Bartonella gabonensis sp. nov., a new bartonella species from savannah rodent Lophuromys sp. in Franceville, Gabon

To cite this version:
J.B. Mangombi, N. N’Dilimabaka, H. Medkour, O.L. Banga, M.L. Tall, et al.. Bartonella gabonensis sp. nov., a new bartonella species from savannah rodent Lophuromys sp. in Franceville, Gabon. New Microbes and New Infections, Wiley Online Library 2020, 38, pp.100796. 10.1016/j.nmni.2020.100796. hal-03086548

HAL Id: hal-03086548
https://hal.inrae.fr/hal-03086548
Submitted on 22 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Characterization and antibiotic resistance pattern of diffusely adherent *Escherichia coli* (DAEC), isolated from paediatric diarrhoea in Shiraz, southern Iran

K. Javadi¹, S. Mohebi¹, M. Motamedifar¹,² and N. Hadi¹,³

¹) Department of Bacteriology and Virology, School of Medicine, ²) Shiraz HIV/AIDS Research Centre, Institute of Health and ³) Bioinformatics and Computational Biology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Diarrhoea is a major health concern, especially in developing countries. Research has implicated diffusely adherent *Escherichia coli* (DAEC) strains as a cause of diarrhoea. In this study, we investigated the prevalence, adherence assay, virulence gene profiles and antimicrobial resistance of DAEC at a hospital in southern Iran. In this cross-sectional study, 309 infants and children under the age of 13 years with diarrhoea who had been referred to Shahid Dastgheib Hospital, Shiraz between October 2018 and May 2019 were recruited. Microbiological methods, PCR, HEp-2 adherence assay and antimicrobial susceptibility test were used. Of the 309 stool samples, 207 (66.9%) were found to contain *E. coli* by biochemical tests and culture. Molecular analysis of Afa/Dr and AIDA-I adhesin-encoding genes showed that 14 (6.7%) out of 207 *E. coli* isolates were DAEC. All DAEC isolates in HEp-2 cells showed a diffusely adherent pattern. The virulence genes *sat*, *pet*, *sigA*, *pic*, *asta* and *fimH* were found in 50%, 0%, 14.2%, 14.2%, 21.4% and 100% of DAEC isolates, respectively. The most effective antibiotic against the DAEC isolates was imipenem (92.8%) and the least effective was ampicillin (0%). Our findings expand the knowledge on DAEC prevalence and its characteristics in Iran. It also explains the role of virulence genes in DAEC pathogenesis. The results showed that although the prevalence of DAEC is low, these strains exhibit a high rate of antimicrobial resistance as well as high frequency for carrying virulence genes.

© 2020 Published by Elsevier Ltd.

Keywords: Adherence, antibiotic resistance, diarrhoea, diffusely adherent *Escherichia coli*, virulence genes

Original Submission: 19 August 2020; Revised Submission: 25 September 2020; Accepted: 5 October 2020

Article published online: 10 October 2020

Introduction

Diarrhoea is a major health problem, especially in developing countries, and one of the most important causes of mortality among children under the age of 5 [1]. The aetiological agents of diarrhoea include a wide range of viruses, bacteria and parasites. Among the bacterial pathogens, diarrhoeagenic *Escherichia coli* is an important cause of endemic and epidemic diarrhoea worldwide [2].

Diarrhoeagenic *E. coli* strains are classified into six main pathotypes based on their specific virulence characteristics, association with some serotypes and epidemiological characteristics: enteropathogenic *E. coli*, enterohaemorrhagic *E. coli*, enterotoxigenic *E. coli*, enteroaggregative *E. coli*, enteroinvasive *E. coli* and diffusely adherent *E. coli* (DAEC) [2].

DAEC strains are defined based on the presence of a diffuse adherence pattern (DA) on HeLa and HEp-2 epithelial cells. In the DA pattern, bacteria uniformly cover the cell surface [3].

