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Abstract 7 

Crop residues are acknowledged as a key biomass resource to feed tomorrow’s sustainable bioeconomy. 8 

Yet, the quantification of these residues at large geographical scales is primarily reliant upon generic 9 

statistical estimations based on empirical functions linking the residues production to the primary crop 10 

yield. These useful yet unquestioned functions are developed either using direct evidence from 11 

experimental results or literature. In the present study, analytical evidence is presented to demonstrate 12 

that these methods generate imprecise and likely inaccurate estimates of the actual biophysical crop 13 

residue potential. In this endeavor, we applied five of the most used functions to a national case study. 14 

France was selected, being the country with the largest agricultural output in Europe. Our spatially-explicit 15 

assessment of crop residues production was performed with a spatial resolution corresponding to the 16 

level of an administrative department (96 departments in total), also the finest division of the European 17 

Union’s hierarchical system of nomenclature for territorial units (NUTS), and included 17 different crop 18 

residues. The theoretical potential of crop residues for France was found to vary from 987 PJ y-1 to 1369 PJ 19 

y-1, using different estimation functions. The difference observed is more than the entire annual electricity 20 

consumption of Belgium, Latvia, and Estonia combined. Perturbation analyses revealed that some of the 21 

functions are overly sensitive to fluctuation in primary crop yield, while analytical techniques such as the 22 

null hypothesis statistical test indicated that the crop residues estimates stemming from all functions were 23 

all significantly different from one another. 24 
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Graphical abstract 43 

 44 

1. Introduction 45 

Terrestrial lignocellulosic biomass from crop residues (CR) (e.g., cereal straw) is a significant carbon 46 

feedstock source to feed a well-below 2°C economy with the non-fossil carbon it requires (Bentsen et al., 47 

2014; Hamelin et al., 2019; Williams et al., 2016). In fact, fossil fuel carbon dioxide (CO2) emissions are the 48 

leading cause of human-induced climate change, counting with ca. 69% of global greenhouse gas (GHG) 49 

emissions (WRI, 2020). Substituting, to the extent possible, the use of fossil carbon by biogenic carbon 50 

from residual sources like CR furthermore allows supplying a carbon source decoupled from the demand 51 

for additional arable land. 52 

CR has been subjected to scientific scrutiny for many years, particularly in the last two decades, and is 53 

typically defined as an agrarian by-product. CR mainly consists of the dry stalks and leaves of cereal and 54 

oilseed crops after the product of interest (i.e., grain, seed, or cobs) is harvested, and of the top stem and 55 

leaves from tuber tops (e.g., potato or beetroot). Figure 1 shows the typical representation of a cereal and 56 

oilseed crop in terms of the above-ground and below-ground repartition of the biomass. The above-57 

ground biomass is partitioned as primary crop yield (to be harvested, also referred to as economic yield), 58 

harvestable residues (may or may not be collected), and non-harvestable residues (the machinery or 59 

specific farm management does not permit the harvest of these in most cases) (Hamelin et al., 2012). In 60 

the case of tubers, the primary crop yield is below-ground, and harvestable residues above-ground. 61 
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 62 

Figure 1: Generic repartition of the above- and below-ground biomass for cereal and oilseed crops.  Although 63 

the whole above-ground biomass could be harvested, a portion of the above-ground often remains 64 

unharvested and considered as non-harvestable due to the specific farm management or harvester used. 65 

Although CR and, in particular, cereal straw represent an important non-fossil carbon source in terms of 66 

quantity generated all over the World, it is only the amount generated in surplus of current uses that can 67 

be directly available for the bioeconomy, at least to avoid inducing market reactions caused by a change in 68 

supply. Apart from use in bioenergy production (e.g., straw-firing heat plants), CR already serve several 69 

competitive demands ranging from fodder and bedding in animal husbandry, as a substrate for mushroom 70 

cultivation or as a mulch in farms, among other applications (Haase et al., 2016; Scarlat et al., 2019; Tonini 71 

et al., 2016b). Furthermore, one inherent essential function of CR is its role as a vital source of organic 72 

matter for soils, including a supply of carbon, nitrogen, and other nutrients to soils. CR are also known for 73 

their ecosystemic functions, such as acting as a preventive layer against erosion (Haase et al., 2016) or 74 

enhancing soil water retention (Blanco-Canqui, 2013). Hence, the plethoric removal of these residues 75 

from agricultural fields can decrease the long-term productivity of soils (Blanco-Canqui, 2013; FAO, 2017). 76 

Therefore, the economic and environmental sustainability of removing CR from fields requires attentive 77 

and site-specific evaluation before any massive investment in CR-based bioeconomy solutions takes place. 78 

This challenge was first acknowledged by Scarlat et al. (2010), who presented a comprehensive 79 

assessment of the availability of CR in the European Union. Based on a literature review, the authors 80 

proposed sustainable removal rates varying between 40% and 50% according to the CR type, these rates 81 

allowing to maintain soil organic matter. The sustainable removal rates published by Scarlat et al., (2010) 82 

have been widely used in bioenergy and bioeconomy studies (Daioglou et al., 2016; Monforti et al., 2013; 83 

