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Abstract— A new approach based on the change detection 

technique is proposed for the estimation of surface soil moisture 

(SSM) from a time series of radar measurements. A new index of 

reflectivity (IR) is defined that uses radar signals and Fresnel 

coefficients. This index is equal to 0 in the case of the smallest 

value of the Fresnel coefficient, corresponding to the driest 

conditions and the weakest radar signal, and is equal to 1 for the 

highest value of the Fresnel coefficient, corresponding to the 

wettest soil conditions and the strongest radar signal. The 

Integrated Equation Model (IEM) is used to simulate the 

behavior of radar signals as a function of soil moisture and 

roughness. This approach validates the greater usefulness of the 

IR compared with that of the commonly used index of SSM 

(ISSM), which assumes that the SSM varies linearly as a function 

of radar signal strength. The IR-based approach was tested using 

Sentinel-1 radar data recorded over three regions: Banizombou 

(Niger), Merguellil (Tunisia), and Occitania (France). The IR 

approach was found to perform better for the estimation of SSM 

than the ISSM approach based on comparisons with ground 

measurements over bare soils. 
 

Index Terms— change detection, index of reflectivity, index of 

surface soil moisture, surface soil moisture, Sentinel-1, radar 

 

I. INTRODUCTION 

Soil moisture is an essential parameter for analyzing 

interactions between the Earth’s surface and the atmosphere as 

well as the manner in which precipitation is ultimately 

allocated among the three main processes of runoff, 

infiltration and evapotranspiration [1-3]. In this context, 

remote sensing has demonstrated its considerable potential for 

monitoring the water content of soil surfaces [4-5]. Several 

different approaches have been used for this purpose, based 

primarily on the interpretation of passive and active 

microwave observations [6-15]. 
 

Manuscript received ???; revised ??; accepted ???. Date of publication ???; 

date of current version ???. 
This work was supported in part by the French Space Study Center 

(TAPAS TOSCA program) and in part by the European Sapce Agency 

(Irrigation+ program). (Corresponding author: Mehrez Zribi.)  
M. Zribi, M. Foucras are with the Centre d’Etudes Spatiales de la 

Biosphère (CNRS/UPS/IRD/CNES/INRAE), 31401 Toulouse cedex 9, France 

(e-mail: mehrez.zribi@ird.fr, myriam.foucras@cesbio.cnes.fr), N. Baghdadi is 
with the INRAE, TETIS, University of Montpellier, 34093 Montpellier cedex 

5, France (e-mail: nicolas.baghdadi@teledetection.fr), J. Demarty is with the 

HSM/IRD, 300 avenue du Professeur Emile Jeanbrau, 34090 Montpellier, 
France; (e-mail: jerome.demarty@ird.fr), S. Muddu is with the Indian Institute 

of Science; Bengalore, India (e-mail: sekhar.muddu@gmail.com) 

 

 

The first methods to be proposed were based on the use of 

data from the Soil Moisture and Ocean Salinity (SMOS) [7] 

and Soil Moisture Active and Passive (SMAP) [9] missions 

and produced SSM estimations at relatively low spatial 

resolutions of approximately 10-50 kilometers. So-called 

active radar missions involve the use of synthetic aperture 

radar (SAR) data and low-resolution scatterometers. Methods 

based on the use of SAR data are generally applied at the scale 

of agricultural fields [16-26] or at scales close to 1 km 

resolution [27-29]; in recent years, they have become more 

consistent and operational thanks to the arrival of the Sentinel-

1 Copernicus constellation [28-29]. In this context, there are 

three main approaches to the inversion of radar signals: one is 

based on direct inversion of physical models [30-32], a second 

is based on statistical techniques such as neural networks [33-

36], and the other is based on the use of change detection 

algorithms [37-40]. 