According to the adhesin expression, two groups of DAEC strains have been identified, Afa/Dr DAEC and AIDA-I DAEC. Furthermore, these adhesins are also responsible for the DA phenotype [4]. Afa/Dr DAEC strains are associated with acute diarrhoea in children, especially in those 6 months and older, with persistent diarrhoea. Therefore, the DAEC pathogroup contains Afa/Dr adhesin-encoding genes and can cause...
diarrhoea in patients [5]. The Afa/Dr family includes fimbrial and afimbrial adhesins, afimbrial adhesins Afa-I, Afa-II, Afa-III, Afa-V, Afa-VII, Afa-VIII, plus Dr-2 as well as Dr and F1845 fimbrial adhesins. Many of these adhesions have been identified in E. coli strains isolated from human urinary tract infections or diarrhoea, except Afa-VII, which was only found in E. coli isolated from bovine faeces [6]. F1845 adhesin was first identified in an E. coli strain (C1845) isolated from a child with chronic diarrhoea [6]. Until now, only the genes encoding for Afa-I, Afa-II, Afa-III and Afa-V have been identified in E. coli strains isolated from individuals with diarrhoea [7].

Afa-I and Afa-V adhesins only bind to the decay-accelerating factor, whereas AfaE–III, Dr and F1845 can each also bind to carcinoembryonic antigen-related cell adhesin molecules, and the Dr adhesin can also bind to type IV collagen [8–10].

Enterobacteriaceae have autotransporters called Serine protease autotransporters of Enterobacteriaceae (SPATEs). SPATEs are classified into two classes. Pet (plasmid-encoded toxin), Sat (secreted autotransporter toxin) and SigA are members of Class I SPATEs, which are cytotoxic to epithelial cells; Pic (protease involved in intestinal colonization) are members of Class II SPATEs, and are non-cytotoxic. The distribution of SPATEs among the diarrhoeagenic *E. coli* has been shown in many studies [11].

Type I pili are a type of composite surface fibre present in DAEC and are encoded by the *fim* gene cluster. FimH is the pilus adhesin [12]. Some DAEC strains through activation of Src and the mitogen-activated protein kinase, elicit a secondary interleukin-8 production by polymorphonuclear lymphocytes in a type-I pili-dependent manner [13].

Other virulence factor genes are recorded in DAEC strains, including *astA*, the gene for enteroaggregative heat-stable toxin I (EAST1), which was first identified in the enteroaggregative *E. coli* EAST1 similarly stimulates the guanylate cyclase receptor to both enterotoxigenic *E. coli* St toxin and guanylin [14].

Enteropathogenic *E. coli* strains might show a DA pattern on HEp-2 and HeLa cells; therefore, we cannot use cell adhesins assay alone to detect Afa/Dr DAEC [15]. PCR is a simpler and faster method to identify Afa/Dr adhesins; consequently, PCR methods are more suitable to describe Afa/Dr DAEC strains [16,17]. Overall, these studies have clearly shown that it is important to determine the prevalence of DAEC selecting Afa or Daa target genes [18].

Although recent epidemiological studies indicated a high prevalence of DAEC strains isolated from diarrhoeal faeces, its pathogenicity has not been identified in adults [19]. It was found that the relative risk of diarrhoea associated with DAEC increases with the child’s age from 18 months to 5 years [20]. The reason for such an age-related phenomenon and the mode of DAEC acquisition are yet to be determined [21].

The objectives of this study were to determine the prevalence of DAEC by PCR and HEp-2 cell adhesion assays among bacterial enteropathogens recovered from children with diarrhoea in Shahid Dastgheib Hospital, Shiraz, Iran, as well as to determine the presence of virulence genes in DAEC strains. We also determined the antimicrobial resistance profiles of the DAEC strains.

Materials and methods

Sample collection

This cross-sectional study included infants and children under the age of 13 years with diarrhoea who were referred to Shahid Dastgheib Hospital from October 2018 to May 2019. Patient information, such as age, gender, occult blood, pus cells and red blood cells, were obtained. Our exclusion criteria were age >13 years, no diarrhoea, insufficient data, and dry or suspected contaminated sample.