Searle and Malins, 2015). Apart from the study of Scarlat et al. (2010), several studies at scales varying 84 

from regional to global have proposed a variety of indicators to quantify the sustainable CR removal rates 85 

(Hansen et al., 2020; Muth et al., 2013; Ronzon and Piotrowski, 2017; Scarlat et al., 2019).  86 

Yet, when it comes to bioeconomy planning, the starting point is to ascertain the total annual biophysical 87 

quantity of these residues, i.e., prior to applying any restrictions, whether of sustainability or feasibility 88 

nature. This quantity is typically referred to as the theoretical potential (THP) (Bentsen and Felby 2012). 89 

Providing THP estimates, although these do involve their load of uncertainties, has the merit to supply a 90 

transparent quantitative basis for decision-making. Scaler multipliers may subsequently be applied to the 91 

THP estimates, at the convenience of stakeholders in charge of the planning to reflect techno-economic or 92 
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environmental constraints (Ericsson and Nilsson, 2006; Haberl et al., 2010; Kadam and McMillan, 2003). 93 

Thus, in this study, we focus on the methods for estimating the THP of CR. 94 

Actual field measurements would probably supply the most accurate method for quantifying CR THP in a 95 

given plot. Yet, because CR are a seldom traded market commodity, and because of the related time and 96 

cost constraints associated with measurements of unharvested CR, these measurements are rarely 97 

available nor performed. To derive THP estimates at global, national, or even at regional levels, statistical 98 

and empirical estimation methods have typically been used (Bentsen et al., 2014; García-Condado et al., 99 

2019; Scarlat et al., 2010). Usually, the estimation of CR production has been realized based on 100 

assumptions on the mathematical relationship between the crop and the residue yield. This relationship is 101 

generally derived as a factor based on the ratio between the primary crop yield and the residue yield, 102 

commonly referred to as the residues-to-product ratio (RPR). Some studies also use  Harvest Indexes (HI) 103 

for estimating  CR  (e.g., Sommer et al., 2016). HI is defined as the primary crop yield expressed as a 104 

fraction of the total above-ground biomass produced. 105 

Several studies suggest that RPR is better represented as a function of primary crop yield rather than as a 106 

fixed value (Bentsen et al., 2014; Scarlat et al., 2010). As reported in Ronzon and Piotrowski (2017), the 107 

functions so-far proposed for estimating the residue yield are somewhat diverse, including linear (Fischer 108 

et al., 2007), logarithmic (Scarlat et al., 2010), hyperbolic (Bodirsky et al., 2012), inverse tangential 109 

(Edwards et al., 2005) or exponential (Bentsen et al., 2014). In reality, the quantity of CR generated at 110 

large geographic regions can encapsulate significant variations due to a plethora of factors such as soil 111 

type, prevailing meteorological conditions, harvesting practices, and primary crop yield, among other 112 

things. Some studies also reported that drought has an impact on the residue-to-product ratio that may 113 

either decrease or increase if drought occurs at earlier or later growth stages, respectively (McCartney et 114 

al., 2006). Because of this diversity in the factors affecting the residue yield, there is no clear standard or 115 

set of rules for the quantification of crop residues THP at large geographical scales. Yet, it appears that 116 

despite the heavy focus on quantifying sustainable removal rates, studies never challenged nor addressed 117 

the potential significance of the choice of selecting the initial THP estimation method in the first place, 118 

whether based upon HI or RPR functions. 119 

Hence, the overall goal of this study is to evaluate the magnitude of eventual differences in CR THP 120 

estimates resulting from the use of the most commonly reported functions for CR estimation. This is 121 

illustrated with a national case study for Metropolitan France, the European Union country with the 122 

largest agricultural output, in economic terms (European Commission, 2020). We further address three 123 

specific sub-questions (SQ): 124 

o SQ-1: How variations in primary crop yield affect the estimation of CR yield for the assessed 125 

functions; 126 

o SQ-2: How uncertainties in primary crop yield overshadow the differences observed in the 127 

estimated CR stemming from the functions assessed herein and; 128 

o SQ-3: Is there any significant differences in the RPRs estimated from the different estimation 129 

functions. 130 

2. Materials and methods 131 

2.1 Scoping 132 

The assessment considers all major crops grown in France and reported in the national statistics (Agreste, 133 

2020), here grouped into four categories (Cereal crops, Roots and Tubers, Protein Crops, and Oil crops), 134 

which comprises 16 crops in total (Table 1). These represent ca. 20% of the overall land cover. The annual 135 

data on their production and surface area was obtained from the national agricultural statistics (Agreste, 136 