The change detection approach was first applied at a low 

spatial resolution with data provided by the European Remote 

sensing Satellite (ERS) and the Advanced SCATterometer 

(ASCAT) instrument on the METeorological OPerational 

satellite (METOP) platform of the European Space Agency 

(ESA) [37]. This approach was used to develop an operational 

product at resolutions of 12.5 and 25 km for water content 

monitoring at global scales and for operational applications. A 

moisture index between 0 and 1 was proposed, with 0 

corresponding to the weakest radar signal and thus to the 

driest soil conditions and 1 corresponding to the strongest 

radar signal and thus to the wettest soil conditions, with the 

model assuming a linear relationship between radar signal 

strength and soil moisture. This approach has been generalized 

to other applications at medium and high spatial resolutions. 

Reference [28] thus developed soil moisture products at a 1 

km spatial resolution using Sentinel-1 data, and these products 

are now used operationally for the European continent. The 

results illustrate the strong potential of this method, despite 

limitations in certain areas resulting from inaccurate modeling 

of the influence of vegetation on the backscattered radar 

signals [41]. Reference [39] also proposed an application 

based on the change detection technique for the study of soil 

moisture at a scale equivalent to the size of agricultural plots. 

These authors took the influence of vegetation cover into 

account and used optical images from the Sentinel-2 satellite 

to assess temporal variations in surface-scattered Sentinel-1 
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radar signals. Reference [40] proposed an approach based 

on cumulative density function (CDF) matching, which is 

more sophisticated than the simple hypothesis of linearity 

between soil moisture and RADARSAT-2 radar signal 

strength. For all applications at high spatial resolutions, an 

accuracy generally better than 0.06 m
3
/m

3
 is achieved when 

this moisture index is converted to volumetric moisture. In 

conclusion, the main advantage of change detection approach 

is the simplicity of the proposed algorithms, the limitation of 

the number of input parameters, with high precision of the 

estimates. On this basis, it is suitable for an operational 

application. 

In parallel with the aforementioned methods used for the 

inversion of radar signals, theoretical simulations and various 

experimental studies [42-46] have long shown that the 

relationship between radar signal strength and SSM is 

nonlinear, as clearly illustrated by the radar signal saturation at 

high soil moisture levels. Thus, despite the generally accurate 

estimations achieved with the change detection approach, the 

assumption of linearity between radar signals and SSM can 

lead to inaccurate soil water content estimations under 

extreme conditions, as has already been observed in areas 

affected by high moisture levels [47]. 

The purpose of this article is to propose an improved 

approach that is based on the change detection technique but 

takes into account the observed nonlinearity of variations in 

radar signal strength as a function of soil moisture. 

Section II presents the study sites and data described in this 

paper. Section III describes the proposed methodology and 

introduces our new index of reflectivity (IR). Section IV 

presents the results and discusses the application of the 

proposed approach to three study sites based on Sentinel-1 

time series data. Our conclusions are presented in section V. 

II. STUDY SITES AND DATABASES 

A. Study sites 

In the present study, three sites were investigated. These 

sites, located in West Africa (Niger), North Africa (Tunisia) 

and Occitania (France) (Fig. 1), were equipped with ground 

stations.  

 

1) Niger site 

The ground measurements were carried out in 

southwestern Niger, near Banizombou, between the Niger 

River and the fossil valley of Dallo Bosso. This is a portion of 

a one square degree area (12-13°N, 2–3°E), defined in 1992 

for the purposes of the international Hapex-Sahel survey and 

the African Monsoon Multidisciplinary Analysis–Coupling the 

Tropical Atmosphere and the Hydrological Cycle (AMMA-

CATCH) observatory [48-49]. The Sahelian climate in this 

region is semiarid, with an average annual rainfall ranging 

between 300 and 750 mm, and is characterized by a rainy 

season from June to September. The landscape is mainly flat 

and is dominated by dissected plateaus with slopes of less than 

6%. The plateaus have lateritic soils and are partly covered 

with tiger bushes. These plateaus are surrounded mostly by 

terrain with strong transitional features and steep inclines that 

can have slopes of up to 35%. Vegetation in the valleys is 

dominated by cultivated (mainly millet) and fallow fields. 

Over the studied site, a network of two continuous Thetaprobe 

stations (Delta T Devices) installed in locations with bare soil 

provided moisture measurements every 1 h, near Banizombou 

(~12°43’N; 2°30’E). At each station, all in situ measurements 

were made at depths of 5 cm and were calibrated using 

gravimetric measurements. The data for this site can be 

obtained from the International Soil Moisture Network 

(https://ismn.geo.tuwien.ac.at/en/). 

