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O-PLS is a preprocessing that was presented as an improvement of the PLS algorithm it was issued from. Nevertheless, the bibliography did not confirm, neither for prediction, nor for interpretation. To contribute to a better understanding, we investigated the relationship between O-PLS and the NAS net analyte signal. For four numerical applications, the matrix obtained after the O-PLS deflation tended towards a matrix of rank 1 when the number of removed dimensions increases. Therefore, the line-vectors of this matrix are colinear to the NAS, and so the usual one-latent-variable PLS1 regression after the O-PLS preprocessing can be replaced by almost any regression taking into account from one to all of the variables.

Introduction

Chemometrics is largely based on the Partial Least Squares or Projection to Latent Structures (PLS) method. Hereafter, all the discussion will apply to the prediction of a single variable. Let X and y be a matrix and a column-vector containing the values of variables measured on the same observations. PLS regression was developed to predict the values of y using X, specially when the variables in X are highly correlated. For example, PLS regression allowed the prediction of gluten in a wheat sample from a simple near infrared spectrum. Many PLS algorithms have been proposed. Nine of them were compared in Andersson [START_REF] Andersson | A comparison of nine pls1 algorithms[END_REF]. We proposed a tenth algorithm more focused on the geometry of PLS [START_REF] Boulet | A family of regression methods derived from standard plsr[END_REF]. Countless applications of PLS can be found in industrial and scientific applications. Nevertheless, in certain fields such as metabolomics, another method is being replacing PLS. This method is based on a preprocessing called Orthogonal Projection to Latent Structures (O-PLS). The O-PLS algorithm was obtained by a slightly modification of the PLS algorithm. To understand it, let us come back to the origin.

The principle of PLS is to extract the subspace in X that contains the information related to the explanation of y. The idea of the Orthogonal Signal Correction (OSC) preprocessings is to help PLS by removing from X all information not related to y. OSC are followed by a regression, usually a PLS. A first OSC algorithm, derived from the NIPALS-PLS algorithm, was proposed by Wold et al [START_REF] Wold | Orthogonal signal correction of near infrared spectra[END_REF]. This algorithm was latter improved by Trygg and Wold, yielding to a new method called O-PLS [START_REF] Trygg | Parsimonious multivariate models[END_REF][START_REF] Trygg | Orthogonal projections to latent structures (o-pls)[END_REF][START_REF] Trygg | Orthogonal signal projection[END_REF]. But while other OSC algorithms were proposed [START_REF] Fearn | On orthogonal signal correction[END_REF][START_REF] Westerhuis | Direct orthogonal signal correction[END_REF], the ability of OSC to improve the predictive ability of a regular PLS was being discussed [START_REF] Svensson | An investigation of orthogonal signal correction algorithms and their characteristics[END_REF][START_REF] Goicoechea | A comparison of orthogonal signal correction and net analyte preprocessing methods. theoretical and experimental study[END_REF].

More attention was paid to O-PLS. It was observed that one O-PLS factor removed spared one PLS latent variable, without gain in prediction errors [START_REF] Fearn | On orthogonal signal correction[END_REF]11,[START_REF] Svensson | An investigation of orthogonal signal correction algorithms and their characteristics[END_REF]. Then Verron et al [START_REF] Verron | Some theoretical properties of the o-pls method[END_REF] mathematically confirmed this observation, and Kemsley & Tapp [START_REF] Kemsley | Opls filtered data can be obtained directly from non-orthogonalized pls1[END_REF] showed a direct relationship between O-PLS and PLS scores. As a conclusion, O-PLS followed by a PLS regression yieds exactly the same prediction than a single PLS regression. Then O-PLS benefits were focused on interpretation rather than prediction, e.g. [START_REF] Hedenstrom | Visualization and interpretation of o-pls models based on 2d nmr data[END_REF], but even the added value of interpretation was challenged [START_REF] Ulf | The o-pls methodology for orthogonal signal correction -is it correcting or confusing[END_REF], conclusions we agree with. Nevertheless, there is a gap between O-PLS users on the one hand, and mathematical considerations on O-PLS on the other hand.

