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Patterns in community composition are scale-dependent and generally difficult to 
distinguish. Therefore, quantifying the main assembly processes in various systems 
and across different datasets has remained challenging. Building on the PER-SIMPER 
method, we propose a new metric, the dispersal–niche continuum index (DNCI), 
which estimates whether dispersal or niche processes dominate community assembly 
and facilitates the comparisons of processes among datasets. The DNCI was tested for 
robustness using simulations and applied to observational datasets comprising organis-
mal groups with different trophic level and dispersal potential. Based on the robustness 
tests, the DNCI discriminated the respective contribution of niche and dispersal pro-
cesses in pairwise comparisons of site groups with less than 40% and 30% differences 
in their taxa and site numbers, respectively. In the observational datasets, the DNCI 
suggested that dispersal rather than niche assembly was the dominant assembly pro-
cess which, however, varied in intensity among organismal groups and study contexts, 
including spatial scale and ecosystem types. The proposed DNCI measures the relative 
strength of community assembly processes in a way that is simple, easily quantifiable 
and comparable across datasets. We discuss the strengths and weaknesses of the DNCI 
and provide perspectives for future research.
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Introduction

Understanding how biological communities are assembled 
is one of the main goals of community ecology, macroecol-
ogy and biogeography. The importance of correctly identify-
ing the key mechanisms of community assembly increases as 
global change proceeds and relevant ecological information 
is urgently needed to help designing appropriate manage-
ment and conservation programs (Mittelbach and Schemske 
2015). Ecological determinism and stochasticity are con-
sidered two main forces underlying community assembly 
(Leibold et al. 2004, Chase 2007, Vellend et al. 2014). The 
deterministic paradigm postulates that biological commu-
nities are structured by niche properties, stemming from 
species’ physiological responses, resource use and biotic inter-
actions, such as competition (Vellend 2010). The stochastic 
paradigm, by contrast, considers biological communities as 
products of random processes, such as dispersal (Hubbell 
2001). However, it is likely that niche and dispersal processes 
are not mutually exclusive but constitute the end points of a 
continuum, similar to the continuum of niche and neutral 
models proposed by Gravel et al. (2006). Within the disper-
sal–niche continuum, compositional variation of biological 
communities can be driven to a greater or lesser extent by 
each process (Holyoak et al. 2005, Mouillot 2007, Vellend 
2010, Gibert and Escarguel 2019).

As patterns in community composition are scale-depen-
dent (Chase et al. 2018) and underlying drivers are generally 
difficult to distinguish (Gotelli and Colwell 2001), quan-
tifying the main assembly processes in various systems and 
across different datasets has remained challenging (Viana and 
Chase 2019). Null model approaches are commonly used for 
studying whether communities differ from null-expectations 
and to what extent deterministic (i.e. niche-related) processes 
affect this deviation (Chase et al. 2011). Variation partition-
ing in constrained ordination (Borcard et al. 1992) is another 
widely implemented method. It assesses the effects of envi-
ronmental conditions (a proxy for niche processes) and space 
(a proxy for dispersal) on community assembly, and it relies 
on detailed data on community composition, environmen-
tal factors and geographic locations. However, traditional 
variation partitioning has been criticized for statistical and 
ecological reasons in the context of community assembly 
research, emphasizing the need for further methodological 
innovations. Specifically, in addition to capturing the rela-
tive importance of environmental conditions and space, the 
results of variation partitioning can also reflect the impact 
of spatial arrangement of environmental conditions, mak-
ing interpretations of underlying processes difficult (Smith 
and Lundholm 2010, Clappe et al. 2018). Simulations have 
suggested that variation partitioning fails to correctly repre-
sent environmental and spatial components of community 
variation, sometimes resulting in poor environmental mod-
els, poor spatial models or both (Gilbert and Bennett 2010, 
Clappe et al. 2018).

