivar puree spectra of 416 

a) each week or b) over the three weeks. These two methods (a and b) obtained 417 

similar concentrations, indicating their robustness over different processing weeks. 418 

Results are only shown for method b taking into account different processing periods 419 

(Table S-3). Based on that, in total 486 spectra of formulated purees were 420 

reconstructed based on their corresponding 36 single-cultivar spectra (4 varieties x 3 421 

replications x 3 weeks). 422 

Accurate predictions of the concentrations were obtained with MIRS. These 423 

predictios were highly related to the proportions of the single-cultivar purees (Table 424 

S-3). However, the results were not acceptable with Vis-NIRS (Table S-3). The 425 

limited ability of Vis-NIRS was due to the high similarity in color between GA and 426 

GD and so a poor prediction of the proportions GA/GD in formulated purees (Table 427 

2). The concentration profiles of MIRS in each group (A-E) appeared to follow a 428 

non-linear relationship along the variation of puree proportions. 429 

Prediction models were then developed using these reconstructed MIR spectra and the 430 
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reference data characterized on the formulated purees (Table 4). Overall, 431 

reconstructed MIR spectra with PLS regression better predicted the puree 432 

characteristics than Cubist and RF regressions. What stands out in these results was 433 

the highly accurate PLS predictions (Rp
2>0.85, RPD>4.0) of rheological parameters 434 

(η50 and η100) from reconstructed spectra (Table 4), which were close to those 435 

obtained from the spectra of formulated purees (Rp
2>0.90, RPD>4.1) (Table 3). 436 

Particularly, similar MIRS fingerprint wavenumbers were obtained in reconstructed 437 

spectra and directly on formulated purees described above, mainly 1720, 1113, 1065 438 

and 1026 cm-1 related to acid and sugars  (Bureau, Cozzolino, & Clark, 2019). The 439 

prediction of DMC was acceptable (RPD>2.5) as mentioned above with real spectra 440 

in Table 3. For color, a good prediction of a* value was obtained with both, PLS 441 

(Rp
2=0.92, PRD=3.5) and machine learning methods (Rp

2>0.89, PRD>3.2) but not for 442 

L* and b*. For SSC, although the slight lower Rp
2 and RPD values than the best 443 

results obtained directly on MIR spectra (RMSEP=0.13, RPD=5.1) (Table 3), the PLS 444 

and Cubist models had an acceptable ability to estimate it for all formulated purees 445 

(RMESP<0.20, RPD>4.1) (Table 4). Considering the global acidity parameters, 446 

acceptable PLS predictions (Rp
2>0.88, PRD>3.2) were obtained for pH and TA, with 447 

a lower performance than directly on real spectra (Rp
2>0.92, PRD>4.0 in Table 3). 448 

For individual sugars and acids, PLS models showed an excellent prediction of 449 

glucose and malic acids (Rp
2>0.94, RPD>4.3), and an acceptable prediction of sucrose 450 

(Rp
2=0.86, RPD=2.8) but not for fructose (RPD<2.5). The specific wavenumbers at 451 

1034 cm-1 for glucose, 1723 cm-1 for malic acid and 998 cm-1 for sucrose, mainly 452 
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contributed to the PLS models both from reconstructed spectra and directly on puree 453 

spectra. The decrease of prediction accuracy was possibly owing to the non-negativity 454 

of the concentration profiles which could constrain the spectral reconstruction (Le 455 