2020) at the French departmental administrative level (corresponding to NUTS-3 division in Eurostat's 137 
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Nomenclature of Territorial Units for Statistics; Eurostat, 2020a). For each department, average yields 138 

were calculated from 19 years of production and surface area data (2000 – 2018), as shown in Eq. 1: 139 

������� ��	
�(�,�) =
����������,� (�����)

���� ��  �� �,� (!��� ��)
    (Eq. 1).  140 

Where Primary crop Yieldi,j is the economic (cereal) yield for crop i in department j, Productioni,j is the 141 

production of crop i in department j, and Surface areai,j is the corresponding agricultural surface for crop i 142 

in department j. 143 

As detailed in the Supplementary Material 1 (SM1), the minimum and maximum records of crop 144 

production and surface area were identified for each crop and department in order to incorporate the 145 

range of annual variability in crop yield. 146 

2.2 Estimation of crop residues using empirical functions 147 

RPR is mathematically defined as the ratio of the above-ground harvestable biomass residue, here defined 148 

as residue yield, R, to the primary crop yield, Y (García-Condado et al., 2019), as shown in Eq. (2), which 149 

also presents the correspondence between RPR and HI: 150 

"�" =  
#$!%

!%
=

&�,�

'�,�
     Eq. (2) 151 

It should be noted that Eq. (2) was also presented in García-Condado et al. (2019), and is only valid to the 152 

extent R refers to the overall generated residue (harvestable and non-harvestable; Figure 1). 153 

The rationale for selecting different empirical functions for RPR varies for different studies. Still, the 154 

essential notion behind most functions is that the residue yield is directly proportional to the primary crop 155 

yield (Scarlat et al., 2010). Based on this, Bentsen et al. (2014) as well as Ronzon and Piotrowski (2017), 156 

proposed an exponential relation between the crop and the residue yields. Scarlat et al. (2010), on the 157 

other hand, derived best-fit logarithmic function curves for RPR by plotting the values for RPR and primary 158 

crop yield based on data available in the literature. Edwards et al. (2005) derived RPR functions for wheat 159 

and barley, based on grain yields and empirical ranges of harvest indexes taken from de Vries (1999). The 160 

study of Fischer et al. (2005) proposed negative linear RPR functions, which do not limit the production of 161 

crop residues to a threshold. This, however, mathematically implies that residue yields may decrease at 162 

very high levels of primary crop yields, as highlighted by Ronzon and Piotrowski (2017). On the other hand, 163 

Bentsen et al. (2014) argue that plant breeding has led to an increase in the HI without changing the 164 

overall plant biomass (Hay, 1995), indicating an asymptotic development of residue yield to a theoretical 165 

threshold only limited by physiological constraints. Thus they considered piecewise continuous functions 166 

to derive RPR estimates. García-Condado et al., (2019) used empirical models to predict crop residues 167 

from annual yield statistics. Their models were developed based on experimental data from the scientific 168 

literature. The functions mentioned above are summarized in Table 1. It can also be noted from Table 1 169 

that although RPR functions typically differ from one crop to the other, there are also cases where exactly 170 

the same functions are proposed (e.g. wheat and barley RPR functions of Edwards et al. (2005). Moreover, 171 

it is not always the same nor clear which exact fraction of the residues is considered in these studies (e.g., 172 

harvestable CR only or the entire aboveground CR), as highlighted in Table 2.  173 



6 
 

Table 1: RPR functions, Lower Heating Values and Dry matter for the selected cropsa 174 

Crop 
Type 

Crop  Lower Heating Values Dry matter (%) RPR Function
b 

R2 (if 
provide
d) 

Source 

C
er

ea
l C

ro
p

s 

Wheat 
15.2 MJ kg-1 

(Phyllis2, 2020) 
90 % 
(Wirsenius, 2000) 

RPR = -0.3629*ln(Y)+1.6057 0.28 (Scarlat et al., 2010) 

RPR = 0.769-
0.129*arctan((Y)-6.7)/1.5) 

- (Edwards et al., 2005) 

RPR = 2.186*exp(-0.127*Y) 0.52 (Bentsen et al., 2014) 

RPR = -0.14Y+1.96 - (Fischer et al., 2007) 

Barley 
16.19 MJ kg-1 

(Phyllis2, 2020) 
90% 
(Wirsenius, 2000) 

RPR = 1.822*exp(-0.149*Y) 0.51 (Bentsen et al., 2014) 

RPR = -0.2751*ln(Y)+1.3796 0.36 (Scarlat et al., 2010) 

RPR = 0.769-
0.129*arctan((Y)-6.7)/1.5) 

- (Edwards et al., 2005) 

RPR = -0.27*Y+2.77 - (Fischer et al., 2007) 

Maize 
17.41 MJ kg-1 

(Phyllis2, 2020) 
85% 
(Wirsenius, 2000) 

RPR = -0.1807*ln(Y)+1.3373 0.17 (Scarlat et al., 2010) 

RPR = 2.656*exp(-0.103*Y) 0.49 (Bentsen et al., 2014) 

