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Abstract: Forecasting sunflower grain yield a few weeks before crop harvesting is of strategic interest
for cooperatives that collect and store grains. With such information, they can optimize their logistics
and thus reduce the financial and environmental costs of grain storage. To provide these predictions,
data assimilation approaches involving the crop model SUNFLO are used. The methods are based
on the re-estimation of soil conditions and on the sequential update of crop model states using
an ensemble Kalman filter. They combine the simulation of the crop model and time series of
leaf area index (LAI) derived from remote sensors and extracted over 281 fields near Toulouse,
France. A sensitivity analysis is used to identify the most relevant model inputs to consider into
the data assimilation process. Results show that data assimilation leads to statistically significant
better predictions than the simulation alone (from an RMSE of 9.88 q·ha−1 to an RMSE 7.49 q·ha−1).
Significant improvement is achieved by relying on smoothed LAI rather than raw LAI. Nevertheless,
there is still an over estimation of the grain yield that can be partially explained by the limiting
factors observed on the fields and the forecast yield still need improvements to meet the required
applications’ accuracy.

Keywords: remote sensing; data assimilation; sunflower; crop model; leaf area index (LAI)

1. Introduction

Forecasting sunflower grain yield a few weeks before crop harvesting is of strategic interest for
cooperatives that collect and store grains. With such information, they can optimize their logistics
(allocation of storage cells, transfers between silos) and thus reduce the financial and environmental
costs of grain storage.

By simulating the time-course of a crop during the growth season (e.g., plant development,
nitrogen uptake, leaf area and biomass growth), models can provide such yield predictions.
These process-based crop growth models generally require various inputs related to crop variety,
soil physical properties, weather and crop management. Out of experimental stations, obtaining
such inputs is subject to uncertainty. For example, soil data are partially available at farmer’s field
level, and when available, the input values could be highly uncertain due to random and systematic
measurement errors and spatial and temporal variation observed in soil properties. Soil physical
properties are used for determining soil available water capacity for root activity and crop growth.
In dry environments especially, uncertainties in soil inputs have a predominant influence on yield

Remote Sens. 2020, 12, 3816; doi:10.3390/rs12223816 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-3338-9337
http://dx.doi.org/10.3390/rs12223816
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/22/3816?type=check_update&version=3


Remote Sens. 2020, 12, 3816 2 of 23

prediction [1]. Therefore, this requirement becomes critical if the desired prediction is at a regional
scale [2].

Into a data assimilation approach, remote sensing observations can be used to improve the
accuracy of yield predictions and reduce the uncertainty in soil properties inputs. Recent studies
have been carried out for various crops with some focus on wheat ([3–9]), maize ([5,10–13]) and
sugar beet ([2,4]). Most of them rely on leaf area index (LAI) assessments derived from satellite
images to correct crop model simulations. Nevertheless, in [5], the researchers used soil moisture
measurements, arguing that crop-specific variables, such as LAI, were not available for their study case.
Better prediction results are reached when multiple variables are available for assimilation (for example
LAI and evapotranspiration [7] or LAI and soil moisture [11]). Data assimilation is a way to take into
account uncertainty on model input values and parameters. For instance, some researchers considered
either uncertainty on the soil properties [2] or crop practices (e.g., irrigation timing and amount) [7,8].
Various crop simulation models have been coupled to data assimilation techniques to improve
their predictive performances: Decision Support System for Agrotechnology Transfer (DSSAT) [11],
Crop Environment REsource Synthesis (CERES) [3,8,14], Log-Normal Allocation and Senescence
(LNAS) [4], Simple Algorithm For Yield (SAFY) [6], Simulateur multidisciplinaire pour les cultures standard
(STICS) [4], Simple and Universal Crop growth Simulator (SUCROS) [2], Soil-Water-Atmosphere-Plant
(SWAP) [7] and WOrld FOod STudies (WOFOST) [5,9,10,12], among others.

In terms of methods, three approaches of data assimilation are commonly adopted [15]:
the calibration, the updating and the forcing methods. The first approach consists of re-estimating
model inputs or parameters using remote sensing observations by minimizing a cost function such as
the mean squared error between simulated and observed LAI values [2,6,7,13]. A second approach
consists of substituting the LAI crop model state variables with LAI observations [16]. The third
approach relies on the sequential update of model state variables, such as LAI, to correct the trajectory
of the simulations. This can be done by the direct insertion of LAI observations into the crop model.
With better theoretical foundations, it can be done also by using an ensemble Kalman filter [3,5,9,11,12],
or a particle filter [4,14] to avoid the Gaussian assumption on state variables. However, other methods
have been adopted to handle temporal information such as a 4D variational (4DVAR) approach in [8] or
an empirical model mixing remote sensing observations and crop state variables to perform sequential
updates [10].

It is noteworthy to mention that several of these applications across the proposed classification
use temporal information. For instance, the use of a simplex search algorithm, as in [17], to estimate
the model parameters over the growing season will be impacted by the temporal dynamics of the LAI
for several of the biophysical parameters. A solution for taking into account the temporal information
is to smooth observations before the assimilation [14]. In a data assimilation approach, 4DVAR-based
methods apply the assimilation scheme over a temporal window of information [8].

In this study, a data assimilation system for the SUNFLO [18,19] crop model has been developed
to forecast sunflower grain yield at field scale, four weeks before harvesting. To the best of our
knowledge, data assimilation has only been carried out once for the sunflower crop in [17]. Here, there
is a focus on the uncertainty of soil properties, as in [2], since this information is known to be difficult
to determine precisely in all fields. The sunflower crop is also mostly grown in unirrigated and shallow
soils of southern regions and is thus strongly responsive to available water capacity to support growth
and to initial soil water content when springtime precipitations are limited. Moreover, due to the broad
field network on which data collection has been carried out (281 plots), modeling the uncertainty on
crop model inputs is preferred to modeling the uncertainty on parameters of model equations.

First, a sensitivity analysis (as in [7,9]) is carried out in order to quantify the impact of soil
conditions with respect to other input factors. Different assimilation techniques were then compared,
with a focus on the least square estimator (LSE) and the ensemble Kalman filter (EnKF) approaches.
The impact of smoothing the LAI measurements before the assimilation process is also assessed.
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Finally, the impact of the weather series used to extrapolate simulations from the day of forecast to the
harvesting day is also analyzed.

2. Materials and Methods

2.1. Field Network

This study targeted plots cultivated with sunflower, during three consecutive years (2014, 2015
and 2016), in the Haute-Garonne and Gers departments (southwest of France). A total of 281 sunflower
fields (6.05 ha in average) were monitored throughout the growth season: 76 fields in 2014, 145 in
2015 and 60 in 2016. Commercial grain yields (q·ha−1, 9% moisture + 2% impurities) were provided
exclusively by the farmers. Yield values were sampled either from individual fields (measured using a
yield sensor or commercial data: 59%), islets of fields (21%) or even whole farms (20%).

