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THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE

LIFSHITZ-SLYOZOV EQUATION WITH NON-SMOOTH RATES

AT THE BOUNDARY

JUAN CALVO∗,a, ERWAN HINGANT†,§, AND ROMAIN YVINEC‡,$,§

Abstract. We prove existence and uniqueness of solutions to the initial-
boundary value problem for the Lifshitz–Slyozov equation (a nonlinear trans-

port equation on the half-line), focusing on the case of kinetic rates with un-

bounded derivative at the origin. Our theory covers in particular those cases
with rates behaving as power laws at the origin, for which an inflow behavior

is expected and a boundary condition describing nucleation phenomena needs

to be imposed. The method we introduce here to prove existence is based on a
formulation in terms of characteristics, with a careful analysis on the behavior

near the singular boundary. As a byproduct we provide a general theory for

linear continuity equations on a half-line with transport fields that degenerate
at the boundary. We also address both the maximality and the uniqueness of

inflow solutions to the Lifshitz–Slyozov model, exploiting monotonicity prop-
erties of the associated transport equation.

Contents

1. Introduction 2
1.1. The Lifshitz–Slyozov equation 2
1.2. Definitions and main results 5
1.3. Outline and methods of proofs 9
2. Overview of the linear problem 10
3. The nonlinear problem 12
3.1. Existence of solutions 12
3.2. Uniqueness 14
3.3. Criteria for global and local solutions 18
4. Annex: Linear transport equations with degenerate transport fields 19
4.1. Characteristic curves and the reparametrization strategy 21
4.2. Diffeomorphism through the characteristic curves 24
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1. Introduction

1.1. The Lifshitz–Slyozov equation. The purpose of this work is to provide a
well-posedness theory for the Lifshitz–Slyozov model with inflow boundary condi-
tions under widely general assumptions on the initial data and the kinetic rates.
The Lifshitz–Slyozov system [31] describes the temporal evolution of a mixture
of monomers and aggregates, where individual monomers can attach to or detach
from already existing aggregates. The aggregate distribution follows a transport
equation with respect to a size variable, whose transport rates are coupled to the
dynamics of monomers through a mass conservation relation. The initial-boundary
value problem for the Lifshitz–Slyozov model thus reads

∂f(t, x)

∂t
+
∂[(a(x)u(t)− b(x))f(t, x)]

∂x
= 0 , t > 0 , x ∈ (0,∞) ,

u(t) +

∫ ∞
0

xf(t, x) dx = ρ , t > 0
(1.1)

for some given ρ > 0, subject to the initial condition

f(0, x) = f in(x) , x ∈ (0,∞) (1.2)

and the boundary condition

lim
x→0+

(a(x)u(t)− b(x))f(t, x) = n(u(t)) , t > 0 (1.3)

whenever u(t) > limx→0+
b(x)
a(x) . Here f(t, x) is a nonnegative distribution of aggre-

gates according to their size x and time t, u(t) is the monomer concentration and
ρ is interpreted as the total mass of the system. The kinetic rates a(x) and b(x)
determine how fast do attachment (a given monomer attaches to a given aggregate)
and detachment (a monomer detaches from a given aggregate) reactions take place.
Aggregates change their size over time according to the quantity of monomers that
they gain or lose through the previous reactions. Note that the attachment process
is a second order kinetics, responsible of the nonlinearity, whereas detachment is a
first order kinetics, as reflected in the transport term in (1.1). The function n in
(1.3) can be interpreted as a nucleation rate (i.e. the rate of formation of zero-size
aggregates from monomers). At least formally, this rate governs the total number

of aggregates as d
dt

∫∞
0
f(t, x)dx = n(u(t)) whenever u(t) > limx→0+

b(x)
a(x) . This last

condition means that the characteristic curves point towards the domain x > 0 at
time t, in which case a boundary condition must be specified, and is given by (1.3).
Similar boundary conditions have been considered in [5, 8, 14].

Writing the transport flow as a(x)u(t)−b(x) = a(x)(u(t)−Φ(x)), with Φ := b/a,
allows to appreciate the crucial role of the function Φ. The latter measures the rel-
ative strength of detachment with respect to attachment, for a given aggregate
size. Therefore, this single function includes most of the relevant information of
the model. When Φ is monotonously decreasing, with limx→0+ Φ(x) > ρ ≥ u(t),
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large aggregates (x > Φ−1(u(t))) grow larger at the expense of smaller ones (x <
Φ−1(u(t))), a phenomena called Ostwald ripening, and in such a case a boundary
condition like (1.3) is not needed. The Lifshitz–Slyozov model has been tradition-
ally used to describe late stages of phase transitions, where the above mentioned
Ostwald ripening phenomena take place: recall indeed that the classical Lifshitz–
Slyozov rates are given by a(x) = x1/3 and b(x) = 1, see e.g. [34]. In standard
nucleation theory, a discrete size model analog, named the Becker-Döring model
[24], is rather used to describe the initial stage of phase transition, where the nu-
cleation process is the dominant one. Recently, the intermediate stage has been
considered in the physical literature [1, 2, 32, 38, 39], where the growth of large
aggregates and the ongoing nucleation rate are of equal importance, leading to equa-
tions like (1.1)–(1.3) or variants of it, with limx→0+ Φ(x) < uin = ρ−

∫∞
0
xf in(x),

in which case a boundary condition must be specified. Indeed, some sets of kinetic
rates for Eq. (1.1) may lead to Ostwald ripening phenomena only after a certain
transient period, where the dynamics of the Lifshitz–Slyozov model are driven by
boundary effects at very small sizes, and for which the boundary term (1.3) becomes
important.