To address some of the data and methodological limitations 
of previous methods, Gibert and Escarguel (2019) recently 

developed a method called PER-SIMPER. PER-SIMPER 
allows the qualitative identification of the dominant assembly 
mechanism based solely on a matrix of species occurrences 
across sites. Building on SIMPER (Clarke 1993), this permu-
tation-based (hence, ‘PER-’) null model approach identifies 
the dominant assembly process accounting for compositional 
similarity percentages between site groups consisting of local 
communities (hence, ‘SIMPER’) within the same regional 
species pool (Gibert and Escarguel 2019). PER-SIMPER 
utilizes sites-by-taxa community matrices, generating three 
distinct null models, constraining rows (‘niche assembly’), 
columns (‘dispersal assembly’) or both during permutations. 
It uses the SIMPER (Clarke 1993) method to model the 
original community matrix compositional similarity pattern 
and to detect the empirical model profile, which is then com-
pared to the three null distribution profiles (hereafter called 
‘null PER-SIMPER profiles’, Fig. 1). PER-SIMPER makes 
a qualitative assessment by identifying which null profile 
matches best the empirical profile. However, the sensitivity 
of a qualitative approach to assembly mechanisms can be lim-
ited by the fact that most communities are structured by both 
niche and dispersal processes (Mouillot 2007). In addition, 
the qualitative nature of the PER-SIMPER decision-making 
process prevents precise comparisons of the assembly process 
in different metacommunities. 

As a solution to these limitations, we here propose a new 
metric, the dispersal–niche continuum index (DNCI) with 
broad ecological application. Specifically, the PER-SIMPER 
analysis returns three E-metric distributions, which corre-
spond to the deviation between the empirical SIMPER pro-
file and the three null PER-SIMPER profiles generated from 
the three permutation modes of the original matrix, where 
each permutation mode is linked to one of the three main 
assembly perspectives (i.e. dispersal assembly, niche assembly 
or joint dispersal–niche assembly). The new DNCI proposed 
here is derived from these computed E-values. Quantitative 
identification of the assembly process is based on the sub-
traction of the standard effect size (SES) of En (i.e. E-metric 
distribution from the ‘niche’ model) from the standard effect 
size of Ed (i.e. E-metric distribution from the ‘dispersal’ 
model). Thus, DNCI offers a way to both quantify and com-
pare the strengths of the main assembly processes across data-
sets (Fig. 1). Positive or negative DNCI values indicate that 
niche or dispersal assembly is the main process structuring 
the studied site groups consisting of biological communities, 
respectively. Higher absolute values of the index represent 
greater potential strength of the dominant assembly process.

To test the robustness of the DNCI, we performed robust-
ness tests with simulations. We then calculated the DNCI for 
two example datasets to test the applicability of the DNCI 
with empirical data. Using stream monitoring data from the 
USA, we compared whether the DNCI values differ among 
metacommunities of organisms varying in trophic level and 
dispersal capacity, including diatoms, macroinvertebrates and 
fish. Using a field study dataset from China, we addressed 
whether the DNCI values of stream bacteria and macroin-
vertebrates differ from each other and whether they vary with 
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Figure 1. Flowchart of PER-SIMPER derivation from the initial SIMPER method and the development and interpretation of the DNCI. 
Negative DNCI values indicate that dispersal assembly is the dominating process, while positive DNCI values indicate that niche assembly 
is the dominating process behind community dissimilarities among site groups. With increasing absolute values, the strength of the domi-
nating process increases. DNCI values close to zero indicate that both niche and dispersal assembly processes affect distributions. In dataset 
A, the DNCI does not significantly differ from zero, indicating that both dispersal and niche processes control the empirical species distri-
butions. In dataset B, DNCI is significantly greater than zero, indicating that niche assembly is the main driver of the empirical species 
distribution. In datasets C and D and the illustrated dataset, DNCI is significantly less than zero, indicating that dispersal assembly is the 
main driver of the empirical species distributions. Dataset D and the illustrated dataset do not have significantly different DNCI values, i.e. 
the control of the empirical species distributions by dispersal assembly is similar. Dataset C has a DNCI significantly higher than dataset D 
and the illustrated dataset, i.e. dispersal assembly control in dataset C is significantly weaker than in dataset D and the illustrated dataset. 
SESd = standard effect size of Ed. SESn = standard effect size of En. Modified from Gibert and Escarguel’s (2019) Supporting information.
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spatial distance. Finally, we discussed the strengths and weak-
nesses of the DNCI in inferring community assembly pro-
cesses and suggested potential research avenues.