Dréau, Dupuy, Artaud, Ollivier, & Kister, 2009). Briefly, MIR spectra coupled with 456 

the concentration profiles of MCR-ALS showed a potential way to directly estimate 457 

the viscosity, a* color parameter, SSC, TA, malic acid, pH, fructose and glucose for 458 

formulated purees depending only on the spectral information of the single-cultivar 459 

purees. 460 

Compared to the previous prediction models obtained on the real spectra of 461 

formulated purees (Table 3), highly consistent specific fingerprints and acceptable 462 

prediction results (Table 4) provided a justifiable explanation to use the spectra 463 

reconstruction of formulated purees from spectra of single-cultivar purees. MCR-ALS 464 

has been used in other ways to identify precisely the chemical species or track their 465 

evolutions (Garrido, Rius, & Larrechi, 2008; de Juan & Tauler, 2006). Here, it was 466 

firstly used with the concentration profiles to reconstruct spectra of processed 467 

products based on the spectra of raw materials. 468 

4. Conclusion 469 

This was the first detailed work to show the ability of infrared spectroscopy coupled 470 

to suitable chemometric methods as a powerful tool to trace different composed 471 

cultivars and estimate their corresponding compositions in apple purees. Moreover, an 472 

innovative chemometric method based on MCR-ALS was developed to reach 473 

simultaneous targets in terms of composition (in % of different cultivars) and 474 
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physico-chemical properties (rheology, SSC, TA, DMC) of final puree products. As 475 

far as we know, this was the first report concerning the control of the final fruit 476 

product quality variations depending on the spectral information of the initial purees 477 

using a spectral reconstruction approach. 478 

Vis-NIR on formulated purees could detect the composed single cultivars purees with 479 

large color differences, such as ‘Granny Smith’ (RP
2> 0.92, RPD> 3.4, RMSEP< 9.2%) 480 

and ‘Braeburn’ (RP
2> 0.95, RPD> 4.2, RMSEP< 7.9%), but not for ‘Golden 481 

Delicious’ and ‘Royal Gala’. MIR had the potential to trace the composed apple 482 

varieties with the excellent evaluations of ‘Granny Smith’ and ‘Braeburn proportions’ 483 

(RMSEP<4.3%, RPD> 7.7) and the satisfactory assessments of ‘Golden Delicious’ 484 

and ‘Royal Gala’ proportions (RMSEP<8.1%, RPD>3.6). And MIR could also predict 485 

the internal quality (SSC, TA, DMC, viscosity, pH, fructose, malic acid) of formulated 486 

purees coupled with PLS and machine learning regressions.  487 

Innovatively, MIR technique opens the possibility to control and guidance the final 488 

puree characteristics by simply scanning the single-cultivar apple purees, in order to 489 

maintain the product quality or to drive the development of new products in apple 490 

industry. For instance, after acquiring MIR spectra of the four single-cultivar purees, 491 

our developed PLS models might be used in industry: i) to formulate purees with 492 

defined SSC and viscosity (e.g. 15.0 ± 0.3 °Brix and 1500 ± 100 Pa.s-1, which might 493 

be reached with the formulate solutions as 75% GD-25% GS, 80% GD-20% BR and 494 

90% GD-10% GA purees); or ii) to compare in silico the results of different puree 495 

formulation strategies, such as 33.3% GD and 66.6% GS purees (low redness, high 496 
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acidity and viscosity) versus another strategy of 80% BR and 20% GA purees (more 497 

redness, low acidity, low viscosity), depending on the market.  498 

Further challenging works will be to investigate the possibility to reconstruct spectra 499 

of final processed purees based on spectra acquired directly on raw apples to provide 500 

non-destructive information guidance.  501 

502 
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Figure captions: 1 

Figure 1. Experimental scheme of purees reformation, quality characterizations and 2 

spectral acquisition. 3 

Figure 2. Process of VIS-NIRS and MIRS data by multivariate curve resolution- 4 

alternative least square (MCR-ALS) and spectral reconstruction of reformulates puree 5 

samples.  6 

Figure 3. Overview of the applied methodology of VIS-NIR and MIR spectra pre-7 

processing and multivariate regression. 8 
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Table 1. The common names and their abbreviations used in this study 1 

