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Abstract 9 

Although considerable work has been conducted in recent decades to build soil databases, the 10 

legacy data from a lot of former soil survey campaigns still remain unused. The objective of 11 

this study was to determine the interest in harvesting such legacy data for mapping the soil 12 

available water capacities (SAWCs) at different rooting depths (30 cm, 60 cm, 100 cm) and to 13 

the maximal observation depth, over the commune of Bouillargues (16 km
2
, Occitanie region, 14 

southern France) 15 

An increasing number of available auger hole observations with SAWC estimations – from 0 16 

to 2781 observations – were added to the existing soil profiles to calibrate quantile regression 17 

forests (QRFs) using the Euclidean buffer distances from the sites as soil covariates. The 18 

SAWC was first mapped separately for different soil layers, and the mapping outputs were 19 

pooled to estimate the required SAWC. The uncertainty of the SAWC prediction was 20 

estimated from the estimated mapping uncertainties of the individual soil layers by an error 21 

propagation model using a first-order Taylor analysis. 22 



The performances of the SAWC predictions and their uncertainties were evaluated with a 10-23 

fold cross validation that was iterated 20 times. The results showed that the use of a quantile 24 

regression forest that was fed with auger hole observations and that used the Euclidean buffer 25 

distances as soil covariates considerably augmented the performances of the SAWC 26 

predictions (percentages of explained variance from 0.39 to 0.70) compared to the 27 

performance of a classical DSM approach, i.e., a QRF that solely used soil profiles and only 28 

environmental covariates (percentages of explained variance from 0.04 to 0.51). The analysis 29 

of the results revealed that the performances were also dependent on the spatial patterns of the 30 

different examined SAWCs and was limited by the observational uncertainties of the SAWCs 31 

determined from auger holes. The best performance tended to also provide the best view of 32 

the uncertainty patterns with an overestimation of uncertainty. 33 

Despite these gains in performance, the cost-efficiency analysis showed that the augmentation 34 

of soil observations was not cost efficient because of the highly time-consuming manual data 35 

harvesting protocol. However, this result did not account for the observed gain in map details. 36 

Furthermore, the cost efficiency could be further improved by automation. 37 

 38 

 39 

1. Introduction 40 

Digital soil mapping (DSM) has been recognized as the appropriate solution to provide spatial 41 

soil information for land users, scientist communities and policy and decision makers in 42 

agriculture and the environment (McBratney et al., 2003; Sanchez et al., 2009). The principle 43 

of DSM is to predict a soil property or soil classes and the associated prediction uncertainty 44 

by determining the quantitative relationships between the soil information available over a 45 

limited set of  locations and the spatial data reflecting the state factors of soil formation 46 



(envionmental covariates). DSM has now moved from a largely academic movement toward 47 

an operational activity (Minasny & McBratney, 2016, Arrouays et al, 2017). 48 

However, the performances of DSM predictions of soil properties often exhibit more 49 

uncertainty than initially expected. For example, the percentages of explained variances of 50 

less than 0.5 were observed for 95%, 76%, 100% and 86% of the tested soil properties for 51 

DSM applications at the catchment scale (Nussbaum et al., 2018), at the regional scale 52 

(Vaysse and Lagacherie, 2015), at the national scale (Mulder et al., 2016), and at the global 53 

scale (Hengl et al., 2014), respectively. 54 

These authors converged toward the conclusion that the density of soil observations used for 55 

calibrating the DSM models was the main factor that limited the DSM performances. Most of 56 

the soil information used as input in DSM applications has been either soil maps or the spatial 57 

sampling of sites with soil property measurements. The average densities used in most 58 

operational DSM applications have been low, e.g., 4-12 sites/km² (several study areas in 59 

Nussbaum et al., 2018), 0.07 sites/km² (Vaysse and Lagacherie, 2015), 0.03 sites/km² (Mulder 60 

et al., 2016), and 0.001 sites/km² (Hengl et al., 2014), which limits the performances of soil 61 

prediction, especially when the pattern of variation in the soil property is largely below the 62 

spacing of soil profiles (Vaysse and Lagacherie, 2015; Gomez and Coulouma, 2018). In 63 

addition, further experiments that consisted of varying the spatial density of soil input 64 

confirmed this analysis (Somarathna et al. 2017, Wadoux et al. 2019, Lagacherie et al, 2020). 65 

Consequently, it is of paramount importance to increase the density of soil inputs to improve 66 

the performance of DSM models in predicting soil properties (Voltz et al., 2020). 67 

The most straightforward way to increase the density of DSM model soil inputs involves 68 

harvesting the legacy soil data that have not yet been stored in the existing soil databases. 69 

Arrouays et al. (2017) showed that during the period 2009-2015, the numbers of legacy soil 70 

profiles stored in global and national soil databases increased by 1,046% and 45%, 71 



respectively. However, they estimated that a large amount of soil legacy data can still be 72 

harvested. This is even more true in some areas across the world where soil surveying has 73 

been particularly active in the past. 74 

For example, in southern France, the BRL irrigation company conducted detailed soil surveys 75 

over its irrigation perimeter between 1957 and 1992, which resulted in detailed soil maps, 76 

25,000 soil profiles (5/km²) and 203,000 auger hole observations (31/km²). At this stage, such 77 

soil data have not yet been harvested and therefore cannot be used as input for DSM 78 

applications. However, this data has great potential for improving DSM performance and 79 

should be thoroughly examined. 80 

In this paper, a spatially dense set of soil observations harvested from soil survey documents 81 

was tested for improving the performances of DSM models in mapping soil available water 82 

capacities for different rooting depths (0-30 cm, 0-60 cm, 0-100 cm) and at maximum 83 

observation depth, and the associated uncertainties. Our aim was to evaluate the cost-84 

efficiency ratio of using such soil observations and to evaluate the added value of using 85 

euclidian buffer distances as additional inputs of DSM models as proposed by Hengl et al 86 

(2018). The study is conducted in the commune of Bouillargues, which is one of the 87 

communes included in the BRL irrigation perimeter.  88 

 89 

2. The case study 90 

2.1. The study area 91 

This study took place in the administrative commune of Bouillargues in the Occitanie 92 

administrative French region (Figure 1). Located in southern France, Bouillargues covers 16 93 

km² and is mainly devoted to vineyards, agricultural lands, forests, and scrublands. 94 



Bouillargues has a Mediterranean climate characterized by a moderate average annual rainfall 95 

(600 mm) and dry and hot summers. 96 

The study area is topographically split into two subregions with the large flat valley of the 97 

