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Abstract
Introduction Because of its ease of collection, urine is one of the most commonly used matrices for metabolomics studies. 
However, unlike other biofluids, urine exhibits tremendous variability that can introduce confounding inconsistency during 
result interpretation. Despite many existing techniques to normalize urine samples, there is still no consensus on either which 
method is most appropriate or how to evaluate these methods.
Objectives To investigate the impact of several methods and combinations of methods conventionally used in urine metabo-
lomics on the statistical discrimination of two groups in a simple metabolomics study.
Methods We applied 14 different strategies of normalization to forty urine samples analysed by liquid chromatography 
coupled to high-resolution mass spectrometry (LC-HRMS). To evaluate the impact of these different strategies, we relied 
on the ability of each method to reduce confounding variability while retaining variability of interest, as well as the predict-
ability of statistical models.
Results Among all tested normalization methods, osmolality-based normalization gave the best results. Moreover, we demon-
strated that normalization using a specific dilution prior to the analysis outperformed post-acquisition normalization. We also 
demonstrated that the combination of various normalization methods does not necessarily improve statistical discrimination.
Conclusions This study re-emphasized the importance of normalizing urine samples for metabolomics studies. In addition, 
it appeared that the choice of method had a significant impact on result quality. Consequently, we suggest osmolality-based 
normalization as the best method for normalizing urine samples.
Trial registration number: NCT03335644

Keywords Untargeted metabolomics · Urine analysis · Normalization · Mass spectrometry · Osmolality

1 Introduction

Along with other omics approaches, such as transcriptom-
ics and proteomics, metabolomics methods are now widely 
used to probe qualitative and quantitative variations in 
endogenous metabolites to assess the impact of various 
diseases or environmental conditions on metabolic homeo-
stasis (Jansson et al. 2009; Wikoff et al. 2009). The study 
of metabolome modulation constitutes a powerful approach 
since the metabolome represents the most direct link to the 
phenotype compared to other “omics” (Fiehn 2002). Nuclear 
magnetic resonance (NMR) and mass spectrometry (MS) 
are now established as the reference techniques used in 
metabolomics. NMR is known to be more robust than MS 
but also to give access to a smaller set of metabolites due to 
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a lower sensitivity. Considering this lower sensitivity, MS 
is generally more widely used than NMR for metabolomics 
studies and will be the focus of this article. Among the vari-
ous matrices analysed in metabolomics, urine is one of the 
most commonly used because of the non-invasive nature of 
its collection and the quantity of available samples. How-
ever, in contrast to other biofluids, such as plasma and cer-
ebrospinal fluid, urine is far less regulated and can exhibit 
up to 14-fold variation in total metabolite concentrations 
(Warrack et al. 2009). Focusing on urine, numerous nor-
malization strategies have emerged to mitigate the varia-
tions that are mainly attributable to non-relevant parameters 
such as hydration level, which can bias conclusions based 
on changes in metabolite concentration and introduces con-
founding factors.

Several normalization techniques based on various fac-
tors have been proposed for normalizing metabolomics 
data. Among them, as proposed by Edmands et al. (2014) 
and more recently by Gagnebin et al. (2017), two different 
approaches can be distinguished, namely, pre-analysis nor-
malization often based on a biological parameter such as 
creatinine, specific gravity, and osmolality (Chen et al. 2013; 
Vogl et al. 2016; Warrack et al. 2009), and post-acquisition 
curative normalization. The creatinine concentration is one 
of the most commonly used reference factors because the 
urinary creatinine level is supposed to reflect the overall 
concentration of metabolites (Ryan et al. 2011). Indeed, 
creatinine excretion levels are assumed to remain constant 
within and across individuals since they are linked to muscle 
degradation and glomerular filtration (Waikar et al. 2010). 
However, its use as a normalization factor is currently under 
debate since factors such as diet, muscle mass, age, physi-
cal activity and menstrual cycle can affect creatinine levels 
(Cross et al. 2011; Davison and Noble 1981; Décombaz et al. 
1979; James et al. 1988; Skinner et al. 1996). The urine 
volume excreted during 24 h is also used as a normalization 
factor for metabolomics studies (Godzien et al. 2011) (Shih 
et al. 2019), but this parameter is not always accessible, 
especially in the case of human samples. Osmolality, which 
is considered one of the most reliable methods for evaluating 
overall urine metabolite concentration (Chadha et al. 2001), 
can also be used as a normalization factor in metabolomics 
(Yamamoto et al. 2019). The advantage of measuring osmo-
lality is that it is only influenced by the number of particles 
and chemical entities dissolved in urine, thus better reflect-
ing the overall urine metabolite concentration than creatinine 
level or total urine volume. However, osmolality measure-
ment requires specific equipment. Directly linked to osmo-
lality and more easily routinely measurable, specific grav-
ity is also used to estimate urine metabolite concentrations 
in metabolomics studies (Edmands et al. 2014). However, 
this parameter, representing the ratio between the mass of 
a given volume of urine and the mass of the same volume 