Material and methods

Description of DNCI

The initial approach of PER-SIMPER (Gibert and Escarguel 
2019) compares an empirical SIMPER profile with three null 
PER-SIMPER profiles and qualitatively identifies which null 
profile and thus which assembly mode (i.e. dispersal assem-
bly, niche assembly or both) is responsible for the composi-
tion of the analyzed communities (Fig. 1). To this end, the 
empirical SIMPER matrix is permuted either by maintaining 
the richness of localities (the row sums) in order to retain 
information on the potential number of ecological niches 
per sample locality, or by maintaining the number of locali-
ties where the taxa may have dispersed (the column sums) in 
order to retain information on the potential dispersal capac-
ity of taxa. The third permutation mode maintains both row 
and column sums, retaining a larger part of the sampled 
information. While the number of localities where a species 
was sampled can provide indication for dispersal capacity, the 
taxonomic richness of a community can reflect the number 
of ecological niches, with richer communities having more 
niches (Granot and Belmaker 2020). The identification of 
the assembly mode relies on the E-metric, corresponding to 
the square of the deviations between the empirical SIMPER 
profile and multiple null PER-SIMPER profiles produced 
with the three permutation modes (by default, 1000 per-
mutations for each assembly mode). This approach can be 
problematic for two main reasons. First, its sensitivity is low 
because most communities are structured by both niche and 
dispersal processes (Mouillot 2007). Second, being qualita-
tive, this approach prevents precise comparisons (in space 
and time) of the assembly processes in different metacommu-
nities. To address these weaknesses, we developed the DNCI 
based on the three E-metric values:
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where SESd and SESn are the standard effect sizes of Ed and 
En, respectively, Ed, En and Edn are the E-metric values (i.e. 
deviation from the empirical SIMPER profile) for the three 
PER-SIMPER null models (i.e. ‘dispersal assembly’ permuta-
tion mode, ‘niche assembly’ permutation mode and ‘dispersal 
and niche assembly’ permutation mode, respectively), and 
the standalone n is the number of iterations selected for the 
PER-SIMPER method.

The standard deviation related to DNCI is obtained by 
simple error propagation from the standard deviations associ-
ated with SESd and SESn, such as:

s s sDNCI SES SES= +
d n

2 2 	  

If the DNCI is not significantly different from 0, the dispersal 
and niche processes could be assumed to contribute equally 
to variations in community composition. If the DNCI is 
significantly lower than 0, dispersal processes are the domi-
nant drivers of community composition. Conversely, if the 
DNCI is significantly higher than 0, niche processes are the 
primary determinants of community composition (Fig. 1). 
It is noteworthy that negative DNCI values indicating the 
predominance of dispersal processes do not give information 
on actual dispersal rates.

DNCI robustness test with simulated communities

PER-SIMPER’s original qualitative approach has shown 
accurate identification of the main assembly process under-
lying the composition of simulated communities, even 
when the analysed groups have different number of taxa or 
result from various sampling intensities. Furthermore, PER-
SIMPER’s qualitative identifications are particularly robust 
when one assembly process plays a role significantly larger 
than the other one. Conversely, when both processes are sim-
ulated, PER-SIMPER is more sensitive to sampling biases. In 
particular, the number of sampled sites (less than five sites in 
a site group) within the analysed dataset may bias the PER-
SIMPER inference toward the niche-based expectation by 
underestimating the effect of dispersal processes (Gibert and 
Escarguel 2019).

Here, the effects of number of taxa and number of sites 
are tested and measured on simulated datasets prior to using 
the new DNCI on empirical datasets. To ensure consistency 
between the quantitative and qualitative robustness tests, the 
simulated communities are obtained from cellular automata 
detailed by Gibert and Escarguel (2019). The automata are 
designed for simulating the different displacement potential 
of various taxa (dispersal) as well as the influence of local 
environmental conditions on taxonomic richness (niche). 
The dispersal potential of taxa and the taxonomic richness 
limit inside cells can be tuned by, respectively, changing the 
number of individuals moving along the automaton grid (i.e. 
the more individuals, the more dispersal) and by changing the 
pattern limiting maximum richness within the cells. Using 
these two parameters, it is possible to simulate a complete 
continuum of communities from those strongly constrained 
by niche processes to those strongly constrained by dispersal 
as well as a set of intermediate types of communities.