Common names Abbreviations 

‘Golden Delicious’ purees GD 

‘Granny Smith’ purees GS 

‘Braeburn’ purees BR 

‘Royal Gala’ purees GA 

partial least square PLS 

random forest regression RF 

combination of Vis-NIR and MIR CB 

multivariate curve resolution-alternative least square MCR-ALS 

dry matter contents DMC 

soluble solid contents SSC 

titratable acidity TA 

purees viscosity at a control share rate of 50 s-1 η50 

purees viscosity at a control share rate of 100 s-1 η100 

standard deviation values SD 

Principal component analysis PCA 

fresh weight FW 

standard normal variate SNV 

determination coefficients of internal validation Rv
2 

determination coefficients of external prediction Rp
2 

root mean square error of prediction RMSEP 

variable importance VIP 

Residual Predictive Deviation RPD 

 2 



Table 2. Prediction of the proportions (%) of single-cultivar purees in all formulated purees based on VIS-NIR (400- 2500 nm), MIR (900- 1800 3 

cm-1) and their combined spectra (CB; VIS-NIR-MIR). Comparison of three regression models (PLS, Cubist and Random forest) 4 

Single-cultivar Spectra 
PLSR   Cubist   Random forest 

Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD 

  Vis-NIR 0.66 0.60 19.0 1.5   0.82 0.58 19.4 1.5   0.88 0.64 17.4 1.7 

GD MIR 0.94 0.92 8.1 3.6   0.95 0.86 11.3 2.6   0.94 0.87 10.6 2.7 

  CB  0.91 0.88 10.3 2.8   0.93 0.82 12.7 2.3   0.96 0.90 9.5 3.0 

  Vis-NIR 0.97 0.95 7.5 4.4   0.98 0.93 8.7 3.8   0.97 0.95 7.9 4.2 

BR MIR 0.99 0.98 4.3 7.7   0.98 0.97 5.2 6.3   0.98 0.95 7.6 4.3 

  CB  0.99 0.98 5.0 6.6   1.00 0.97 5.6 5.9   0.98 0.97 6.1 5.4 

  Vis-NIR 0.93 0.92 9.2 3.4   0.97 0.89 10.5 3.0   0.97 0.94 8.2 3.8 

GS MIR 0.99 0.99 2.7 11.4   0.99 0.93 8.1 3.8   0.98 0.97 5.3 5.8 

  CB  0.99 0.98 4.3 7.3   0.99 0.98 4.9 6.4   0.98 0.97 5.8 5.4 

  Vis-NIR 0.79 0.65 16.2 2.1   0.67 0.68 20.2 1.7   0.75 0.73 18.5 1.9 

GA MIR 0.96 0.94 7.4 4.7   0.90 0.82 15.1 2.3   0.91 0.90 10.3 3.4 

  CB  0.89 0.83 11.5 3.0   0.88 0.79 16.2 2.2   0.94 0.92 9.4 3.7 

Notes: single-cultivar purees of Golden Delicious named ‘GD’, Braeburn named ‘BR’, Granny Smith named ‘GS’, Royal Gala named ‘GA’. All results corresponded 5 

to the averaged values of 10 replicates. Rv
2: determination coefficient of the validation test (internal); Rp

2: determination coefficient of the prediction test (external); 6 

RMSEP: root mean square error of prediction test (external) expressed as the puree proportions (%); RPD: the residual predictive deviation of prediction test. (external). 7 
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Table 3. Prediction of chemical and rheological parameters of all formulated purees using Vis-NIR (400-2500 nm), MIR (900-1800 cm-1) or their 9 