of water, less faithfully reflects the solute concentration, 
is more prone to measurement errors due to the presence 
of large molecules (Chadha et al. 2001; Cook et al. 2020; 
Voinescu et al. 2002) and requires larger sample volumes. 
Other data, such as the total NMR signal, can also be used to 
estimate the overall urine metabolite concentration. It should 
be noted that all these parameters can be used pre-analysis 
by applying specific dilutions or post acquisition by dividing 
the signal of detected metabolites. As reviewed by Wu and 
Li (2016), sample normalization methods in metabolomics 
are diverse and vary from one study to another, as well as 
the conclusion of studies evaluating the performance of nor-
malization methods. In their study, Vogl et al. concluded 
that creatinine was the most efficient normalization method, 
even over osmolality (Vogl et al. 2016), while more recently, 
Rosen Vollmar et al. and Burton et al. determined that spe-
cific gravity was more reliable than creatinine (Burton et al. 
2014; Rosen Vollmar et al. 2019), and others found better 
results with osmolality normalization (Chetwynd et al. 2016; 
Gagnebin et al. 2017).

In line with the diversity of pre-analytical normalization 
techniques, the post-analytical panel of approaches is also 
very diverse. Some of the most employed post-acquisition 
normalization methods, such as total ion current (TIC) 
normalization, MS total useful signal (MSTUS) (Warrack 
et al. 2009) or probabilistic quotient normalization (PQN) 
(Dieterle et al. 2006), are based on a ratio between each 
feature and a given spectral reference. With TIC normali-
zation, each feature intensity is divided by the sum of all 
feature intensities in the sample of interest. As TIC nor-
malization is sensitive to orphan features and xenobiot-
ics, Warrack et al. (2009) proposed MSTUS normalization 
based on a normalization factor calculated from features 
common to all samples. This technique assumes that the 
number of decreasing and increasing metabolites is rela-
tively equivalent across the samples, although this condi-
tion is not always met in all studies (Jacob et al. 2014). 
Initially, proposed to normalize NMR metabolomics data, 
the PQN method was also used to normalize MS metabo-
lomics data. This method is based on the calculation of 
a dilution coefficient in relation to a reference spectrum, 
such as the median of quality control (QC) samples. In 
addition to these normalization methods, which aim to 
correct concentration differences, other algorithms such 
as LOESS (Dunn et al. 2011) have been used to correct 
analytical drift, which is of particular importance in MS-
based metabolomics. In the face of this diversity, some 
tools, such as NormalizeMets (De Livera et al. 2018) or 
Normalyzer (Chawade et al. 2014), have been developed to 
evaluate the performance of various normalization meth-
ods for metabolomics data. Despite these tools, there is at 
present no consensus on the use of normalization methods 
in metabolomics or on how to evaluate their performances.
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Here, we propose to evaluate the performance of several 
of the most employed metabolomics data normalization 
methods on the basis of a simple metabolomics study carried 
out by liquid chromatography mass spectrometry (LC–MS) 
on urine samples. As the conclusions of the literature remain 
unclear, it is still necessary to conduct multiple studies eval-
uating normalization methods to draw general conclusions. 
A cohort of forty individuals free of pathological conditions 
(that could bias normalization based on biological factors 
such as creatinine or osmolality) was chosen to perform this 
study. Considering this particular design relying on subjects 
from the general population, we suggest that extrapolation 
of our study results could be more generally applicable than 
those obtained from studies comparing a control popula-
tion to a diseased population that may bias normalization. 
The impact of specific dilutions of samples to normalize 
either creatinine or osmolality was studied and compared 
with post-acquisition normalization using these parameters, 
as well as the PQN and MSTUS mathematical normaliza-
tion methods. A total of 14 normalization strategies were 
tested and compared. The comparison was based on several 
complementary criteria, including intra-group variance and 
residual variability reduction, percentage of explained bio-
logical variability of interest, and finally predictive capacity 
of statistical models.