Moreover, recent applications of this framework in biologically-oriented contexts
utilize a different set of kinetic rates and then a boundary condition becomes manda-
tory in order to make sense of the model. A growing literature can be found
on applications to protein polymerization phenomena and neurodegenerative dis-
eases, starting from the so-called prion model and some of its variants (see e.g.
[5, 17, 21, 29, 30, 36, 40] and references therein), whose different versions come as
modifications of the standard Lifshitz–Slyozov equations. Inflow boundary condi-
tions are used to describe nucleation processes; the discrete models considered in
[8, 14] are also related to this scenario by means of suitable scaling limits as we
mention below. We also have in mind applications to modeling in Oceanography.
For instance, the sea-surface microlayer (see e.g. [43]) is rich in conglomerates that
grow in size by an aggregation process whereby particulate organic carbon attaches
to transparent exopolymeric particles; detachment effects can also take place and
eventually additional terms may be included in (1.1)–(1.3), e.g. coagulation inte-
grals. Tentative applications of variants of (1.1)–(1.3) can be also envisioned where
x is a depth variable and the gradual sinking of aggregates (“marine snow” [3, 25])
proceeds by a ballasting process. We conjecture that more applications of this
framework will gradually arise. The common feature is that the boundary condi-
tion (1.3) can be interpreted as the synthesis of new aggregates from monomers and
not necessarily by means of a mass action kinetics. The value Φ0 := limx→0+ Φ(x)
describes how strong are detachment effects compared to attachment effects for
zero-size aggregates, which are precisely the ones formed by nucleation. Although
the model does not account for the nucleation step in detail, nuclei are formed from
monomers (by the function n). Unless the newborn aggregate is able to surmount
a certain energetic barrier, it is unstable and dissolves immediately. Only stable
aggregates persist long enough to grow larger by the addition of extra monomers.
This stability issue is represented here by the value Φ0: the lower this value is, the
more stable are these zero-sized seeds. With the boundary condition (1.3), we are
representing an average behavior, whereby nucleation is successful only when we
have enough monomer availability, that is the condition u(t) > Φ0. See [14] for
more details on those lines, where the model (1.1)–(1.3) is deduced as a scaling
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limit of the Becker–Döring model and the inflow boundary condition is interpreted
in terms of the scaling and the mesoscopic reaction rates; note that some partial
analysis in this direction were already given in [8].

As far as we know, works covering mathematical aspects of the initial-boundary
value problem for the Lifshitz–Slyozov model are presently scarce. We mention [5],
where it is shown that in some particular cases the model leads to dust formation
(concentration at zero size), a behavior that can be somewhat prevented if fragmen-
tation terms are incorporated into the model. Incidentally, the model with kinetic
rates such that the boundary becomes characteristic is considered in [7]. Quite the
contrary, the mathematical literature for the classical Lifshitz–Slyozov model is well
established. Concerning density solutions, existence and uniqueness of mild solu-
tions for Lipschitz rate functions is given in [7], whereas existence and uniqueness of
weak solutions for rates that need not be regular at the origin are provided in [26].
Measure solutions were considered in [7, 34, 35]. Mathematical justifications of the
connection between the Becker–Döring model and the Lifshitz–Slyozov model can
be found in [8, 28, 33, 37]; the results therein can be also understood as existence
proofs. The long time behavior is analyzed in [7, 9], however our understanding
of the dynamical behavior is not complete yet. Therefore, numerical simulations
are a useful way to get further insights on the asymptotic behavior; some contri-
butions along these lines are [6, 19]. A number of variants of the Lifshitz–Slyozov
model have been considered in the literature as well; we refer to [10, 20, 22, 41, 42]
for diffusive versions (also advocate to represent intermediate stages of aggregates
growth) and to [27, 34, 35] for the Lifshitz–Slyozov–Wagner model.

In this contribution we study existence and uniqueness of local-in-time solutions
for (1.1)–(1.3), together with continuation criteria and results on long-time behav-
ior. To the best of our knowledge, this is the first contribution that tackles the
well-posedness issue for the inflow boundary condition (1.3); therefore, our results
cannot be directly compared with those given in classical works like [7, 26]. How-
ever, our methods of proof owe much to theirs, as we shall explain in the sequel. In
order to tackle the well-posedness of (1.1)–(1.3) we have chosen to use aa approach
based on characteristics. This has the advantage of providing a semi-explicit rep-
resentation formula (which may prove useful for e.g. designing particle methods)
and is reminiscent of the works [7, 9]. Due to the wide spectrum of applications
mentioned above, it is crucial to be able to cope with rates that are not regular at
the origin. This generates a number of technical difficulties in order to make sense
of characteristic curves, difficulties that are not present when the rates are globally
Lipschitz; one of the main contributions of this paper is to provide a reformulation
that allows to give a suitable meaning to phase space trajectories/characteristic
curves even when there is no forward-in-time uniqueness for those. We take defi-
nite advantage of working in dimension one and represent solutions as a mixture of
trajectories reaching the initial configuration or the boundary datum respectively,
for every time instant. In such a way we are able to construct solutions unam-
biguously. Similar ideas belong to the folklore on boundary problems for transport
equations, although we have not been able to find a suitable reference covering
our non-Lipschitz regularity setting. Note in particular that we do not assume
to have transport fields with bounded divergence (see [12, 13] for contributions
in that direction); recall that the assumptions in [16] can be lifted in some cases,
see e.g. [11, 15]. Thus, for the reader’s convenience we work out the full theory
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from scratch, which we believe to be of independent interest for the sake of other
applications. Our construction guarantees that no singularities (shock formation,
concentration phenomena) are created during the temporal evolution despite of the
incoming boundary flow. We also extend the uniqueness proof in [26] to be able to
cope with inflow solutions in this low-regularity context. As regards the scope of the
theory we develop here, we provide examples of local solutions that can be extended
to global ones and at the same time we clearly show why local-in-time existence of
inflow solution is the best we can hope for generically. The breakdown of global
existence is proved by giving examples of solutions that do not exist globally in
time because the boundary condition loses its meaning, which raises the problem of
giving a wider meaning to the solution concept in order to be able to extend every
local solution to a global one. This is an important issue that is deeply connected
with a full understanding of the long time behavior and will be tackled elsewhere
by the authors and collaborators.

We now state our main definitions and results in subsection 1.2, and give the
general strategy of their proofs with the outline of the manuscript in subsection
1.3.