combined spectra (CB) and regression methods, PLS, Cubist or Random forest. 10 

Parameter Spectra Range SD 
PLSR   Cubist   Random forest 

Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD 

L* 

Vis-NIR     0.81 0.70 0.8 1.6   0.87 0.63 0.9 1.4   0.88 0.75 0.6 1.9 

MIR 41.6-48.6 1.5 0.88 0.80 0.6 2.0   0.96 0.83 0.6 2.2   0.94 0.80 0.6 2.2 

CB     0.89 0.79 0.6 2.1   0.95 0.79 0.6 1.9   0.94 0.83 0.5 2.4 

a* 

Vis-NIR     0.97 0.96 0.4 4.7   0.98 0.94 0.5 4.0   0.96 0.94 0.5 4.1 

MIR (-4.8)-2.4 2 0.96 0.94 0.5 4.0   0.98 0.92 0.5 3.6   0.97 0.91 0.6 3.3 

CB     0.98 0.96 0.4 5.0   0.99 0.93 0.5 3.6   0.98 0.94 0.5 4.1 

b* 

Vis-NIR     0.62 0.55 1.2 1.5   0.76 0.46 1.5 1.3   0.72 0.53 1.3 1.4 

MIR 9.6-18.4 1.7 0.67 0.56 1.2 1.5   0.86 0.48 1.4 1.3   0.84 0.62 1.1 1.6 

CB     0.67 0.53 1.3 1.5   0.88 0.46 1.4 1.3   0.81 0.57 1.2 1.5 

Viscosity η50  

Vis-NIR     0.79 0.81 54.6 2.2   0.85 0.85 49.8 2.4   0.82 0.78 57.8 2.1 

MIR 526-1029 119 0.94 0.90 29.8 4.1   0.95 0.89 39.4 3.1   0.9 0.87 43.6 2.8 

CB     0.91 0.87 43.5 2.8   0.93 0.88 43.2 2.8   0.91 0.89 42.8 2.8 

Viscosity η100 

Vis-NIR     0.73 0.74 108.0 2.0   0.87 0.79 98.9 2.2   0.82 0.75 109.3 1.9 

MIR 834-1721 210 0.94 0.91 52.0 4.1   0.96 0.86 81.2 2.6   0.90 0.88 74.4 2.9 

CB     0.88 0.87 79.6 2.7   0.91 0.87 76.5 2.8   0.91 0.88 77.3 2.8 

DMC (g/g FW) 

Vis-NIR     0.85 0.79 0.004 2.1   0.81 0.75 0.004 1.9   0.79 0.77 0.004 2.0 

MIR 0.14-0.17 0.009 0.93 0.89 0.003 3.1   0.91 0.88 0.003 2.7   0.93 0.90 0.003 3.0 

CB     0.85 0.83 0.003 2.5   0.96 0.83 0.003 2.5   0.93 0.87 0.003 2.8 

SSC (°Brix) 

Vis-NIR     0.61 0.53 0.5 1.5   0.79 0.56 0.5 1.3   0.78 0.62 0.5 1.5 

MIR 12.1-15.3 0.7 0.96 0.95 0.1 5.1   0.96 0.93 0.2 3.9   0.94 0.94 0.2 4.1 

CB     0.89 0.94 0.2 4.0   0.95 0.92 0.2 3.4   0.95 0.96 0.1 4.4 



fructose (g/kg FW) 

Vis-NIR     0.37 0.38 7.3 1.2   0.52 0.25 8.4 1.1   0.70 0.50 6.3 1.4 

MIR 40.2-80.3 9.1 0.82 0.78 3.7 2.4   0.93 0.81 4.0 2.2   0.92 0.70 4.8 1.8 

CB     0.67 0.56 5.8 1.5   0.83 0.74 4.4 2.0   0.91 0.76 4.4 2.0 

sucrose (g/kg FW) 

Vis-NIR     0.54 0.49 3.9 1.4   0.69 0.52 4.3 1.3   0.76 0.46 4.0 1.4 

MIR 33.2-57.3 5.5 0.89 0.89 1.8 3.0   0.88 0.89 1.8 2.9   0.92 0.92 1.6 3.3 

CB     0.60 0.67 3.1 1.7   0.92 0.87 2.0 2.6   0.87 0.78 2.5 2.1 

glucose (g/kg FW) 