Vistrenque in the northern part and old fluviatile alluvium terraces belonging to the Nîmes 98 

“Costière” in the southern part. The two subregions have contrasting parent materials with i) 99 

loess and loamy clay deposition in the Vistrenque valley and ii) old alluvium in the Nimes 100 

Costière part, covered by some loess deposits. The contrast in parent materials induces 101 

variations in soils with i) fluvisols and calcisols developed in loess and loamy clay deposition, 102 

characterized by an absence of coarse fragments and a loamy texture, and ii) chromic luvisols 103 

developed in old alluvium terraces characterized by important coarse fragment contents and 104 

compacted clay accumulations (Figure 1). 105 

 106 

 107 

Figure 1. Location of the study area and distribution of soil samples 108 

2.2. Soil data 109 

2.2.1. History and content of the BRL soil database 110 



The soil data of this study are a part of the soil survey led by the “Compagnie Nationale 111 

d’Aménagement de la Région du Bas-Rhône et du Languedoc” (CNARBRL) between 1957 112 

and 1992 over the irrigated perimeter of this irrigation company, which covers 6,636 km². The 113 

objectives of this survey were to provide suitable soil information for i) improving the 114 

development master plan of the irrigation perimeter and estimating the surface area of arable 115 

and potentially irrigable lands and ii) supporting the cultural intensification made possible by 116 

irrigation, assessing the irrigation supply, and setting technical assistance for landholders to 117 

start irrigation and crop conversion. 118 

The compilation of those studies resulted in a database of 228,000 soil observations with 119 

25,000 soil profile descriptions and laboratory analyses (Figure 2) and 203,000 auger holes 120 

(Figure 3), which correspond to average spacings of 515 m and 181 m for the soil profiles and 121 

auger holes, respectively. 122 

 123 

Figure 2. Soil profile a) horizon descriptions with geographical coordinates (black box) and b) laboratory analysis results, 124 
physical analysis (red box) and chemical analysis (blue box) 125 



 126 

Figure 3. Auger hole descriptions 127 

2.2.2. Spatial sampling and georeferencing in the study area 128 

Focusing on the commune of Bouillargues, the harvested dataset is composed of 2850 sites 129 

with soil observations that include 2781 auger holes and 69 soil profiles, which correspond to 130 

average spacings of 76 m and 500 m, respectively (Figure 4). Both the soil profiles and the 131 

auger hole observations were fairly evenly distributed over the study area; however, some 132 

gaps corresponded to urbanized areas or lands that were not expected to have any agricultural 133 

potential. 134 



 135 

 136 

Figure 4. Spatial distribution of a) soil profiles and b) auger holes over the commune of Bouillargues 137 

The soil profile data records included geographical coordinates (Lambert III, black box in 138 

Figure 2a), whereas manual preprocessing was necessary for georeferencing the auger holes. 139 

The auger holes were initially located through a non-georeferenced map representing the local 140 

sampling scheme (Figure 5a). Each sampling scheme corresponded to an area of water 141 

distribution supplied by an irrigation water access point of the BRL irrigation network. This 142 

access point was georeferenced and could be positioned onto a georeferenced former cadastre 143 

(red box in Figure 5b). To acquire the coordinates of the auger holes, the sampling scheme 144 

was first located in the georeferenced cadastre using the coordinates of the irrigation water 145 

access point. Its boundaries were then positioned (green dashed perimeter on Figure 5b) using 146 

the geometry of the parcels and communication paths. Finally, each auger hole was manually 147 

positioned onto the georeferenced cadastre (blue stars on Figure 5b) using the sampling 148 

scheme (Figure 5a), and the coordinates of the auger holes were obtained using the 149 

coordinates acquisition tool of BRL’s web-GIS (Figure 5c). 150 



 151 

Figure 5. Fitting the non-georeferenced sampling scheme of auger holes in the georeferenced former cadastre 152 

 153 

2.2.3. Soil available water capacity determinations at sites with soil observations 154 

This study took the mapping of soil available water capacity (SAWC) as an example of 155 

applying DSM. SAWC refers to the capacity of the soil to store water for plant growth 156 

(Veihmayer and Hendrickson, 1927). This functional property plays a key role in many 157 

ecosystem services, such as food production, soil drought or climate and gas regulation. 158 

Consequently, it is a crucial parameter used in land evaluations and recently in ecosystem 159 

services assessments (Dominati et al., 2014). Information about the SAWC distribution in 160 

space is essential for planning and management in agriculture and for ecological modeling. In 161 

the present example, SAWC was required for fulfilling the irrigation objectives evoked above 162 

(section 2.2.1). Currently, SAWC is computed in the literature as follows (Cousin et al., 163 

2003): 164 

(1) 
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 165 



where SAWC is the soil available water capacity (cm),     = the thickness of the  th horizon 166 

(cm),     = the bulk density (g/cm
3
) of the  th horizon,     = the coarse fragment content of 167 

the  th horizon (% volumetric), and     and     are the gravimetric soil water contents at 168 

field capacity (i.e., the soil water content that remains in the soil after water has drained due to 169 

gravitational force) and the permanent wilting point (i.e., the soil water retained so strongly 170 

that it is no longer available for plant roots, so plants wither and cannot recover their 171 

turgidity) of the  th horizon (cm
3
.cm

-3
), respectively. 172 

Historically, the CNARBRL had a different approach for expressing the water retention term 173 

of the fine earth, i.e.,           , which leads to the following equation: 174 

(2) 
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 175 

The equivalent water content (EqWi) corresponds to      of Eq. 1, and the textural coefficient 176 

   is an expression of the water content at the permanent wilting point that weights      to 177 

account for the water content that is not available for the plant (i.e., beyond the wilting point, 178 

defined as     in Eq. 1). 179 

The values of     and      were measured at each soil profile;     was determined in the 180 

field following the Vergières protocol (Bourrier, 1965) but was estimated as 1.6 times the 181 

mass fraction of the fine earth from the ensemble coarse fragment and fine earth, when the 182 

coarse fragment phase of the soil sample was too important to perform the Vergières protocol 183 

(Legros, 1996). 184 

The      of sieved samples was determined in the laboratory using a centrifuge apparatus set 185 

at 100 kPa (pF = 3.0), a reference pressure that was considered, at the time of the CNARBRL 186 

soil survey, as yielding the best approximation of the water content at the field capacity (see 187 



section 2.2.1) (Baize and Jabiol, 1995). The      values were estimated on auger hole 188 

observations by local pedotransfer functions using the field estimated textural classes. 189 