2  Materials and methods

2.1  Chemicals

All solvents were purchased from Fisher Scientific (Thermo 
Fisher Scientific, Illkirch, France) and were of LC–MS 
grade.

2.2  Sample preparation

Urine samples were collected from forty healthy indi-
viduals (20 women and 20 men) from the NutriNet-Santé 
study, an ongoing web-based observational prospective 
study launched in France in 2009 (Hercberg et al. 2010) 
and including adult volunteers. The NutriNet-Santé study 
was conducted according to the Declaration of Helsinki 
guidelines and was approved by the Institutional Review 
Board of the French Institute for Health and Medical 
Research (IRB Inserm n°0000388FWA00005831) and the 
“Commission Nationale de l’Informatique et des Libertés” 
(CNILn°908450/n°909216). Clinicaltrials.govnumber: 
NCT03335644. At the clinical visit, urine sample collec-
tion was performed using vessels allowing for closed-circuit 
urine transfer from the vessel to a Vacutainer® tube. Urine 
samples were collected either in autumn/winter (n = 23) or 
spring/summer (n = 17) from 2011 to 2014. The Vacutainer® 

tubes containing the spot urine samples were kept at + 4 °C 
before and during transportation to the central laboratory. 
After splitting into aliquots, urine samples were stored at 
− 80 °C for further analyses. Samples were divided into 
three parts and were prepared as follows: the first part of the 
samples was diluted 1:3 (v/v) in LC mobile phase A (95:5 
water/methanol + 0.1% acetic acid). The second part of the 
samples was diluted to standardize creatinine concentration 
based on the smallest value, determined by 1H NMR accord-
ing to a method adapted from Bouatra et al. (Bouatra et al. 
2013), and then diluted 1:3 (v/v) in mobile phase A. The 
third part was specifically diluted to standardize osmolality 
levels based on the smallest value, determined using a freez-
ing point osmometer (Loeser Messtechnik, Berlin, Germany) 
and then diluted 1:3 (v/v) in mobile phase A. After dilution, 
all samples were vortexed and centrifuged at 9500×g for 
5 min. The supernatant was collected and transferred into 
vials to be directly analysed by UHPLC-MS. QC samples 
were prepared by pooling equivalent volumes of all samples. 
QCs were diluted to obtain dQC samples.

2.3  Instrumentation

LC–MS analyses were performed using an ultra-per-
formance liquid chromatography (UPLC) instrument 
(ACQUITY, Waters, Manchester, UK) coupled to a quad-
rupole time-of-flight mass spectrometer (Q-ToF Synapt 
G2-Si, Waters, Manchester, UK) as previously described 
(Jamin et al. 2020). A volume of 10 µL was injected into 
a Hypersil Gold C18 (1.9 μm, 100 mm × 2.1 mm) analyti-
cal column (Thermo Fisher Scientific, Illkirch, France) at a 
flow rate of 0.3 mL/min and maintained at 40 °C. A linear 
gradient programme was set up with mobile phase A: 95% 
 H2O/5% methanol/0.1% acetic acid, and mobile phase B: 
100% methanol/0.1% acetic acid. The initial conditions were 
100% A, followed by a linear gradient from 0 to 100% B 
in 30 min. These conditions were held for 4 min prior to 
switching in 1 min to the starting conditions that were held 
for 5 min to equilibrate the column. Samples were analysed 
in three analytical batches, and QC samples were injected 
at the beginning of each batch and then every six samples to 
evaluate analytical drift.