Vis-NIR     0.92 0.93 1.0 3.6   0.96 0.87 1.3 2.6   0.91 0.89 1.2 2.9 

MIR 13.2-28.3 3.7 0.98 0.98 0.5 6.7   0.99 0.97 0.6 5.6   0.97 0.94 0.9 4.1 

CB     0.95 0.93 1.0 3.7   0.98 0.96 0.7 4.9   0.98 0.95 0.8 4.4 

pH 

Vis-NIR     0.84 0.83 0.1 2.4   0.94 0.76 0.1 2.0   0.82 0.76 0.1 2.0 

MIR 3.39-4.47 0.23 0.94 0.92 0.1 4.0   0.89 0.85 0.1 2.5   0.94 0.92 0.1 3.4 

CB     0.83 0.86 0.1 2.7   0.96 0.67 0.1 1.7   0.9 0.85 0.1 2.4 

TA (meq/kg FW) 

Vis-NIR     0.93 0.87 5.0 2.9   0.95 0.90 5.1 3.1   0.96 0.89 5.2 3.0 

MIR 28.0-94.8 16.2 0.99 0.96 3.5 4.3   0.99 0.94 3.9 3.9   0.96 0.91 4.7 3.3 

CB     0.95 0.91 4.9 3.1   0.98 0.95 3.8 4.0   0.96 0.9 4.8 3.2 

malic acid (g/kg FW) 

Vis-NIR     0.90 0.88 0.5 2.9   0.91 0.85 0.5 2.6   0.94 0.87 0.5 2.8 

MIR 3.0-8.8 1.3 0.97 0.97 0.2 5.9   0.95 0.92 0.4 3.7   0.94 0.94 0.3 4.2 

CB     0.92 0.92 0.4 3.4   0.91 0.84 0.5 2.5   0.96 0.93 0.4 3.7 

Notes: all results corresponded to the averaged values of 10 replicates. Rv
2: determination coefficient of the validation test (internal); Rp

2: determination coefficient 11 

of the prediction test (external); RMSEP: root mean square error of prediction test (external); RPD: the residual predictive deviation of prediction test. (external). 12 
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Table 4. Prediction results of chemical and rheological parameters of all formulated purees from the reconstructed MIR spectra computed by the 14 

concentrations of MCR-ALS and the spectra of single-cultivar purees.  15 

Parameter Range SD 
PLSR   Cubist   Random forest 

Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD 

L* 41.6-48.6 1.5 0.91 0.86 0.5 2.4   0.9 0.83 0.6 1.9   0.86 0.78 0.6 2.1 

a* (-4.8)-2.4 2 0.92 0.92 0.5 3.5   0.94 0.89 0.6 3.2   0.93 0.91 0.6 3.4 

b* 9.6-18.4 1.7 0.62 0.59 1.2 1.6   0.56 0.48 1.2 1.5   0.58 0.54 1.2 1.5 

Viscosity ŋ50 526-1029 119 0.93 0.86 32.3 4.0   0.86 0.82 45.6 3.1   0.86 0.79 47.4 2.8 

Viscosity ŋ100 834-1721 210 0.94 0.85 55.5 4.0   0.86 0.83 81 2.8   0.85 0.78 85.3 2.7 

DMC (g/g FW) 0.14-0.17 0.009 0.87 0.85 0.003 2.7   0.85 0.84 0.003 2.6   0.89 0.82 0.004 2.5 

SSC (°Brix) 12.1-15.3 0.7 0.95 0.9 0.2 4.1  0.9 0.85 0.2 4.1   0.79 0.73 0.3 2.3 

fructose (g/kg FW) 40.2-80.3 9.1 0.84 0.79 4.0 2.1   0.88 0.82 3.7 2.5   0.83 0.8 3.7 2.3 

sucrose (g/kg FW) 33.2-57.3 5.5 0.88 0.86 2.0 2.8   0.87 0.85 2.1 2.7   0.88 0.83 2.1 2.7 

glucose (g/kg FW) 13.2-28.3 3.7 0.94 0.94 0.9 4.3   0.97 0.9 1.1 3.2   0.93 0.94 0.9 3.7 

pH 3.39-4.47 0.23 0.89 0.88 0.1 3.2   0.89 0.83 0.1 2.8   0.86 0.79 0.1 2.7 

TA (meq/kg FW) 28.0-94.8 16.2 0.92 0.91 4.4 3.4   0.91 0.88 5.9 2.7   0.92 0.92 4.4 3.4 

malic (g/kg FW) 3.0-8.8 1.3 0.95 0.93 0.3 4.7   0.94 0.87 0.4 3.9   0.95 0.95 0.3 4.3 