The bi coefficient was determined both on soil profiles and on auger hole observations by a 190 

local pedotransfer function using the textural classes determined from granulometric analyses 191 

and field estimation, respectively, for soil profile and auger hole observations. 192 

The coarse fragment content and the horizon thicknesses of Eq. 2 were retrieved from the 193 

descriptions of the physical analyses and descriptions of the soil profiles and of the auger hole 194 

observations, respectively (Figures 1 and 2). Different total soil thicknesses (i.e.,     
 
   ) 195 

were considered to determine the different rooting depths related to the different possible 196 

crops of the study area (from market gardening to vineyard passing by annual crops). In 197 

addition to the maximum soil thicknesses given by the soil observations that were considered 198 

for calculating the maximum soil available water capacity (SAWCmax), restricted thicknesses 199 

of 30 cm, 60 cm and 100 cm were then considered, leading to different restricted SAWCs, 200 

denoted further as SAWC30, SAWC60, and SAWC100. 201 

It must be noted that both the profiles and auger holes had limited observation depths of 140 202 

and 120 centimeters, respectively, which may cause underestimations of SAWCmax.   203 

 204 

2.3. Environmental covariates 205 

The DSM approach, as formalized by the scorpan model (McBratney et al., 2003), considers 206 

quantitative relationships between a target soil property and environmental variables, which 207 

are also known as “covariates”. 208 

The selection of environmental covariates depends on two criteria: i) they could be derived 209 

from geodatasets freely available at least at the French national level, and ii) they have a 210 

logical and process-based relationship with soil properties according to the literature. 211 



Following these criteria, we derived covariates related to the scorpan model component, i.e., 212 

topography, organisms, and parent material, that regroups the major landscape types across 213 

the study area. Climate data were not considered in this study since we did not find any 214 

climate data at a spatial resolution fine enough to represent the climate variations over such a 215 

small area. The relief component was described by a set of geomorphometric indicators 216 

currently considered in DSM studies: elevation, slope, aspect, multiresolution valley bottom 217 

flatness (MRVBF), multiresolution ridge top flatness (MRRTF), topographic wetness index 218 

(TWI), topographic position index, plan curvature and profile curvature. These indicators 219 

were derived from the French altimetry database (BD ALTI, 25 m resolution) digital elevation 220 

model (DEM). They were  computed using the SAGA GIS software (Böhner et al., 2006) and 221 

his Terrain Analysis procedures. 222 

 223 

Organisms and parent materials were derived from the Landsat 7 imagery and geological 224 

map, respectively, and were both resampled at the native resolution of the DEM (i.e., 25 m). 225 

Additionally, parent material covariates were developed by Vaysse and Lagacherie (2015) 226 

from the geological map (1:50,000) qualitative descriptions to quantitative indicators 227 

describing the hardness, mineralogy and texture of alteration materials. 228 

Table 1. Exhaustive categorical and continuous covariates 229 

Variables Abbreviation Resolution/Scale Source Soil-forming factor1 Type2 

Topography 

     

Elevation ELEV 25 m BD ALTI r Q 

Multiresolution Valley 

Bottom Flatness 

MRVBF 25 m BD ALTI r Q 

Slope SLOPE 25 m BD ALTI r Q 

Topographic Wetness 
TWI 25 m BD ALTI r Q 

https://www.sciencedirect.com/science/article/pii/S2352009414000418#bb0035


Index 

Plan Curvature PLANCURV 25 m BD ALTI r Q 

Profile Curvature PROCURV 25 m BD ALTI r Q 

Multiresolution Ridge 

Top Flatness 
MRRTF 25 m BD ALTI  r Q 

Topographic Position  

Index 

TPI 25 m BD ALTI r Q 

Geology 

     

Hardness HARDNESS 25 m Geological map/soil profile p C 

Texture TEXTURE 25 m Geological map/soil profile p C 

Mineralogy MINERALOGY 25 m Geological map/soil profile p C 

Organisms 

     

Land use LANDUSE 25 m Landsat 7  o C 

1: SCORPAN factors (o = organisms, r = relief, p=parent material) 

2: Q = quantitative, C = categorical  

 230 

2.4. Acquisition process and cost assessment 231 

In section 2.2., we presented the main difference in using soil profiles and auger holes in a 232 

DSM application, i.e., the accessibility of the data. While soil profile acquisition is quite 233 

straightforward, i.e., recording soil data and locations, auger hole acquisition is more 234 

complicated as the locations are not directly available and manual georeferencing is required, 235 

thus, the acquisition process is longer. In Table 2, we provide the main information about the 236 

acquisition process for soil profiles and auger holes. As the number of auger hole observations 237 

is substantially larger than the number of soil profiles and take longer to record, we provided 238 

an assessment of the cost of soil data acquisition. 239 



Table 2. Information to assess the cost of the acquisition process 240 

 Auger holes Soil profiles 

Recorded time of soil properties* 

(min/observation) 

0.8 0.8 

Recorded time of geo-localizations* 

(min/observation) 

2.2  0.2 

Number of observations 2721 69 
*Computed from timed sessions of harvesting 241 

To compute the cost of the acquisition process, we applied the following formula using the 242 

information in Table 2: 243 

(2)       
            

       
       (5) 

With N the number of harvested soil observations, rec_time the recorded times of harvesting a 244 

given soil observation in mn (see table 2), Daytime is 1440 (number of mn in a day) and Sal is 245 

the daily salary of the harvester. 246 

3. Methods 247 

3.1. DSM models for soil profiles 248 

In this study, we used several mapping models derived from the random forest algorithm. 249 

Hereafter, we provide a general description of random forest and its derivatives used in this 250 

study. 251 

3.1.1. Random forest 252 

Random forest models (RF) (Breiman, 2001) are an ensemble learning method for both 253 

classification and regression. A forest, i.e., an ensemble of randomized decision trees, is built 254 

and trained based on a bootstrap approach. Individual trees are built using the principle of 255 

recursive partitioning. “The feature space is recursively split into regions containing 256 

observations with similar response value”
 
(Strobl et al., 2009). The predictions of the 257 

individual trees are finally averaged to obtain a single prediction. 258 



3.1.2. Quantile regression forest 259 

The quantile regression forest algorithm (QRF) (Meinshausen, 2006) is an extension of 260 

random forests that has become one of the most commonly used algorithms in DSM studies 261 