Laboratory processing

The stool samples were immediately cultured on xylose lysine deoxycholate and MacConkey agar media in the laboratory of Shahid Dastgheib Hospital and then transferred to the laboratory of Bacteriology and Virology at Shiraz University of Medical Sciences for definitive diagnosis and identification. After incubation for 24 h at 37°C, lactose-positive colonies were re-cultured with standard biochemical methods to detect *E. coli*.

The tests included Gram staining, oxidase test, catalase test, motility test, triple-sugar iron fermentation, the citrate test, methyl red staining, the Voges–Proskauer test, indole test, ortho-nitrophenylgalactoside test, and acid production from carbohydrates.

Escherichia coli isolates were stored at −70°C in tryptic soy broth containing 20% glycerol (Merck Co., Darmstadt, Germany) for further characterization.

DNA extraction

DNA was extracted using the boiling method. In this method, a single colony was grown on eosin methylene blue agar plates, mixed with 300 μL distilled water and boiled at 100°C for 10 minutes. After centrifugation at 13 000 g for 15 min, the supernatant containing the extracted DNA was transferred into a new sterile tube and stored at −20°C.

Identification of DAEC isolates

All *E. coli* isolates were tested by PCR to detect six adherence genes: *afaE-I*, *afaE-2*, *afaE-3*, *afaE-5*, *daaE* and *aidalaoah* for identification of DAEC isolates. The primers that were used to amplify these genes are listed in Table 1.
layers of 105 HEp-2 cells were grown in Dulbecco's Modified Eagle medium (DMEM) by Scaletsky et al. [22], with slight modifications. DAEC isolates were examined for HEp-2 adherence as described below. Staining with safe stain load dye (CinnaGen Co., Tehran, Iran), acid buffer and were visualized using ultraviolet light after electrophoresis in 1.5% agarose gels in the 0.5 Tris/EDTA/boric acid buffer and were visualized using ultraviolet light after staining with safe stain load dye (CinnaGen Co., Tehran, Iran).

HEp-2 adherence assay

DAEC isolates were examined for HEp-2 adherence as described by Scaletsky et al. [22], with slight modifications. Briefly, monolayers of 10^5 HEp-2 cells were grown in Dulbecco’s modified Eagle medium (DMEM) with 10% fetal bovine serum in Leighton tubes containing a cover slip and incubated for 48 h at 37°C. DAEC strains were grown in 3 mL of trypticase soy broth for 16–18 h at 37°C. The tubes were then washed with phosphate-buffered saline and 1 mL of DMEM with 10% fetal bovine serum was added to each tube. The monolayers were infected with 40 μL of bacterial cultures added to 1 mL of DMEM and incubated for 3 h at 37°C. The infected monolayers were washed with sterile phosphate-buffered saline, fixed with methanol, stained with Giemsa stain and examined for DA pattern under a light microscope using a × 100 objective.

