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Abstract

O-PLS is a preprocessing that was presented as an improvement

of the PLS algorithm it was issued from. Nevertheless, the bibliogra-

phy did not confirm, neither for prediction, nor for interpretation. To

contribute to a better understanding, we investigated the relationship

between O-PLS and the NAS net analyte signal. For four numerical

applications, the matrix obtained after the O-PLS deflation tended

towards a matrix of rank 1 when the number of removed dimensions

increases. Therefore, the line-vectors of this matrix are colinear to the

NAS, and so the usual one-latent-variable PLS1 regression after the

O-PLS preprocessing can be replaced by almost any regression taking

into account from one to all of the variables.

Keywords: PLS, O-PLS, OSC, NAS, prediction, interpretation
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1 Introduction1

Chemometrics is largely based on the Partial Least Squares or Projection2

to Latent Structures (PLS) method. Hereafter, all the discussion will ap-3

ply to the prediction of a single variable. Let X and y be a matrix and a4

column-vector containing the values of variables measured on the same ob-5

servations. PLS regression was developed to predict the values of y using X,6

specially when the variables in X are highly correlated. For example, PLS7

regression allowed the prediction of gluten in a wheat sample from a simple8

near infrared spectrum. Many PLS algorithms have been proposed. Nine9

of them were compared in Andersson [1]. We proposed a tenth algorithm10

more focused on the geometry of PLS [2]. Countless applications of PLS can11

be found in industrial and scientific applications. Nevertheless, in certain12

fields such as metabolomics, another method is being replacing PLS. This13

method is based on a preprocessing called Orthogonal Projection to Latent14

Structures (O-PLS). The O-PLS algorithm was obtained by a slightly mod-15

ification of the PLS algorithm. To understand it, let us come back to the16

origin.17

The principle of PLS is to extract the subspace in X that contains the18

information related to the explanation of y. The idea of the Orthogonal19

Signal Correction (OSC) preprocessings is to help PLS by removing from X20

all information not related to y. OSC are followed by a regression, usually21

a PLS. A first OSC algorithm, derived from the NIPALS-PLS algorithm,22

was proposed by Wold et al [3]. This algorithm was latter improved by23

Trygg and Wold, yielding to a new method called O-PLS [4, 5, 6]. But24

while other OSC algorithms were proposed [7, 8], the ability of OSC to25

improve the predictive ability of a regular PLS was being discussed [9, 10].26

More attention was paid to O-PLS. It was observed that one O-PLS factor27
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removed spared one PLS latent variable, without gain in prediction errors28

[7, 11, 9]. Then Verron et al [12] mathematically confirmed this observation,29

and Kemsley & Tapp [13] showed a direct relationship between O-PLS and30

PLS scores. As a conclusion, O-PLS followed by a PLS regression yieds31

exactly the same prediction than a single PLS regression. Then O-PLS32

benefits were focused on interpretation rather than prediction, e.g. [14],33

but even the added value of interpretation was challenged [15], conclusions34

we agree with. Nevertheless, there is a gap between O-PLS users on the35

one hand, and mathematical considerations on O-PLS on the other hand.36

Maybe a geometrical approach could contribute to a better understanding37

of O-PLS? In particular, Goicoechea et al [10] and Ni et al [16] studied38

the relationship between OSC methods and the Net Analyte Signal (NAS)39

introduced by Lorber [17]. We propose to further investigate this property.40

Notations are presented in the figure 1.41

2 Theory.42

The name O-PLS let think to a PLS-like method, i.e. a regression method.43

Certain so-called ”O-PLS” functions associate an O-PLS preprocessing fol-44

lowed by a PLS regression with one latent variable. These names are mis-45

leading, because O-PLS as introduced in the original papers of Trygg and46

Wold is clearly a preprocessing, not a calibration method. In order to obtain47

predictions, O-PLS needs to be followed by a calibration step, e.g. a classical48

least squares or a PLS regression [10] usually processed with a single latent49

variable.50

O-PLS calculation is iterative. Let Amax be a predermined large num-51

ber of dimensions to be removed. Scores ti and loadings pi are computed52

for each value of i between 1 and Amax, then the correction is performed53
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by deflation[9]: Xopls = X −
∑Amax