Crop management data were collected during farmers’ interviews. The following information
was gathered: sown variety, sowing date, amount and timing of nitrogen fertilization and irrigation.
Rough information on soil depth was provided by the farmers. The following variables were
collected on each field which was observed two to three times: development stages, plant population,
field heterogeneity (spatial data), disease injuries (qualitative assessments for mildew, phomopsis,
verticillium, premature ripening), weed infestation (% covering), mineral deficiency (e.g., boron).
These data were used for running the crop model, diagnosing yield-limiting factors and discussing the
gaps between observation and simulation.

Four weather stations were used to provide daily data: maximum and minimum temperature,
precipitation, global radiation and evapotranspiration.

2.2. Remote Sensing Data Processing

An extensive dataset of high resolution optical satellite acquisitions in the visible and near
infrared (NIR) was assembled for this study to maximize the number of assimilated data. While the
Sentinel-2 satellites provide a very good revisit period, the mission provides data for the 2016 crop
season; thus, data from Spot-5 Take-5, Deimos-1, Formosat-2, Sentinel-2 and Landat-8 satellites were
considered. The Spot-5 Take-5 data set corresponds to the Spot-5 data during the Take-5 campaign,
when Spot-5 had been placed on a five days cycle orbit that mimics the Sentinel-2 acquisition frequency
before decommissioning of the satellite (end of 2015), as it was already done in 2013 with Spot-4 [20].
Spot-5 is a third generation Satellite Pour l’Observation de la Terre (SPOT) satellite from the Centre
National d’Etudes Spatiales (CNES), the french space agency, providing very high resolution (10 m)
images. The Deimos-1 micro-satellite is a commercial Spanish Earth observation satellite as part of
the Disaster Monitoring Constellation (DMC). Deimos-1 provides high resolution (22 m) images with
variable incidence angles. Formosat-2 is a commercial Earth observation satellite formerly operated
by the National Space Organization (NSPO) of Taiwan. Formosat-2 ceased operations in August
2016. Formosat-2 data consist of high-resolution VNIR with programmable acquisitions at possible
daily revisits. Sentinel-2A is the first of the Sentinel-2 satellites and is part of the European Union
Copernicus program for Earth observation. The Sentinel-2 satellites provide global high resolution
(10 m) multi-spectral observations including the VNIR and the red-edge domains at a five days revisit
frequency. Landsat-8, as its name indicates, is the eighth satellite of the Landsat program. Landsat-8 is
a joint mission from National Aeronautics and Space Administration (NASA) of the United States
and the United States Geological Survey (USGS). Landsat-8 provides VNIR images at 30 m spatial
resolution and 12 days revisit. Landsat-8 also provides thermal imagery, but this information was not
exploited in this paper. Images from Landsat-8 covering the period from 2014 to 2016 were extracted.
As they provide the longest time series and also cover the acquisition dates of all the other sensors,
data from Landsat-8 were used as a baseline for comparing Normalized Difference Vegetation Index
(NDVI) in this study. The main characteristics of the platforms mentioned above are summarized in
Table 1, which shows the differences between the sensors acquisition characteristics (spectral bands,
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spatial resolution and acquisition modes). All sensor data were available with the MAJA cloud mask
processing except for Deimos-1.

Table 1. Main characteristics of sensors in terms of spatial resolution, acquisition mode, spectral bands
and selected years.

Sensor Spatial Resolution Acquisition Red Band NIR Band Exploited
for VNIR (m) Mode (nm) (nm) Year(s)

Landsat-8 30 systematic [636–673] [851–879] 2014 to 2016

Formosat-2 8 programmed [630–690] [760–900] 2014

Deimos-1 22 programmed [630–690] [770–900] 2014

Spot-5 Take-5 10 systematic [610–680] [780–890] 2015

Sentinel-2A 10 systematic [650–680] [785–899] 2016

Images are corrected for geometric, radiometric and atmospheric impacts using either KALIDEOS
processing chain (http://kalideos.cnes.fr) or MACCS method [21,22]. The MACCS chain enables
for cloud and cloud-shadow filtering [23] with an absolute geolocation error lower then 0.4 pixels.
The NDVI were averaged over field limits considering a five meters buffer region.

The LAI was retrieved using the BVnet [24] tool for 2014 and 2015, and for the following sensors:
Landsat-8, Deimos-1, Spot-5 Take-5 and Formosat-2 . BVnet is a neural network implementation of the
PROSAIL radiative transfer model [25] that enables the estimation of biophysical variables such as
LAI. It relies on the inversion of the radiative transfer model PROSAIL using artificial neural network.
The BVnet tool uses the green, red and near infrared spectral bands, and the short wave infrared band
when available. It computes LAI taking into account for the spectral and directional characteristics
(illumination and viewing angles) of the remote sensing data. LAI data were extracted and averaged
over the plots excluding a one pixel buffer area. Cloud mask conditions were then applied.

To homogenize the Sentinel-2A data with the other time series, the Landsat-8 acquisitions which
cover the entire time span of the study were considered as reference. Figure 1 shows the total Landsat-8
and Sentinel-2A acquisitions for 2016. It also shows the dates of simultaneous acquisitions of the two
sensors within a four days gap and low-cloud cover conditions.

Figure 1. Acquisition dates in day of year (DOY) from Sentinel-2A and Landsat-8 for the year 2016.

Based on the dates of simultaneous acquisitions, the NDVI from Landsat-8 and Sentinel-2A are
compared. Figure 2a shows the scatter plot between the mean over each plot of the NDVI from
Landsat8 and from Sentinel-2A. It also shows the correction function that was used to convert the
Sentinel-2A NDVI to Landsat-8 like NDVI. The corrected NDVI is used to obtain the Sentinel-2A
LAI using an exponential function (Equation (1)) that was fitted between the Landsat-8 NDVI and
Landsat-8 LAI (with an R = 0.98). Figure 2b shows the final time series of homogenized Sentinel-2A

http://kalideos.cnes.fr
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and Landsat-8 LAI with the corresponding envelope area obtained from the standard deviation across
all field plots.

LAI = 0.1388 ∗ exp (3.711 ∗ NDVI)− 0.17 (1)

(a) (b)

Figure 2. Homogenization of Sentinel-2A and Landsat-8 data using an empirical exponential model.
Normalized Difference Vegetation Index (NDVI) correction (a) and final leaf area index (LAI) time
series (b).

As a result, after processing the images from all the sensors, the mean number of observed LAI
per plot that remained during the sunflower growing season (from May to August) was 10.64 with
a range of 2 to 25 (Figure 3). The number of images was essentially depending on the cloudiness,
2015 being a dry and shiny year.