TABLE 1. Primers used in PCR analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences</th>
<th>Annealing temperature (°C)</th>
<th>Amplicon size (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>afaE-1</td>
<td>5'-CGAAACAGCGCAGTACGAG-3'</td>
<td>58°C</td>
<td>230 pb</td>
<td>[26]</td>
</tr>
<tr>
<td>afaE-2</td>
<td>5'-TTAGACCACTGATTTGTTGATCC-3'</td>
<td>60°C</td>
<td>375 pb</td>
<td>[26]</td>
</tr>
<tr>
<td>afaE-3</td>
<td>5'-TTAGACCACTGATTTGTTGATCC-3'</td>
<td>58°C</td>
<td>408 pb</td>
<td>[26]</td>
</tr>
<tr>
<td>afaE-5</td>
<td>5'-ACCACTGCTGATTTGTTGATCC-3'</td>
<td>61°C</td>
<td>429 pb</td>
<td>[26]</td>
</tr>
<tr>
<td>daaE</td>
<td>5'-CACTGCTGATTTGTTGATCC-3'</td>
<td>56°C</td>
<td>380 pb</td>
<td>[26]</td>
</tr>
<tr>
<td>daaI</td>
<td>5'-TCGCTGCTGATTTGTTGATCC-3'</td>
<td>52°C</td>
<td>204 pb</td>
<td>[29]</td>
</tr>
<tr>
<td>sigA</td>
<td>5'-GCAGACAGAT GTAAGACGGTGGTGTAAGAT-3'</td>
<td>58°C</td>
<td>930 pb</td>
<td>[35]</td>
</tr>
<tr>
<td>pet</td>
<td>5'-CCATTATACACGATTAACAGCCACC-3'</td>
<td>58°C</td>
<td>302 pb</td>
<td>[35]</td>
</tr>
<tr>
<td>sigA</td>
<td>5'-CCGACTTCTCCTACTTCTCTCCC-3'</td>
<td>58°C</td>
<td>430 pb</td>
<td>[35]</td>
</tr>
<tr>
<td>pic</td>
<td>5'-ACTGAGCTTAAGGGCTAGGAT-3'</td>
<td>58°C</td>
<td>572 pb</td>
<td>[35]</td>
</tr>
<tr>
<td>astA</td>
<td>5'-CGACGACGAT GTAAGACGGTGGTGTAAGAT-3'</td>
<td>58°C</td>
<td>110 pb</td>
<td>[39]</td>
</tr>
<tr>
<td>fimH</td>
<td>5'-TCGGAAGTCTGACGACTGTTGTAAGAT-3'</td>
<td>61°C</td>
<td>508 pb</td>
<td>[39]</td>
</tr>
</tbody>
</table>

The PCR assay was performed in a total volume of 25 mL containing 0.5 mL of each primer (10 pM), 12.5 mL of DNA Polymerase Master Mix RED (Ampliqon Co., Inc., Odense, Denmark), 1 mL of DNA and 10.5 mL of water (DNase- and RNase-free water) in a T100™ thermal cycler (Bio-Rad, Hercules, CA, USA) under the following conditions: initial denaturation at 95°C for 5 min followed by 30 cycles of denaturation at 95°C for 1 min, annealing at 52°C–61°C for 1 min (Table 1), and extension at 72°C for 1 min, and a single final extension at 72°C for 5 min. PCR products underwent electrophoresis in 1.5% agarose gels in the 0.5 Tris/EDTA/boric acid buffer and were visualized using ultraviolet light after staining with safe stain load dye (CinnaGen Co., Tehran, Iran).

Detection of virulence genes

All DAEC isolates were examined by PCR to detect six virulence genes: sat, pet, sigA, pic, astA and fimH. The primers used to amplify these genes are listed in Table 1. The same conditions as for the adherence genes were employed for the detection and amplification of virulence genes expect that the annealing temperature was 56°C–58°C.

Antimicrobial susceptibility testing

Antibiotic susceptibility testing of the DAEC isolates to ampicillin, ampicillin-sulbactam, cefotaxime, ceftriaxone, imipenem, gentamicin, nalidixic acid, trimethoprim-sulfamethoxazole, moxifloxacin and chloramphenicol (Mast Group Ltd, Bootle, UK) was carried out on Müller–Hinton agar (Merck Co.) by disc diffusion method according to the Clinical and Laboratory Standards Institute. Escherichia coli ATCC25922 was used as the quality control strain.

DNA sequence analysis

To verify the accuracy of amplified genes of afaE-1, afaE-2, afaE-3, afaE-5, and fimH, the amplicons were submitted for sequencing (Bioneer Co., Munpyeongseoero, Daebeok-gu, Daejeon, South Korea) and the resulting sequences were analysed using online BLAST software (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Standard strains of *E. coli* were used as the control to detect *daaE* and *aida/aha*, which were C1845 and 2787, respectively [18,23].

© 2020 Published by Elsevier Ltd. NMNI. 38, 100780 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Statistical analysis
SPSS software, version 26.0 (IBM Corp., Armonk, NJ, USA) was used for statistical analysis. The chi-square test and Fisher’s exact test were performed for analysis of the data and p values < 0.05 were considered to be statistically significant.

Results

Subject
A total of 309 stool samples from children under 13 years old with diarrhoea were included in our study. The samples were divided into three groups, 131 (42.3%) samples from children younger than 3 years; 98 (31.7%) from children aged 3–6 years and 80 (25.8%) from children aged 7–12 years. Male to female ratio was 52.7% to 47.3% (163 males versus 146 female).