Maybe a geometrical approach could contribute to a better understanding of O-PLS? In particular, Goicoechea et al [START_REF] Goicoechea | A comparison of orthogonal signal correction and net analyte preprocessing methods. theoretical and experimental study[END_REF] and Ni et al [START_REF] Ni | The relationship between net analyte signal/preprocessing and orthogonal signal correction algorithms[END_REF] studied the relationship between OSC methods and the Net Analyte Signal (NAS) introduced by Lorber [START_REF] Lorber | Net analyte signal calculation in multivariate calibration[END_REF]. We propose to further investigate this property.

Notations are presented in the figure 1.

Theory.

The name O-PLS let think to a PLS-like method, i.e. a regression method.

Certain so-called "O-PLS" functions associate an O-PLS preprocessing followed by a PLS regression with one latent variable. These names are misleading, because O-PLS as introduced in the original papers of Trygg and Wold is clearly a preprocessing, not a calibration method. In order to obtain predictions, O-PLS needs to be followed by a calibration step, e.g. a classical least squares or a PLS regression [START_REF] Goicoechea | A comparison of orthogonal signal correction and net analyte preprocessing methods. theoretical and experimental study[END_REF] usually processed with a single latent variable.

O-PLS calculation is iterative. Let A max be a predermined large number of dimensions to be removed. Scores t i and loadings p i are computed for each value of i between 1 and A max , then the correction is performed by deflation [START_REF] Svensson | An investigation of orthogonal signal correction algorithms and their characteristics[END_REF]: X opls = X -Amax i=1 t i p i . Each dimension i is supposed to contain information unrelated to y. But while i is increasing, there will be a breakpoint for which no more information unrelated to y will be left in X opls . Let A be this value of i; A ≤ A max . A definition of the NAS is the part of the signal orthogonal to the other constituents [START_REF] Lorber | Net analyte signal calculation in multivariate calibration[END_REF]. This definition was made for spectra, but it can be extended to other signals.

Let s nas be the NAS associated to the compound of interest whose values form y. An interesting property of the NAS is that the product of X opls by s nas should be proportional to y. It derives from the following equation [START_REF] Goicoechea | A comparison of orthogonal signal correction and net analyte preprocessing methods. theoretical and experimental study[END_REF] : X opls = kys nas with k a constant. This situation should occur when an appropriate number of dimensions A has been removed by the OSC. Therefore, the corresponding matrix X opls should be of rank 1, all the line-vectors of X opls being collinear. Under these conditions, the classical one-latent-variable PLS1 regression which follows the O-PLS proprocessing could be replaced by any other regression without significant loss of predictive ability, even with a simple linear regression. On the other hand, if the theory is not verified, if X opls is not close enough from a rank-1 matrix, then the predictions should strongly depend on the choice of the regression method. To assess this property, three methods based on O-PLS were compared. The first method noted OPLS-classic is the classical combination of an O-PLS preprocessing followed by a PLS regression with 1 latent variable.

The second method noted OPLS-ones is a modified version of the previous OPLS-classic. The modification consisted in replacing the weight vector w which begins the PLSR algorithm by an arbitrary vector of ones of same dimension. OPLS-classic and OPLS-ones algorithms are summarized in Table 2. The third method noted OPLS-univ is a classical OPLS followed by an univariate regression. The selected variable was chosen as the one with the largest variability in X opls after the O-PLS preprocessing removed A max components. 

Material and methods

Results

Results are presented as figures 3, 4, 5 and 6, one for each of the four datasets. After removal of the A max OPLS components, the residual spectra in subfigures (a) present a similar shape, sometimes symmetrical along the axis y = 0 which is consistent with a low rank of the corresponding matrix. These subfigures were used to choose the univariate variable of the OPLS-univ regression. RMSECs in subfigures (b) are similar for the four datasets. When i is low, a few differences between the three models can be observed. But when i increases, the curves overlay. RMSECV in subfigures (c) also present the same trend for all datasets, but with a different behavior according to the models. The RMSECV of OPLS-univ decreases steadly when i increases. On the other hand, OPLS-classic and OPLS-ones present the classical shape of a decrease, then an increase. When i is high, those two curves overlay. Then, RMSEP in subfigures (d) can present differences between models. But when i is high, the curves of the three models overlay.