 

2) Merguellil site 

The Merguellil site is located in central Tunisia (9°54’E; 

35°35’N). It is characterized by a semiarid climate with highly 

variable rainfall patterns, very dry summer seasons and wet 

winters. The average annual rainfall is approximately 

300 mm/year [17]. The studied site is in an agricultural region 

where the dominant croplands are mainly olive groves and 

cereal fields; the croplands have large irrigated perimeters that 

mobilize large quantities of water for agricultural production. 

Over the studied site, a network of seven continuous 

Thetaprobe stations installed in locations with bare soil 

provided moisture measurements every 3 h. At each station, 

the measurements were made at depths of 5 cm. All soil 

moisture measurements were calibrated using gravimetric 

measurements. Four stations covering the period of Sentinel-1 

measurements are considered in this study (Barrage 

(~35°35’N; 9°45’E), Barrouta (~35°36’N; 10°04’E), Bouhajla 

(~35°21’N; 10°12’E) and INGC (~35°37’N; 9°56’E)). The 

data for this site can be obtained from http://osr-cesbio.ups-

tlse.fr/. 

 

3) Occitania sites (France) 

The Occitania region was studied at several different 

sites close to the cities of Toulouse and Montpellier. The in 

situ SSM measurements were provided by the soil moisture 

observing system–meteorological automatic network 

integrated application (SMOSMANIA) observation system. 

SMOSMANIA is a long-term project that has been organized 

in an effort to acquire SSM profiles from automated weather 

stations in southwestern and southeastern France [50]. The 

stations were chosen in order to form a Mediterranean–

Atlantic transect for studying the marked climatic gradient 

between the two coastlines. The SSM probes (ThetaProbes) 

were calibrated at all depths (5, 10, 20, 30 cm) by measuring 

the SSM from gravimetric soil samples collected during the 

installation. In this study, only the measurements at 5 cm 

depth were used. While this region mainly consists of 

croplands, the stations are generally located in grasslands. 

Two stations (at Mouthoumet (~43°N; 2°31’E) and Narbonne 

(~43°11N; 3°E) that are representative of climate and land 

cover types in the Occitania region were analyzed in this 

study. Their mean temperatures ranged between 12.3 and 

15.2°C, and their mean annual precipitation ranged between 

649 and 845 mm. Data for these stations can be obtained from 

https://ismn.geo.tuwien.ac.at/en/
http://osr-cesbio.ups-tlse.fr/
http://osr-cesbio.ups-tlse.fr/
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the International Soil Moisture Network 

(https://ismn.geo.tuwien.ac.at/en/). 

 

B. Sentinel-1 data 

Sentinel-1A and Sentinel-1B images were acquired between 

December 2015 and the end of 2019. These two satellites 

circle the Earth in the same orbital plane, 180° from each 

other. Their SAR instruments operate in the C-band (5.4 GHz) 

and the interferometric wide-swath (IW) mode and have a 

spatial resolution of 10 m. Each satellite has a revisit time of 

12 days, which implies an overall revisit time in Europe equal 

to six days. The sensors provide dual-polarization imagery 

(copolarization (VV) and cross-polarization (VH)) at an 

incidence angle ranging between 31° and 43°. We used Level-

1 ground range detection (GRD) products that are derived 

from focused SAR signals that have been detected, multi-

looked and projected to ground range using an Earth ellipsoid 

model [51]. 

The image processing was executed using the Sentinel 

Application Platform (SNAP) toolbox. The first step in this 

process converts the signal to obtain the backscattering 

coefficient. A terrain correction is then applied to correct for 

geometric distortions using a digital elevation model (DEM), 

specifically, the DEM derived from the Shuttle Radar 

Topography Mission (SRTM) at 30 m spatial resolution. 

Finally, thermal noise removal and a Lee filter are applied to 

reduce speckle effects. In the present study, only VV 

polarization data were considered. 