1.2. Definitions and main results. Let us recall a few classical notations. Given
a subset Ω of Rd equipped with the subspace topology, we denote by Ck(Ω) the
space of continuous real-valued function defined on Ω with at least k continuous
derivatives and Ckc (Ω) is its subspace consisting of compactly supported functions.
When Ω is open, we also use D(Ω), the space of infinitely differentiable real-valued
functions defined on Ω with compact support, and D′(Ω), its topological dual, the
space of distributions on Ω. For a measure µ defined on the borelian sets of Ω we
understand by L1(Ω, µ), resp. L∞(Ω, µ), the classical Lebesgue space consisting
of the equivalence class of µ-integrable, resp. µ-essentially bounded, real-valued
functions defined on Ω agreeing µ-almost everywhere (a.e.). Recall that the weak
topology on L1(Ω, µ), denoted by the prefix w, is the topology induced by the dual
space L∞(Ω, µ). The reference to the measure µ might be omitted if we clearly
refer to the Lebesgue measure. The subscript loc for locally might be added to the
Lebesgue space with the usual sense. We will make use of two more spaces, for
X a Banach space and I an interval: C(I, w −X) denotes the space of continuous
X-valued functions defined on I, where X is endowed with its weak topology and
L∞(I,X) is the Bochner space of essentially bounded X-valued functions defined
on I agreeing a.e. with respect to the Lebesgue measure on I. Also, during the
document we will use a notation like C(A,B, . . .) to denote a positive constant
depending on the quantities between brackets, whose actual value is not relevant.
Its value may change from line to line without explicit mention. Finally, for any
T ∈ (0,∞] we set

ΩT = [0, T )× (0,∞) and Ω∗T = (0, T )× (0,∞).

Note that when we refer to T > 0 in what follows we shall always assume it is finite
unless it is explicitly stated otherwise.

In order to introduce our solution concept, let us give first the minimal regularity
needed to define a solution to the problem (1.1)–(1.3).

Definition 1.1 (Kinetic rates). A triplet {a, b, n} defines kinetic rates provided
that:
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(1) a and b are locally bounded and nonnegative functions on [0,∞),

(2) The function Φ(x) := b(x)/a(x) is defined for a.e. x > 0 in [0,∞] and has a
limit Φ0 ∈ [0,∞] at 0+.

(3) n is a locally bounded and nonnegative function on [Φ0,∞).

As detailed in introduction, the relative value of the monomer concentration u
with respect to the value Φ0 governs whether or not nucleation occurs. For any
size x ≥ 0 such that Φ(x) = u(t), the transport field vanishes and may change
sign. We are interested in situations where the transport field points inwards in a
neighborhood of zero; therefore, Φ0 plays a crucial role in our concept of solution.

Definition 1.2 (Solution to the initial-boundary value problem). Let T ∈ (0,∞].
Assume to be given the kinetic rates {a, b, n}, a constant ρ > 0 and a nonnegative
function f in belonging to L1(0,∞). We say that a function f is a solution to the
Lifshitz–Slyozov equation on [0, T ) with mass ρ, kinetic rates {a, b, n} and initial
value f in if the following statements are satisfied:

(1) The function f belongs to C([0, T ), w−L1((0,∞), x dx)), is nonnegative and for
each T ∗ < T , it also belongs to L∞((0, T ∗), L1((0,∞), dx));

(2) For all t ∈ [0, T ),

u(t) := ρ−
∫ ∞

0

xf(t, x) dx > Φ0 ; (1.4)

(3) For all ϕ ∈ C1
c ([0, T )× [0,∞)), there holds that∫ T

0

∫ ∞
0

(∂tϕ(t, x) + (a(x)u(t)− b(x))∂xϕ(t, x)) f(t, x) dx dt

+

∫ T

0

ϕ(t, 0)n(u(t)) dt+

∫ ∞
0

ϕ(0, x)f in(x) dx = 0 . (1.5)

To construct a solution to the Lifshitz–Slyozov equation we will assume that the
kinetic rates {a, b, n} satisfy the following working hypotheses:

a, b ∈ C0([0,∞)) ∩ C1(0,∞) , (H1)

a′ and b′ are bounded on (1,∞) , (H2)

a(x) > 0 for all x > 0 and 1
a ∈ L

1(0, 1) , (H3)

Φ′ ∈ L1(0, 1) , (H4)

n is continuous on [Φ0,∞) . (H5)

Moreover, we restrict the choice of initial data to

f in ∈ L1((0,∞), (1 + x) dx) , (H6)

uin := ρ−
∫ ∞

0

xf in dx > Φ0 , (H7)

so that the balance of mass (1.4) makes sense at time t = 0 together with the
regularity required on f in in Definition 1.2. Note that assumptions (H1) and (H2)
are very similar to those considered in [26] and allow us to consider a larger set of
kinetic rates than that of [7] as far as regularity is concerned. In particular, these
ensure the existence of a positive constant Kr such that

a(x) + b(x) ≤ Kr(1 + x) (1.6)
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for all x ≥ 0. Recall that existence is not guaranteed for rates exhibiting strictly
superlinear growth [7].

Before we discuss further these assumptions and state our existence result, let
us introduced a lemma that might help to interpret Definition 1.2 through the
standard moment equations, which in turn will be useful for several estimates in
the sequel.

Lemma 1.3 (Moment equations). Assume to be given the kinetic rates {a, b, n}
satisfying hypotheses (H1)-(H2) and (H5), a constant ρ > Φ0 and a nonnegative
function f in satisfying (H6) and (H7). Let T > 0 and f be a solution to the Lifshitz-
Slyozov equation on [0, T ) with mass ρ, kinetic rates {a, b, n} and initial value f in.
For all t ∈ [0, T ) and for every h ∈ C0([0,∞)) such that h′ ∈ L∞(0,∞), we have∫ ∞

0

h(x)f(t, x) dx =

∫ ∞
0

h(x)f in(x) dx

+

∫ t

0

∫ ∞
0

(a(x)u(s)− b(x))h′(x)f(s, x) dx ds+

∫ t

0

h(0)n(u(s)) dt . (1.7)

Moreover, f belongs to L∞((0, T );L1((0,∞), (1 + x)dx)), and the derivative of u
on (0, T ) belongs to L∞(0, T ) and is given by

du(t)

dt
= −u(t)

∫ ∞
0

a(x)f(t, x) dx+

∫ ∞
0

b(x)f(t, x) dx , (1.8)

for a.e. t ∈ (0, T ).