Figure 3. The 281 plots of the field network distributed according to the year and the number of
available LAI observations during the period May–August.

2.3. Crop Simulation with SUNFLO

SUNFLO is a process-based model for the sunflower crop which was developed to simulate
the grain yield and oil concentration as a function of time, environment (soil and climate),
management practices (irrigation, nitrogen fertilization, crop density) and genetic diversity, through
genotype-dependent inputs [18,19].
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The model simulates the main soil and plant processes: root growth, soil water and nitrogen
content, plant transpiration and nitrogen uptake, leaf expansion and senescence and biomass
accumulation, as a function of main environmental constraints (temperature, radiation, water and
nitrogen deficits).

This crop model is based on a conceptual framework initially proposed by Monteith [26] and
now shared by a large family of crop models [27–30]. In this framework, the daily crop dry biomass
(TDMt, g·m−2) is calculated as an ordinary difference equation (Equation (2)) function of incident
photosynthetically active radiation (PAR, MJ·m−2), light interception efficiency (1 − e−k.LAI) and
radiation use efficiency (RUE, g·MJ−1 [31]). The light interception efficiency is based on Beer–Lambert’s
law as a function of leaf area index (LAI) and light extinction coefficient (k).

TDMt = TDMt−1 + RUEt ∗ (1− e−k∗LAIt) ∗ PARt (2)

The soil model describes root growth, water flux and extraction, and nitrogen absorption and
mineralization. Crop management is described by the sowing date, plant density, timing and amount
of nitrogen fertilization and irrigation. Detailed algorithms and equations of SUNFLO can be found
in [18,19]. The oil model was recently refined by [32]. A more complete description of the crop model
was published as additional data in [33].

The model inputs (Table 2) are soil properties and initial conditions, cultivar features and technical
operations (irrigation, fertilization). Daily weather data are also needed for simulation and are
composed of five variables commonly available in weather stations: maximum and minimum air
temperatures (T, ◦C), precipitation (P, mm), potential evapotranspiration (PET, mm), global radiation
(GR, MJ·m−2).

Table 2. SUNFLO scalar inputs. The first nine inputs describe soil conditions, the next 2 inputs describe
management. The others describe sunflower crop variety.

Input Name: Description (Units) Default Value

rootDepth: maximum soil rooting depth (mm) 1000
stoneContent: stone content ratio (0:1) 0.1
fieldCapacity: gravimetric water content at field capacity (%) 21.5
wiltingPoint: gravimetric water content at wilting point (%) 10
waterInitial: initial water content ratio (0:1) 0.69
soilDensity: soil apparent density (g·cm−3) 1.5
mineralization: potential mineralization rate (kg·ha−1·days−1) 0.5
ninit1: mineral nitrogen content of 1st soil layer (kg·ha−1) 30
ninit2: mineral nitrogen content of 2nd soil layer (kg·ha−1) 20

cropDensity: sowing density (plant·m−2) 7
cropSowingDepth: sowing depth (mm) 30

TLN: Potential number of leaves at flowering (leaf) 29
LLH: Potential rank of the plant largest leaf at flowering (leaf) 17
LLS: Potential area of the plant largest leaf at flowering (cm−2) 448
k: Light extinction coefficient during vegetative growth (-) 0.88
TDE1: Temperature sum from emergence to floral initiation (C.d) 482
TDF1: Temperature sum from floral initiation to beginning of flowering (C.d) 354
TDM0: Temperature sum from beginning of flowering to beginning of grain filling (C.d) 247
TDM3: Temperature sum from beginning of grain filling to seed physiological maturity (C.d) 590
HI: potential harvest index (0:1) 0.398
LE: Threshold for leaf expansion response to water stress (dimensionless) −4.42
TR: Threshold for stomatal conductance response to water stress (dimensionless) −9.3

Nine soil inputs are needed to describe the soil depth available for roots, its water holding capacity
and initial soil conditions at sowing. Each variety is described by 11 inputs, whose values for the
considered varieties were previously measured in independent experiments.
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There was a focus on nine state variables particularly involved in yield prediction in data
assimilation methods. Two were related to the crop aerial part: LAI and total dry biomass
(TDM, MJ·m−2). Two were related to soil properties: water content in the two soil layers (C1 and
C2). The last five were related to the plant–soil interaction: root depth (zRac, mm), water deficit index
(FTSW), nitrogen deficit index (INN), cumulated transpiration between the flowering and the maturity
stages (TRPF, mm), absorbed nitrogen (Nabs, kg·ha−1).

2.4. Sensitivity Analysis

Sensitivity analysis is generally used to identify input factors that have a large influence on
model outputs [34]. The aim of this study was to forecast the grain yield using both the SUNFLO
model and the measurements of LAI, so it seemed relevant to identify which are the input factors
that influence both grain yield and LAI. In the SUNFLO model, the soil conditions at sowing (initial
water and nitrogen content) as well as more permanent soil properties (soil texture, stone content,
bulk density and rootable depth) define the water deficit which is the main limiting factor for
crop growth. The simulated water deficit is also impacted by management options (variety, plant
density, nitrogen fertilization, irrigation) and weather conditions (temperature, precipitation, radiation).
This information is generally easier to get from surveys and databases although some residual error
exists (e.g., distance from the weather station, inaccuracies in input timings and amounts).

To identify the most important input factors, a screening approach has been conducted using the
Morris method [35] on both the maximal value of LAI (at flowering) and the grain yield. The Morris
method, by using intensive simulations, computes two indices for all screened input factors: µ∗ and σ.
For a given input factor, these indices are expressed in the unit of the output variable (either grain yield
or LAI in our case) and aggregate elementary effects. An elementary effect is the absolute difference
of output value due to the difference in the value of one solely input. The µ∗ index represents the
overall linear influence of the input on the output and σ is the non-linear influence of the input plus
the influence of its interaction with other inputs.

As a result that the impact of input factors depends on environmental conditions, two contrasted
production situations were considered for the sensitivity analysis. They differed from each other by
climate data and management but both are located at ’En Crambade’ near Toulouse on clay soil.

• Low production level: dry weather (2005), no nitrogen fertilization, low plant density (4.5 plants·m−2),
early-maturing cultivar.

• High production level: wet weather (2002), application of 80 kg·N·ha−1, high plant density
(6.5 plants·m−2), late-maturing cultivar.

For most of the situations in this project, uncertainty on collected input values was not available.
Consequently, a variation of 30% of the inputs around the default value is considered. Constraints on
some of the inputs in order to keep some realism in the simulations were required:

• waterInitial and stoneContent, which are fractions, were kept between 0 and 1.
• rootDepth ranged between 400 and 2000 mm according to our expertise on soil heterogeneity in

the Toulouse region.