III. METHODOLOGY 

A. Behavior of IEM backscattering simulations over bare soil 

To analyze the behavior of radar signals backscattered by 

soil surfaces, we used the IEM, which is considered to be the 

model that is best suited to a wide range of soil roughness 

values. In this study, all simulations were considered in the 

VV polarization, which corresponds to the data provided by 

the Sentinel-1 mission. The IEM is expressed as [43]: 

 

    
  

 
     

           
   

  

   

            

  
 (1) 

 

where     is the backscattering coefficient,   is the radar 

incidence angle,   is the wavenumber,            , 

            , and   is the root mean surface height.    
  is 

a function of the radar incidence angle, the relative dielectric 

constant of the soil,r, and the Fresnel reflection coefficient. 

             is the Fourier transform of the  th power of 

the surface correlation function. 

 

    is the Fresnel coefficient for the VV polarization: 
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Fig. 2 provides a simulated view of IEM backscattering as a 

function of soil moisture and at different roughness levels. In 

this study, for the roughness description, we used the 

statistical parameter   , which combines the effects of   and 

correlation length, as proposed by [52]. The effect of the 

autocorrelation function is very important in the simulation of 

soil scattering [53]. Only the exponential autocorrelation 

function, which is generally considered appropriate for natural 

surfaces, was used in the simulations illustrated in this article. 

However, we note that simulations using the Gaussian 

autocorrelation function produced the same conclusions. For 

these simulations, the SSM was considered to range between 

0.03 m
3
/m

3 
and 0.4 m

3
/m

3
. In the IEM, the relative dielectric 

constant is computed from soil moisture using the Hallikainen 

model [54]. An approximately logarithmic relationship was 

found between the simulated radar signal (in VV polarization) 

and the two surface parameters, SSM and roughness (   . The 

signal became almost saturated at high SSM values. When the 

soil moisture ranged between 0.3 to 0.4 m
3
/m

3
, the resulting 

increase in radar signal was close to 1 dB, corresponding to a 

slope of approximately 10 dB/m
3
/m

3
. However, when the 

SSM ranged between 0.1 and 0.3 m
3
/m

3
, the slope of this 

function increased to approximately 25 dB/m
3
/m

3
. The 

roughness effect was approximately the same for the entire 

moisture range, with an increase in the signal with roughness 

from Zs = 0.05 cm to Zs = 0.25 cm and a quasi-saturation of 

the simulated signal starting at Zs = 0.2 cm. The simulation did 

not exceed Zs = 0.25 cm to avoid IEM simulations out of its 

validity domain. 

From these results and using the approximation of the small 

perturbation model [55], the radar signal     is considered to 

be the sum of a function that depends on roughness (   ) and 

another function that depends on the Fresnel coefficient (soil 

moisture) (   ): 

 

                            (3) 

 

Fig. 3 shows the IEM-simulated backscattering in the VV 

polarization (C-band) for the same range of values of SSM 

and Zs as those used in Fig. 2. In this case, the simulated radar 

signal strength is plotted as a function of the Fresnel 

coefficient (        ) and for different Zs values (0.05 cm, 0.1 

cm, 0.15 cm, 0.2 cm, 0.25 cm). The radar signal is shown to 

have a nearly linear behavior as a function of (        ) over 

the full range of roughness values, with a correlation 

coefficient (    greater than 0.98. The function     can thus 

be expressed as: 

 

                                 (4) 
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where     is the slope of     as a function of 

                  is a constant parameter corresponding to 

the value of     when     is equal to 1. 

 

B. The classical soil moisture index, ISSM 

The classical change detection SSM index      [34] is 

defined as: 

 

     
          

             

 
           

             

   (5) 

 

Where      is the soil moisture content at time           

and        are the minimum and maximum values of in situ 

soil moisture, respectively, measured at a depth of 5 cm;     

is the radar signal at time t; and        and        are the 

minimum and maximum values of the radar signal time series, 

respectively. 

 

To convert this index to volumetric soil moisture, we 

introduce: 

 

                                     (6) 

 

C. The new reflectivity index, IR 

Based on the linear behavior described above, for the radar 

signal simulated as a function of the Fresnel coefficient (on a 

logarithmic scale), we propose a new reflectivity index. From 

equations (3) and (4), the index can be expressed as:  

 

   
          

             

 
                    

                       
   (7) 

 

where                 , the minimum value of the 

Fresnel coefficient, and                 , the maximum 

value of the Fresnel coefficient. 