Notes: all results corresponded to the averaged values of 10 replicates. Rv
2: determination coefficient of the validation test (internal); Rp

2: determination coefficient 16 

of the prediction test (external); RMSEP: root mean square error of prediction test (external); RPD: the residual predictive deviation of prediction test (external). 17 
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Supplementary Tables:  19 

Table S-1. Mean values with the characteristics of single-cultivar purees differed significantly using Tukey’s test. 20 

Cultivar Viscosity ƞ50 Viscosity ƞ100 L* a* b* 

SSC 

(°Brix) 

DMC 

(g/g FW) 

pH 

TA 

(meq/kg FW) 

malic acid 

(g/kg FW) 

fructose 

 (g/kg FW) 

sucrose 

(g/kg FW) 

glucose 

(g/kg FW) 

GD 838.6± 69.6 a 1388.5± 138.2 ab 47.0± 0.3 a -4.1± 0.3 c 15.8± 0.5 a 14.5± 0.4 a 0.167± 0.003 a 3.9± 0.1 b 53.9± 0.8 c 6.0± 0.1 b 72.8± 6.2 a 46.7± 6.6 a 18.7± 0.8 b 

GS 904.2± 18.8 a 1501.2± 18.9 a 45.1± 0.8 b -4.3± 0.9 c 14.4± 1.4 a 13.2± 0.3 b 0.152± 0.003 b 3.6± 0.2 c 89.1± 1.3 a 8.1± 0.5 a 58.6± 14.9 ab 37.4± 4.3 b 26.8± 1.3 a 

BR 736.8± 61.1 b 1229.1± 106.2 b 42.2± 0.4 c 1.8± 0.3 a 10.2± 1.2 b 13.1± 0.5 b 0.151± 0.005 b 3.7± 0.2 bc 62.7± 1.5 b 5.9± 0.1 b 59.4± 6.6 ab 50.0± 3.7 a 17.2± 1.5 b 

GA 547.1± 38.0 c 860.9± 59.5 c 45.6± 0.5 b -2.5± 0.2 b 15.0± 0.8 a 12.4± 0.6 b 0.143± 0.008 b 4.3± 0.2 a 29.3± 1.3 d 3.5± 0.7 c 49.3± 4.0 b 36.0± 1.3 b 14.6± 1.3 c 

Note: Data are expressed as puree fresh weight (FW) ± standard deviation. Puree cultivars: Golden Delicious (‘GD’); Granny Smith (‘GS’), Braeburn (‘BR’) and Royal Gala (‘GA’). 21 

22 



Table S-2. Mean values with the characteristics of formulated puree groups differed significantly using Tukey’s test. 23 

Groups Viscosity ƞ50 Viscosity ƞ100 L* a* b* 

SSC 

(°Brix) 

DMC 

(g/g FW) 

pH 

TA  

(meq/kg FW) 

malic acid 

(g/kg FW) 

fructose 

(g/kg FW) 

sucrose 

(g/kg FW) 

glucose 

(g/kg FW) 

A: GD×GS 854.1± 70.3 a 1412.8± 124.5 a 46.3± 1.0 a -4.5± 0.2 d 15.0± 1.2 a 13.9± 0.7 a 0.160± 0.007 a 3.7± 0.1 e 70.0± 10.5 b 7.0± 0.8 a 66.1± 6.4 a 42.3± 3.5 b 22.6± 2.8 a 

B: GD×BR 767.2 ± 67.4 b 1278.8± 128.7 b 45.2± 1.6 b -1.3± 1.9 b 13.9± 1.9 b 13.9± 0.5 a 0.160± 0.006 a 3.7± 0.1 d 58.7± 4.3 c 5.9± 0.1 b 66.4± 5.5 a 48.2± 3.1 a 18.0± 0.9 c 