The range of variation of inputs for the two situations was given in Table 3.
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Table 3. Data summary and configuration of the Morris method for two production situations: the low
and high level production situations.

Name Experiment Data Low Production Level High Production Level
Range Value Range Value Range

rootDepth [400, 2000] 1000 [700, 1300] 1000 [700, 1300]
stoneContent [0, 0.2] 0.1 [0.07, 0.13] 0.1 [0.07, 0.13]
fieldCapacity [21.5, 21.5] 21.5 [15.05, 27.95] 21.5 [15.05, 27.95]
wiltingPoint [10, 10] 10 [7, 13] 10 [7, 13]
waterInitial [0.69, 0.69] 0.69 [0.483, 0.897] 0.69 [0.483, 0.897]
soilDensity [1.5, 1.5] 1.5 [1.05, 1.95] 1.5 [1.05, 1.95]
mineralization [0.5, 0.5] 0.5 [0.35, 0.65] 0.5 [0.35, 0.65]
ninit1 [30, 30] 30 [21, 39] 30 [21, 39]
ninit2 [20, 20] 20 [14, 26] 20 [14, 26]

cropDensity [1.3, 7.3] 4.5 [3.15, 5.85] 6.5 [4.55, 8.45]
cropSowingDepth [30, 50] 30 [21, 39] 30 [21, 39]

TLN [24.33, 35.6] 29 [20.3, 37.7] 29 [20.3, 37.7]
LLH [13.5, 23.1] 17 [11.9, 22.1] 17 [11.9, 22.1]
LLS [199.96, 590] 439 [307.3, 570.7] 474 [331.8, 616.2]
k [0.85, 0.95] 0.88 [0.616, 1.144] 0.88 [0.616, 1.144]
TDE1 [446.63, 522.2] 444 [310.8, 577.2] 508 [355.6, 660.4]
TDF1 [328.77, 384.4] 321 [224.7, 417.3] 368 [257.6, 478.4]
TDM0 [246.5, 246.5] 250 [175, 325] 252 [176.4, 327.6]
TDM3 [499.55, 933.9] 560 [392, 728] 563 [394.1, 731.9]
HI [0.32, 0.51] 0.4 [0.28, 0.52] 0.45 [0.315, 0.585]
LE [−5.79, −2.4] −4.42 [−5.746, −3.094] −4.42 [−5.746, −3.094]
TR [−14.21, −7.64] −9.3 [−12.09, −6.51] −9.3 [−12.09, −6.51]

2.5. Data Assimilation

Three alternative options for assimilating remote sensing data into the SUNFLO crop model are
considered in this work. They are all detailed in Appendix A.

The simplest method consists of direct insertion (DI) of the value of LAI into the crop model
each day an observation is available. The assumption is that the total dry biomass (TDM) that is
closely related to grain yield will be updated by propagation of the observation through the simulation
equations. An example of the resulting LAI dynamics is illustrated on a plot of our dataset in Figure 4.

Figure 4. Open-loop simulation, direct insertion (DI) and least square estimator (LSE) illustrated on a
plot of this study. Daily LAI values from observations (dots), open-loop (dotted line), DI (dashed line)
and LSE (solid line) are plotted from the sowing day to the day of forecast.
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A more sophisticated update scheme is the ensemble Kalman filter (EnKF). Rather than updating
only the LAI variable into the system at days of observations, nine state variables (defined in Section 2.3)
are updated according to a covariance matrix of these variables. It is assumed that the state variables
vector is a random variable with a multivariate normal distribution. The EnKF relies on the simulation
of different model states in order to update the covariance matrix at each day of observation. In our
case, the different model states correspond to different initializations of soil conditions. At the day
of forecast, the model state corresponding to the median value of total dry matter (TDM) is selected.
An example of this method for a subset of three state variables is presented in Figure 5.

Re-estimating input factors is another way of assimilating LAI from remote sensing. One can seek
for the least square estimator (LSE) of soil conditions, by comparing simulated and measurements
of LAI. It consists of finding the soil conditions that lead to the minimal sum of squared errors of
the variable LAI. It requires an optimization method for solving the minimization problem. It is
noteworthy that, additionally to the updated model state at the day of forecast, the LSE approach
provides new estimates of the soil conditions. An example of the resulting LAI is illustrated in Figure 4.
Inputs that were re-estimated were selected within the candidate list (Table 2) by the sensitivity
analysis step.

Figure 5. Illustration, on the same plot as in Figure 4, of the ensemble Kalman filter (EnKF) method
to assimilate LAI observations and to correct trajectories of SUNFLO state variables LAI, total dry
biomass (TDM) and the fraction of transpirable water (FTSW). Light gray (resp. dark gray) represents
quartiles over the different model states of the simulated trajectory without assimilation (resp. with
assimilation). Dots represents raw LAI observations and squares represent smoothed LAI observations.

The data assimilation methods provide an estimation of the crop model state at the days of
forecast. To complete the simulations in order to get an estimation of the grain yield, the crop model
requires weather time series between the day of forecast and the harvesting day. In an operational
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context, the true weather series are not known. Instead, the past weather series at the location of the
study plot (24 previous years) were used for the completion of the simulation.

Before the assimilation, the sequence of LAI can be smoothed in order to extract more frequent
observations. Li et al. [36] used a Savitzky–Golay filter in order to smooth the noise of LAI time
series imagery. Here the Whittaker method is carried out as proposed in [37] which behaves well
for vegetation indices when compared to other smoothing techniques [38]. Compared to other
methods, it has the advantage to be suitable for handling partial LAI sequence. Indeed, in our
case, the whole sequence cannot be available, since the time of forecast (set to August 10th) is before
the time of harvesting.

In a nutshell, two alternatives were considered for the preprocessing of LAI from remote sensing.

• raw LAI: no preprocessing is performed on measurements of LAI.
• smoothed LAI: LAI values were extracted at constant time intervals from a smoothed sequence of

LAI using the Whittaker smoother.

A direct simulation and three approaches for assimilating LAI measurements were compared in
this paper, details are given in Appendix A:

• Open-loop simulation: a direct simulation with no LAI forcing.
• Direct insertion (DI): the simplest assimilation method that consists in replacing the model LAI

state variable at each time of observation.
• EnKF: the ensemble Kalman filter method.
• LSE: the least square estimator.

Additionally two different sets of weather series used for completing the simulation
were compared:

• oracle (for comparison purpose): the true unknown weather series is used for the simulation
between the day of forecast and the harvesting day. It is impracticable in an operational context
but can be used to assess the impact of weather variables during this time interval.

• past weather: 24 past years weather series, at the location of the plot, are used to complete the
simulation from the day of forecast to the harvesting day. The forecast grain yield is the average
of the 24 simulations of grain yield.