Full MS acquisitions were achieved with electrospray 
ionization in negative mode as follows: capillary voltage, 
0.5 kV; sampling cone voltage, 30 V; source temperature, 
120 °C; desolvation temperature, 550 °C; cone gas  (N2) flow 
rate, 30 L/h; and desolvation gas  (N2) flow rate, 600 L/h. 
Data were acquired from mass-to-charge ratios (m/z) of 50 
to 800. Internal mass calibration was performed by injecting 
leucine enkephalin at 1 ng/mL at a flow rate of 10 µL/min. 
Data were acquired by operating the Synapt spectrometer in 
sensitivity mode and using dynamic range extension (DRE) 
to enhance both the sensitivity and dynamic range.
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2.4  Data processing

Metabolomics data are complex, and there are multiple 
sources of variability, so it is sometimes difficult to iso-
late variability due to biological factors of interest. For 
this reason, it is necessary to define and identify the dif-
ferent sources of variability to apply appropriate filters 
and decrease some unwanted variabilities. It is therefore 
mandatory to distinguish between variability linked to the 
biological factor studied, which is called biological vari-
ability of interest, and variability not linked to the biologi-
cal factor. The latter can be divided into several factors, 
such as technical variability, confounding biological vari-
ability and residual variability. Technical variability can, 
for instance, originate from sample preparation or analyti-
cal drift. Confounding biological variability is related to a 
known biological factor other than the factor of interest (e.g., 
biofluid concentration, BMI, etc.). Finally, residual variabil-
ity corresponds to the remaining variability not explained 
by these previous factors. Full-HRMS data were processed 
using XCMS 3.0 with the collaborative environment Work-
flow4Metabolomics (W4M) dedicated to the processing of 
metabolomics data (Giacomoni et al. 2015). Extraction of 
data from full scan spectra was carried out using the cent-
wave algorithm (ppm = 10, peak width = (5,40), sntresh = 10, 
noise = 10,000, bw = 10, mzwid = 0.01). Data were then fil-
tered using a ratio of the average signal in QCs over the 
average signal in blanks with a threshold of 3. We also elimi-
nated all features displaying a correlation coefficient with 
dQC samples lower than 0.6. LOESS regression was applied 
based on QC samples to correct intra- and inter-batch drift. 
At the end, only common features displaying an RSD lower 
than 30% in QC samples were retained. PQN and MSTUS 

normalization were performed using the W4M environment. 
For PQN normalization, the median of the QCs was chosen 
as a reference.

2.5  Tested normalization strategies

The combination of pre- and post-acquisition normaliza-
tions led to the test of fourteen strategies of normalization 
presented in Table 1.

2.6  Statistical analyses

Statistical analyses were performed using Simca-P 14.0 
software (Umetrics, Umea, Sweden) and MATLAB 2017b 
(The MathWorks, Inc.). All data were log transformed and 
Pareto scaled prior to principal component analysis (PCA) 
and orthogonal partial least square discriminant analysis 
(OPLS-DA). Log transformation was applied to reduce 
heteroscedasticity (Li et al. 2016) and Pareto to reduce the 
differences in intensity between features without increasing 
the analytical noise too much (Yang et al. 2015). PCA mod-
els were assessed using the explained variance parameter 
 (R2), and the number of principal components was chosen 
based on a scree plot (Cattell 1966). Predictive capacity 
 (Q2) and permutation tests were used to check the validity 
and robustness of the O-PLS-DA models.  Q2, whose val-
ues are between 0 and 1, corresponds to the fraction of the 
total variation of the biological factor of interest that can be 
predicted by the O-PLS-DA model. The permutation test 
assesses whether the specific classification of individuals 
in the two designated groups is significantly better than any 
other random classification in two arbitrary groups (West-
erhuis et al. 2008). A model is considered robust when it 