The final occurrence matrices are composed of 30 sites per 
group (i.e. 60 sites in total) and 100–150 taxa. Three simu-
lated matrices, one assembled only by niches, one assembled 
only by dispersal and one assembled jointly by niches and 
dispersal, are used as references. Their measured DNCI val-
ues are then compared to the DNCI values computed for 
site groups with increasing proportions of removed taxa and 
sites. Specifically, 10–70% of the sites are randomly removed, 
and 10–70% of the simulated taxa are randomly removed. 
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The removals were done in one site group only or in both site 
groups simultaneously.

Observational field survey data on diatoms, 
macroinvertebrates and fish from the United States

Datasets including stream diatoms, macroinvertebrates 
and fish were obtained from the National Water-Quality 
Assessment (NAWQA) Program of the U.S. Geological 
Survey. We selected four subregions of the Mid-Atlantic 
Region (hydrologic unit HUC02), situated in the north-
eastern part of the United States, including the Upper 
Hudson (HUC0202), Delaware (HUC0204), Susquehanna 
(HUC0205) and the Potomac (HUC0207) (map in 
Supporting information). In total, there were 131 sites sam-
pled for diatoms, 128 sites sampled for macroinvertebrates 
and 43 sites sampled for fish across the four subregions (i.e. 
four site groups). Each of the subregions comprised a suf-
ficient number of sites for the analyses (a minimum of eight 
sites in Delaware for fish and a maximum of 66 sites in the 
Potomac for macroinvertebrates), given that at least five sites 
per group is recommended by Gibert and Escarguel (2019). 
Importantly, the subregions likely shared the same regional 
species pools as they belong to the same hydrologic region. 
The streams were sampled between 1993 and 2011. We 
included only summer months, i.e. June, July and August, to 
eliminate seasonal effects on community compositions and 
assembly processes, which can make interpretations more 
complex (Li et al. 2020). We then selected taxa identified at 
the species level for diatoms (444 species) and fish (93 spe-
cies), and at species or genus levels for macroinvertebrates 
(429 taxa).

Observational field survey data on bacteria and 
macroinvertebrates from China

In October 2014, 89 individual streams were sampled for 
bacteria and macroinvertebrates in the southeastern part of 
the Tibetan Plateau, Yunnan province, China. The sampled 
streams include 52 tributaries of the Salween River and 37 
tributaries of the Mekong River (see map in Supporting 
information). The elevational ranges were pronounced, span-
ning from 570 to 1592 m a.s.l. in the Salween catchment 
and from 1270 to 2100 m a.s.l. in the Mekong catchment. 
Macroinvertebrate samples were identified to genus level 
when possible. Bacterial OTUs (i.e. operational taxonomic 
units) were determined based on the 16S rRNA genes using 
bacterial universal primers 515F and 806R that target the V4 
region. The bacterial dataset was rarefied to 10 000 sequences. 
Further details on field sampling and laboratory procedures 
are presented in Wang et al. (2017) and Vilmi et al. (2020).

Statistical methods

We developed an R function (‘DNCI_multigroup’) for the 
calculation of DNCI values. The function first performs the 
PER-SIMPER procedure (Gibert and Escarguel 2019) and, 
then, as described earlier, calculates pairwise DNCI values 

among site groups based on the E-values from the PER-
SIMPER analysis. For the US data, we used the four subre-
gions as site groups for all three presence/absence community 
matrices (i.e. diatoms, macroinvertebrates and fish). Due to 
differing numbers of sites per group, we selected the size of 
the smallest group (Delaware with eight sites in the fish data-
set) and randomly resampled sites from all other groups to 
eliminate a potential group size bias. We performed the ran-
dom resampling of eight sites from each of the four groups 
200 times. For the Chinese data, we used elevational bins, 
each containing 12 or 13 sites, as site groups in our analy-
ses (Supporting information). In both datasets, we removed 
singletons (i.e. taxa occurring at one site only) prior to calcu-
lation of the DNCI values.