2.6. Experiments Settings and Software

The crop model SUNFLO and the EnKF method were implemented in C++ (gcc 5.3.0) with the
VLE software version 2.0 [39] using the modeling platform RECORD [40] and the eigen library version
3 [41]. The rest of the experiments were performed with R version 3.6.1 [42]. Crop model simulations
and optimization (∼2M simulations) were performed on the muse cluster (Montpellier University).

For the sensitivity analysis, the Morris method with parameter values r = 100 and levels = 5
from the R packages sensitivity [43] was used. That consists in 2400 simulations for each sensitivity
analysis. To smooth LAI observations, the implementation of the Whittaker smoother in the R package
pracma [44] with the parameters lambda = 500 and d = 2 was mobilized, and LAI were extracted from
the smoothed sequence every four days. No setting was required for the open-loop simulation and the
DI methods. For the EnKF method, 100 particles were simulated (M = 100 in Appendix A) and an
error variance of the LAI observation was set to 0.2 (R = 0.2 in Appendix A). For the LSE approach,
the genetic optimization algorithm genoud [45] from the package rgenoud (version 5.8) was used with
50 generations and a population of size 16 for each optimization.
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3. Results

3.1. Sensitivity Analysis of SUNFLO Crop Model

The variation of simulated maximal LAI and grain yield corresponding to sensitivity analyses
were important (Figure 6), indicating that the uncertainties in input conditions had a strong impact
on considered output variables. Indeed, the relatively high uncertainty obtained on the input
conditions lead to a very high variation in grain yield, from 7 to 44 q·ha−1 for the low production
level situation and from 11 to 46 q·ha−1 for the high production level situation. As expected,
the difference in simulated grain yield between the two situations is statistically significant (with a
p-value p < 2.2× 10−16 in the non-parametric Wilcoxon test).

Figure 6. Grain yield (GY) and maximal LAI simulated during the Morris sensitivity analyses for the
two contrasted production situations.

From these experiments, the means of absolute elementary effects (mu.star) resulting from the
Morris method for both the maximal LAI and yield are shown in Figure 7 for the two contrasting
production situations. These indices allowed the selection of the most impacting input factors on LAI
and yield output variables. Components which were used for the calculation of the soil water capacity
(and consequently the calculation of the water deficit) mostly impacted the LAI and grain yield: this
was the case for f ieldCapacity, wiltingPoint, soilDensity, mineralization and rootDepth, especially the
input f ieldCapacity for both situations. However, waterInitial and stoneContent were not relevant
for further selection. In our conditions, the permanent soil properties that determined soil water
capacity and nitrogen mineralization were more relevant to select than variables describing the initial
conditions at sowing time.

The inputs related to plant features such as the individual maximum leaf area (LLS), the potential
number of leaves at flowering (TLN) and the crop density had a strong impact on maximal LAI but a
lower impact on the yield. Thus re-estimating them in the LSE approach, or randomizing them in the
EnKF approach, would not be of interest for improving yield forecasts. Conversely, a variation of HI
(potential harvest index) resulted logically in a high variation of yield. However, as expected, it did
not impact the simulated LAI since HI intervenes after the peak LAI during the crop development.
Re-estimating HI using LAI measurements as a proxy would not be relevant.

Despite the fact that soil conditions are difficult to acquire on farms, these results confirmed
that they impact strongly the simulated crop production. This validates the main hypothesis of this
work. Therefore, these inputs are good candidates for modeling input conditions’ uncertainty into the
data assimilation process. As a result, the randomized input factors selected for LSE and the EnKF
approaches are the five soil input conditions: f ieldCapacity, wiltingPoint, soilDensity, mineralization
and rootDepth.
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Figure 7. Means of absolute elementary effects (mu.star) computed by the Morris method for two
contrasted production situations and for two model outputs: grain yield (GY) and maximal LAI.

3.2. Data Assimilation Results

Table 4 gives a global overview of the evaluation criteria for the performance of the assessed yield
forecasting approaches, over the 281 sampled plots. Bias, root mean squared error (RMSE), normalized
RMSE (RRMSE) which is the RMSE divided by the mean of the observations, mean absolute error
(MAE) and the coefficient of determination (R2) are listed for all the combinations of the different
methods. As a reminder, this evaluation encompasses the effects of the assimilation method (open-loop
simulation, direct insertion, the ensemble Kalman filter and least square estimator), the weather series
used to complete the simulation (‘oracle’ or ‘past weather’) and the LAI variables used during the
assimilation process (‘raw LAI’ or ‘smoothed LAI’).

Relying on LAI measurements to forecast the grain yield led to better results than the simulation
alone, regardless of the assimilation approach and the criterion. The best results in terms of R2 and
RMSE are obtained by using the EnKF approach with smoothed LAI and the best results obtained for
the bias was the LSE with smoothed LAI. Figure 8 shows the forecast yield as a function of observed
yield for all the methods based on the used of past weather series, as well as the the reference prediction
(no assimilation).

However, these approaches resulted in overall poor performances for the sampled field population.
The model largely overestimated plot yields in the reference simulation (bias is 7.33 q·ha−1) with
a relatively low correlation (R2 is 0.18). As a result, the assimilation of LAI in order to improve
yield forecasts resulted mainly in bias reduction. The LSE approach performed best for this criteria
(bias reduction up to 2.4 q·ha−1 using the smoothed LAI), but the correlation between the observed
and forecast yields with LSE was low.
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Table 4. LAI assimilation results: root mean squared error (RMSE), coefficient of determination (R2)
and bias are given for the different methods (columns) and different weather series used to complete
simulation (rows).

Bias raw LAI smoothed LAI

(q·ha−1) Open-loop DI EnKF LSE DI EnKF LSE

oracle 7.3 6.08 5.03 3.32 5.9 3.82 2.23

past weather 7.33 6.07 5.02 3.39 5.87 3.8 2.29

RMSE raw LAI smoothed LAI

(q·ha−1) Open-loop DI EnKF LSE DI EnKF LSE

oracle 9.81 8.84 8.28 8.6 8.55 7.5 7.86

past weather 9.88 8.83 8.27 8.66 8.53 7.49 7.92

RRMSE raw LAI smoothed LAI

(-) Open-loop DI EnKF LSE DI EnKF LSE

oracle 0.453 0.408 0.382 0.397 0.394 0.346 0.363

past climate 0.456 0.407 0.382 0.4 0.394 0.346 0.365

MAE raw LAI smoothed LAI

(q·ha−1) Open-loop DI EnKF LSE DI EnKF LSE

oracle 8.19 7.19 6.84 6.99 7.02 6.13 6.34

past weather 8.24 7.18 6.83 7.04 6.99 6.11 6.38

R2 raw LAI smoothed LAI

(-) Open-loop DI EnKF LSE DI EnKF LSE

oracle 0.18 0.21 0.23 0.18 0.24 0.27 0.21

past weather 0.18 0.21 0.23 0.18 0.24 0.27 0.22

Figure 8. Forecast grain yields (GY) as a function of observed yield. Forecast and RMSE value for
the open-loop simulation method (first line), the three assimilation methods (respectively DI, EnKF,
LSE) based on raw LAI (second line) and the same three methods based on smoothed LAI (third line).
The black solid line represents 1:1 line.
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3.2.1. Impact of the Use of Past Weather Series