 

This IR is equal to zero for the weakest radar signal, 

corresponding to the lowest value of the Fresnel coefficient 

and thus to a minimum value of soil moisture. Similarly, this 

index is equal to 1 for the strongest radar signal, 

corresponding to the highest value of the Fresnel coefficient 

and thus to a maximum value of soil moisture. 

A given value of the IR can be converted to volumetric soil 

moisture using the same approach as that proposed for the 

     using the minimum and maximum values of SSM for a 

given site: 

 

                                  

                        

                      

  (8) 

 

From the theoretical relationship between           and 

the soil moisture, as defined in equation (2), the estimated 

value of                 can be inverted to retrieve the soil 

moisture,     . 

IV. RESULTS AND DISCUSSION 

A. Analysis of IR potential using an IEM simulation series 

with constant roughness 

We produced a simulated series of IEM backscattering 

coefficients in the VV polarization at 5.3 GHz containing 

10,000 samples with a Gaussian distribution that corresponded 

to a range of soil moisture between 0.03 m
3
/m

3 
and 0.4 m

3
/m

3
, 

a root mean square (rms) height equal to 0.8 cm, a correlation 

length equal to 6 cm, and an incidence angle equal to 40°. A 

noise signal respecting a Gaussian distribution and a standard 

deviation equal to 0.5 dB was added to the simulated radar 

signals to approximate real Sentinel-1 radar measurements 

[56]. Fig. 4 shows the resulting time series simulation. 

Figs. 5-a and 5-b plot the estimated values of soil moisture 

as a function of the input values of soil moisture used for the 

simulations, retrieved using the      and the proposed IR, 

respectively. The IR was estimated from equation (7) using 

backscattering coefficients derived from the IEM simulations 

with additional Gaussian noise. The soil moisture was then 

calculated with equation (8). The minimum and maximum 

values of soil moisture used to compute 

                  were derived from the input soil moisture 

series and applied to the IEM. The      was computed from 

equation (5) using backscattering coefficients derived from the 

IEM simulations with additional Gaussian noise. The SSM 

was then calculated with equation (6). 

 

Figs. 5a and 5b show that the IR-based approach leads to an 

improved estimation of the surface moisture, with a root mean 

square error (RMSE) equal to 0.023 m
3
/m

3
, when compared to 

the values of soil moisture determined with estimations using 

    , for which the RMSE was equal to 0.055 m
3
/m

3
. With the 

latter index, the strongest bias was observed for average 

moisture values in the range of 0.1-0.2 m
3
/m

3
, since the model 

was initially calibrated with respect to the extreme values of 

soil moisture, i.e., values close to 0 m
3
/m

3
 and 0.4 m

3
/m

3
. In 

the IR-based approach, the errors in estimated soil moisture 

increased with increasing actual soil moisture. In particular, 

the accuracy of this method decreased for high moisture 

values due to the saturation of the radar signal and the 

resultant stronger effects of radar noise. RMSE values for all 

moisture ranges (0-0.1 m
3
/m

3
, 0.1-0.2 m

3
/m

3
, 0.2-0.3 m

3
/m

3
, 

0.3-0.4 m
3
/m

3
) are provided in Table I. As noted above, the 

greatest difference between the two approaches was obtained 

at average values of soil moisture. 

 

B. Analysis of IR potential using an IEM simulation series 

with variable roughness 

As in section IV-A, a series of IEM simulations of 10,000 

samples with the same added noise is analyzed. In addition to 

the variation in soil moisture, we also include a roughness 

variation as input to the IEM simulations to evaluate its effect 
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on IR potential. A Gaussian variation in the standard deviation 