Prevalence of DAEC strains
Escherichia coli isolates were identified in 207 (66.9%) samples by biochemical tests and culture. Strains of E. coli harbouring the Afa/Dr and AIDA-I adhesin-encoding genes were found in the stool samples of 14 (6.7%) children with diarrhoea (Table 2); positive samples were from six boys and eight girls. Seven (50%) children with DAEC were under 3 years old, five (35.7%) and two (14.3%) were aged 3–6 years and 7–12 years, respectively (Table 3). Most DAEC samples contained occult blood, red blood cells and pus cells (Table 4).

Adherence pattern analysis of DAEC strains
The analysis of the adherence patterns of the 14 isolates studied in HEp-2 cells showed that 100% (14 isolates) expressed the DA pattern (Fig. 1).

Presence of virulence genes
All DAEC isolates were tested by PCR to detect the genes of the proposed DAEC virulence factors, including sat, pet, sigA, pic, astA and fimH. Seven DAEC strains were positive for sat (50%). The astA gene was identified in three (21.4%) DAEC strains and the pic and sigA genes were found in two (14.2%) of the 14 DAEC strains. All DAEC isolates were negative for the pet gene and all DAEC isolates were positive for the fimH gene (Table 5). Several different combinations of the virulence markers were found among the DAEC isolates (Table 6).

Antimicrobial resistance among DAEC isolates
The results of antimicrobial susceptibility testing of the diarrhoeagenic DAEC isolates with 11 antibiotics by disc diffusion method are shown in Table 7. The most effective antibiotic against DAEC was imipenem and the least effective was ampicillin.

Discussion
The DAEC strains are a heterogeneous group of E. coli strains that generate a diffuse adherence pattern on HeLa and HEp-2 cells [20]. Food or water polluted with human or animal faeces is the main transmission route for the DAEC pathotype [24]. DAEC strains destroy the intestinal epithelium by binding to proteins that accelerate degradation. They account for a large proportion of diarrhoeal cases observed in inpatients who have no other identified enteropathogen [19]. Recent epidemiological studies have implicated DAEC strains as a cause of diarrhoea in children in developing countries [25].
The proportion of DAEC among E. coli in our study was 6.7%, which is comparable to previous reports in Shiraz (7.9%) [25]. DAEC occurrence in our study was higher than in northwest Mexico (6.2%) [26] and in South American countries, such as Peru (4%) and Colombia (1.2%) [27,28]. In contrast, the identified rate of DAEC was 8.18% in China [29], 15.7% in Brazil [30] and 35% in Mexico [14], which is higher than the rate found in this study.

We investigated all sample data to find any association between these data and DAEC positivity. Accordingly, we classified our data based on age, gender and stool analysis findings, such as occult blood, red blood cells and pus cells. There was no significant association between these data and DAEC, which shows that all diarrhoeal stools should be examined for DAEC isolates.

The Afa/Dr adhesin-encoding genes afaE-1, afaE-2, afaE-3, afaE-5 and daaE were identified in 64.3%, 14.2%, 28.6%, 21.5% and 35.7% of DAEC isolates, respectively. These genes are responsible for the adherence of DAEC to epithelial cells and are considered virulence factors.

TABLE 5. Incidence of virulence genes among diffusely adherent *Escherichia coli* (DAEC) isolates from children with diarrhoea

<table>
<thead>
<tr>
<th>Genetic profile</th>
<th>Sat</th>
<th>pet</th>
<th>sigA</th>
<th>pic</th>
<th>astA</th>
<th>fimH</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAEC</td>
<td>7 (50%)</td>
<td>0 (0)</td>
<td>2 (14.3%)</td>
<td>2 (14.3%)</td>
<td>3 (21.4%)</td>
<td>14 (100%)</td>
</tr>
</tbody>
</table>

TABLE 6. The prevalence of different virulence genes among diffusely adherent *Escherichia coli* (DAEC) isolates from children with diarrhoea