To achieve a complete simulation, a daily weather series is necessary from the day of forecast to
the harvesting time. Available past weather series at the location of the plot were used to complete
the simulations. The impact of this choice was assessed by comparing the ‘oracle’ alternative and the
‘past weather’ dataset. In the ‘oracle’ dataset, the actual unknown weather series was used to complete
the simulations.

The mean absolute difference of yield forecasts based on the ‘oracle’ alternative on one hand,
and the ‘past weather’ alternative on the other hand, was only 0.02 q·ha−1 and was not statistically
significant (with a p-value p = 0.15 in the non-parametric paired Wilcoxon test). The maximal
difference, over the 281 plots, between the two alternatives was also very low (1.4 q·ha−1).

Therefore, one can conclude that the final yield value was nearly independent of the weather
inputs after the day of forecast, which was set to August 10th in this study (about one month before
harvest). Thus, the rest of the analysis was based on the ’past weather’ alternative which corresponded
to the practicable approach.

3.2.2. Forecasting Methods Comparison

The difference in mean absolute error (MAE) was computed for all pairs of methods to provide a
side-by-side comparison in Table 5. Given two methods, the non-parametric paired Wilcoxon test was
also performed on individual absolute errors to analyze, over the 281 situations, the significance of the
difference in MAE.

Table 5. Side-by-side comparison of assimilation methods (‘past weather’ alternative). This table
provides the differences in mean absolute error (MAE) between methods. The sign ‘**’ designates the
side-by-side comparisons where there was a significant difference in MAE, with a p-value less than
0.01 in the non parametric paired Wilcoxon test.

MAE Difference Raw LAI Smoothed LAI

(q.ha−1) Open-Loop DI EnKF LSE DI EnKF

Open-loop

DI, raw LAI 1.05 **

EnKF, raw LAI 1.41 ** 0.353

LSE, raw LAI 1.2 ** 0.146 −0.207

DI, smoothed LAI 1.24 ** 0.192 ** −0.162 0.0456

EnKF, smoothed LAI 2.13 ** 1.08 ** 0.724 ** 0.931 ** 0.886 **

LSE, smoothed LAI 1.85 ** 0.802 0.449 0.656 ** 0.61 −0.275

As in Table 4, it is shown that using both LAI measurements and simulation provided better
forecasts than the simulation alone (all the differences in MAE were significant). The EnKF approach
with smoothed LAI led to significantly better predictions than all the other ones, except for the LSE
approach with smoothed LAI. Using smoothed LAI, even if it was not significant, the EnKF approach
led however to better MAE than the LSE method (a difference of 0.275 q·ha−1).

3.2.3. Impact of Smoothing LAI

There was a significant difference between assimilating raw LAI and assimilating smoothed LAI
(0.84 q·ha−1 with a p-value p = 9.5× 10−22 in the non-parametric paired Wilcoxon test). Moreover,
the maximal difference between the two alternatives was high (21 q·ha−1). These results emphasized
the important improvement when using smoothed vegetation indices with the Whittaker smoother
during the data assimilation process. Smoothing LAI led to an improvement of the forecast accuracy
of 3.39% of RMSE for direct insertion, 9.43% for the ensemble Kalman filter and 8.54% for the least
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square estimator (see Table 4). Most sophisticated methods (i.e., EnKF and LSE) are more sensitive to
the frequency of observations in the LAI time series. In view of these results, the rest of the analysis
focuses on assimilation approaches of smoothed LAI.

3.2.4. Impact of Yield Limiting Factors

To further analyze results with an agronomic point of view, the crop monitoring data that were
collected during the growing season on each field was mobilized: the fraction of field area infested by
weeds or concerned by severe irregular plant population, and the fraction of plants severely attacked
by fungal diseases (e.g., phomopsis, phoma, verticillium).

Situations were considered out of the validity domain of the simulation model (i.e., yield was
limited by factors not included in the model) when weeds were covering more than 25% of the area,
when yield loss expected from disease survey was more than 3 q·ha−1, or if the field had important
areas without plants. Based on this categorization of the 281 plots, the methods were compared with
respect to the different yield limiting factors (Table 6).

Table 6. Forecasting error (RMSE) for assimilation methods as a function of limiting factors diagnosed
on fields. The three columns ‘weeds, ‘diseases’ and ‘cover irregularities’ identify the different types
of yield limiting factors observed. If the value ‘Yes’ is given, the fields tagged with the limiting factor
associated were included in the analysis.

Weeds Diseases Cover
Irregularities

Number
of Plots

RMSE

Open-Loop DI EnKF LSE

Yes Yes Yes 281 9.88 8.53 7.49 7.92
Yes Yes No 159 9.79 8.53 7.65 7.97
Yes No Yes 165 9.14 8.13 7.22 8.3
Yes No No 88 9.1 8.28 7.71 8.8
No Yes Yes 54 9.7 7.6 6.47 7.02
No Yes No 32 10.11 7.89 6.79 6.8
No No Yes 33 7.39 6.18 5.51 6.72
No No No 18 7.11 6.5 5.87 6.28

The population of fields (with or without the observed limiting factors) was split and model
statistics were operated on each of the groups. First, a yield limiting factor has been observed in most
of the fields: 263 amongst 281 corresponding to 93% of the plots.

The best yield prediction was achieved on the subset of fields without limiting factors, with the
prediction error increasing with added limiting factors. This can be explained by the fact that biotic
limiting factors are not modeled into the SUNFLO crop model and by the fact that crop density used
as input variable of the model did not consider the fraction of the field occupied by weeds.

4. Discussion

In this study, it has been shown that the availability of accurate soil conditions for the SUNFLO
crop model is of crucial importance for yield simulation. The performed sensitivity analysis confirmed
the high impact of soil conditions on simulated yield and leaf area index, which is in line with previous
works on other crops and other crop models [1,2] and validated these inputs as good candidates for
calibration in a data assimilation process. This result was expected as sunflower crop is grown as a
rainfed crop in southwestern France, in a context of high summer evaporative demand and moderately
deep soils. As stated, water is the main limiting factor for production of sunflower in the region [46].