Table 1  Description of the fourteen normalization techniques assessed in this work

Name Definition

Pre-acq osmo Specific dilution applied prior to the analysis according to osmolality levels
Pre-acq creat Specific dilution applied prior to the analysis according to creatinine cocentration
Post-acq osmo Signal of each feature of a given sample divided by its calculated dilution factor 

according to osmolality level
Post-acq creat Signal of each feature of a given sample divided by its calculated dilution factor 

according to creatinine concentration
PQN PQN normalization
MSTUS MSTUS normalization
Pre-acq osmo + PQN Combination of pre-acq osmo and PQN
Pre-acq osmo + MSTUS Combination of pre-acq osmo and MSTUS
Post-acq osmo + PQN Combination of post-acq osmo and PQN
Post-acq osmo + MSTUS Combination of post-acq osmo and MSTUS
Pre-acq creat + PQN Combination of pre-acq creat and PQN
Pre-acq creat + MSTUS Combination of pre-acq creat and MSTUS
Post-acq creat + PQN Combination of post-acq creat and PQN



Osmolality-based normalization enhances statistical discrimination of untargeted…

1 3

Page 5 of 11 2

displays a Q2 intercept < 0.05 (Lapins et al. 2008). When the 
optimal number of orthogonal components was higher than 
1, the orthogonal component was manually added as long as 
the percentage of explained variance by this component was 
higher than 5%. The numbers of predictive and orthogonal 
components included in the OPLSDA models are displayed 
in Supplementary Material S2. Seven-fold cross-validation 
was used to estimate the predictive ability of the adjusted 
model  (Q2). However, O-PLS-DA cannot separate variabil-
ity corresponding to the different factors of the experimen-
tal design (sex and normalization in this study). To reach 
this, analysis of variance multiblock orthogonal partial least 
squares (AMOPLS) (Boccard and Rudaz 2016) was applied 
to assess the percentage of explained variance associated 
with each factor of the experimental design. This method 
works in two steps. In the first step, total variability is split 
according to the factors (normalization, sex and interaction, 
in this study). The significance of each effect is tested based 
on the permutation test (Vis et al. 2007). Then, multiblock 
OPLS was used to fit a multivariate model based on subma-
trices obtained from ANOVA decomposition.

3  Results and discussion

The objective of this work was to evaluate the performance 
of several of the most employed normalization methods for 
urine metabolomics. Urine samples from forty male and 
female individuals were analysed by UPLC-MS with or 
without normalization by specific dilution prior to acquisi-
tion. Data obtained from samples without pre-acquisition 
dilution were used to evaluate the impact of pre- and post-
acquisition normalization. The evaluation of the perfor-
mance of these different strategies was carried out based on 
the predictive ability of the generated statistical models, as 
well as the percentage of variance that could be attributed to 
the biological factor of interest, i.e., sex, in this study. Since 
metabolomics aims to highlight quantitative or qualitative 
differences in metabolite levels as a function of a biologi-
cal factor, an ideal normalization method would reduce the 
variability not linked to the factor of interest while retaining 
the maximum amount of information related to the studied 
condition.

3.1  Urine exhibits a large concentration 
distribution

Creatinine concentrations and osmolality were measured 
to estimate the overall sample concentration, allowing for 
the calculation of individual dilution factors to normalize 
either creatinine concentrations or osmolality levels. A large 
distribution of concentration levels was observed, ranging 
from 1.67 to 20.27 mol/L for creatinine and from 217 to 

1236 mOsmol for osmolality (Supplementary S1). Sur-
prisingly, a significant difference was observed (Wilcoxon 
paired test, significance threshold 0.05) between calculated 
dilution factors from creatinine and osmolality, as shown in 
Fig. 1a. Dilution factors ranged from 1 to 12 for creatinine 
and from 1 to 5.7 for osmolality. Despite this disparity, a 
good correlation (r = 0.87) was observed between the dilu-
tion factors calculated from the two parameters, as presented 
in Fig. 1b, indicating that both of these estimators are suita-
ble to evaluate the overall metabolite concentration in urine. 
Because creatinine normalized samples are more diluted, 
the number of values missing before the FillPeaks step in 
the XCMS process was studied. No major differences were 
found between the three conditions, even a slight decrease in 
the number of missing values was observed with creatinine-
normalized samples (data not shown).