C: GD×GA 684.7± 90.5 c 1127.0± 172.3 cd 46.1± 0.9 a -3.2± 0.7 c 14.7± 0.7 a 13.4± 0.7 b 0.156± 0.008 b 4.1± 0.2 a 42.7± 7.9 e 4.8± 0.8 c 61.6± 11.7 b 41.6± 4.7 b 16.8± 1.6 cd 

D: GS×BR 853.8± 99.2 a 1408.5± 173.0 a 43.6± 1.0 c -1.4± 2.0 b 12.4± 1.4 c 13.2± 0.5 b 0.154± 0.007 d 3.6± 0.1 e 76.6± 7.5 a 7.2± 0.8 a 59.0± 2.9 b 43.4± 5.1 b 22.3± 3.1 ab 

E: GS×GA 743.2± 115.2 b 1209.1± 197.0 bc 45.1± 0.5 b -3.5± 0.8 c 14.4± 1.1 ab 12.9± 0.5 c 0.150± 0.007 c 3.8± 0.2 c 60.5± 17.8 c 5.9± 1.5 b 54.2± 8.7 c 36.7± 2.0 c 21.0± 4.0 b 

F: BR×GA 651.7± 86.2 c 1061.4± 161.1 d 44.1± 1.2 c -0.3± 1.5 a 12.8± 1.7 c 12.8± 0.3 c 0.148± 0.003 c 4.0± 0.2 b 48.7± 10.2 d 4.7± 0.8 c 54.6± 7.2 c 43.3± 5.6 b 16.0± 1.1 d 

Note: Data are expressed as puree fresh weight (FW) ± standard deviation. Puree cultivars: Golden Delicious (‘GD’); Granny Smith (‘GS’), Braeburn (‘BR’) and Royal Gala (‘GA’).24 



Table S-3. The VIS-NIR (400-2500 nm) and MIR (900-1800 cm-1) spectral concentration 25 

profiles of each apple cultivar in formulated puree obtained from MCR-ALS.  26 

Groups Proportions 
MIRS (900-1800 cm-1)   VIS-NIRS (400-2500 nm) 

BR GA GD GS   BR GA GD GS 

A: 