Statistically significant improvement was achieved in yield forecasting by assimilating LAI from
remote sensing into the sunflower crop model SUNFLO, compared to simulation alone. Moreover,
using a past weather series instead of the true series to complete the simulation between the day of
forecast (set about one month before the harvest) and the harvesting day did not impact the quality



Remote Sens. 2020, 12, 3816 16 of 23

of results. This suggests that, in the context of cooperatives needs in southwest France, forecasting
sunflower yield one month before harvesting is not a limit for a precise estimation.

Regardless of the method used, the yield forecast was improved by the most sophisticated
methods, i.e., calibration (LSE) and ensemble Kalman filter (EnKF). Although these two types of
methods are used in the literature [15], they were rarely compared side-by-side. Here, the ensemble
Kalman approach performed better (except for bias criteria) but this result is difficult to extrapolate
since yield forecasts obtained by simulation alone were not precise enough yet.

Indeed, the main limitation in the assessments of these assimilation approaches is the mismatch
between the open-loop simulation results and the field observations (yield and LAI). In the fields
sampled in this study, a bias of 7.3 q·ha−1 was obtained whereas the expectations of agronomists and
cooperatives in terms of performance is estimated at less than 3 q·ha−1 one month before harvesting.
In sunflower, only a few papers refer to the use of remote sensing to predict sunflower yield. They differ
by the nature of the actual data used for evaluating the performance of the model when assimilating
remote sensing data: yield either at regional, farm, field or intra-field level, yield information from the
farmer or directly measured by sensors onboard harvesters. Semi-empirical models as SAFY [17] and
SAFY-CO2 [47] or statistical models (linear models, non-parametric approaches, etc.) based on the use
of NDVI, LAI or leaf area duration were also evaluated for yield prediction [48,49]. In spite of these
differences in methodological approaches, the RMSE was mostly ranging from 4 to 6 q·ha−1 which is
close to the performance of SUNFLO used in assimilation with the EnKF approach in conditions with
no major limiting factors (5.8 q·ha−1) but with more uncertainties on the observed yield values.

In our experiments, when LAI measurements from remote sensing are used in a data assimilation
approach, the improvement of the model prediction error is still required. One frequent explanation for
poor performances of crop models when applied on-farm is that they do not take into account various
yield reducing factors associated with pests or weeds or uneven plant stand. By assimilating LAI from
remote sensing, the effect of these factors on leaf growth were partially accounted for. Others factors
such as fungal diseases (e.g., fungal phoma, phomopsis) reduce yield not only by impacting leaf
area and radiation interception, but also through a reduction of radiation use efficiency. In this case,
the assimilation approach could not correct such indirect effects as the remote-sensed variable carries
no information about it.

In these circumstances, the risk of assimilating LAI observations is to compensate for the lack
of representation of unfavorable soil properties. In these experiments, this is especially true for the
least square estimator (LSE) approach when one seeks to re-estimate soil properties. The calibration
of the SAFY model for the sunflower crop near Toulouse has been performed from remote sensing
in [17]. The researchers emphasized that the estimated harvest index (0.25) was significantly lower
than the potential harvest index considered in SUNFLO (from 0.32 to 0.51 according to varieties).
This can explain the over-estimation of yield forecast and constitutes a line of thought to improve
the SUNFLO model in the context of on-farm experiments. However, the model accuracy on fields
without non-modeled yield limiting factors was in the range of previous independent experimental
validations (RMSE 4–7 q·ha−1) as reported in [18,50–52].

One solution for providing relevant yield estimates is to consider agronomic models that are forced
by remote sensing LAI without the introduction of the water stress derived from the soil moisture
availability in the context of a least square estimation. In this case, the impact of low water content
availability can be compensated by the frequent observation of vegetation phenology. This solution
still has two major drawbacks: first its inability to provide a consistent set of soil/vegetation outputs
which means that water needs cannot be estimated, and second it needs to be applied on full crop
cycle because the impact of water stress on LAI presents a lag in time.

Finally, smoothing the LAI before the assimilation leads to significantly better results. This point
is largely discussed in other approaches involving only remote sensing observations [36], and not
really in a crop model based data assimilation approach. Extracting an estimation of LAI every four
days from the smoothed sequence facilitates the data assimilation in our experiments where only 7 to



Remote Sens. 2020, 12, 3816 17 of 23

13 images are available yearly. The main advantage of the smoothing pre-process is to provide relevant
LAI with a reduced number of acquisitions. It is also foreseen that the increased availability of LAI
from optical sensors like Sentinel-2 and proxy-LAI from Synthetic Aperture Radar data like Sentinel-1
from the European Union Copernicus program will enable high temporal frequency of LAI even in
cloudy weather. Considering that smoothing LAI reduces the uncertainty of the dataset and corrects
for satellite acquisition configurations and sensor differences of the LAI dynamics, except for very
extreme events (fire, hail,etc.), it should remain of interest to use this type of filter.

5. Conclusions

The goal of this study was to investigate the relevance of data assimilation of remote sensed
LAI into the SUNFLO crop model in order to forecast sunflower grain yield about one month before
harvest. Three approaches were considered: the direct insertion of remote sensed LAI into the crop
model, an ensemble Kalman filter approach and a least square estimator approach. A preliminary
sensitivity analysis of the crop model was performed to identify the crop model inputs that influence
the most the simulations of LAI and grain yield. The impact of smoothing the remote sensed LAI
before the assimilation, using a Whittaker smoother, was also assessed. Experiments were conducted
near Toulouse, southwest France, on a total of 281 fields monitored over three consecutive years
(2014–2016).

The sensitivity analysis emphasized the impact of soil available water on simulated LAI and
grain yield. Assimilating smoothed remote-sensed LAI using an ensemble Kalman filter led to the
best improvement in adequacy between forecast and observed grain yield. The least square estimator
of available water components led also to an important improvement of this adequacy. A significant
conclusion of these experiments is the beneficial role of smoothing LAI beforehand the assimilation.

This study also underlined the need for crop model adaptations for on-farm use cases, since grain
yield was overestimated because of the occurrence of limiting factors such as weeds and diseases.
For weeds, it would be interesting to rely on remote sensing techniques that allow to identify the ratio
of weeds and crops dynamically [53,54]. This could be taken into account in the assimilation process
by re-estimating the covering of the crop. On the contrary, identifying the whole disease injuries by
remote sensing seems to be challenging and including fungal disease into the modeled system would
be a relevant strategy.

To go beyond the grain yield forecasting, agricultural cooperatives need also estimations of the oil
content, which is simulated by the crop model SUNFLO as well. Even if sunflower oil content is mainly
determined genetically by the crop variety, it is also impacted by the post flowering photosynthetically
active radiation and by the LAI dynamics [55]. Thus, assimilating LAI in SUNFLO in order to forecast
the sunflower oil content should be feasible.