Proof. First, plug ϕ(t, x) = g(t)h(x) with g ∈ C1
c ((0, T )) and h ∈ C1

c ([0,∞)) into
Eq. (1.5) and observe that the distributional derivative of

∫∞
0
h(x)f(t, x) dx be-

longs to L∞(0, T ) by Eq. (1.4), (1.6) and the regularity (point 1) in Definition
1.2. Then, the time continuity of f yields f(0, x) = f in(x) a.e. x > 0, so that
(1.7) holds for h ∈ C1

c ([0,∞)). Then a standard regularization procedure allows
to consider h continuous on [0,∞) with h′ ∈ L∞(0,∞) in (1.7), again, thanks to
(1.4), (1.6) and the regularity (point 1) in Definition 1.2. The fact that f belongs
to L∞((0, T );L1((0,∞), dx)) follows by taking h = 1 in (1.7) and the fact that n is
bounded on [0, ρ] and u(t) ∈ [Φ0, ρ] for all t ∈ [0, T ). Using h(x) = x and Gronwall’s
lemma yields that f also belongs to L∞((0, T );L1((0,∞), xdx)). Finally, by the
definition of u, we identify its derivatives. �

Theorem 1.4 (Existence of solution). Assume to be given the kinetic rates {a, b, n}
satisfying hypotheses (H1) to (H5), a constant ρ > Φ0 and a nonnegative function
f in satisfying (H6) and (H7). There exists T ∈ (0,+∞] and a function f belonging
to C([0, T );w − L1((0,∞), (1 + x) dx)) satisfying:

(1) f is a solution to the Lifshitz–Slyozov equation on [0, T ) with mass ρ, kinetic
rates {a, b, n} and initial value f in;

(2) f(0, x) = f in(x) for a.e. x > 0 and

lim
x→0+

(a(x)u(t)− b(x))f(t, x) = n(u(t)) ,

for all t ∈ (0, T );

(3) Either T =∞ or T <∞ and limt→T u(t) = Φ0.
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Remark 1.5. In the above theorem, besides proving the existence of a solution
(point 1), we also prove in point 2 that the solution can be chosen with a trace at
the origin and in point 3 we address its maximality.

Remark 1.6. We shall use continuation arguments for f several times in the sequel.
It is worth noticing that, for T finite, the time continuity holds on [0, T ] into
w−L1((0,∞), (1 + x)dx). The regularity of the solution f in this Theorem can be
complemented as follows: (i) the sublinearity of the rates in (1.6) entails that any
moment in xθ with θ ∈ [0, 1] is time-continuous, (ii) formula (1.8) shows that u is
continuously differentiable.

Hypotheses (H1) to (H4) fit well with power law rates: a(x) = a0x
α and b(x) =

b0x
β for x ≥ 0 in the relevant case 0 ≤ α ≤ β ≤ 1 with a0 > 0, b0 ≥ 0 and α < 1.

Note that Φ(x) = b0
a0
xβ−α is such that Φ′ is integrable at the origin and Φ0 = b0/a0

if α = β, while Φ0 = 0 if α < β. The case α > β is out of the scope of this
paper since Φ0 =∞ > ρ and then the flow is outgoing. Hypothesis (H5) is trivially
satisfied for n(z) = n0z

n for z ≥ 0 with n ≥ 1 and n0 ≥ 0, which is the typical
situation we have in mind. Condition (H6) on initial data seems to be optimal to
make sense of the mass balance for the initial datum and to be able to account for
the boundary in the formulation (1.5). Finally, hypothesis (H7) is essential so that
we may consider inflow solutions right from the initial time.

Remark 1.7. In this paper we work with rates a and b having classical regularity
on (0,∞); this can be relaxed to Lipschitz regularity. The actual difficulty in the
analysis comes rather from the lack of regularity at the origin (which includes the
case of power law rates) combined with the boundary condition. In particular a′ and
b′ need not be bounded around zero. The need for the integrability of 1/a is related
to the method of factorization of the flow we consider here and works well for power
laws too. Indeed, we rewrite the flow as a(x)u(t)− b(x) = a(x)(u(t)−Φ(x)) and we
consider (see Annex) a reparametrized flow of the form V (t, x) = u(t)−Φ◦A−1(x),
where A is the primitive of 1/a. If 1/a is not integrable around zero, the return time
of the characteristic towards the boundary is infinite, in which case no boundary
condition is needed. We also mention that the integrability of Φ′, which is equivalent
to the integrability of (Φ◦A−1)′, is a standard assumption on the flow of a transport
equation, namely V ∈ L∞((0, T ),W 1,1((0, R))∀R > 0.

The solution constructed in Theorem 1.4 can be shown to be unique under two
additional assumptions. First, we strengthen (H5) by

n is locally Lipschitz on [Φ0,+∞) , (H5’)

(which is satisfied e.g. for mass action kinetics) and we need some monotonicity of
the function Φ around zero, namely

There exists x∗ > 0 such that Φ is monotone on [0, x∗). (H8)

Theorem 1.8 (Uniqueness of solution). Under the hypotheses of Theorem 1.4,
assume moreover (H5’) and (H8) to be true. For all T > 0, there exists at most
one solution to the Lifshitz–Slyozov equation on [0, T ) with mass ρ, kinetic rates
{a, b, n} and initial value f in.