We employed the Kruskal–Wallis test followed by post-
hoc Dunn tests with p-value adjustments (method = ‘bh’) to 
study whether the DNCI differed across diatoms, macroin-
vertebrates and fish in the US Mid-Atlantic hydrologic subre-
gions, and the Wilcoxon rank sum test to study whether the 
DNCI of bacteria and macroinvertebrates differed from each 
other in the Chinese catchments. Separately for bacteria and 
macroinvertebrates, the Kruskal–Wallis test followed by post-
hoc Dunn tests with p-value adjustments (method = ‘bh’) was 
used to study whether within- and across-catchment DNCIs 
differed from each other in the Chinese dataset. With Mantel 
tests, we studied whether the DNCI of Chinese bacteria 
and macroinvertebrates varied with distance using pairwise 
DNCI values and pairwise spatial distances of the site groups. 
As the computed DNCI values were all negative, we per-
formed Mantel tests with absolute DNCI values (Mantel test 
does not process negative values). The absolute DNCI val-
ues simply indicate the distances to zero. After analyses with 
absolute values, the original DNCI values (i.e. negative, in 
our case) were plotted against the pairwise spatial Euclidean 
distances of the site groups. As the relationships were appar-
ently negative, the Mantel r statistic was changed to negative. 
It is important to note that Mantel tests can only be used for 
cases where all DNCI values are either positive or negative, 
the latter after the transformation described above. We made 
network plots based on the results from China to graphically 
illustrate the variation of DNCI in space.

All statistical analyses and plots were done using packages 
DNCImper (Gibert et al. 2020), vegan (Oksanen et al. 2018), 
FSA (Ogle  et  al. 2020), ggplot2 (Wickham 2016), igraph 
(Csardi and Nepusz 2006) and dichromat (Lumley  et  al. 
2013) with the R statistical software (<www.r-project.org>). 
The functions and codes for DNCI calculation and examples 
for preparing plots are available in GitHub (<https://github.
com/Corentin-Gibert-Paleontology/DNCImper>) and as 
Supporting information.

Results

Robustness tests

If only niche effects are simulated, removal of 40% of the taxa 
or 30% of the sites in one site group of the dataset can lead 
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the DNCI analysis to fail in identifying the correct assem-
bly mechanism (Fig. 2a, 3a, blue boxplots). For assemblages 
simulated solely via dispersal effects, the removal of 50% of 
the sites in one site group can also lead to the identification 
of the wrong assembly mechanisms (Fig. 3a, orange boxplot). 
Consequently, the DNCI is more robust to variation in num-
ber of taxa than in number of sites but can also be highly sen-
sitive to specific variation in number of sites (Fig. 2, 3). These 
results are consistent with preliminary robustness tests con-
ducted on the qualitative PER-SIMPER method (Gibert and 
Escarguel 2019). However, the computation of robustness 
tests on a quantitative index provides a more precise under-
standing of the consequences of sampling effort variation on 

the method’s ability to detect assembly mechanisms and the 
intensity of their respective contributions. First, the compu-
tation of a single, robust DNCI value requires groups with 
a limited difference in number of taxa and sites (Fig. 2a, 
3b). Specifically, comparing groups with deviation in num-
ber of taxa exceeding 40% is not recommended as it leads 
to underestimation of the niche processes (Fig. 2a). In addi-
tion, to discriminate the respective contribution of niche 
and dispersal processes, the DNCI must be computed for 
site groups with less than 30% differences in site numbers, 
which is especially important for communities assembled by 
both niche and dispersal processes (Fig. 3a). The DNCI is, 
therefore, to some extent sensitive to the symmetry of the 

Figure 2. Distribution of DNCI (1000 iterations) after degradation of three reference datasets: niche assembled (N, blue line), niche and 
dispersal assembled (N + D, grey line) and dispersal assembled (D, orange line). The number of taxa is randomly decreased by 10–70% 
within a single group of sites of the reference dataset (a). The number of taxa is randomly decreased by 10–70% in each of the two groups 
of sites in the reference dataset (b).