RPR = -0.13*Y+2.20 - (Fischer et al., 2007) 

Oats 
18.45  MJ kg-1 

(Phyllis2, 2020) 
92% 
(Phyllis2, 2020) 

RPR = 1.868*exp(-0.250*Y) - 
(Ronzon and Piotrowski, 
2017) 

RPR= -0.1874*ln(Y)+1.3002 0.21 (Scarlat et al., 2010) 

RPR = -0.20*Y+2.70 - (Fischer et al., 2007) 

Triticale  
15.45 MJ kg-1 

(Ruiz et al., 2015) 
90% (Average of all 
cereals) 

RPR = 1.880*exp(-0.120*Y) - 
(Ronzon and Piotrowski, 
2017) 

Rye 
15.24  MJ kg-1 

(Phyllis2, 2020) 
89% 
(CCOF, 2013) 

RPR = 1.964*exp(-0.250*Y) - 
(Ronzon and Piotrowski, 
2017) 

RPR = -0.3007*ln(Y)+1.5142 0.22 (Scarlat et al., 2010) 

RPR = -0.20*Y+2.70  (Fischer et al., 2007) 

Sorghum 
14.27 MJ kg-1 

(Phyllis2, 2020) 
85% 
(Wirsenius, 2000) 

RPR = -0.55*Y+4.55 - (Fischer et al., 2007) 

RPR = 2.302*exp(-0.100*Y)  
(Ronzon and Piotrowski, 
2017) 

Rice 
16.38 MJ kg-1 
(Phyllis2, 2020) 

90% 
(Wirsenius, 2000) 

RPR = -1.2256*ln(Y)+3.845 0.57 (Scarlat et al., 2010) 

RPR = 2.450*exp(-0.084*Y) 0.22 (Bentsen et al., 2014) 

RPR = -0.22*Y+2.56 - (Fischer et al., 2007) 

R
o

o
ts

 a
n

d
 

T
u

b
er

s 

Beet 
16.6 MJ kg-1 

(Koga, 2008) 
20% 
(Wirsenius, 2000) 

RPR = 1.328*exp(-0.060*Y) - 
(Ronzon and Piotrowski, 
2017) 

RPR = -0.005*Y+0.75 - (Fischer et al., 2007) 

Potato 
13.6 MJ kg-1 

(Koga, 2008) 
20% 
(Wirsenius, 2000) 

RPR = 1.916*exp(-0.108*Y) - 
(Ronzon and Piotrowski, 
2017) 

RPR = -0.01*Y+1.10 - (Fischer et al., 2007) 

P
ro

te
in

 C
ro

p
s Beans 

16.24 MJ kg-1 

(Phyllis2, 2020) 
95% (Wirsenius, 
2000) 

RPR = 3.232*exp(-0.300*Y) - 
(Ronzon and Piotrowski, 
2017) 

Protein 
Pea 

13.57 MJ kg-1  

(Özyuğuran et al., 2018) 
95% (Wirsenius, 
2000) 

RPR = 3.644*exp(-0.300*Y) - 
(Ronzon and Piotrowski, 
2017) 

Sweet 
Lupine  

14.90 MJ kg-1  

(Taken as average of above 
two) 

95% (Taken as 
average of above 
two) 

RPR = 3.232*exp(-0.300*Y) - 
(Ronzon and Piotrowski, 
2017) 

O
il 

C
ro

p
s 

Rape 
16.33 MJ kg-1 

(Phyllis2, 2020) 

87.3% 
(Karaosmanoǧlu et 
al., 1999) 

RPR = 3.028*exp(-0.200*Y) - 
(Ronzon and Piotrowski, 
2017) 

RPR = -0.452*ln(Y)+3.2189 0.17 (Scarlat et al., 2010) 

Sunflower 
13.9 MJ kg-1 
(Lindley and Smith, 1988) 

90% 
(Wirsenius, 2000) 

RPR= 2.580*exp(-0.200*Y) - 
(Ronzon and Piotrowski, 
2017) 

RPR = -1.1097*ln(Y)+3.2189 0.26 (Scarlat et al., 2010) 

RPR = -0.70*Y+3.85 - (Fischer et al., 2007) 

Soy 14.3 MJ kg-1(Teagasc, 2010) 
90% 
(Wirsenius, 2000) 

RPR = 3.869*exp(-0.178*Y) 0.45 (Bentsen et al., 2014) 

RPR = -0.80*Y+3.90 - (Fischer et al., 2007) 

Othersc 

14.8 MJ kg-1  

(Taken as average of above 
three) 

89.1% 
(Taken as average 
of above three) 

RPR = 2.148*exp(-0.200*Y) - 
(Ronzon and Piotrowski, 
2017) 

a For primary crop yields, see SM1. These are not presented herein, as derived at the department level. 175 
b To maintain consistency with the terms used in the present study, the terminology used in the functions original have been 176 
adapted to the one used herein. 177 
c As per (Agreste, 2020), other oil crops include flax, castor and oeillette.  178 
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Table 2: Qualitative overview of the residue portion considered in the RPR functions of the studies inventoried.  179 

Functions Residue portion considered in the RPR functions (applies to all crops of the study) 
(Scarlat et al., 2010) 

Unclear if the residue is a fraction of total above-ground residue or the harvestable 
portion only. 