<table>
<thead>
<tr>
<th>Genetic profile</th>
<th>No. (%) of DAEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>fimH</td>
<td>6 (42.8)</td>
</tr>
<tr>
<td>fimH, sat</td>
<td>2 (14.2)</td>
</tr>
<tr>
<td>fimH, sigH</td>
<td>1 (7.1)</td>
</tr>
<tr>
<td>fimH, sat, pic</td>
<td>1 (7.1)</td>
</tr>
<tr>
<td>fimH, sat, astA</td>
<td>3 (21.5)</td>
</tr>
<tr>
<td>fimH, sat, sigH, pic</td>
<td>1 (7.1)</td>
</tr>
</tbody>
</table>

TABLE 7. Antimicrobial susceptibility of diffusely adherent *Escherichia coli* isolates from children with diarrhoea

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>Resistant, n (%)</th>
<th>Susceptible, n (%)</th>
<th>Intermediate, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>14 (100)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Ampicillin-sulbactam</td>
<td>10 (71.4)</td>
<td>3 (21.5)</td>
<td>1 (7.1)</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>11 (79.6)</td>
<td>2 (14.3)</td>
<td>1 (7.1)</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>7 (50)</td>
<td>4 (28.6)</td>
<td>3 (21.5)</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>8 (57.1)</td>
<td>5 (35.7)</td>
<td>1 (7.1)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>0 (0)</td>
<td>13 (92.3)</td>
<td>1 (7.1)</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>2 (14.3)</td>
<td>12 (85.7)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Trimethoprim-Sulfamethoxazole</td>
<td>11 (78.6)</td>
<td>2 (14.3)</td>
<td>1 (7.1)</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>5 (35.7)</td>
<td>6 (42.9)</td>
<td>3 (21.5)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>5 (35.7)</td>
<td>7 (50)</td>
<td>2 (14.3)</td>
</tr>
</tbody>
</table>

The proportion of DAEC among E. coli in our study was 6.7%, which is comparable to previous reports in Shiraz (7.9%) [25]. DAEC occurrence in our study was higher than in northwest Mexico (6.2%) [26] and in South American countries, such as Peru (4%) and Colombia (1.2%) [27,28]. In contrast, the identified rate of DAEC was 8.18% in China [29], 15.7% in Brazil [30] and 35% in Mexico [14], which is higher than the rate found in this study.

We investigated all sample data to find any association between these data and DAEC positivity. Accordingly, we classified our data based on age, gender and stool analysis findings, such as occult blood, red blood cells and pus cells. There was no significant association between these data and DAEC, which shows that all diarrhoeal stools should be examined for DAEC isolates.

The Afa/Dr adhesin-encoding genes afaE-1, afaE-2, afaE-3, afaE-5 and daaE were identified in 64.3%, 14.2%, 28.6%, 21.5% and 35.7% of DAEC isolates, respectively. These genes are responsible for the adherence of DAEC to epithelial cells and are considered virulence factors.

FIG. 1. Microscopic appearance of adherence patterns on HEp2 cells of diffusely adherent *Escherichia coli* (DAEC) isolates from children with diarrhoea: (a) DAEC C1845, (b) E. coli K12, (c) DAEC isolated from children with diarrhoea.
and 21.5% of DAEC isolates, respectively (Table 4). Mansan-Almeida et al. detected afaE-1, afaE-2, afaE-3, afaE-5 and daae in, respectively, 44%, 10%, 2%, 2% and 6% of DAEC isolated from children with diarrhoea [26]. Therefore, the most frequent gene among Afa/Dr DAEC strains was afaE-1 in our study.

Aida-I is the E. coli adhesin involved in diffuse adherence [31]. In the current study, aida/aah was not detected in any DAEC isolates, which is in line with the Abbasi et al. study [24]. These results indicate that the prevalence of aida/aah was low in DAEC isolates.

The PCR results for the Afa/Dr genes showed significant relation with the HEp-2 cell adhesion assay, as 100% of Afa/Dr-positive isolates were confirmed as DAEC. This is the first report on the adhesion assay of DAEC in Iran.