of the heights, with a mean of 0.8 cm and a standard deviation 

of 0.2 cm, was used for the IEM simulations of the 10,000 

samples. Figs. 6-a and 6-b plot the estimated values of soil 

moisture obtained using the ISSM and the proposed IR, 

respectively, as functions of the soil moisture input values 

used for the simulations. For the proposed analysis, which 

used a variable roughness, the estimate based on IR showed 

higher precision, with an RMSE of 0.038 m
3
/m

3
, than the 

estimate based on ISSM (RMSE of 0.068 m
3
/m

3
). Obviously, in 

both cases, the precision is much lower than that in 

simulations without variations in roughness. However, for the 

IR estimation, the RMSE remained below 0.05 m
3
/m

3
, which 

is generally taken as an acceptable threshold for the precision 

of soil moisture estimates. The maximum difference between 

the respective accuracies of IR and ISSM remained in the range 

of 0.1-0.2 m
3
/m

3
, as shown in Table I. In the context of real 

data, roughness is rarely considered in proposed change 

detection algorithms. Using low-resolution data such as those 

from scatterometers [37] or working at average scales of 

approximately 1 km makes it possible to assume that the 

average roughness remains slightly variable. This assumption 

could decrease the precision of the estimates if there were 

important temporal changes in roughness. 
 

C. Evaluation of the IR across three study sites 

Following our validation of the proposed approach based on 

the IR, the method was applied to soil moisture data from 

eight ground stations located within the three study sites 

(Occitania, Merguellil, Banizombou) described in section II. 

Five of the selected ground stations (BZ1, BZ2, Bouhajla, 

Barrage, Barrouta) are characterized by a landscape with 

either bare soil or low-density vegetation cover, and three 

others (INGC, Mouthoumet, Narbonne) are characterized by 

an agricultural landscape with important temporal dynamics in 

vegetation cover. 

We identified a 1 km
2
 zone centered around each moisture 

measurement station and derived an averaged radar signal (in 

the linear domain) for each Sentinel-1 acquisition for each 

zone. Only pixels with radar signal values between -20 dB and 

-5 dB were taken into account to avoid possible extremes from 

surfaces other than natural surfaces (such as water coverings 

or buildings) [28]. The choice of the 1 km
2
 size was intended 

to limit the effects linked to roughness as much as possible 

and to enable the assumption of relatively stable average 

roughness. Indeed, in areas of limited size, the effect of 

roughness can be much greater and thus affect the proposed 

algorithm, as illustrated in section IV-B. For each site, we 

considered data from one orbit with an approximately constant 

incidence angle. This approach notably reduced the number of 

images used by the change detection application but prevented 

errors resulting from empirical incidence angle normalization, 

which could change from one pixel to another and from one 

season to the next. 

We then analyzed the Sentinel-1 data time series over a 

four-year period. For each station, the ISSM and IR values were 

converted to volumetric moisture as described in section III 

and by using the ground moisture time series data.        

and        represent the minimum and maximum values of 

in situ surface soil moisture at a depth of 5 cm at a given site 

(m
3
/m

3
) as defined by the 90% confidence interval of a 

Gaussian distribution [57]. By defining   and   as the 

mean and standard deviation of the ground-truth data over the 

study period used for this analysis,        and        can 

be computed as follows:                 and 

               , where 1.65 represents the 95% 

quantile of the standard normal distribution. It was preferred 

to use these quantities rather than the strict minimum and 

maximum values in order to eliminate outliers. In the general 

case of applications without ground measurements, it is 

possible to use soil texture maps to directly retrieve these 

hydrological properties through pedotransfer functions [58]. 

Figs. 7 and 8 compare the ground measurements with the 

soil moisture products estimated from Sentinel-1 data using 

the proposed IR and the classical      at two soil moisture 

stations. Strong agreement is observed between the ground 

measurements and the soil moisture estimated from the two 

considered indices. At the Barrouta site, RMSE and R are 

equal to 0.034 and 0.73 and to 0.04 and 0.74 for the IR and 

ISSM approaches, respectively. At the INGC site, RMSE and R 

are equal to 0.06 m
3
/m

3
 and 0.6 and to 0.056 m

3
/m

3
 and 0.61 

for the IR and ISSM approaches, respectively. 

However, differences in the rate at which the soil moisture 

decreases after rainfall events were noted. This is probably 

due to the effective penetration depth of the S1 radar, which is 

theoretically smaller than the value of 5 cm used for the 

ground-truth measurements [59]. In these cases, limited 

differences were observed between IR and     . 