Fig. 1  Concentration variations in urine samples. a Dilution factors 
calculated for both creatinine and osmolality. b Correlation of dilu-
tion factors calculated according to creatinine levels and osmolality 
levels
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To ensure that urine normalization based on these two 
parameters would not introduce bias in the discrimination 
of the two population groups, univariate statistical analyses 
(Mann–Whitney test, significance threshold 0.05) were per-
formed on creatinine and osmolality levels, and no signifi-
cant differences between men and women were observed for 
either of these parameters (data not shown). These results 
underlined the large concentration distribution in urine sam-
ple metabolite concentrations.

3.2  Normalization decreases overall variability

As shown in Sect.  3.1 osmolality levels and creatinine 
concentrations exhibit large variations that were possibly 
responsible for a large part of the sample set variability. 
Dilution according to creatinine and osmolality levels aimed 
to normalize the dataset and reduce the variability linked to 
overall urinary concentration.

To assess the impact of normalization methods on the 
overall variability, which corresponds to both biological 
variability and variability not linked to the factor of inter-
est, PCA was first performed on log-transformed data. This 
allowed for the comparison of the non-normalized dataset 
to the pre- and post-acquisition normalized datasets using 
both creatinine and osmolality-based normalization. A total 
of 4758 out of the 17,366 initially detected features were 
kept after the filtration process and subjected to PCA. The 
variance in the coordinates of individuals in each dataset 
on the first two components was calculated to assess the 
impact of normalization on data dispersion. As displayed in 
Fig. 2a, samples diluted according to osmolality levels (red 
triangles) exhibit less dispersion on the PCA plot than sam-
ples adjusted according to creatinine concentration (green 
circles) or non-normalized samples (blue squares). This 
observation was confirmed by calculating the variance of 
individuals in each dataset where osmolality normalization 
showed a strong decrease in overall variance (var = 257.9) 
compared to creatinine normalization (var = 375.2) or the 
non-normalized dataset (var = 422.32).

Post-acquisition normalization achieved by dividing the 
signal intensity of each feature for a given sample by the cal-
culated dilution factor was also assessed. The latter approach 
is less constrained since post-acquisition normalization 
avoids pre-acquisition sample dilution by a pre-determined 
factor, which can be tedious, especially with large sample 
cohorts. For the pre-acquisition normalized samples, PCA 
was performed from the non-normalized dataset and the 
dataset normalized by dilution factors calculated either from 
creatinine or osmolality levels. As presented in Fig. 2b, when 
compared to the non-normalized dataset (var = 524.5), vari-
ances in the coordinates of individuals showed a decrease 
in overall variability when normalization was performed on 

osmolality (var = 329.4) levels but not with creatinine-based 
normalization (var = 582.6).

These results suggest that regardless of the strategy 
employed, osmolality-based normalization leads to a lower 
overall variability than the other normalization methods. 
PCA combining all datasets was performed to determine 
which of the pre-acquisition or post-acquisition strategies 
led to the greatest reduction in overall variability. The vari-
ance in coordinates was 239.2 for diluted samples and 329.4 
for post-acquisition normalized samples (data not shown), 
suggesting that post-acquisition normalization is less effi-
cient than pre-acquisition normalization for decreasing 
global variability. This can be tentatively explained by the 
fact that major differences in urine concentration induce 
strong differences in matrix effects, which can lead to ion 
suppression in MS analyses and thus to an increase in signal 
variability. Therefore, using a specific dilution to standard-
ize urine concentration prior to mass spectrometric analysis 
could decrease the differences in matrix effects linked to 
urine concentration.