i=1 tip
′
i. Each dimension i is supposed54

to contain information unrelated to y. But while i is increasing, there will55

be a breakpoint for which no more information unrelated to y will be left56

in Xopls. Let A be this value of i; A ≤ Amax. A definition of the NAS57

is the part of the signal orthogonal to the other constituents [17]. This58

definition was made for spectra, but it can be extended to other signals.59

Let snas be the NAS associated to the compound of interest whose val-60

ues form y. An interesting property of the NAS is that the product of61

Xopls by snas should be proportional to y. It derives from the following62

equation [10] : Xopls = kys′nas with k a constant. This situation should oc-63

cur when an appropriate number of dimensions A has been removed by the64

OSC. Therefore, the corresponding matrix Xopls should be of rank 1, all the65

line-vectors of Xopls being collinear. Under these conditions, the classical66

one-latent-variable PLS1 regression which follows the O-PLS proprocessing67

could be replaced by any other regression without significant loss of pre-68

dictive ability, even with a simple linear regression. On the other hand, if69

the theory is not verified, if Xopls is not close enough from a rank-1 matrix,70

then the predictions should strongly depend on the choice of the regression71

method. To assess this property, three methods based on O-PLS were com-72

pared. The first method noted OPLS-classic is the classical combination of73

an O-PLS preprocessing followed by a PLS regression with 1 latent variable.74

The second method noted OPLS-ones is a modified version of the previous75

OPLS-classic. The modification consisted in replacing the weight vector w76

which begins the PLSR algorithm by an arbitrary vector of ones of same77

dimension. OPLS-classic and OPLS-ones algorithms are summarized in Ta-78

ble 2. The third method noted OPLS-univ is a classical OPLS followed by79

an univariate regression. The selected variable was chosen as the one with80
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the largest variability in Xopls after the O-PLS preprocessing removed Amax81

components.82

3 Material and methods83

Four datasets were selected. Two datasets were challenges proposed by84

Pierre Dardenne and Vincent Baeten, CRA-Wallonie, at the French annual85

chemometrics conference in 2007 and 2018. The goal of the 2007 challenge86

[18] was to predict gluten concentrations. The test dataset was picked up,87

since it contained a large number of observations (2000). The 2018 chal-88

lenge consisted in 3908 calibration plus 429 test samples of near infrared89

spectra. The compound to quantify was not identified. A third dataset90

was provided by Sylvie Bureau, INRAE, UMR408. Mid infrared spectra91

(4000−650cm−1) were acquired on 750 apricots, for which several reference92

analysis were performed including refractive index. The last dataset was93

provided by INRAE, UMR ITAP and SPO. Visible-near infrared spectra94

were acquired in transmittance and Brix degrees were also measured on 25095

grape berries. Processing needed a calibration and a test dataset. Thus,96

the 2007 challenge, the apricots and grape berries datasets were splitted,97

the 1500, 600 and 200 observations were assigned to the calibration dataset,98

the last 500, 150 and 50 observations were assigned to the test dataset, re-99

spectively. After centering, the three regression methods described above,100

OPLS-classic, OPLS-ones and OPLS-univ were processed on the calibra-101

tion datasets with 1 to Amax dimensions removed by OPLS, Amax being set102

to 50 for the apricot datasets and to 40 for the three other datasets. The103

variable selected for the OPLS-univ model was the one with the largest vari-104

ability after removal of Amax dimensions by OPLS. The predictive abilities105

of the three models were assessed by the calibration errors (RMSEC), the106
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cross-validation errors (RMSECV) and the prediction errors (RMSEP). The107

RMSECVs were the average of a random 2-blocks cross-validation repeated108

50 times.109

4 Results110

Results are presented as figures 3, 4, 5 and 6, one for each of the four111

datasets. After removal of the Amax OPLS components, the residual spec-112

tra in subfigures (a) present a similar shape, sometimes symmetrical along113

the axis y = 0 which is consistent with a low rank of the corresponding114

matrix. These subfigures were used to choose the univariate variable of the115

OPLS-univ regression. RMSECs in subfigures (b) are similar for the four116

datasets. When i is low, a few differences between the three models can be117

observed. But when i increases, the curves overlay. RMSECV in subfigures118

(c) also present the same trend for all datasets, but with a different behav-119

ior according to the models. The RMSECV of OPLS-univ decreases steadly120

when i increases. On the other hand, OPLS-classic and OPLS-ones present121

the classical shape of a decrease, then an increase. When i is high, those122

two curves overlay. Then, RMSEP in subfigures (d) can present differences123

between models. But when i is high, the curves of the three models overlay.124

5 Discussion and conclusion125

The hypothesis that, by increasing the number i of removed dimensions, the126

rank of the resulting matrix Xopls gets close to 1, still stands up after the127

benchmark on 4 datasets. Similar results, not presented, confirmed this ob-128

servation. When i increases, all the line vectors of Xopls tend to be colinear.129