 

Table II summarizes the results obtained with the Sentinel-1 

data products using      and   . A strong correlation was 

generally found between the ground measurements and the 

estimations for both indices, with an RMSE typically less than 

0.06 m
3
/m

3
 for seven of the sites. At the five stations with bare 

soil or low vegetation cover, the    index provided a limited 

improvement in accuracy for the soil moisture estimations, as 

indicated by its marginally lower RMSE values. For the other 

three stations, which had vegetation cover dynamics, IR shows 

slightly poorer accuracy than with ISSM. The proposed index 

does not include any correction for the influence of vegetation. 

 

Despite the overall results of the comparisons with the 

actual data, which showed high precision for both indices, the 

IR demonstrated its potential to provide accurate estimates of 

soil moisture. The correlation between ground measurements 

and remotely sensed soil moisture estimations is generally 

high. Some discrepancies can be attributed to the 

unpredictable conditions during precipitation events, which 

make it difficult to detect sporadic rainfall with radar 

acquisitions due to the 6- or 12-day repeat cycle of the 

Sentinel-1 constellation. 

Compared to that in the analyses proposed in sections IV-A 

and IV-B based on the IEM, the improvement provided by the 
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IR seems lower in analyses with real measurements. We 

retrieved approximately the same results with ISSM as with IR. 

This difference may have several explanations. First, the size 

of the four-year time series was likely too limited to obtain 

highly reliable statistics. High soil moisture radar data also 

tend to be noisier due to various effects, such as the temporal 

variations in soil roughness, which make it more difficult to 

reproduce the theoretical trends expected in the relationship 

between soil moisture and radar signal strength. At stations 

with temporal vegetation cover dynamics, errors may be more 

important, particularly during the wet season, when a strong 

vegetation effect that is not corrected for in the proposed 

algorithm occurs. At stations located in West Africa, the 

application context in semiarid areas could generate volume 

scattering on the driest dates [10] and high vertical soil 

moisture profile heterogeneity [59], which are also a source of 

errors in the application of the change detection technique. 

The analysis of a relatively restricted database (4 years) does 

not allow us to observe the trends within each range of soil 

moisture (0-0.1 m
3
/m

3
, 0.1-0.2 m

3
/m

3
, 0.2-0.3 m

3
/m

3
) with 

precision. Table III illustrates the RMSE observed for each 

site. The differences between the ISSM and IR approaches are 

generally small. 

V. CONCLUSION 

A new inversion approach based on the change detection 

algorithm is proposed for the remotely sensed estimation of 

SSM. This approach is based on the near linearity of the 

relationship between backscattered radar signals and the 

logarithm of the Fresnel coefficient, which has been confirmed 

through the use of backscattering simulations based on the 

IEM. We thus introduce a new reflectivity index, IR, which 

ranges in value between 0 and 1. An index value of zero 

corresponds to the lowest value of the radar signal time series 

and thus to the driest conditions. An index value of 1 

corresponds to the strongest radar signals and thus to the 

wettest conditions. IEM simulations of a series of radar signals 

with added noise, expressed as a function of soil moisture, 

confirmed the potential improvements that can be achieved 

with this index compared to the classical     , which assumes 

that the backscattered radar signals vary linearly as a function 

of soil moisture. In these simulations with constant roughness 

condition, the RMSE decreased from 0.055 m
3
/m

3
 to 0.023 

m
3
/m

3
 when this new index was used. With introduction of 

roughness variation in IEM simulations, the RMSE decreased 

from 0.067 m
3
/m

3
 to 0.038 m

3
/m

3
 when IR was used. 