Assumption (H8) is purely technical and avoids very irregular pathological situ-
ations like unbounded oscillations near the origin for the function Φ. It is clearly
satisfied for a and b being power laws or other smooth functions and therefore not
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very restrictive in applications. Actually, we show in Section 3.2 below that Theo-
rem 1.8 can be proved under slightly more general assumptions on the kinetic rates,
see the assumptions (H8a)–(H8b) in that section.

We finish this section by a theorem giving sufficient conditions for global solution
to exist, as well as providing examples of maximal solutions defined in a finite time
interval.

Theorem 1.9 (Global and local solutions). Let f be a solution to the Lifshitz–
Slyozov equation on [0, T ) with mass ρ, kinetic rates {a, b, n}, initial value f in and
with T <∞. Under the hypotheses of Theorem 1.4, the following statements hold:

(1) Assume Φ(x) ≥ Φ0 for all x > 0. Then, for the prescribed rates and initial value
there exists a global solution f ∈ C([0,∞);w − L1((0,∞), (1 + x) dx)).

(2) Assume that f in is compactly supported, that Φ is convex and strictly decreasing
and that there exists numbers a, a such that 0 < a < a(x) < a <∞ for all x > 0.
Then, there is no global solution f ∈ C([0,∞);w − L1((0,∞), (1 + x) dx)) for the
prescribed rates and initial value.

Remark 1.10. Point 1 covers the case of power law rates b(x) = b0x
β and a(x) =

a0x
α with 0 ≤ α < β < 1. Note that when Φ0 = 0 we always have global

existence. Point 2 states that any solution (regular enough) has to be local (T <
+∞); actually, the solution provided by Theorem 1.4 in that case is in fact maximal
because limt→T u(t) = Φ0.

Remark 1.11. During the proof of point 2, we show that u reaches Φ0 with a
negative time derivative. This would allow to extend smoothly this solution past
the time at which u reaches Φ0 into an outflow solution for some time interval;
this calls for a broader concept of solution to the Lifshitz-Slyozov equation, which
would unify inflow and outflow solutions. Note that the situation is completely
symmetric, in the sense that the arguments given in Section 3.3 can be adapted
to construct an outflow solution for which u stays below Φ0 only for a finite time
interval.

1.3. Outline and methods of proofs. We prove our existence result, Theorem
1.4, by means of a Schauder fixed point on u. This method was used before in [7]
and makes use of representation formulas along characteristics in order to prove
the continuity of the operator involved in the fixed point argument. Therefore, a
detailed study of the linear problem (that is the continuity equation in (1.1) with
known transport field i.e. u given in advance) together with (1.3) is needed. This
study can be performed in greater generality for a broad class of degenerate trans-
port fields that includes the one in (1.1), an analysis that we deem of independent
interest. Since this material is quite technical, we chose to quote the main results
of this theory in Section 2, and provide the details in an Annex. Once we have
introduced the aforementioned machinery we can proceed to the analysis of the full
nonlinear set of equations in Section 3. We start with the fixed point argument;
this is done in Section 3.1. In fact, the fixed point strategy gives the existence
of local-in-time solutions together with a continuation criterion: either T = ∞
or T < ∞ with u(t) → Φ0 as t → T . Uniqueness of solutions, Theorem 1.8, is
proved in Section 3.2; for that aim, we adapt the technique in [26], which consists
on proving Gronwall-type estimates for the tails densities. Finally, some examples
of kinetic rates are discussed in Section 3.3 for which either global solutions can be
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constructed or local solutions cannot be extended further in time, which is Theo-
rem 1.9. We complement the document with two annexes. In Section 4, we include
a general framework to tackle a class of linear transport equations on a half-line
with inflow boundary conditions and degenerate transport fields. We prove rep-
resentation formulas along characteristic curves and integrability properties of the
solutions thus given. Note that this annex is written is such way that it can be read
independently. We also include in a second annex, Section 5, some auxiliary results
(somehow already contained in [26] without proofs) that are used in the uniqueness
proof; their proofs are technically involved and placing them here allows for an
easier navigation of the main text.

2. Overview of the linear problem

All along this section we assume to be given T > 0, ρ > 0, {a, b, n} kinetic rates,
and u a function belonging to

BC+
ρ ([0, T )) = {u | u : [0, T )→ [0, ρ] continuous} .

We denote

uT = sup {u(t) | t ∈ [0, T )} , and uT = inf {u(t) | t ∈ [0, T )} .

Remark that, by definition, 0 ≤ uT ≤ uT ≤ ρ. Moreover, we assume that uT > Φ0

and also that assumptions (H1) to (H5) hold. We define, for all (t, x) ∈ ΩT ,

v(t, x) := a(x)u(t)− b(x) .

During the rest of this Section we present several statements and properties that
will be crucial for the existence proof in Section 3. All of them will be proved, in
greater generality, in the annex in Section 4.

Lemma 2.1. For any (t, x) ∈ ΩT , there exists a unique maximal solution to

∂

∂s
X(s; t, x) = v(s,X(s; t, x)) ,

X(t; t, x) = x

(2.1)

whose maximal interval is denoted by Σt,x. For every s ∈ Σt,x we have

∂

∂x
X(s; t, x) := J(s; t, x) = exp

(
−
∫ t

s

(
∂v

∂x

)
(τ,X(τ ; t, x)) dτ

)
. (2.2)

Moreover, as a consequence of (1.6), there exists a positive constant C(T ), inde-
pendent of u ∈ BC+

ρ ([0, T )), such that, for all (t, x) in ΩT and s in Σt,x, we have

X(s; t, x) +

∣∣∣∣ ∂∂sX(s; t, x)

∣∣∣∣ ≤ C(T )(1 + x) . (2.3)

In order to construct a solution to the Lifshitz–Slyozov equation (1.1) through
the so-called characteristics formulation, we need to know the lifetime of these
characteristics, given by the lower and upper ends of Σt,x. Particularly, we need to
identify which characteristics go back to some positive x at time s = 0 and which
ones go back to the boundary x = 0 in positive time s > 0. We can translate this
problem into the study of the time

σt(x) := inf{s > 0 , s ∈ Σt,x}
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for each (t, x) ∈ ΩT , which represents the time the curve s 7→ (s,X(s; t, x)) reaches
one of the two boundary axes x = 0 or s = 0 in ΩT . Note that for t = 0, we readily
have σ0(x) = 0 for every x > 0.