(Hengl et al., 2015; Ugbaje and Reuter, 2013; Vaysse and Lagacherie, 2017). As a RF, QRF 262 

provides an ensemble prediction based on n regression trees. However, while RF provides 263 

solely the conditional mean, QRF supplies the whole conditional distribution of the target 264 

variable by keeping all observations at the terminal nodes. This allows us to infer estimates 265 

for the conditional quantiles (Meinshausen, 2006). More details on QRF can be found in 266 

Meinshausen (2006). 267 

QRF was performed with the ranger package, which is a fast implementation of Breiman’s 268 

random forest and Meinshausen’s quantile regression forest for big data (Wright and Ziegler, 269 

2017). QRF was run with the default parameters given by ranger. 270 

3.2. Mapping models for dense spatial sampling 271 

The usual applications of RF and its derivative to DSM only exploit the relationships between 272 

the soil properties to be predicted with landscape elements characterized by a set of covariates 273 

derived from the available spatial data. However, they do not consider the spatial relationships 274 

between sites or spatial autocorrelation, which allows the spatial interpolations of a given soil 275 

property between sites. This can lead to suboptimal predictions and possibly systematic over- 276 

and underestimation of predictions, especially if the target variable is spatially autocorrelated 277 

and if point patterns show clear sampling bias (Hengl et al., 2018). In the case of dense 278 

sampling, such spatial interpolation can be of great interest to overcome the limitations of 279 

landscape covariates for predicting soil properties (Lagacherie et al, 2020). 280 

To correct the non-spatial approach of RF and its derivative, Hengl et al. (2018) proposed 281 

adding new covariates that consider the locations of the sites. These covariates are defined as 282 



the Euclidean buffer distances from the observation sites. To limit the number of covariates 283 

and the computing time in the case of a large dataset (> 1,000 sites), these distances to the 284 

nearest points were not calculated for each individual observation site but for n equal classes 285 

(from low to high AWC values). As RF is sensitive to the number of classes (Hengl et al., 286 

2018), we performed a trial and error process, which was conducted to choose different 287 

classes according to the maximal soil thickness considered and to the density scenario 288 

(number of classes varying between 6 and 15). For each targeted SAWC, a map was 289 

generated. In this DSM model, we considered soil profile and auger hole observations 290 

indifferently as soil inputs, omitting their possible differences of uncertainty on the SAWC 291 

determinations. This model will be denoted further QRFdist. Euclidean buffer distance 292 

mapping was performed using the GSIF package (Hengl, 2019). 293 

 294 

3.3. Inference trajectories 295 

Since we aimed to map SAWC, which is a soil indicator involving several soil properties and 296 

several soil depths, it could be estimated following various possible inferences following the 297 

order with which “combining primary soil properties”, “aggregating soil layers across depths” 298 

and “mapping” were performed to provide the SAWC (Styc and Lagacherie, 2019). Styc and 299 

Lagacherie (2019) experienced a total of 18 inference trajectories throughout Languedoc-300 

Roussillon that were performed to obtain the most appropriate SAWC map. From this study, 301 

we considered the best-performing inference trajectory, i.e., we mapped the first AWC of four 302 

separate layers (0-30, 30-60, 60-100 and 100-200 cm) and then aggregated the maps of the 303 

four soil layers to obtain the final SAWC map. 304 

3.4. Uncertainty analysis using error propagation 305 



In this section, we provide the main details of uncertainty assessment using propagation error. 306 

More details of the procedure can be found in (Román Dobarco et al., 2019, Styc and 307 

Lagacherie, submitted). 308 

The selected inference trajectory, i.e., SAWC estimated as the aggregation of AWC predicted 309 

at four depth soil layers, required an error propagation to estimate the variance in SAWC, 310 

considered as a proxy of the uncertainty prediction of the target variable (Heuvelink et al., 311 

1989). In this study, we used a first-order Taylor expansion to calculate the error variance of 312 

SAWC that results from the error variances of its components (here, the different mapped 313 

AWC for the four considered soil layers). This calculation involved i) the error variances of 314 

AWC for each soil layer obtained from the conditional distributions provided by QRF for 315 

each predicted location (Meinshausen, 2006) and ii) the correlation coefficients between the 316 

errors at each soil layer provided by the mapping residuals. Then, the estimate of the SAWC 317 

variances was translated into a 90% prediction interval, assuming a normal distribution, by: 318 

                      (6) 

 319 

where      is the interval limits of the prediction,     is the mean of the distribution,     is the 320 

standard deviation and 1.645 is the Student’s coefficient for a 90% confidence interval 321 

estimation. 322 

Error propagation was performed using the propagate R package (Spiess, 2018). 323 

 324 

3.5. The experiment 325 



The goal of the experiment was two-fold: i) to evaluate the efficiency of the DSM model 326 

proposed for dealing with dense spatial sampling of auger holes (QRFdist) and ii) to evaluate 327 

the cost-efficiency ratio of using auger hole observations with increasing densities. 328 

For that, QRFdist was applied to different soil input scenarios with increasing numbers of 329 

auger holes. The performances of the QRFdist were compared with those of a baseline QRF 330 

application that did not consider any spatial relation between the sites, as practiced in most 331 

DSM applications. The four SAWCs presented in section 2.2.3 were considered. In the 332 

following, we provide some details about the sampling strategy for selecting auger holes, the 333 

evaluation protocol and the cost-benefit analysis. 334 

3.5.1. The sampling procedure of auger holes 335 

Different data scenarios were considered, all of which included all the available soil profiles 336 

as inputs. An increasing number of auger holes were sampled from the available set and 337 

added to the soil profiles in the soil input datasets (from 10% to 100% of the auger hole 338 

observations each 10%, e.g., average spacing of 278 m, 556 m, 834 m, 1112 m, 1391 m, 1669 339 

m, 1947 m, 2225 m, 2503 m and 2781 m). 340 

At each step, the auger holes were selected using a stratified random sampling technique 341 

using compact geographical strata (Walvoort et al., 2010), as recommended by (Brus et al., 342 

2011). Thirty-three geographical strata of 0.5 km
2
 were considered. Spatial stratification 343 

sampling was performed using the spcosa R package (Walvoort et al., 2018). 344 

3.5.2. Evaluation protocol 345 

The performance of the SAWC DSM models was evaluated by k-fold cross validation. This 346 

evaluation procedure consisted of randomly dividing the data into k subsets. Then, the holdout 347 

method was repeated k times such that one of the k subsets was used as the validation set in 348 

each repetition, while the other k-1 subsets were combined to form the calibration set. 349 