The proposed algorithm was validated using Sentinel-1 data 

recorded over three study regions (Banizombou, Merguellil, 

Occitania). Eight ground moisture stations (five with bare soil 

or low-density vegetation cover and three with agricultural 

landscapes showing temporal vegetation change) were used 

for this validation. For each station, when the IR was 

converted to volumetric moisture, it was found to be strongly 

consistent with ground measurements, with RMSEs of less 

than 0.06 m
3
/m

3
 for seven of the eight stations. When 

compared to the classical     , which assumes a linear 

relationship between soil moisture and radar signals, we 

observed almost the same precision with IR, with a slight 

improvements at stations with bare soils. This result is very 

encouraging, and we expect that even more robust results 

could be obtained with a longer time series. In the future, a 

more global analysis that considers the effect of vegetation 

cover will be performed. 
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Fig. 1. Studied sites (Banizombou (Niger), Merguellil (Tunisia), Occitania 

(France)) 

 

 
 
Fig. 2. Relationship between backscattering IEM simulations and soil 

moisture for different Zs (roughness parameter) levels 

 

 
 
Fig. 3. Relationship between backscattering IEM simulations and log(R) for 

different Zs (roughness parameter) levels 

 

 
 

Fig. 4. IEM-simulated series for soil moisture ranging between 0 m3/m3 and 

0.4 m3/m3, a rms height equal to 0.8 cm, and a correlation length equal to 6 

cm. 

 
(a)

 
(b) 

Fig. 5. Comparison between the input (actual) soil moisture used for the IEM 

simulations with constant roughness and the soil moisture estimations 

computed using two different indices: a)      and b) IR. 

 

 
(a) 

 
(b) 
Fig. 6. Comparison between the input (actual) soil moisture used for the IEM 

simulations with variable roughness and the soil moisture estimations 

computed using two different indices: a)      and b) IR. 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3033132, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

 
Fig. 7. Surface soil moisture estimations derived using the      and    

products compared with in situ measurements of soil moisture at the Barrouta 

site  

 

 

 
Fig. 8. Surface soil moisture estimations derived using the      and    

products compared with in situ measurements of soil moisture at the INGC 

site. 

 

TABLE I 
RMSE (M3/M3) BETWEEN ESTIMATIONS BASED ON IEM 

SIMULATIONS AND SOIL MOISTURE INPUTS FOR THE      AND    
ALGORITHMS FOR DIFFERENT SOIL MOISTURE RANGES AND 

ROUGHNESS CONDITIONS 

Soil 

moisture 

range 
(m3/m3) 

Constant roughness 

condition 

Variable roughness 

condition 

 ISSM IR ISSM IR 

0-0.1 0.043 0.007 0.08 0.032 

0.1-0.2 0.067 0.012 0.079 0.028 

0.2-0.3 0.057 0.021 0.055 0.042 

0.3-0.4 0.025 0.035 0.033 0.07 

 

 

 

 

 

 

 

 

 

 
Table II 

RMSE AND R FOR SURFACE SOIL MOISTURE (M3/M3) COMPUTED 

USING ISSM AND IR FOR ALL SITES 

Site         

 RMSE 

(m3/m3) 

R RMSE 

(m3/m3) 

R 

BZ1 (Niger) 0.019 0.81 0.018 0.82 

BZ2 (Niger) 0.025 0.8 0.022 0.81 

Bouhajla 

(Merguellil) 

0.031 0.66 0.03 0.67 

Barrage 

(Merguellil) 

0.061 0.5 0.054 0.52 

Barrouta 

(Merguellil) 

0.04 0.74 0.034 0.73 

INGC 

(Merguellil) 

0.056 0.61 0.06 0.6 

Mouthoumet 

(France) 

0.048 0.42 0.05 0.41 

Narbonne 

(France) 

0.069 0.06 0.07 0.05 

 
TABLE III 

RMSE FOR SURFACE SOIL MOISTURE (M3/M3) COMPUTED USING 

ISSM AND IR FOR EACH SITE AND FOR EACH RANGE (0-0.1, 0.1-0.2, 

0.2-0.3) 

Site 0-0.1 0.1-0.2 0.2-0.3 

BZ1 0.019/0.018 - - 

BZ2 0.025/0.022 0.017/0.019 - 

Bouhajla 0.03/0.028 0.05/0.05 - 

Barrage 0.058/0.04 0.067/0.08 - 

Barrouta 0.04/0.032 0.04/0.047  

INGC 0.038/0.026 0.044/0.05 0.1/0.1 

Mouthoumet - 0.042/0.06 0.051/0.036 

Narbonne - 0.069/0.49 0.066/0.08 
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