Next we provide a rigorous sense for the concept of characteristic curves starting
from x = 0 at a positive time; this cannot be achieved directly from (2.1) due to the
lack of derivative at the origin. Nevertheless, the analysis of the map x 7→ σt(x) at
each time t allows us to single out a unique characteristic curve starting from x = 0
at a time s ∈ (0, t). This provides an interpretation of X(t; s, 0) as the inverse of
σt(x), that is X(t; s, 0) = σ−1

t (s). These considerations are intimately related with
the fact that a(x) is the driving term at x = 0 in the differential equation (4.5)
whenever uT > Φ0. Namely,

v(t, x) = a(x)(u(t)− Φ(x)) = a(x)[u(t)− Φ0 + (Φ0 − Φ(x))]

but Φ0−Φ(x) has little influence when x is close to the origin. Then an integrability
condition for 1/a at the origin, by assumption (H3), arises naturally, see e.g. [11].

We shall show in the Annex (c.f. Lemma 4.4) that when σt(x) > 0, the char-
acteristic curve reaches the axis x = 0 at time σt(x). Moreover, uniqueness of
solutions to (2.1) yields that the family of characteristic curves is a totally ordered
family; therefore, we may tell whether characteristic curves came back from zero or
not in terms of the separating point

xc(t) := inf {x > 0 | σt(x) = 0}
defined for each t in [0, T ). It can be proved that this defines a positive number,
such that σt is positive and nonincreasing in (0, xc(t)). In fact t 7→ xc(t) can be
interpreted as the characteristic curve starting from x = 0 at time zero, as we state
below. Also, note that the characteristic curves s 7→ X(s; t, x) do not leave ΩT for
s ∈ (t, T ), justifying the terminology of “inflow”. Now we state a result that paves
the way for the use of characteristics.

Proposition 2.2. For each t ∈ (0, T ), the map x 7→ X(t; 0, x) is an increasing
C1-diffeomorphism from (0,∞) to (xc(t),∞) with derivative given by J(t; 0, x) in
Eq. (2.2) and the map s 7→ σ−1

t (s) is a decreasing C1-diffeomorphism from (0, t)
to (0, xc(t)) satisfying, for some constant C(T ) independent of the given u ∈ BC+

ρ

and t ∈ (0, T ), that σ−1
t (s) ≤ C(T ) for all s ∈ (0, t). Moreover, we have that

limx→0+ X(t; 0, x) = xc(t) and σ−1
t (s) = limx→0+ X(t; s, x) for all (t, x) ∈ Ω∗T .

Once we have these statements we can provide a representation formula for the
solutions of the linear problem. Let f in be a nonnegative measurable function on
(0,∞). Thanks to Proposition 2.2, we define for a.e. (t, x) ∈ Ω∗T

f(t, x)=f in(X(0; t, x))J(0; t, x)1(xc(t),∞)(x)+n(u(σt(x)))|σ′t(x)|1(0,xc(t))(x) , (2.4)

where 1I stands for the indicator function of an interval I. Indeed, σ′t(x) =
1/(σ−1

t
′(σt(x)) is defined for all t ∈ (0, T ) and x ∈ (0, xc(t)). Note that (2.4) makes

sense as null sets are mapped to null sets under the diffeomorphism in Proposition
2.2. In view of the results obtained in the annex in Section 4, this construction
satisfies the next proposition.

Proposition 2.3. Assume f in satisfies (H6) and u(t) is given in advance. Then
f given by (2.4) belongs to the space C

(
[0, T );w − L1((0,∞), (1 + x)dx)

)
, satisfies

the weak formulation (1.5) and it also satisfies point 2 of Theorem 1.4. Similarly,
f satisfies the moment equation (1.7) too.
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In the light of this result, to prove Theorem 1.4 we are to couple (2.4) with (1.4).
This is what we do in the next section.

3. The nonlinear problem

3.1. Existence of solutions. We follow the lines of [7] to show existence of local-
in-time inflow solutions via the Schauder fixed point theorem. All along this section
we assume to be given T > 0, ρ > 0 and {a, b, n} kinetic rates. Moreover, we assume
that Φ0 < ρ and we let f in ∈ L1((0,∞), (1 + x) dx) be nonnegative and such that

uin := ρ−
∫ ∞

0

xf in(x) dx > Φ0 .

Let δ > 0 such that 2δ < uin − Φ0, and define

Bδ([0, T )) =
{
u ∈ BC+

ρ ([0, T ))
∣∣ u(0) = uin and Φ0 + δ ≤ u(t) ≤ ρ, ∀t ∈ [0, T )

}
.

For each u ∈ Bδ([0, T )), we can define the density f given by Eq. (2.4) and then
the function

v(t) = G(u)(t) =

(
ρ−

∫ ∞
0

xf(t, x) dx

)
∨ (Φ0 + δ)

for all t ∈ [0, T ) where x∨ y denotes the maximum between x and y in R. Our aim
in this section is to prove the existence of a fixed point for the operator u 7→ G(u).
We observe by construction that Φ0 + δ ≤ v(t) ≤ ρ; moreover, a straightforward
consequence of Theorem 4.2 in the Annex is that the first moment of f has a
derivative belonging to L∞(0, T ) thanks to (1.6). So has v, and we identify it, for
a.e. t ∈ (0, T ), as

v′(t) =

−
d

dt

∫ ∞
0

xf(t, x) dx, if ρ−
∫∞

0
xf(t, x) dx ≥ Φ0 + δ

0, otherwise,

where
d

dt

∫ ∞
0

xf(t, x)dx =

∫ ∞
0

(a(x)u(t)− b(x))f(t, x)dx.