The sat gene was detected in seven (50%) DAEC isolates in this study. Guignot et al. showed that sat might play a role in Afa/Dr DAEC intestinal pathogenesis by inducing lesions at the junctional barrier in Caco-2/TC7 monolayers [32]. Spano et al. found sat in 7.1% of DAEC isolated from children [33]. Li et al. reported that 44.44% of DAEC was positive for sat [27] and Mansan-Almeida et al. found sat in 46% of DAEC isolated from children [26]. The rate of sat genes in our study was higher than those reported by Li et al. [27] and Mansan-Almeida et al. [26], and much higher than the percentage reported by Spano et al. [33]. Therefore, it seems that sat is common in the pathogenesis of DAEC.

In the present study, pet was not identified in any DAEC isolates. Pet generates diarrhoeagenic effects by changes in the actin cytoskeleton [34]. Spano et al. reported that 14.2% of DAEC isolated from children was positive for pet [33] but other studies did not detect the pet gene in any DAEC isolates [14,27,35].

A total of 14.2% of the DAEC isolates harboured sigA and pic genes in this study. SigA is a cytotoxin that was found to have significant cytotoxic effects on HEp-2 cells [36]. Pic is the protein involved in intestinal colonization in children with diarrhoea, and unlike sigA it does not have a cytotoxic effect on HEp-2 cells [37]. Spano et al. identified pic in 2.3% of DAEC isolated from children [33]. Boisen et al. detected pic in 10% of DAEC strains, whereas sigA was not detected in any DAEC [38]. Our results showed that the existence of pic and sigA in DAEC isolates was higher than in other studies.

The astA gene encodes the EAST-1 toxin with a positive rate of 21.4% in DAEC isolates in this study. EAST-1 toxin is thought to be a supplementary determinant in the pathogenesis of E. coli diarrhoea [39]. Spano et al. detected astA in 9.5% of DAEC isolated from children [33]. Lopes et al. reported that 15.2% of DAEC was positive for astA [35], and Patzi-Vargas et al. identified astA in 3.1% of DAEC [14]. These findings are contrary to our findings, which showed the occurrence of astA in DAEC isolates to be much higher.

In this study, the type 1 fimbriae-encoding gene fimH was identified in all DAEC isolates. Li et al. found fimH in 100% of DAEC strains [27], and Lopes et al. detected the fimH gene in 48.2% of DAEC strains [35]. Johnson and Stell identified this adhesin in nearly all E. coli strains [40].

In the present study, we observed high percentages of resistance to ampicillin, cefotaxime and cotrimoxazole; only imipenem and gentamicin were effective against 92.8% and 85.7% of DAEC isolates, respectively. Moreover, resistance to more than one antibiotic was found in 100% of DAEC strains. Different studies have reported that most DAEC strains were resistant to several antibiotics, such as sulfonamide, doxycycline, tetracycline, ampicillin, cefotaxime and cotrimoxazole, whereas the isolates were sensitive to antibiotics such as imipenem, amikacin, gentamicin and nitrofurantoin [25,27,28,33].

Conclusions

Our findings expand our knowledge of DAEC prevalence and characteristics in Iran, and explain the role of virulence genes in DAEC pathogenesis. Although the prevalence of DAEC was low, these strains exhibited high rates of antimicrobial resistance and high frequency for carrying virulence genes. Furthermore, preventing infections caused by this bacterium among children is essential and further researches are warranted, which should include other cities in Iran, using larger number of DAEC isolates.

Conflict of interest

The authors declare that there is no conflict of interest in relation to this article.

Authors’ contribution

All authors participated in the research design and contributed to different parts of the research.

Funding

This paper was part of the MSc thesis of K. Javadi supervised by N. Hadi and was supported by Shiraz University of Medical Sciences grant No. 97–18400.
Ethical approval

The study design was approved by the Ethics Committee of Shiraz University of Medical Sciences IR.SUMS.REC.1398.613 and followed the statements of the Declaration of Helsinki.

Acknowledgements

The authors wish to thank the staff of the microbiology laboratories of the hospitals for their kind collaboration.

References