Figure 3. Distribution of DNCI (1000 iterations) after degradation of three reference datasets: niche assembled (N, blue line), niche and 
dispersal assembled (N + D, grey line) and dispersal assembled (D, orange line). The number of sites is randomly decreased by 10–70% 
within a single group of sites in the reference dataset (a). The number of sites is randomly decreased by 10–70% in each of the two groups 
of sites in the reference dataset (b).
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occurrence matrix of interest. Second, DNCI values can be 
compared accurately across datasets of different size both in 
terms of taxa and site numbers, as DNCI values are insensi-
tive to symmetric removal of sites or taxa (at least up to 70% 
differences; Fig. 2b, 3b). Consequently, random re-sampling 
(Sanders 1968, Raup 1972, Gotelli and Colwell 2001) may 
be necessary when computing DNCI between site groups 
of dissimilar size within a dataset, but not when comparing 
DNCI values between distinct datasets of dissimilar size. This 
is a significant improvement in terms of precision compared 
to PER-SIMPER, which confounds the effect of matrix sym-
metry with the effect of unequal sample size.

Specific applications of DNCI

Identifying the main community assembly process in major 
stream organismal groups
The DNCI values of diatoms, macroinvertebrates and fish 
from the Mid-Atlantic hydrological subregions of the US 
were negative, suggesting that dispersal was the dominant 
assembly process for all three organismal groups (Fig. 4). 
The DNCI values of diatoms significantly differed from the 
DNCI values of macroinvertebrates and fishes (p < 0.001). 
Dispersal assembly was, in a relative sense, most intense 

for diatoms and less intense for macroinvertebrates and  
fishes (Fig. 4).

Identifying the main community assembly process for stream 
bacteria and macroinvertebrates along an elevational gradient
The DNCI values of bacteria and macroinvertebrates were 
negative, suggesting dominance of dispersal assembly in the 
two Chinese catchments. The DNCI differed significantly 
between the two organismal groups (p = 0.016), with bac-
teria being more strongly assembled by dispersal than mac-
roinvertebrates. The DNCI of bacteria showed a decreasing 
trend with increasing spatial distances (Mantel r = −0.486, 
p = 0.043; Fig. 5a). For macroinvertebrates, a relationship 
between the DNCI and distance was not evident (Mantel 
r = −0.153, p = 0.251; Fig. 5b). The DNCI of bacteria was 
constant within and across the studied catchments (Fig. 5c; 
p = 0.326). The difference in DNCI of macroinvertebrates 
within the Mekong and Salween catchments was close to 
the p = 0.05 level of statistical significance (overall Kruskal–
Wallis test p = 0.056, post-hoc Dunn test for comparisons of 
within-catchment DNCIs p = 0.050; Fig. 5d), with DNCI 
values being more negative within the Salween than the 
Mekong catchment. Network plots (Fig. 5e–f ) illustrated the 
spatial setting and relationships between site groups (here, 
elevational bins), and complement the information presented 
in Fig. 5a–d. For bacteria, dispersal assembly appeared to be 
strongest between the lower mid elevations (S-MID2) and 
high elevations (S-HIGH) within the Salween catchment, 
as well as between the lower mid elevations of the Salween 
catchment (S-MID2) and high elevations of the Mekong 
catchment (M-HIGH) (Fig. 5e). For macroinvertebrates, the 
strongest dispersal assembly signal was observed across the 
catchments, i.e. between the low elevations in the Salween 
catchment and mid elevations of the Mekong catchment 
(Fig. 5f ). Interestingly, for both bacteria and macroinverte-
brates, dispersal assembly was weaker in the highest eleva-
tions across the two catchments (S-HIGH and M-HIGH). 
For macroinvertebrates, community dissimilarities were 
more weakly driven by dispersal assembly across the highest 
elevations in the Mekong catchment and all other elevations 
within and across catchments (M-HIGH versus all other 
elevational bins).