Finally, one of the main theoretical drawbacks of the ensemble Kalman filter is its inability to
handle non Gaussian distributions of state variables. To avoid this assumption, one can rely on a
Bayesian framework for data assimilation, as in [14], in which a particle filter was implemented.
Nevertheless, as suggested in [4], the re-sampling method, such as sequential importance sampling,
that is required in the particle filter approach, would benefit a stochastic version of the crop model.
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Abbreviations

The following abbreviations are used in this manuscript:
NDVI normalized difference vegetation Index
LAI leaf area index
GY grain yield
TDM total dry matter
FTSW fraction of transpirable water
DI direct insertion of LAI
LSE least square estimator
EnKF ensemble Kalman filter
R2 coefficient of determination
MAE mean absolute error
RMSE root mean square error
DSSAT decision support system for agrotechnology transfer
CERES crop environment resource synthesis
SAFY simple algorithm for yield
STICS simulateur multidisciplinaire pour les cultures standard
SUCROS simple and universal crop growth simulator
SWAP soil-water-atmosphere-plant
WOFOST world food studies

Appendix A. Data Assimilation Methods

In order to formally describe the forecast approaches, some notations are required. Let U =

{ f ieldCapacity, wiltingPoint, soilDensity, mineralization, rootDepth} be the set of input parameters
that are randomized into the data assimilation process. The choice of U relies on sensitivity analysis
results in Section 3.1. Let X ⊂ R||U||, with ||U|| the length of U, be the range of variation of inputs U as
described in Section 2.4. There is an assumption that into X, lies the true input combination x∗ and let
xb (b stands for ‘background’) be the input values from data collection. Let LAI1, ..., LAIN−1 be the
LAI observations given by remote sensing techniques (either smoothed or not) at times t1, ..., tN−1,
respectively. Let tN be the day of forecast and tN+1 the harvesting date. Times t1, .., tN+1 are in
increasing order. Let Y be the model state domain, and y[LAI] be the LAI component of the state
y ∈ Y. One considers that the model provides a simulation function f and an initialization function g:

f : X, Y, {t1, ..., tN}, {t2, ..., tN+1} → Y (A1)

g : X→ Y (A2)

The function f is the model state transition between two clocks. Hence, f (x, y, ti, tj), simulates the
model state to time tj starting from time ti with an initialized state y using input values x. The function
g models the initialization of model states at t1, which depends on the input combination under which
simulation is performed.

The different assimilation methods consists of providing a corrected model state ŷN at the day of
forecast. One relies on observations {LAI1, ..., LAIN−1}, the input uncertainty modeled by a uniform
distribution on X and the use of simulator f until the day of forecast tN . The problem is illustrated in
Figure A1.
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Figure A1. Notations used in the problem formulation. To improve grain yield forecast, both LAI
observations from remote sensing (e.g., LAI3) and a simulator function f are used to provide a new
model state at the day of forecast tN .

The open-loop method provides an estimation of ŷN by using the simulation of SUNFLO until
tN with background inputs values xb without taking into account neither its uncertainty nor the LAI
observations. Formally, it can be written as:

ŷN = f (xb, g(xb), t1, tN) (A3)

The purpose of this method is to provide a base for comparison with other methods. Figure 4 illustrates
the simulation for a specific plot.

The direct insertion (DI) method (Algorithm A1) for estimating ŷN is to simulate SUNFLO until
tN without taking into account the uncertainty of input values, one thus relies on the input values
from data xb. The LAI state is forced to take the observation values during simulation at the different
times of observations. An illustration is given in Figure 4.

Algorithm A1 Direct insertion (DI) method for LAI assimilation

1 ŷ1 ← g(xb);
2 for i← 1 to N − 1 do
3 ŷi[LAI]← LAIi;
4 ŷi+1 ← f (xb, ŷi, ti, ti+1);
5 end

The EnKF method (Algorithm A2) consists in using an ensemble Kalman filter (EnKF) to combine
LAI observations and simulations, covariance error of observations R and the covariance of state
variables Bi at each time of observation ti. The optimization problem can be formulated, for each
observation time ti, into the 3Dvar paradigm of data assimilation, as this function for updating y:

ŷi = argmin
y

[
||y− f (xb, ŷi−1, ti−1, ti)||B−1

i
+ ||LAIi − hTy||R−1

]
The vector ŷi is called the analysis state and is used to force simulation state at time ti. The vector
f (xb, ŷi−1, ti−1, ti) is called the background state which is basically the simulation of the model from
ti−1 to ti starting from the previous analysis state, computed at time ti−1. The vector h is the observation
operator. In our case, the observation is directly linked to the LAI model state variable and h is 1 at
the index of the LAI variable and 0 otherwise. Thus, hTy = y[LAI]. Whereas the ensemble Kalman
filter does not address directly the optimization problem, it is suitable to produce an estimation of
ŷN by considering the state covariance B and the error covariance R. It maintains simultaneously the
simulation of M particles to estimate B. The M particles are initialized with uniform random input
values into X.
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Algorithm A2 EnKF for LAI assimilation

Data: R (observation error), M (number of particles)
Result: ŷN (state variables at prediction time)

1 Initialize M particles : x1, ..., xM ∼ Unif(X);
2 ∀m ∈ {1, ..., M}, ym

1 ← g(xm);
3 for i← 1 to N − 1 do
4 Bi = cov(y1

i , ..., yM
i );

5 ki = BihT(hBihT + R);
6 ∀m ∈ {1, ..., M}, ym

i ← ym
i + k(LAIi − hym

i ) ;
7 ∀m ∈ {1, ..., M}, ym

i+1 ← f (xm, ym
i , ti, ti+1);

8 end
9 Let m such as ym

N [TDM] = median(y1
N [TDM], ..., yM

N [TDM]);
10 ŷN = ym

N

Figure 5 is an illustration of the use of assimilation by ensemble Kalman filter to assimilate,
until tN , LAI observations into the SUNFLO model. Once we have ym

N for each particle, the corrected
state ŷN is defined as the state of the particle with the median value of TDM at tN .

Finally, the least square estimator (LSE) of x∗ is given in Equation (A4). Using an optimization
method, the soil conditions are re-estimated. Then, by simulating the LSE until tN , we obtain an
estimation of ŷN . Compared to the EnKF approach, the LSE provides also an estimation of x∗.
An illustration of the LSE method results is given in Figure 4.

x̂∗ = argmin
x∈X

1
N − 1

i=N−1

∑
i=1

(LAIi − f (x, g(x), t1, ti)[LAI])2 (A4)

ŷN = f (x̂∗, g(x̂∗), t1, tN)
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