Following this procedure, every data point was included in a calibration set k-1 times. In this 350 



study, we selected k = 10 and to increase the robustness of the evaluation, the 10-fold cross 351 

validation was iterated 20 times. The k-fold cross validation was performed using cvTools 352 

(Alfons, 2012). 353 

To avoid uncertain estimations of the model performances due to the inherent uncertainty of 354 

SAWC estimations from the auger hole observations, the evaluation protocol presented 355 

hereafter was solely applied to the soil profiles. 356 

To evaluate the prediction performances, we used classic performance indicators, e.g., the 357 

mean square error skill score (Nussbaum et al., 2018), which has the same interpretation as 358 

the percentage of variance explained by the model, the root mean square error (RMSE) and 359 

the bias. 360 

Furthermore, we evaluated the estimation of the prediction uncertainty using the prediction 361 

interval coverage probability (PICP; Shrestha and Solomatine, 2006) and error-predicted 362 

uncertainty plots. The PICP was computed as follows: 363 

 
     

                   

 
      

(7) 

 364 

where   is the total number of observations in the validation set, and the numerator counts if 365 

the observation    fits within the prediction limits prior to estimation by the error propagation 366 

method. For a 90% confidence level, which is usually chosen in DSM studies (Arrouays et al., 367 

2014b), the uncertainty is optimally predicted when the PICP value is close to 90%. 368 

The PICP provides an assessment of the overall uncertainty prediction bias (underestimation 369 

or overestimation) but does not tell anything about the ability to map differences in 370 

uncertainty across the study area. The PICP was therefore completed by error-predicted-371 

uncertainty estimations that materialized the evolution of the cross validation RMSE with the 372 



widths of the predicted confidence intervals. To remove noise, the RMSEs were averaged per 373 

quartile of prediction interval widths denoted “low/fairly low/fairly high/high predicted 374 

uncertainty”. It was expected that the RMSE would increase from low to high predicted 375 

uncertainty. 376 

3.5.3. The cost efficiency of SAWC Digital Soil Mapping 377 

Soil data need to be recorded, but this process can be time consuming and therefore costly. To 378 

answer the question, “Is all the data necessary to reach quality predictions?”, we set two 379 

indicators to assess i) the cost of a unit of gained RMSE and ii) the relative cost efficiency, 380 

which were both calculated for each percentage of auger holes added to the soil profiles. The 381 

cost of a unit of RMSE was evaluated using the following equation (Eq. 8): 382 

 
        

     
     

 (8)       

 383 

where         is the cost of a unit of RMSE (in €/cm) and       is the root mean square 384 

error of the combination of  % of auger hole and soil profile datasets. 385 

The relative cost efficiency was assessed following the recommendation of Kish (1965) used 386 

by (Viscarra Rossel and Brus, 2018, Eq. 9): 387 

 
    

               

           
 

(9) 

where     is the relative cost-efficiency ratio,         and         are the cost and the 388 

error of a reference design, respectively, here using solely soil profiles in the SAWC DSM, 389 

and       and       are the cost and the error, respectively, of the combination of  % of 390 

auger hole observation and soil profiles. A     larger than one reveals more efficient 391 

sampling than the reference (Viscarra Rossel and Brus, 2018). 392 



 393 

4. Results 394 

4.1. Preliminary results 395 

In Figure 5, we present the distributions of SAWC30, SAWC60, SAW100 and SAWCmax for 396 

the soil profiles (left panel of Figure 5) and auger holes (right panel of Figure 5). We first 397 

observed that the distributions of SAWC regardless of the considered soil depth were bimodal 398 

for both the soil profiles and auger holes, with i) a higher peak for higher values of SAWC30 399 

and SAWC60 and with ii) a higher peak for lower values of SAWC100 and SAWCmax. 400 

Additionally, it is worth noting that both the SAWC ranges and the means of the auger holes 401 

were systematically greater than those of the soil profiles. This could be explained by i) 402 

possible underestimations of coarse fragments by visual determinations on very small 403 

volumes using auger holes compared to real measurements of coarse fragments on larger 404 

volumes using soil profiles and ii) possible biases of the field determination of textural class 405 

on auger holes compared with laboratory analyses performed on soil profiles. 406 

 407 



 408 

 409 

Figure 5. Distributions of the soil available water capacity of soil profiles at a) 0-30 cm, b) 0-60 cm, c) 0-100 cm and d) 0-410 
depthmax and of auger holes at e) 0-30 cm, f) 0-60 cm, g) 0-100 cm and h) 0-depthmax 411 



In addition, empirical variograms and their fitted models were computed using the gstat 412 

package (Pebesma, 2004) both from the soil profile data (Figure 6, left panel) and from the 413 

auger hole data (Figure 6, right panel), and for the different considered SAWC ( lines of 414 

Figure 6). The Spatially structured variance ratio (SSVR, Eq. 10), which estimated the portion 415 

of the variance that was spatially structured, was computed from the variograms as follows: 416 

(3) 
          

      
                 

(10) 

 417 

First, we noted that the variogram of the SAWC determined from auger hole observations 418 

exhibited clear spatial structures regardless of the maximal depth (SSVR ranging from 66% to 419 

76%). The variograms showed a mix of short-range spatial structures (fitted ranges between 420 

332 and 341 m) and large-range structures (fitted ranges exceeding 30 km). Conversely, the 421 

variograms of SAWC30 and SAWC60 determined from the soil profile empirical variogram 422 

exhibited less clear spatial structures (SSVR of 25% and 33%), whereas a clear structure 423 

appeared for SAWC100 and SAWCmax (SSVR of 82% and 89%). Because of their larger 424 

spacing, the soil profiles did not allow us to see the short-range spatial structures revealed by 425 

the auger hole observations. Additionally, significant decreases in nuggets were observed 426 

from the variograms of SAWC30 and SAWC60 processed from profiles to those processed 427 

from auger holes. This decrease can be interpreted as the result of increasing sampling 428 

densities that better captured the short-range spatially structured variance that was otherwise 429 

included in the profile variogram nuggets. It is interesting to note that the converse occurred 430 

for SAWC100 and SAWCmax. The probable increase in the uncertainty of observations with 431 

depth due to the difficulties in observing deep horizons from auger holes yielded a nugget 432 

increase that largely counterbalanced the effect of the sampling density evoked previously. 433 

 434 



 435 

Figure 6. Empirical variograms computed for SAWC using 69 soil profiles at a) 30 cm, b) 60 cm, c) 100 cm and d) 200 cm 436 
and using 2781 auger hole observations at e) 30 cm, f) 60 cm, g) 100 cm and h) 200 cm, and their theoretical variograms. 437 