Discussion

Here, we developed a novel quantitative index, DNCI, 
to disentangle the importance of niche and dispersal pro-
cesses in community assembly, with distinct advantages over 
existing methods, including earlier null model approaches 
(Chase  et  al. 2011), variance partitioning in constrained 
ordination (Borcard et al. 1992) and PER-SIMPER’s original 
qualitative inference procedure (Gibert and Escarguel 2019). 
The advantages of the DNCI include, 1) reliance on taxa dis-
tributions rather than summary statistics, with the potential 
to better assess assembly processes (cf. Chase et al. 2011), 2) 
relative simplicity, given that it does not require abundance, 

Figure 4. DNCI values of diatoms (Dia), macroinvertebrates (Inv) 
and fish (Fish) from four Mid-Atlantic hydrological subregions in 
the US. Each dot represents the DNCI value between two groups 
computed in one iteration, i.e. the total number of DNCI values 
computed for each organismal group is 1200 (six pairwise compari-
sons across site groups, 200 iterations). Negative DNCI values indi-
cate that dispersal is the dominant assembly process. Higher 
absolute values (darker colour) indicate greater strength of the dom-
inant assembly process. Different letters represent statistically differ-
ent DNCI values following the Kruskal–Wallis and post-hoc Dunn 
tests (p < 0.001). The black dots illustrate the mean values and the 
lines represent the standard deviation.
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environmental or spatial data and, 3) high comparability 
across datasets, even those that differ greatly in numbers of 
sampled localities and taxa. Thus, the DNCI allows evalu-
ating whether the dominant assembly mechanism and its 
strength vary across different datasets.

Based on observational data from the US and China, the 
DNCI-based results suggested that communities of distinct 

organismal groups, from microbes to fishes, were mainly 
assembled by dispersal processes. Differences in the DNCI 
were partly associated with organismal groups and geographi-
cal contexts. In the empirical datasets from the US and China, 
DNCI values varied among organismal groups, with disper-
sal assembly being slightly but significantly stronger for the 
metacommunities of smaller organisms. Furthermore, in the 

Figure 5. The DNCI values for bacteria (left column) and macroinvertebrates (right column) in the Chinese dataset. There was a significant 
negative relationship between DNCI of bacterial communities and distance (a), suggesting that intensity of dispersal assembly grew with 
increasing distances. There was no clear relationship between the DNCI of macroinvertebrate communities and distance (b). Based on the 
Kruskal–Wallis test, the DNCI of bacteria within and across catchments did not differ from each other (c; p = 0.326). Based on the 
Kruskal–Wallis and post-hoc Dunn tests, the DNCI of macroinvertebrates was almost statistically significantly different within the Mekong 
and the Salween catchments (d; overall Kruskal–Wallis p = 0.056, post-hoc Dunn p = 0.050). Network plots illustrate the DNCI, i.e. the 
strength of the dominating assembly process, within and across catchments for bacteria (e) and macroinvertebrates (f ). The nodes in the 
network plots illustrate site groups, each containing 12 or 13 sites, along elevational gradients in the Salween (S) and Mekong (M) catch-
ments. The edges connecting the nodes in the network plots illustrate the intensity of the dominant assembly process; the darker the colour 
and wider the line, the more intense the process (i.e. the bigger the absolute value of the DNCI).
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Chinese data, our results implied that the intensity of disper-
sal assembly may increase at greater distances for microbes. 
Although the DNCI does not inform us about actual disper-
sal rates, it can perhaps be reasoned that the distance-related 
DNCI pattern observed for the Chinese microbes may sug-
gest that the occurrences are, to some degree, limited by 
dispersal in the two catchments. Overall, dispersal was the 
dominant assembly process in the studied regional datasets, 
but further research is needed to assess whether the intensity 
of dispersal assembly changes across larger spatial distances 
and environmental gradients in other datasets.