(Bentsen et al., 2014) 

(Fischer et al., 2007) 

(Edwards et al., 2005) 
Residue from the entire above-ground portion of the crop. 

(García-Condado et al., 2019) 

(Ronzon and Piotrowski, 2017) Residue from the harvestable portion of the above-ground biomass. 

 180 

The RPR functions presented in Table 1 were used to estimate spatially-explicit residue yields considering, 181 

for each administrative department, the primary crop yield and surface area data for each of the 16 crops 182 

included in this case study (Eq. 3). 183 

"	(��)	 ��*�)+,�*- ("�,�) = "�",� × ������� ��	
�(�,�) × /)�0�+	 ��	�,�   Eq. (3) 184 

Where Residue Production (RPi,j) is the amount of residue produced for crop i in department j, and RPRi,j is 185 

the residue-to-product ratio of crop i in department j. The aggregated spatially-explicit residue production 186 

is presented in terms of energy units using the LHV values shown in Table 1. For detailed department-wise 187 

crop-specific residue production in terms of mass, see SM1 (Sheet: Crop Residues DM and Energy). 188 

2.3 Uncertainty assessment 189 

Uncertainty assessment was used to address the three specific sub research questions. Three tests were 190 

performed by considering wheat cereal as a case-example, as it represents a significant share of the 191 

generated CR (39% by production volume in France).  192 

In the first test, SQ-1 was addressed. Here the extent to which the variation (or sensitivity) in primary crop 193 

yield affected the estimated residue yield was evaluated by performing a one-at-a-time (OAT) 194 

perturbation analysis (Bisinella et al., 2016). In the OAT analysis, primary crop yield values were changed 195 

by ±10% and ±50% of the original values, and residue yields were recalculated accordingly, using all the 196 

functions presented in Table 1. 197 

In the second test, SQ-2 was addressed. Here we evaluated how the actual uncertainty in primary crop 198 

yield overshadows the differences we observe in the estimated residues using the functions listed in Table 199 

1. For performing this test, each of the 96 French departments was considered as an individual sample, 200 

and the mean and standard deviation (SD) of primary crop yield for the whole of France using the data 201 

from the 96 French departments was calculated on a year per year basis for the period considered here 202 

(2000 – 2018). To incorporate this uncertainty in the estimated annual results, residue yields were 203 

recalculated with the original primary crop yield ±SD values for all the 19 years of data, and a chart was 204 

plotted to observe the overshadowed differences as confidence interval using the student’s t distribution 205 

(Supplementary Material 2: SM2). 206 

Finally, in the third test, we evaluated, through a two-tailed t-test, if there are any significant differences 207 

in the RPRs obtained using the different estimation functions presented in Table 1 (SQ-3). The RPR values 208 

were calculated using the mean annual primary crop yield value calculated in the second test (detailed in 209 

SM2). In the case of the function from García-Condado et al. (2019), the RPR values were calculated 210 

indirectly using Eq. (2). Each given RPR result was paired to the RPR result of the other functions for the 211 

corresponding year, thus creating a sample size of nineteen. For this test case, the null hypothesis and the 212 

alternate hypothesis were formulated as: 213 

 H0: There are no significant differences in the estimated RPRs of wheat cereal using different 214 

functions. 215 

 H1: There is a significant difference in the estimated RPRs of wheat cereal using different 216 

functions. 217 
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The t-test was performed at a significance level of α = 0.05 (95% confidence) (SM2).  218 

3. Results and Discussion 219 

In this study, we examined with a national case for France, the use of different estimation methods for 220 

quantifying CR. For each crop, the CR THP of a given spatially-explicit unit was separated into two ranges, 221 

i.e., (i) higher range, which includes the maximum CR estimate for the given crop, and (ii) lower range, 222 

which includes the lowest CR estimate for the given crop. The aggregated spatially-explicit results (i.e., for 223 

all crops) are shown in Figure 2 in terms of energy units, both at the French departmental (NUTS-3) and 224 

regional (NUTS-2) level. The THP of CR considering the selected sixteen crops varied from 987 PJ Y-1 to 225 