 438 



4.2. Comparing DSM model prediction and uncertainty prediction performances 439 

Table 3 shows the prediction and the uncertainty prediction performances of the two 440 

considered DSM models in predicting the SAWCs at four different depths. Only the extreme 441 

data scenario, i.e., no auger hole vs. the whole set of auger holes, is shown. 442 

First, better performances of SAWC predictions were generally obtained by adding the auger 443 

hole observations, with the noticeable exceptions of the predictions of SAWC60, SAWC100 444 

and SAWCmax using a classical (nonspatial) QRF. When using QRFdist, the performance 445 

increases by adding auger hole observations tended to decrease as the maximum considered 446 

depth increased. 447 

Additionally, using QRFdist that included geographical information led to better prediction 448 

performances regardless of the SAWC only when the auger hole observations were added to 449 

the soil profiles. Otherwise, (i.e., when only the soil profiles were used for calibrating the 450 

model), using QRF yielded equal or slightly better prediction performances. 451 

Concerning the ability of the models to provide unbiased estimates of prediction uncertainty, 452 

as measured by the PICP, larger PICP values were obtained with QRFdist than with QRF, 453 

except for the PICP for SAWC100 with only soil profiles. Furthermore, the effects of 454 

including auger holes in QRF calibration were different according to the selected model: the 455 

PICP decreased when QRF was selected, whereas the PICP increased when the QRFdist model 456 

was selected. As far as the closeness to the nominal value of 90% is concerned, better results 457 

were generally obtained when the auger hole observations were not used, with the noticeable 458 

exception of the SAWC30 predictions using QRF. Furthermore, QRFdist had more PICP 459 

values close to the 90% nominal value (< 2%) than did QRF (4 out of 8 vs. 1 out 8). 460 

 461 

 462 



Table 3. Prediction and uncertainty prediction performances of SAWC using multiple DSM models 463 

DSM models   QRF QRFdist 

SAWC 
Auger holes 

portion (%) 
SSMSE 

RMSE 

(cm)  

Bias 

(cm) 

PICP 

(%) 
SSMSE 

RMSE 

(cm)  

Bias 

(cm) 

PICP 

(%) 

SAWC30 0 0.04 1.66 0.17 86 -0.02 1.71 0.32 85 

 
100 0.38 1.34 0.49 86 0.49 1.22 0.37 90 

     
 

   
 

SAWC60 0 0.33 2.74 1.08 87 0.3 2.79 0.35 89 

 
100 0.32 2.76 1.28 83 0.54 2.26 0.82 93 

     
 

   
 

SAWC100 0 0.55 3.73 -0.47 92 0.46 3.97 0.22 90 

 
100 0.43 4.06 1.82 85 0.63 3.27 1.09 95 

          

SAWCmax 0 0.61 4.01 -0.68 90 0.53 4.41 -0.56 91 

 100 0.54 4.37 1.88 85 0.7 3.54 0.18 96 

 464 

As expected, the averaged RMSE tended to increase with the widths of the confidence 465 

intervals predicted by QRFdist (Table 4), which demonstrated the overall validity of the 466 

uncertainty predictions. However, non-monotonous increases were observed for the SAWC 467 

predictions at small depths that also exhibited the weakest performances (Table 3). This non-468 

monotonousness was clearer when the auger hole observations were added. Similar trends 469 

were observed for the confidence interval widths predicted by QRF (results not shown). 470 

 471 



 472 

Rooting depth (cm) Uncertainty RMSE (cm) 

  Soil profiles Soil profiles and 

auger holes 

30 Low 1.09 1.31 

 Fairly low 1.25 0.79 

 Fairly high 2.75 1.10 

 High 1.9 1.59 

    

60 Low 2.31 1.25 

 Fairly low 2.24 2.02 

 Fairly high 2.81 3.25 

 High 3.46 2.08 

    

100 Low 2.81 1.52 

 Fairly low 2.82 2.81 

 Fairly high 3.49 3.69 

 High 5.71 4.32 

    

Maximum 

observation depth 

Low 3.07 2.24 

 Fairly low 2.88 2.82 

 Fairly high 4.55 4.20 

 High 6.09 4.37 

 473 

Table 4. Error-predicted uncertainty results of QRFdist using only soil profiles and  using soil profiles and auger hole 474 
observations for predicting SAWC at multiple depths 475 

4.3. Spatial distribution of the SAWC and its associated uncertainty 476 

All the predicted maps of SAWC (Figure 7) exhibited spatial patterns of variation that were 477 

globally in accordance with the lithological variations shown in Figure 1. The highest values 478 

of SAWC were predicted in the northeastern section of the study area with fluvisols 479 

developed on loess. The smallest values corresponded to chromic luvisols developed on the 480 

old stony alluvial deposits. 481 

The spatial pattern became increasingly clear and contrasted as the considered soil depth for 482 

calculating the SAWC increased (from the top to the bottom of Figure 7). The incorporation 483 



of auger holes (from the left to the right column in Figure 7) led to i) an increase in the 484 

predicted variabilities of the SAWC, leading to more contrasted patterns regardless of the 485 

predicted SAWC; ii) an increase in the spatial resolution of the SAWC pattern delineations, 486 

showing very fine details of variation; iii) the removal of some obvious artifacts of the map of 487 

SAWC100 obtained from the soil profiles (Figure 7c); and iv) the addition of some artifacts 488 

(isolated pixels) in the SAWC30 and SAWC60 maps (Figure 7e and 7f). 489 

 490 



 491 

Figure 7. Predicted maps of SAWC over Bouillargues using QRFdist with soil profiles for predicting a) SAWC30, b) SAWC60, 492 
c) SAWC100, and d) SAWCmax and using QRFdist with soil profiles and auger hole observations for predicting e) SAWC30, 493 

f) SAWC 60, g) SAWC100, and f) SAWCmax 494 

The uncertainty maps of SAWC predictions (Figure 8) obtained from the QRFdist model 495 

exhibited spatial patterns that were both complex and very contrasted across the predicted 496 

SAWCs and soil inputs. When examining the variations between quartiles of predicted 497 

uncertainty that looked significant according to the error-predicted uncertainty results (Table 498 



4), some of the maps revealed strong spatial pattern similarities with those of some 499 

uncertainty drivers, i.e., the SAWC30 uncertainty map using soil profiles (Figure 8a) with the 500 

lithology map (Figure 1), SAWC100 map using soil profiles (Figure 8c) with the spatial 501 

density of soil profiles that is observable on the map of soil profiles (Figure 2a), SAWC30 502 

uncertainty map using auger hole observations (Figure 8e) with the spatial density of auger 503 

hole observations that is observable on the map of auger hole observations (Figure 2b), 504 