Hence v is continuous, and thus G is a map from Bδ([0, T )) into itself. Moreover,
it follows from Lemma 4.17 in the Annex that the derivative v′ above is uniformly
bounded on (0, T ), independently on u. Thus, the image of Bδ([0, T )) is compact
for the uniform topology. The remainder of this section is devoted to prove the
continuity of the operator G and then Theorem 1.4.

In the sequel, for a given sequence {un} in Bδ, we denote by Xn the solution

to Eq. (2.1) associated with un and we denote by σ−1,n
t the inverse function of σnt

associated with Xn.

Lemma 3.1. Let {un} be a sequence in Bδ([0, T )) converging (uniformly) to u.
For each x > 0, {Xn(·; 0, x)} converges uniformly to X(·; 0, x) on [0, T ) as n→∞.

Proof. Fix x > 0. Thanks to the bounds in Eq. (2.3) and the continuity in the
second variable of Xn,

|Xn(s; 0, x)| ≤ C(T )(1 + x)

for all s ∈ (0, T ), with some constant C(T ) > 0 independent on n. Moreover,∣∣∣∣ ∂∂sXn(s; 0, x)

∣∣∣∣ ≤ K(ρ+ 1)T
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where K can be taken as the maximum of a and b on the interval [0, C(T )(1 + x)].
Thus the sequence {Xn(·; 0, x)} is relatively compact and, up to a subsequence,
converges to a continuous function Y on [0, T ). Inspecting the equation on Xn we
realize that the limit satisfies

Y (s) = x+

∫ s

0

(a(Y (τ))u(τ)− b(Y (τ))) dτ .

Thus Y is the unique solution to Eq. (2.1) with Y (0) = x and therefore it coincides
with the characteristic curve s 7→ X(s; 0, x) associated to u. By uniqueness of the
limit the full sequence converges and the result follows. �

Lemma 3.2. Let {un} be a sequence in Bδ([0, T )) converging (uniformly) to u.

For each t ∈ (0, T ), {σ−1,n
t } converges pointwise to σ−1

t as n→∞.

Proof. Let t ∈ (0, T ) and s ∈ (0, t). Define xn = σ−1,n
t (s) for each n ≥ 1. By

Proposition 2.2 the sequence {xn} is bounded; denote this bound by x̄. Consider
a subsequence of {xn} (not relabelled) which converges to some x. Thanks to
Eq. (2.3) there is a constant C(T ) such that for all τ ∈ (s, t) and n ≥ 1,

Xn(τ ; t, xn) ≤ x∗ := C(T )(1 + x̄) .

Then, by Eq. (2.1),∣∣∣∣ ∂∂τ Xn(τ ; t, xn)

∣∣∣∣ ≤ sup
x∈(0,x∗)

(|a(x)|ρ+ |b(x)|).

Hence, up to a subsequence, the sequence of functions τ 7→ Xn(τ ; t, xn) converges
uniformly on [s, t] to a continuous function, which we denote by τ 7→ Y (τ). More-
over, for all n ≥ 1 and τ ∈ [s, t] we have

xn −Xn(τ ; t, xn) =

∫ t

τ

[a(Xn(r; t, xn))un(r)− b(Xn(r; t;xn))] dr,

and at the limit n→∞,

Y (τ) = x−
∫ t

τ

[a(Y (r))u(r)− b(Y (τ))] dr .

We observe that Y solves Eq. (2.1) with initial data Y (t) = x on [s, t], so Y (τ) =
X(τ ; t, x) by uniqueness and in particular σt(x) ≤ s. Finally, since Xn(s; t, xn) = 0
for all n ≥ 1, we have at the limit that Y (s) = X(s; t, x) = 0 and so σt(x) = s.

In conclusion, from any subsequence of {σ−1,n
t (s)} we can extract a subsequence

converging to σ−1
t (s), so the full sequence converges. �

We are now ready to prove the continuity of G.

Proposition 3.3. Let T > 0. The operator G is continuous on Bδ([0, T )).

Proof. Let {un} be a sequence in Bδ([0, T )) converging uniformly to u. Let fn be
the function associated with un that is given by Eq. (2.4). Thus∫ ∞

0

xfn(t, x) dx =

∫ ∞
0

Xn(t, 0, x)f in(x) dx+

∫ t

0

σn,−1
t (s)n(un(s)) ds ,

for all t ∈ (0, T ). Combining Lemmas 3.1 and 3.2 with the bounds in Eq. (2.3) and
Proposition 2.2, we can use the dominated convergence theorem to show that∫ ∞

0

xfn(t, x) dx→
∫ ∞

0

xf(t, x) dx
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for all t ∈ (0, T ), where f is the function associated with u that is given by Eq. (2.4).
Thus vn(t) = G(un)(t) converges to v(t) = G(u)(t) for all t ∈ (0, T ). Since the
derivatives of vn are uniformly bounded in L∞(0, T ), as mentioned above, the
convergence is uniform. �

Proof of Theorem 1.4. The previous developments in this section enable us to apply
Schauder’s fixed point theorem. Thus, there exists a fixed point to G, which means
that there is some u ∈ Bδ([0, T )) such that

u(t) =

(
ρ−

∫ ∞
0

xf(t, x) dx

)
∨ (Φ0 + δ)

for all t ∈ [0, T ), where f is given by Eq. (2.4) in terms of u. Recall that u(0) =
uin > Φ0 + 2δ; thus, there exists t∗ such that u(t) ≥ Φ0 + δ for all t ∈ [0, t∗] and
hence for all t ∈ [0, t∗],

u(t) = ρ−
∫ ∞

0

xf(t, x) dx .