1369 PJ Y-1. These estimates are considerable, equivalent to about 60% - 80% of the annual French 226 

electricity consumption (For the year 2017, Eurostat, 2020). 227 

The THP, by definition, does not consider any competitive use (animal feed, bedding, etc.). The 228 

competitive uses of CR can be substantial; for example, Monforti et al. (2013) estimated that about 16% of 229 

the collectible CR is needed as animal bedding. Furthermore, in reality, not all of the estimated residues 230 

are collectible, and their removal from fields is not always suitable. Several studies have reported that 231 

about 40%-70% of these residues should not be collected, considering a variety of sustainability goals and 232 

premises (Einarsson and Persson, 2017; Scarlat et al., 2019, 2010; Hansen et al., 2020). Consequently, it 233 

should be kept in mind that the ranges presented in Figure 2 are higher than what can actually be used as 234 

a replacement for fossil carbon. However, mobilizing even just 20% of the potentials presented in Figure 2 235 

could substitute about 3% - 5% of the 2017 French electricity consumption, considering an electrical 236 

conversion efficiency of 27% (Tonini et al., 2016a). 237 

From Figure 2, it can be observed that the CR production is mainly concentrated in the Centre-Val de 238 

Loire, Hauts-de-France, Grand Est, and the Nouvelle-Aquitaine regions of France, which are also the 239 

primary cereal producing regions. The overall THP of CR at the Regional (NUTS-2) level is shown in Table 3, 240 

while THPs at the department (NUTS-3) level and crop-specific maps of the estimated THP using different 241 

functions are available in SM1. 242 
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 243 

Figure 2: Theoretical potential of crop residues at the French departmental (a: minimum; b: maximum) and 244 

regional level (c: minimum; d: maximum).  245 
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Table 3: Crop residues theoretical potential at the regional (NUTS-2) level, all cropsa 246 

Region Name Overall potential (Minimum) PJ Y-1 Overall potential (Maximum) PJ Y-1 Δ% 

Ile-de-France 42.36 57.89 37% 

Centre-Val de Loire 128.7 184.7 43% 

Bourgogne-Franche-Comte 74.60 109.6 47% 

Normandie 64.42 88.05 37% 

Hauts-de-France 137.4 179.8 31% 

Grand Est 151.6 212.4 40% 

Pays de la Loire 60.39 83.62 38% 

Brittany 52.51 71.52 36% 

Nouvelle-Aquitaine 139.9 191.4 37% 

Occitanie 76.66 109.0 42% 

Auvergne-Rhone-Alpes 52.33 71.59 37% 

Provence-Alpes-Cote d'Azur 6.460 9.467 47% 

Corse 0.1457 0.1844 27% 

Total 987.5 1369 39% 

a All values are presented with a maximum of four significant digits, but it should not be seen as an indication of precision. 247 

The results presented in Table 3 reveal high variability. At the national scale, this corresponds to about 248 

39% difference (987 – 1,369 PJ Y-1). This 382 PJ Y-1 difference is almost equal to about 22% of the overall 249 

annual electricity consumption in France, also equivalent to more than the overall electricity consumption 250 

of Belgium, Latvia, and Estonia combined (year 2017, Eurostat, 2020). At the regional level, the maximum 251 

difference was observed in the region of Grand Est with nearly 61 PJ Y-1, which itself is nearly twice the 252 

entire electricity consumption of a small country like Estonia. These considerable differences are isolating 253 

the “RPR function” effect only, as the primary crop yield considered for a given crop-department 254 

combination remains constant. 255 

The estimated THP of CR of our study falls within the range of a recent study by Scarlat et al. (2019), 256 

where an average THP of 1067.5 PJ Y-1 was estimated for France, considering a LHV of 17.5 MJ kg-1 DM. 257 

However, in their study, they only considered eight crops, namely wheat, rye, barley, oats, maize, rice, 258 

rapeseed, and sunflower. When compared to the estimates of Monforti et al. (2013), our estimates  259 

(62,182 kt – 86,178 kt) are 4 – 44% higher than the  59,569 kt Y-1 presented in Monforti et al. (2013). 260 

The average residue production (Mt) and the residue yield (t/ha) range of the crops selected in this study 261 

are shown in Table 4, based on the RPR function used. In terms of absolute volume, the maximum 262 

difference in the residue production was observed for wheat straw between the functions proposed by 263 

Fischer et al. (2007) and García-Condado et al. (2019), with a difference of 9.3 Mt Y-1 of wheat straw. 264 
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Table 4: Average residue yield and residue production for the selected crops, using the different RPR 265 

functions assessed in this study. 266 

 Average (2000 – 2018) residue production in M tonne DM per year, national level a 
Residue Yield 

(Min-Max) 
(Tonne / ha) Crops 

(Scarlat et al., 
2010) 

(Edwards et 
al., 2005) 

(Bentsen et 
al., 2014) 

(Fischer et al., 
2007) 

(García-
Condado et al., 
2019) 

(Ronzon and 
Piotrowski, 
2017) 