SAWCmax uncertainty map using auger hole observations (Figure 8h) with the predicted map 505 

of SAWCmax. The other uncertainty maps (Figure 8b, 8d, 8f) showed less interpretable 506 

patterns, with probably mixed impacts of the above evoked drivers. 507 



 508 



 509 

Figure 8. Predicted uncertainty maps of SAWC prediction over Bouillargues presented by the classes estimated from the 510 
quartiles of the validation distribution using QRFdist with soil profiles for predicting SAWC at a) 30 cm, b) 60 cm and c) 100 511 
cm; QRFdist with soil profiles and the whole set of auger hole observations in covariates set for predicting SAWC d) 30 cm, e) 512 
60 cm and f) 100 cm 513 

4.4. Comparing the spatial densities of auger hole observations 514 

In Figure 9, we present the evolution of the SSMSE with the increasing number of auger hole 515 

observations in the calibration process. The density in the number of observations/km
2
 is also 516 

expressed as the average spacing between observation sites, which means that the density 517 

increases as the average spacing decreases. The average spacing between observation sites 518 

was estimated as follows: 519 

 
                  

          

    
  (11) 

As already observed from Table 3, the general trend was an increase in performance as the 520 

number of auger hole observations increased regardless of the maximal depth at which the 521 

SAWCs were calculated. However, some local decreases in performance were observed, e.g., 522 

on SAWC60 and 100 predictions when adding 10% auger holes or on SAWC100 and 523 

SAWCmax predictions when passing from 20 to 30% auger holes. Conversely, the addition of 524 

10% to 20% auger holes and 60% to 70% auger holes seemed beneficial for all predictions of 525 

the SAWC. 526 

 527 

 528 



 529 

Figure 9. Evolutionary SSMSE according to the number of auger hole observations added to the inputs for the four SAWCs 530 

 531 

When considering the costs of adding new auger hole observations according to the two cost-532 

efficiency indicators described in section 3.5., it appeared that the cost of gaining one unit of 533 

RMSE (the error cost,          was important until the first addition of the auger hole and 534 

further linearly increased as new auger holes were added (Figure 10). This is translated by the 535 

relative cost-efficiency ratio     ) by a dramatic decrease under the 1:1 ratio when adding the 536 

first auger hole observations and then a slow decrease for further additions. 537 



 538 

Figure 10. Cost-efficiency ratios according to the average spacing related to the number of auger holes 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 



5. Discussion 550 

5.1. Soil Available Water Capacity 551 

The selected case study considered the soil available water capacity, which is among the most 552 

highly demanded properties of end users, as the targeted soil property (Richer de Forges et al, 553 

2019). This paper completes the small set of papers that were devoted to the digital mapping 554 

of SAWC (Hong et al., 2013; Malone et al., 2009; Padarian et al., 2014; Poggio et al., 2010; 555 

Román Dobarco et al., 2019; Ugbaje and Reuter, 2013, Amirian-Chackan et al., 2019) and the 556 

even smaller set of papers that addressed all the SAWC components as defined by the original 557 

definition reported by Cousin et al. (2003) (Eq. 1) (Leenaars, 2018; Romàn Dobarco et al., 558 

2019; Styc and Lagacherie, 2019, submitted). 559 

However, as in many DSM applications, the SAWC was determined at local sites without the 560 

full measurements of its components. Visual estimations of the coarse fragment content and 561 

of the soil depth generated observational uncertainties and, for the latter, right-censored 562 

estimations due to the limitation in observation depths. Furthermore, the water retention 563 

capacity of each horizon was not fully measured, although it is worth noting that some 564 

components of this retention that are usually not measured (bulk density, field capacity) were 565 

measured here on the soil profiles. To overcome the measurement limitations, pedotransfer 566 

functions were used (see section 2.2.3). It is worth noting that these pedotransfer functions 567 

were highly case specific both regarding their input (textural classes + field capacity 568 

measurements) and their target (the b coefficient). The addition of all these peculiar 569 

uncertainties should result in a significant overall uncertainty of the soil inputs that is well 570 

reported by the nuggets of the variograms of the densest datasets (Figure 6, right panel). This 571 

uncertainty may greatly explain the limitation of performances that was observed, even for the 572 

densest datasets. 573 

5.2. The interest of “spatial RFs” 574 



Our results showed that the SAWC prediction performances were nearly systematically 575 

increased by adding some geographical information, i.e., the n of “scorpan” in McBratney et 576 

al.’s (2003) formula, to the set of candidate covariates used in a random forest. This 577 

confirmed the results obtained by Hengl et al. (2018) from various case studies. This, 578 

however, enriched these results by showing that the gains in performances provided by the 579 

addition of geographical covariates depend on the density of the sampling. Indeed, these gains 580 

were only effective when the dense sampling of auger hole observations was used (76 m 581 

spacing), whereas the low density of soil profiles did not provide clear improvements (Table 582 

3). At high density levels, the classical landscape covariates were not sufficient to account for 583 

the variability shown in the dataset of soil inputs as represented by the variograms of Figure 6 584 

(right panel), whereas the proximity effects brought by the geographical covariates allowed us 585 

to overcome this limitation. 586 

In digital soil mapping, proximity effects have been traditionally addressed by using 587 

regression kriging (Hengl et al., 2004; Malone et al., 2009; Vaysse and Lagacherie, 2015). 588 

However, spatial QRF was demonstrated to have similar performances (Hengl et al, 2018) 589 

while having some decisive advantages in the context of our case study. Spatial QRF does not 590 

require any rigid statistical assumptions about the distribution and the stationarity of the target 591 

variable, which allows us to handle the bimodal distributions of SAWCs (Figure 5). It also 592 

does not require any geostatistical expertise for the manual fitting of variograms, which opens 593 

the possibility to fully automate the procedure so that non pedometrician, such as BRL staff, 594 

could use it for the other communes of the irrigation perimeter. 595 

5.3. The interest of adding auger hole observations 596 

The addition of dense spatial sets of auger hole observations in the modeling process 597 

significantly increased the level of performance when considering the best model (QRFdist), 598 

which is in accordance with several previous experiments studying the impact of soil 599 



sampling densities (Somarathna et al. 2017, Wadoux et al. 2019 and Lagacherie et al., 2020). 600 