GD×GS 

95%:5% 0.012 0.000 0.925 0.057   0.000 0.162 0.635 0.193 

90%:10% 0.010 0.000 0.911 0.073   0.000 0.275 0.381 0.333 

75%:25% 0.015 0.049 0.790 0.143   0.000 0.000 0.833 0.169 

50%:50% 0.015 0.000 0.566 0.415   0.000 0.000 0.595 0.406 

25%:75% 0.018 0.000 0.328 0.649   0.000 0.000 0.151 0.857 

10%:90% 0.075 0.000 0.100 0.809   0.000 0.000 0.254 0.731 

80%:20% 0.008 0.000 0.772 0.211   0.012 0.231 0.358 0.398 

33%:66% 0.079 0.003 0.337 0.571   0.033 0.061 0.043 0.868 

14%:86% 0.090 0.120 0.179 0.603   0.005 0.010 0.000 0.979 

B: GD:BR 

95%:5% 0.050 0.004 0.942 0.004   0.034 0.243 0.564 0.148 

90%:10% 0.081 0.010 0.897 0.000   0.000 0.250 0.621 0.133 

75%:25% 0.235 0.017 0.738 0.000   0.146 0.017 0.812 0.034 

50%:50% 0.495 0.004 0.492 0.000   0.252 0.000 0.764 0.000 

25%:75% 0.711 0.003 0.279 0.000   0.657 0.159 0.073 0.117 

10%:90% 0.847 0.013 0.135 0.000   0.866 0.079 0.000 0.058 

80%:20% 0.141 0.024 0.826 0.000   0.144 0.000 0.865 0.000 

33%:66% 0.515 0.000 0.425 0.058   0.599 0.164 0.103 0.133 

14%:86% 0.827 0.000 0.171 0.002   0.673 0.000 0.328 0.000 

C: GD:GA 

95%:5% 0.000 0.062 0.933 0.000   0.000 0.078 0.815 0.101 

90%:10% 0.048 0.047 0.897 0.005   0.000 0.000 0.995 0.000 

75%:25% 0.028 0.239 0.728 0.000   0.000 0.407 0.533 0.061 

50%:50% 0.006 0.474 0.500 0.016   0.019 0.584 0.272 0.113 

25%:75% 0.000 0.732 0.263 0.000   0.000 0.601 0.416 0.000 

10%:90% 0.000 0.907 0.087 0.000   0.000 0.521 0.483 0.000 

80%:20% 0.019 0.165 0.807 0.005   0.000 0.528 0.281 0.183 

33%:66% 0.003 0.642 0.352 0.001   0.000 0.367 0.632 0.000 

14%:86% 0.000 0.836 0.142 0.021   0.000 0.549 0.461 0.000 

D: GS:BR 

95%:5% 0.220 0.090 0.002 0.677   0.000 0.000 0.068 0.927 

90%:10% 0.283 0.259 0.000 0.444   0.001 0.000 0.000 0.994 

75%:25% 0.403 0.163 0.013 0.410   0.205 0.000 0.011 0.768 

50%:50% 0.636 0.138 0.000 0.217   0.417 0.000 0.092 0.492 

25%:75% 0.782 0.067 0.037 0.106   0.631 0.000 0.064 0.312 

10%:90% 0.951 0.005 0.000 0.040   0.853 0.000 0.000 0.144 

80%:20% 0.341 0.162 0.000 0.488   0.143 0.000 0.031 0.822 

33%:66% 0.738 0.082 0.000 0.171   0.543 0.000 0.201 0.249 

14%:86% 0.846 0.000 0.000 0.144   0.668 0.000 0.352 0.000 

E: GS:GA 

95%:5% 0.000 0.265 0.000 0.725   0.000 0.000 0.142 0.849 

90%:10% 0.006 0.219 0.000 0.787   0.000 0.000 0.178 0.822 

75%:25% 0.030 0.419 0.000 0.537   0.091 0.071 0.058 0.773 



50%:50% 0.009 0.655 0.000 0.334   0.093 0.000 0.560 0.340 

25%:75% 0.003 0.820 0.000 0.169   0.024 0.436 0.348 0.195 

10%:90% 0.047 0.702 0.238 0.000   0.000 0.068 0.943 0.000 

80%:20% 0.050 0.365 0.000 0.574   0.000 0.000 0.286 0.721 

33%:66% 0.000 0.799 0.000 0.193   0.000 0.453 0.114 0.431 

14%:86% 0.000 0.991 0.000 0.000   0.000 0.428 0.530 0.046 

F: BR:GA 

95%:5% 0.785 0.209 0.000 0.000   0.706 0.000 0.314 0.000 

90%:10% 0.849 0.149 0.000 0.000   0.737 0.131 0.076 0.058 

75%:25% 0.599 0.398 0.000 0.000   0.513 0.000 0.496 0.000 

50%:50% 0.406 0.593 0.000 0.000   0.292 0.620 0.000 0.097 

25%:75% 0.138 0.857 0.000 0.000   0.000 0.541 0.471 0.000 

10%:90% 0.051 0.946 0.000 0.000   0.000 0.533 0.475 0.000 

80%:20% 0.732 0.263 0.000 0.000   0.649 0.194 0.000 0.162 

33%:66% 0.254 0.745 0.000 0.000   0.176 0.644 0.033 0.136 

14%:86% 0.067 0.932 0.000 0.000   0.804 0.000 0.183 0.014 

Puree cultivars: Golden Delicious (‘GD’); Granny Smith (‘GS’), Braeburn (‘BR’) and Royal Gala 27 

(‘GA’). 28 
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