Wheat 30.73 25.70 31.89 34.59 25.34  4.4 – 6.3 

Barley 8.73 8.01 7.48 11.60 10.27  4.2 – 6.7 

Maize 12.24  15.26 15.14   7.1 – 9.0 

Oats 0.43   0.77  0.2707 2.6 – 7.2 

Rice 0.16  0.14 0.13 0.16  7.1 – 7.8 

Rye 0.15   0.21  0.07846 2.8 – 7.4 

Sorghum    0.48  0.3738 6.6 – 8.6 

Triticale      2.048 4.7 

Rape 10.88     6.714 4.6 -7.3 

Soy   0.45 0.35   4.6 – 5.8 

Sunflower 3.26   3.21  2.302 3.5 – 5.0 

Other Oil Crops    0.06   2.50 

Lupine      0.006225 0.83 

Pea      0.3602 1.30 

Beans      0.09343 0.97 

Potato    1.41  1.047 5.8 – 6.3 

Beetroot    4.51  3.284 7.7 – 9.9 

a Empty cells mean that a given study did not supply RPR functions for the crop under consideration. All values are presented with 267 
a maximum of four significant digits, but it should not be seen as an indication of precision. 268 

Figure 3 (a-e) shows the spatial distribution of wheat straw estimated using different empirical functions. 269 

Wheat straw is used here as a representative example since it contributes with ca. 40% of the THP-energy 270 

(385.1 PJ Y-1 – 525.8 PJ Y-1), but the details for all other CR can be found in SM1- CR (DM and Energy). 271 

Figure 3 (f) highlights the departments which are associated with two or more ranges of wheat straw 272 

potential, according to the RPR function used for the estimation. In total, 29 out of the 96 French 273 

departments have different ranges of wheat straw potential associated with them. 274 
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 275 

Figure 3: Department (NUTS-3) spatial distribution of wheat straw THP using different empirical functions (a 276 

– e), and (f) Departments associated with two or more ranges of wheat straw potential.  277 

3.1 SQ-1 Effect of variations in primary crop yield on estimated CR 278 

In order to evaluate the sensitivity of the empirical functions to the fluctuations in primary crop yield, OAT 279 

perturbation analysis was performed by changing the primary crop yield value by ±10% and ±50% of the 280 

original. For three out of the five functions (Edwards et al., 2005; García-Condado et al., 2019; Scarlat et 281 

al., 2010), a proportional increasing or decreasing trend was observed, i.e., with the increase in primary 282 

crop yield, the estimated residues also increased and vice versa (Figure 4). For the function by Bentsen et 283 

al. (2014), when the primary crop yield values were changed by ±10%, the estimated results were 284 

observed to be tightly bound to the results estimated using the original primary crop yield values. 285 

However, when the primary crop yield values were changed by ±50%, disproportionate changes were 286 

observed in the estimated straw, reflecting the very nature of the piecewise functions proposed by the 287 

authors, which limits the CR production (and indirectly possible yield increases) to a certain threshold. 288 

Similarly, yield variations generated rather erratic results when using the RPR function of Fischer et al. 289 

(2007), especially with a ±50% yield variation. Mathematically, the linear function proposed by Fischer et 290 

al. (2007) has a general structure of RPR = -0.14*yield+1.96 (Table 1); hence if the primary crop yield 291 

values are increased, the estimated residues are bound to decrease. 292 
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 293 

Figure 4: Observed variation in the estimated wheat residue (straw) over a period of 19 years by changing 294 

the primary crop yield by ±10% and ±50% of the original values (OAT analysis), using different estimation 295 

functions. 296 

3.2 SQ-2 Uncertainties in primary crop yield overshadow the differences observed in the estimated CR 297 

The chart shown in Figure 5 highlights the inter-annual variability of residues estimated using different 298 

functions along with the 95% confidence interval shown as error bars. From the figure, it can be observed 299 

that the results obtained using the functions from Edwards et al. (2005) and García-Condado et al. (2019) 300 

are mostly overlapping in the confidence intervals. This might be because both functions use HI directly or 301 

indirectly to estimate the residues. In terms of inter-annual variation of estimated residues, sharp 302 

decreases were observed for the years 2001, 2003, and 2016. These decreases followed the sharp 303 

decreasing trend observed in the primary crop yield values (highlighted in the black dotted series). 304 
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However, this trend is not general; for example, the primary crop yield value increased in the year 2009, 305 

but the estimated residues for that year shows a decreasing trend using all the functions (SM2: Effect). 306 

 307 

Figure 5: Average inter-annual variation of wheat straw using different empirical functions. The error bars 308 

represent the confidence interval at α = 0.05 309 

3.3 SQ-3 Differences in the RPRs estimated using different estimation functions 310 

The results of the null-hypothesis test are shown as pairwise comparisons in Table 5 (SM2: T-test RPR). 311 