Discussion and conclusion

The hypothesis that, by increasing the number i of removed dimensions, the rank of the resulting matrix X opls gets close to 1, still stands up after the benchmark on 4 datasets. Similar results, not presented, confirmed this observation. When i increases, all the line vectors of X opls tend to be colinear.

This situation occured when i was higher than A = 7, 15, 40 and 5 for the 2007 and 2018 challenges, the apricots and grape berries datasets respectively. These values of A need to be compared to A opt the optimal number of dimensions to be removed, determined by the RMSECV curves, around 13-20, 15-20, 7-12 and 15-22 respectively. For the apricot dataset, A opt corresponds to a situation where the three models OPLS-classic, OPLS-ones and OPLS-univ do not yield the same prediction, and where prediction errors remain high. Figure 5(d) suggests that a higher number of dimensions,

A opt around 20 -22, would have yielded better predictions, but such values remain before the convergence region obtained for A = 40 (A > A opt ). For the three other datasets, convergence of the three models had already been achieved: A < A opt , and the models were found more robust when applied to the test datasets. Maybe a clue to identify robust ( A < A opt ) from not robust (A > A opt ) models?

Finally, all the information about the NAS is supported by the X opls matrix, issued from the O-PLS preprocessing. The weights w and the regression vector b of the PLSR in the OPLS-classic method are linear combination of the lines of X opls , weighed by the y values. Setting w to a vector of ones in OPLS-ones is another way to weight the lines of X opls , each line has the same weight. When X opls is close to a rank-1 matrix, these calculations yield the same result. The X osc matrix or the regression coefficients b can all be interpreted as an estimation of the NAS. According to its definition, the NAS is obtained after an orthogonal (or oblique) projection, and therefore inherits of the properties of such calculations. In particular, the NAS is expected to present features from the compound of interest (whose concentrations are y), but more ennoying it can present features from the other coexisting constituents [START_REF] Boulet | Pretreatments by means of orthogonal projections[END_REF], and eventually it can have dropped features that were present in the compound of interest. So the interpretation of the NAS remains tricky and should be confirmed by other informations.

These considerations also apply to the residual matrix, X -X opls , which is the result of an orthogonal projection, too. Note that the same interpretation of the NAS calculated from O-PLS can also be performed with the regression coefficients of a PLS regression, already reported as an estimation of the NAS [START_REF] Ferré | Net analyte signal calculation for multivariate calibration[END_REF].
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Four

  datasets were selected. Two datasets were challenges proposed by Pierre Dardenne and Vincent Baeten, CRA-Wallonie, at the French annual chemometrics conference in 2007 and 2018. The goal of the 2007 challenge[START_REF] Fernandez Pierna | How to build a robust model against perturbation factors with only a few reference values: a chemometric challenge at chimiometrie 2007[END_REF] was to predict gluten concentrations. The test dataset was picked up, since it contained a large number of observations(2000). The 2018 challenge consisted in 3908 calibration plus 429 test samples of near infrared spectra. The compound to quantify was not identified. A third dataset was provided by Sylvie Bureau, INRAE, UMR408. Mid infrared spectra (4000 -650cm -1 ) were acquired on 750 apricots, for which several reference analysis were performed including refractive index. The last dataset was provided by INRAE, UMR ITAP and SPO. Visible-near infrared spectra were acquired in transmittance and Brix degrees were also measured on 250 grape berries. Processing needed a calibration and a test dataset. Thus, the 2007 challenge, the apricots and grape berries datasets were splitted, the 1500, 600 and 200 observations were assigned to the calibration dataset, the last 500, 150 and 50 observations were assigned to the test dataset, respectively. After centering, the three regression methods described above, OPLS-classic, OPLS-ones and OPLS-univ were processed on the calibration datasets with 1 to A max dimensions removed by OPLS, A max being set to 50 for the apricot datasets and to 40 for the three other datasets. The variable selected for the OPLS-univ model was the one with the largest variability after removal of A max dimensions by OPLS. The predictive abilities of the three models were assessed by the calibration errors (RMSEC), the cross-validation errors (RMSECV) and the prediction errors (RMSEP). The RMSECVs were the average of a random 2-blocks cross-validation repeated 50 times.
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