For the Chinese data, some pairs of site groups were very 
strongly structured by dispersal both within and across catch-
ments, while some pairs of site groups were structured by a 
more balanced mix of dispersal and niche processes within 
and across catchments (Fig. 5e–f ). These two examples illus-
trate some of the limitations of the DNCI approach related 
to the use of occurrence matrices and pairwise comparisons. 
First, the use of a single occurrence matrix without additional 
environmental information makes the use of DNCI extremely 
straightforward, but it also implies a lack of information when 
it comes to the effect of niche mechanisms on the distribu-
tion of taxa. Only the assumed effect of niche mechanisms on 
the presence/absence of taxa and, therefore, on the richness 
of localities (i.e. row sums) are compared with the assumed 
effect of dispersal potential of taxa (i.e. column sums). This 
bias might be important especially for small organisms, such 
as bacteria, where large differences in abundance between 
sites rather than richness may be observed. Ecological dif-
ferences between and within the two catchments were not 
strong enough compared to differences in dispersal potentials 
to explain the dissimilarity structure and thus the composi-
tion (in terms of occurrence) of assemblages. This was evi-
denced by the highly negative DNCI values obtained from 
the datasets collected from the two catchments. For macro-
invertebrates, the three site groups within the Mekong catch-
ment showed a slightly more balanced situation between 
dispersal and niche processes, which was indicated by higher 
DNCI values and, therefore, a comparatively increased role 
of niche conditions on the presence and absence of the 
sampled taxa. Second, the DNCI approach analyses pairs of 
assemblages. Therefore, a single analysis does not allow us to 
conclude on the nature of the structure of one community 
but on the nature of the assembly processes that differentiate 
groups of local communities. Here, network plots can be use-
ful for interpreting results. By simultaneously observing the 
DNCI values of multiple pairs of site groups, we can identify 
the pairs intensely structured by dispersal (such as S-MID2–
M-HIGH for bacteria and S-LOW–M-MID for macroin-
vertebrates) as well as those comparatively more marked by 
the effect of niche conditions (such as M-HIGH paired with 
all other site groups for macroinvertebrates). Our general 
results that communities from different spatial site groups 
were more differentiated by dispersal than niche processes 
can be partly seen as a consequence of the pairwise nature of 
the method and, in our example datasets, of a comparatively 

weak environmental effect, assumingly portrayed by the local 
taxonomic richness, on the presence or absence of taxa.

Although the DNCI values based on our observational 
example datasets were all negative, indicating that disper-
sal assembly was dominant for all tested aquatic metacom-
munities from two continents, it is likely that datasets from 
different biological, environmental, spatial and temporal set-
tings may produce both positive and negative DNCI values. 
Exploring the sensitivity of DNCI can guide future research 
to assess how community assembly is determined by the fol-
lowing factors, for instance: 1) spatial extent of studied areas 
(i.e. site groups in the analysis); 2) spatial distances among 
studied areas (site groups) and within studied areas (sites); 
3) physical connectivity within and across site groups; 4) 
organismal groups, taxonomic levels and functional traits 
(e.g. dispersal ability, stress tolerance or feeding behaviour), 
5) environmental heterogeneity versus homogeneity; 6) suc-
cessional phase; 7) seasonality; 8) temporal environmental 
trends, such as progressive eutrophication, land use changes 
and climate change. The more the proposed DNCI approach 
is applied, the more information we obtain on how accurate 
the pairwise calculations based on presence–absence matri-
ces of site groups are for inferring the intensities of dispersal 
and niche processes in community assembly in various study 
settings.

There are a few caveats for applying the DNCI approach. 
First, an appropriate spatial scale must be defined, whereby 
all local communities share at least partly the same regional 
species pool (i.e. dispersal of organisms potentially occurs 
within the study context). Second, based on our simulations, 
the numbers of taxa and sites per group should not vary more 
than 40% and 30%, respectively. Third, since this approach 
uses occurrence data, the assembly processes identified by this 
approach are limited to those resulting from the presence or 
absence of taxa, and the driving mechanisms of abundance 
variation are left undetected, suggesting a further need for 
methodological development of the DNCI. Fourth, distances 
between sites and site groups and, more generally, the overall 
spatial setting, are not directly accounted for (but indirectly 
via the occurrence matrix structure), potentially complicat-
ing interpretation of results. Fifth, unlike methods which use 
numerous environmental variables as predictors (e.g. varia-
tion partitioning), the DNCI alone cannot show which types 
of environmental variables contribute to variation in com-
munity structure across sites and site groups.

Keeping in mind the requirements for shared regional 
species pools and limited size variations among site groups 
as well as the caveats described above, the proposed DNCI 
approach can shed light into the importance of niche and 
dispersal processes by measuring the strength of commu-
nity assembly processes in a way that is simple, quantifiable 
and easily comparable across datasets. We believe that this 
method is a useful addition to the toolbox of biogeographers, 
ecologists and palaeontologists; if used for datasets from dif-
ferent environmental and spatial settings, it would increase 
understanding of community assembly in nature.
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