3.3  Normalization improves statistical 
discrimination

Most metabolomics studies are based on the comparison 
of relative metabolite abundances between two or more 
groups. As a consequence, decreasing variability not linked 
to the biological factor by applying normalization techniques 
would result in an increase in the statistical discrimination 
of groups. In this study, to assess the effect of various nor-
malization methods, we relied on the statistical power of 
supervised OPLS-DA models to discriminate two groups 
composed of 20 men or 20 women.

Fourteen normalization strategies were tested and com-
pared with the non-normalized dataset chosen as the refer-
ence. The results displayed in Fig. 3 show that statistical 
models built with the pre-acquisition normalized dataset led 
to better results than those built with the non-normalized 
dataset (grey line), especially for osmolality normalization 
in terms of the predictive ability of the model  (Q2 = 0.52). 
 Q2 values for all models are displayed in Supplementary S2

These results are in accordance with the decrease in 
overall variability observed in Fig. 2, suggesting that pre-
acquisition normalization reduced variability not linked to 
the biological factor of interest while retaining biological 
information, according to Fig. 3. On the other hand, pre-
acquisition normalization according to creatinine concen-
tration only led to a slight improvement in statistical segre-
gation  (Q2 = 0.42) compared to the non-normalized dataset 
 (Q2 = 0.35). Interestingly, when normalization was per-
formed on osmolality or creatinine levels after data acqui-
sition, no improvement was observed for fitted OPLS-DA 



Osmolality-based normalization enhances statistical discrimination of untargeted…

1 3

Page 7 of 11 2

models, although a reduction in overall variability was 
observed, especially for osmolality normalization.

We further tested whether post-acquisition methods 
such as PQN (Dieterle et al. 2006) or MSTUS (Warrack 
et al. 2009) could supplant pre-acquisition normalization 
for improving statistical discrimination. We observed 
that PQN led to similar results  (Q2 = 0.33) as MSTUS 
 (Q2 = 0.33), explained by the fact that we kept only fea-
tures that were common to all samples during the data 
filtration. Indeed, the first step of the PQN normalization 
consisted of a TIC normalization before performing a nor-
malization with respect to a reference sample (i.e., the 

median of QCs samples in this case). As all the features of 
the dataset were shared between all the samples, MSTUS 
normalization corresponded here to TIC normalization. 
Thus, in this particular case, the only difference between 
PQN and MSTUS normalization was the division by a 
constant determined by the median of the QC samples 
and thus led to the same results. By comparing the results 
obtained with mathematical post-acquisition methods 
to those obtained with pre-acquisition normalization, 
post-acquisition methods were found to be less efficient 
than specific dilutions. Finally, the combination of both 
biological- and mathematical-based normalization was 

Fig. 2  Two-dimensional PCA 
score plot of HR-MS spectra 
of urine samples. Each symbol 
represents an individual data 
point projected onto the first 
(horizontal axis) and second 
(vertical axis) PCA compo-
nents. Normalization methods 
are shown in different colours: 
creatinine in green dots (n = 40), 
none in blue squares (n = 40), 
and osmolality in red triangles 
(n = 40). The black ellipse 
determines the 95% confidence 
interval, which was drawn using 
Hotelling’s T2 statistic. a Preac-
quisition normalization: A = 2, 
R2 = 20%. b Post-acquisition 
normalization: A = 2, R2 = 24% 
(Colour figure online)
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investigated. No statistical improvement was observed 
when applying this combination  (Q2 = 0.33). Surpris-
ingly, when combining two post-acquisition methods, the 
results were identical. Indeed, this combination consists 
of dividing a feature by its calculated dilution factor and 
then by the sum of features itself divided by the same 
dilution constant. In total, this nullifies the post-acquisi-
tion normalization based on the dilution factor. However, 
when pre- and post-acquisition methods were combined, 
no statistical improvement was observed, suggesting that 
part of the biological variability associated with sex was 
removed by this sequential process. Indeed, the statistical 
model performed with the Pre-acq osmo dataset led to bet-
ter predictivity  (Q2 = 0.52) than the models resulting from 
the combination of Pre-acq osmo with MSTUS  (Q2 = 0.46) 
or with PQN  (Q2 = 0.46). The same results were obtained 
for the creatinine normalized dataset.