This situation occured when i was higher than A = 7, 15, 40 and 5 for the130
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2007 and 2018 challenges, the apricots and grape berries datasets respec-131

tively. These values of A need to be compared to Aopt the optimal number132

of dimensions to be removed, determined by the RMSECV curves, around133

13−20, 15−20, 7−12 and 15−22 respectively. For the apricot dataset, Aopt134

corresponds to a situation where the three models OPLS-classic, OPLS-ones135

and OPLS-univ do not yield the same prediction, and where prediction er-136

rors remain high. Figure 5(d) suggests that a higher number of dimensions,137

Aopt around 20− 22, would have yielded better predictions, but such values138

remain before the convergence region obtained for A = 40 (A > Aopt). For139

the three other datasets, convergence of the three models had already been140

achieved: A < Aopt, and the models were found more robust when applied141

to the test datasets. Maybe a clue to identify robust ( A < Aopt) from not142

robust (A > Aopt) models?143

Finally, all the information about the NAS is supported by the Xopls ma-144

trix, issued from the O-PLS preprocessing. The weights w and the regression145

vector b of the PLSR in the OPLS-classic method are linear combination146

of the lines of Xopls, weighed by the y values. Setting w to a vector of147

ones in OPLS-ones is another way to weight the lines of Xopls, each line148

has the same weight. When Xopls is close to a rank-1 matrix, these calcula-149

tions yield the same result. The Xosc matrix or the regression coefficients b150

can all be interpreted as an estimation of the NAS. According to its defini-151

tion, the NAS is obtained after an orthogonal (or oblique) projection, and152

therefore inherits of the properties of such calculations. In particular, the153

NAS is expected to present features from the compound of interest (whose154

concentrations are y), but more ennoying it can present features from the155

other coexisting constituents [19], and eventually it can have dropped fea-156

tures that were present in the compound of interest. So the interpretation157

8



of the NAS remains tricky and should be confirmed by other informations.158

These considerations also apply to the residual matrix, X−Xopls, which is159

the result of an orthogonal projection, too. Note that the same interpre-160

tation of the NAS calculated from O-PLS can also be performed with the161

regression coefficients of a PLS regression, already reported as an estimation162