The results of the t-test revealed that for each pair compared, the CR estimates were significantly 312 

different, with P(T<t) < 1.96. Thus the null hypothesis (H0 = There is no significant difference in the 313 

estimated RPR using different functions) was rejected, and the alternate hypothesis (H1) was accepted. In 314 

other words, none of the results obtained with each RPR function presented in Table 1 can be considered 315 

equivalent, meaning that the function selected for estimating CR is not a simple choice without 316 

consequences.  317 

This is further clarified in Figure 6, which illustrates, as boxplots, the variability of RPR values over the 318 

period 2000 – 2018 using different functions (SM2). It can be noticed, among others, that no two boxes 319 

overlap with each other. Figure 6 also illustrates that results from the functions of Bentsen et al. (2014) 320 

and Fischer et al. (2007) have broader ranges indicating a wider distribution and more scattered output 321 

results. Conversely, the short boxes in the functions of Edwards et al. (2005), García-Condado et al. (2019) 322 

and Scarlat et al. (2010) indicate that the RPR results range consistently hover around the center values.  323 

Table 5: Pairwise comparison of different functions used for estimating the RPR for wheat cereal. Values 324 

represent the P(T<=t) two-tail results, which are all significantly inferior to P(T<t) < 1.96 . 325 

 P (α=0.05) Scarlat et al. (2010) Edwards et al. (2005) Bentsen et al. (2014) Fischer et al. (2007) G-Condado et al. (2019) 

Scarlat et al. (2010)   1.2x10
-25

 3.9x10
-12

 2.7x10
-16

 3.2x10
-24

 

Edwards et al. (2005)     6.8x10
-18

 7.8x10
-20

 3.3x10
-15

 

Bentsen et al. (2014)       1.1x10
-26

 8.8x10
-18

 

Fischer et al. (2007)         1.8x10
-19

 

G-Condado et al. (2019)           
 326 
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 327 

Figure 6: RPR of the different functions for wheat residues represented as Box-plots. Crosses represent 328 

averages. 329 

The RPR functions developed by Bentsen et al. (2014) and Scarlat et al. (2010) are also accompanied by 330 

their coefficients of determination (R2) values (Table 1), which at best reaches 0.52. This implies that 331 

approximately half of the observed variation in the estimated residues can be explained by the function's 332 

variable, here the yield. This makes the estimation functions highly uncertain. Furthermore, it is not 333 

always clear with these functions, whether they capture the entire generated residual biomass, or just the 334 

portion that is harvestable, as shown in Table 2. According to Kristensen Fløjgård (2012), this non-335 

harvestable portion (or loss) can represent 10-15% of the overall CR in the case of cereals. 336 

While carrying out such resource assessment studies at large geographic scales (country, continental, 337 

global), empirical or statistical functions as those used here remain the most convenient tool for CR 338 

estimation. However, as shown in this study, the functions available at present appear little reliable, and 339 

additional experimental research to improve these would be rather beneficial in the perspective of 340 

bioeconomy action plans. 341 

3.4 Perspectives 342 

Our results have shown that resource assessments for crop residues can be uncertain due to the diversity 343 

of available methods and the lack of empirical validation. One alternative could be to standardize the 344 

assessments by specifying the method to use for all types of residues. Having a harmonized method for 345 

large geographical scale resource assessment will indeed carry an uncertainty of its own due to several 346 
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factors such as heterogeneity in local farm management, differences in soil properties, crop genetics, 347 

diverse climatic regime, among other things. It is expected that this uncertainty is going to be present 348 

regardless of the choice of method. Thus, uncertainty accounting is recommended in such assessments to 349 

provide the bioeconomy planners with a range or confidence intervals of these estimates. This can be 350 

done using the standard uncertainty propagation methods (JCGM, 2008), as exemplified in the case of 351 

assessment of primary forestry residues in France (Karan and Hamelin, 2020).  352 

Furthermore, in large-scale assessments, the choice of resource estimation method should not be 353 

random. When no clear evidence is available to support the obtained estimates, the use of the 354 

precautionary principle is recommended to report estimates that are more conservative, according to the 355 

intended use. In addition, an alternative ranking of methods in the perspective of bioeconomy can be 356 

proposed to select the most appropriate estimation method. For example, Sanderson et al. (2015) 357 

provided a ranking scheme for earth system models based on a stepwise model elimination procedure. A 358 

similar approach could be adapted for selecting the most relevant method for estimating the crop residue 359 

potential, building upon our wheat straw demonstration, but considering all types of crop residues. 360 

4. Conclusions 361 

A comprehensive assessment of crop residues theoretical potential was performed for metropolitan 362 

France, considering 16 major crops. The spatially-explicit estimation of crop residues was performed at 363 

the French departmental (NUTS-3) + regional level (NUTS-2). Empirical functions commonly used in the 364 

literature were used to estimate the CR by considering a ratio (RPR), which partitions the total above-365 

ground biomass into primary crop yield (the main cereal component of the crop) and CR. The results and 366 

uncertainties obtained with the different empirical functions were thoroughly analyzed. 367 

The key conclusion of this study is that existing RPR functions, albeit rather unquestioned, are highly 368 

unreliable and would greatly benefit from additional experimental research. In fact, we showed, with a 369 

case study on wheat produced in France in the period 2000 – 2018, that none of the assessed functions 370 

produced a CR estimate that can be considered as statistically comparable with one another.  371 
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