Taken together, these results showed that the applied nor-
malization method can act on the predictability of a statisti-
cal model. In total, 6 out of the 14 tested normalizations led 
to an increase in the discrimination power of the adjusted 
models, and notable differences were observed between 
normalization strategies. Normalization by specific dilution 
according to osmolality levels outperformed other meth-
ods. Interestingly, no improvement (and even a decrease in 
predictability) was obtained when applying this method in 
combination with PQN or MSTUS.

3.4  Pre‑acquisition normalization reduces residual 
variability

To further investigate the link between the overall decrease 
in variability and the statistical power improvement, the 
ability of these various normalization strategies to reduce 
residual variability while keeping biological information 
was investigated by splitting the total variance into parts 
corresponding to the different factors based on AMOPLS.

As presented in Fig. 4a, the percentage of variability asso-
ciated with sex ranged from 2.9 to 3.6% depending on the 
applied normalization method. In line with previous find-
ings, normalization by specific dilution based on osmolality 
levels corresponded to the higher percentage of variabil-
ity explained by sex with 3.6% variability. Post-acquisition 
normalization based on osmolality or creatinine levels did 
not lead to such an improvement, although the percentage of 
variability explained by sex was higher than that in the refer-
ence dataset. Interestingly, no difference was observed when 
applying post-acquisition methods such as PQN or MSTUS 
compared to the non-normalized dataset. This is also in 
accordance with our previous results and suggests that over-
normalization can reduce variability with a negative impact 
on the discrimination power. Despite the slight improvement 
in the percentage of variability linked to sex, it is noteworthy 
that sex was only a significant factor (p = 0.04, 500 permu-
tations) when pre-acquisition osmolality normalization is 

Fig. 3  Radar chart of  Q2 of 
OPLS-DA models generated for 
all tested normalization strate-
gies (blue line) compared to  Q2 
of OPLS-DA generated from 
non-normalized model (grey 
line). For detailed values of  Q2, 
see Supplementary S2 (Colour 
figure online)
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performed, in contrast to other tested normalizations. Resid-
ual variability, which corresponds to unexplained variance, 
can mask variability linked to sex. An ideal method would 
reduce residual variability while increasing the percentage 
of variance explained by the biological factor of interest. As 
illustrated in Fig. 4b, residual variability was also affected by 
normalization. The lowest residual variability was associated 
with the pre-acquisition normalization based on osmolality 
levels with 75% residual variability, while it was between 
75 and 76.5% for other normalizations. Here, again, the 

combination of methods with MSTUS or PQN or the use of 
PQN or MSTUS alone did not lead to a greater reduction in 
residual variability.

These findings are in accordance with previous obser-
vations, showing that the statistical improvement observed 
in Sect. 3.3 for pre-acquisition osmolality-based dilution is 
linked to a decrease in residual variability and an increase 
in the percentage of variance associated with the biological 
effect.

4  Conclusion

Normalization of data is often a pre-requisite for obtain-
ing unbiased results in statistical analyses. When applied to 
metabolomics data, normalization is especially important 
for matrices such as urine, which are highly variable. Four-
teen normalization strategies often used in metabolomics 
were compared to determine the most suitable normaliza-
tion for urine metabolomics, considering their performance 
for overall variability reduction, enhancement of statisti-
cal power and unwanted variability reduction. Our results 
showed that the normalization method using urine-specific 
dilution according to osmolality levels gave the best results. 
Surprisingly, the combination of this method with PQN or 
MSTUS did not improve our assessment criteria and even 
led to a decrease in statistical discrimination, likely due 
to over-normalization, which could partially suppress the 
variability of interest. This shows that the combination of 
normalization methods could decrease statistical power and 
should not be systematically applied. Moreover, not all four-
teen tested methods led to improved performances compared 
to the non-normalized dataset, reinforcing the recommenda-
tion to apply a suitable normalization strategy for untargeted 
urine metabolomics studies.
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