of the NAS [20].163

6 Acknowledgements164

Thanks to Vincent Baeten, Pierre Dardenne and Cécile Barron, for providing165

datasets; and Christelle Reynès and JM Roger for useful comments on the166

manuscript.167

References168

[1] Martin Andersson. A comparison of nine pls1 algorithms. Journal of169

Chemometrics, 23:518–529, 2009.170

[2] Jean-Claude Boulet, Dominique Bertrand, Gérard Mazerolles, Robert171

Sabatier, and Jean-Michel Roger. A family of regression methods de-172

rived from standard plsr. Chemometrics and Intelligent Laboratory Sys-173

tems, 120:13–25, 2013.174

[3] Svante Wold, Henrik Antti, Frederik Lindgren, and Jerker Ohman. Or-175

thogonal signal correction of near infrared spectra. Chemometrics and176

Intelligent Laboratory Systems, 44:175–185, 1998.177

[4] J.Trygg. Parsimonious multivariate models. PhD thesis, Umea Univer-178

sity, Sweden, 2001.179

9



[5] Yohan Trygg and Svante Wold. Orthogonal projections to latent struc-180

tures (o-pls). Journal of Chemometrics, 16:119–128, 2002.181

[6] Johan Trygg and Svante Wold. Orthogonal signal projection. Patent182

US20030200040A1, 2003.183

[7] Tom Fearn. On orthogonal signal correction. Chemometrics and Intel-184

ligent Laboratory Systems, 50:47–52, 2000.185

[8] Johan A. Westerhuis, Sijmen De Jong, and Age K. Smilde. Direct186

orthogonal signal correction. Chemometrics and Intelligent Laboratory187

Systems, 23:13–25, 2001.188

[9] O. Svensson, T. Kourti, and J.F. MacGregor. An investigation of or-189

thogonal signal correction algorithms and their characteristics. Journal190

of Chemometrics, 16:176–188, 2002.191

[10] Hector C. Goicoechea and Alejandro C. Olivieri. A comparison of or-192

thogonal signal correction and net analyte preprocessing methods. the-193

oretical and experimental study. Chemometrics and Intelligent Labora-194

tory Systems, 56:73–81, 2001.195

[11] Agnar Hoskuldsson. Variable and subset selection in pls regression.196

Chemometrics and Intelligent Laboratory Systems, 55:23–38, 2001.197

[12] Thomas Verron, Robert Sabatier, and Richard Joffre. Some theoretical198

properties of the o-pls method. Journal of Chemometrics, 18:62–68,199

2004.200

[13] E.K. Kemsley and H.S. Tapp. Opls filtered data can be obtained directly201

from non-orthogonalized pls1. Journal of Chemometrics, 23:263–264,202

2009.203

10



[14] Matthias Hedenstrom, Susanne Wiklund, Bjorn Sundberg, and Ulf Ed-204

lund. Visualization and interpretation of o-pls models based on 2d nmr205

data. Chemometrics and Intelligent Laboratory Systems, 92:110–117,206

2008.207

[15] Ulf G. Indahl. The o-pls methodology for orthogonal signal correction208

- is it correcting or confusing. Journal of Chemometrics, pages 1–14,209

2017.210

[16] Wangdong Ni, Steven.D. Brown, and Ruilin Man. The relationship211

between net analyte signal/preprocessing and orthogonal signal cor-212

rection algorithms. Chemometrics and Intelligent Laboratory Systems,213

98:97–107, 2009.214

[17] Avraham Lorber, Klass Faber, and Bruce R. Kowalski. Net analyte215

signal calculation in multivariate calibration. Analytical Chemistry,216

69:1620–1626, 1997.217

[18] J.A. Fernandez Pierna, F. Chauchard, S. Preys, J.M. Roger, O. Galtier,218

V. Baeten, and P. Dardenne. How to build a robust model against per-219

turbation factors with only a few reference values: a chemometric chal-220

lenge at chimiometrie 2007. Chemometrics and Intelligent Laboratory221

Systems, 106:152–159, 2011.222

[19] J.C. Boulet and J.M. Roger. Pretreatments by means of orthogonal223

projections. Chemometrics and Intelligent Laboratory Systems, 117:61–224

69, 2012.225
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7 Captions229

Figure 1: Notations230

Figure 2: OPLS-classic a regular O-PLS followed by a PLS1 with one latent231

variable (left); OPLS-ones a regular O-PLS followed by a w-modified PLS1,232

w being set to a vector of ones (right)233

Figure 3: Chimiometrie 2007 challenge, NIR spectra: (a) spectra after 40234

OPLS components removed, the vertical line representing the variable se-235

lected for OPLS-univ ; (b-d) RMSEC, RMSECV and RMSEP for the 3 mod-236

els: OPLS-classic (red), OPLS-ones (green) and OPLS-univ (blue)237

Figure 4: Chimiometrie 2018 challenge, NIR spectra: (a) spectra after 40238

OPLS components removed, the vertical line representing the variable se-239

lected for OPLS-univ ; (b-d) RMSEC, RMSECV and RMSEP for the 3 mod-240

els: OPLS-classic (red), OPLS-ones (green) and OPLS-univ (blue)241

Figure 5: Apricots MIR spectra: (a) spectra after 50 OPLS components242

removed, the vertical line representing the variable selected for OPLS-univ ;243

(b-d) RMSEC, RMSECV and RMSEP for the 3 models: OPLS-classic (red),244

OPLS-ones (green) and OPLS-univ (blue)245

Figure 6: Grape fruit NIR reflectances: (a) spectra after 40 OPLS compo-246

nents removed, the vertical line representing the variable selected for OPLS-247

univ ; (b-d) RMSEC, RMSECV and RMSEP for the 3 models: OPLS-classic248
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(red), OPLS-ones (green) and OPLS-univ (blue)249

250
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8 Figures251

N number of observations
Q number of variables
i number of O-PLS components removed
A minimum value of i for which Xosc can

be approximated to a rank-1matrix
Aopt value or range of values of i for which

the RMSECV is minimum
Amax a value of i larger than A and Aopt

X matrix of N lines and Q columns
y column vector of N elements
Xosc the matrix X after OSC correction
Xopls the matrix X after O-PLS correction
ti ith score vector for OSC/OPLS
pi ith loading vector for OSC/OPLS
w weight vector of PLS
t score vector of PLS
b regression vector of PLS
1Q a vector of ones of length Q
snas the NAS net analyte signal

Figure 1:

Xopls calculated with O-PLS
w = X′oplsy w = 1Q
t = Xoplsw t = Xopls1Q
c = y′t(t′t)−1 c = y′t(t′t)−1

b = cw b = c1Q

Figure 2:
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(a) (b)

(c) (d)

Figure 3:
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(a) (b)

(c) (d)

Figure 4:
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(a) (b)

(c) (d)

Figure 5:
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(a) (b)

(c) (d)

Figure 6:
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