The performances observed in this case study were better than those in most of the published 601 

DSM applications dealing with SAWC (Ugbaje and Reunter, 2013; Styc and Lagacherie, 602 

2019, submitted), which was the result of a much greater spatial density of the soil inputs 603 

(from 6/km
2
 to 26/km

2
) than in these previous applications (from 0.01/km

2
 to 0.05/km

2
)). 604 

However, strong limitations in the SAWC prediction performances were still observed, even 605 

when using the most dense set of auger hole observations. These limitations increased as the 606 

maximum depth at which the SAWC was calculated decreased (Table 3). This means that 607 

significant proportions of the SAWC variabilities were not mapped despite the large densities 608 

of the auger hole observations used as input. To explain this fact, it is first interesting to note 609 

that for both the soil profiles and the soil profiles plus auger hole inputs, the performances and 610 

the spatially structured variance ratios of the input soil datasets were ranked similarly across 611 

SAWCs and spatial densities (Figure 6), which was already observed in the same region for 612 

different soil properties and study extents by Vaysse and Lagacherie (2015). Concerning the 613 

results using solely the profiles, this revealed that a part of the short-range variability shown 614 

by the variograms built from auger holes (Figure 6, left panel) was not captured by the soil 615 

dataset because of a limitation in spacing. However, this limitation decreased as the 616 

considered depth of the SAWC calculation increased, which explained the observed increase 617 

in performance from SAWC30 to SAWCmax. Concerning the results using the auger hole 618 

observations, a similar trend was observed since the local uncertainty as revealed by the 619 

variogram nuggets (Figure 6, right panel) remained important due to observational uncertainty 620 

(see section 5.1.), which may induce noise that may perturb the calibration of the QRF model. 621 

Finally, it should be recalled that these performances were calculated for predictions of the 622 

SAWC at precise locations, whereas SAWC is required for field or in-field management 623 



zones for most of the decision making. It could be expected that these performances would 624 

increase when the SAWC prediction will be spatially aggregated (Vaysse et al, 2017). 625 

5.4. Uncertainty predictions 626 

Since SAWC is a soil functional property composed of several primary soil properties, 627 

uncertainty predictions were provided by a specific error model previously proposed by 628 

(Román Dobarco et al., 2019) and further refined by Styc and Lagacherie (submitted). The 629 

uncertainty predictions were classically evaluated with regard to their unbiasness (PICP, 630 

Table 3). They were also evaluated for their ability to identify contrasted uncertainty areas 631 

(comparisons between residuals and predicted uncertainty, Table 4), which, to our knowledge, 632 

has never been done in the DSM literature before Styc and Lagacherie (submitted). The 633 

results were highly variable across models and spatial densities. However, the more accurate 634 

models tended to also provide the best pictures of the uncertainty patterns (Figure 6) with an 635 

overestimation of uncertainty (QRFdist on Table 3). This overestimation was already observed 636 

by Lagacherie et al. (2020) and was assumed to be due to the inclusion of outliers as the 637 

average spacing decreased, which probably disturbs the limit estimations of the confidence 638 

interval. On the other hand, a part of the inaccuracy of uncertainty predictions may come from 639 

the differences (Figure 5)  between the distributions of SAWC values calculated from auger 640 

holes (used as calibration data only) and from soil profiles (used as evaluation data). More 641 

attention must be paid in the future to uncertainty predictions in view of identifying the 642 

possible causes of these uncertainty mispredictions. 643 

It is interesting to note that some of the produced uncertainty maps showed strong similarities 644 

with possible drivers (see comments of Figure 8), which can be interpreted from our common 645 

sense pedological knowledge. The largest uncertainties were estimated i) in chromic Luvisols 646 

(Figure 6a) because of the large rates of coarse fragment content that are known to be difficult 647 

to quantify in the field, ii) in areas of lower densities of soil observations (Figure 6c and 6e) 648 



because of difficulties of model calibration at these locations and iii) for the largest predicted 649 

values of SAWCs with the best models (Figure 6h) because the estimates of relative 650 

uncertainty reached an unsurmountable floor that is likely related to the observational 651 

uncertainty. All these observations reinforce the credibility of the presented uncertainty maps. 652 

 653 

5.5. The level of performance obtained and cost. 654 

The use of auger hole observations as complementary soil input to soil profiles led to a 655 

substantial increase in performance, but the harvesting process was very time consuming, 656 

which resulted in high costs (see section 4.5). Figure 9 curves show that the performance 657 

gains were obtained by increasing costs as the density of the auger holes increased. A 658 

compromise should then be found, which can be formulated as “the number of auger hole 659 

observations that reach an acceptable level of performance while keeping an acceptable cost 660 

level”. The cost indicator curves of Figure 10 did not reveal a clear compromise. However, 661 

such curves could be used with a prior definition of what performance and costs are 662 

acceptable. Furthermore, such cost curves could be improved if either more sophisticated 663 

sampling is used (e.g., van Groningen et al, 1998) or if the harvesting costs could be reduced 664 

by a partial automation of digitizing procedures (Yang and Yang, 2017). 665 

Finally, it should be stressed that the quantitative evaluation of prediction performance that 666 

served as a basis for building the curve costs should be completed by a qualitative 667 

examination of the maps. As revealed by the spatial patterns of the predicted SAWC maps, 668 

considerable gains in spatial resolution were obtained by adding auger holes, which may 669 

enable field-level decision making. This may constitute a more decisive added value than the 670 

moderate gain in precision quantitatively evaluated by the cost indicators. 671 

6. Conclusion 672 



In this study, the main lessons were as follows: 673 

 A QRF approach using euclidian buffer distances outperformed a classical QRF 674 

approach in predicting SAWC with a dense set of profiles and auger holes 675 

 The addition of a dense spatial sampling of auger hole observations dramatically 676 

increased the performance in predicting SAWCs and increased the spatial resolutions 677 

of the SAWC pattern delineations, but there were limitations due to the uncertainty of 678 

the auger hole observations. 679 

 The performances in predicting SAWC values varied following some drivers that were 680 

expected  - average spacing of sites, and type of observations (profiles vs. auger holes) 681 

-  and following other drivers that were revealed by the uncertainty maps  – 682 

pedological context, local  density of sites, SAWC predicted values – (see section 683 

5.4.). 684 

 The cost-efficiency analysis did not reveal a clear compromise in terms of limiting the 685 

costly harvesting of auger hole data. Rather, the compromise should be user specific 686 

and should be updated as soon as partial automation is possible (see section 5.5) 687 

 688 
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