This provides a solution on [0, t∗] thanks to the considerations in Prop. 2.3. Re-
peating this procedure we can construct an increasing sequence of times {tn} such
that we have a solution f to our problem up to time tn. We address now the maxi-
mality of this construction. Assume that the limit of {tn} is finite and let us denote
it by T . We show now that limt→T− u(t) = Φ0 by a contradiction argument. Let
us assume that u does not converge to Φ0 at T . We would have a solution f to the
problem on [0, T ); however, since u′ is bounded on (0, T ), u would have a limit at
T−. We would clearly have limt→T− u(t) > Φ0. This allows us to extend f by conti-
nuity in T (see Remark 1.6) and thus f(T, ·) would belong to L1((0,∞), (1+x)dx).
In that case we can apply the fixed point procedure once more to obtain a solution
on [T, T + t∗) for some t∗ > 0, which contradicts the construction of the sequence
{tn}. Therefore, either T =∞ or, T < +∞ and limt→T− u(t) = Φ0. This ends the
proof of Theorem 1.4. �

3.2. Uniqueness. The proof of Theorem 1.8 is based on a contraction strategy
thanks to a Gronwall-type argument. The main idea, already used in [26] (and in
[28] on related Becker-Döring equations), is to work on the tail density rather than
the density itself. The tail density solves a transport equation having convenient
properties, such as a maximum principle.

We consider T > 0, ρ > 0, {a, b, n} kinetic rates and two nonnegative functions
f in

1 and f in
2 in L1((0,∞), (1 + x) dx). We consider two solutions f1 and f2 to the

Lifshitz–Slyozov equation on [0, T ) with mass ρ, kinetic rates {a, b, n} and initial
values f in

1 and f in
2 respectively. Let u1 and u2 be given by the mass conservation

(1.4) respectively with the solutions f1 and f2, let also v1 = au1−b and v2 = au2−b.
We shall define the following tail density

Fi(t, x) =

∫ ∞
x

fi(t, y) dy , (3.1)

for i = 1, 2 and all (t, x) ∈ ΩT , being a continuous function, also we define

E := F1 − F2 and w = u1 − u2 .

The following lemma is directly adapted from [26, lemma 5.1].
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Lemma 3.4. Let 0 ≤ ϕ ∈ C0([0,∞)) vanishing in a neighborhood of zero and such
that ϕ′ ∈ L∞(0,∞) is compactly supported. We have, for any t ∈ [0, T ],∫ ∞

0

ϕ(x)|E(t, x)| dx ≤
∫ ∞

0

ϕ(x)|E(0, x)| dx

+

∫ t

0

∫ ∞
0

∂x[v1(s, x)ϕ(x)]|E(s, x)| dx dt

+

∫ t

0

|w(s)|
∫ ∞

0

a(x)ϕ(x)f2(s, x) dx dt . (3.2)

Moreover, for any t ∈ (0, T ),

|w(t)| ≤
∫ ∞

0

|E(t, x)| dx , (3.3)

and

|E(t, 0)| ≤ |E(0, 0)|+Kn

∫ t

0

|w(s)| ds (3.4)

where Kn is the Lipschitz constant of n on [Φ0, ρ].

Proof. The proof of Lemma 3.4 is given in the annex in Section 5 for the reader’s
convenience. �

The idea now is to choose an admissible lower-bounded function ϕ that satisfies

∂x[v1(s, x)ϕ(x)] ≤ Kϕ(x) ,

and

a(x)ϕ(x) ≤ K(1 + x) ,

for some K > 0, in order to combine Eqs. (3.2)-(3.3) with a Gronwall argument to
prove that E and w must be equal to zero whenever E(0, x) = 0. Due to hypothesis
(H2), the only real difficulty is near the origin. It turns out that we can obtain such
a test function ϕ provided that aΦ′ does not have unbounded oscillations around
zero. We thus distinguish two (non mutually exclusive) alternatives:

∃C > 0, x∗ > 0 such that ∀x ∈ (0, x∗),−Φ′(x) <
C

a(x)
, (H8a)

∃C > 0, x∗ > 0 such that ∀x ∈ (0, x∗),−Φ′(x) >
C

a(x)
, (H8b)

It is clear that assumption (H8) implies that at least one of the two cases (H8a) or
(H8b) holds true. Conversely, (H8a) and (H8b) together allow for a more general set
of kinetic rates than (H8) alone does. We are going to show in the sequel that any
of these two hypotheses guarantees uniqueness. The next lemma provides explicitly
the appropriate test function ϕ.

Lemma 3.5. Let ϕ be defined as follows:

(1) If assumption (H8a) is true, we define

ϕ(x) =

{
1

a(x) , x ≤ x̄
1

a(x̄) , x > x̄
(3.5)

for some given x̄ (to be chosen later).
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(2) If assumption (H8b) holds true, we define

ϕ(x) =

{
1

a(x) exp
(
−
∫ x̄
x
C/a(y)+Φ′(y)

δ dy
)
, x ≤ x̄

1
a(x̄) , x > x̄

(3.6)

for some given x̄, C, δ (to be chosen later).

In both cases, with ϕ defined either in (3.5) or (3.6), we may choose the constant
x̄ (and C, δ in the second case) in a way that there exists a constant K > 0 such
that, for all x > 0 and all t ∈ (0, T ),

∂x[v1(t, x)ϕ(x)] ≤ Kϕ(x). (3.7)

Moreover, ϕ is continuous on (0,∞) and continuously differentiable for all x > 0
except at x̄. It is bounded from below by

ϕ(x) ≥ 1/‖a‖L∞(0,x̄) , (3.8)

and aϕ is bounded from above on (0, x̄) by

a(x)ϕ(x) ≤ max

{
1, exp

(
−
∫ x̄

0

C/a(y) + Φ′(y)

δ
dy

)}
, x < x̄ .

Proof. Note that finding a constant K > 0 such that Eq. (3.7) holds is equivalent
to finding a constant C > 0 such that

(u1(t)− Φ(x))∂x(aϕ)(x) ≤ (C + aΦ′)ϕ(x) .

Let us check that this inequality holds true for the function ϕ defined in (3.5) or
(3.6) and well chosen constants.

We first deal with case (1). Let C and x∗ be defined from assumption (H8a).
For any 0 < x̄ ≤ x∗, and for all x ≤ x̄, the function ϕ defined in (3.5) satisfies

(u1(t)− Φ(x))∂x(aϕ)(x) = 0 ≤ (C ′ + a(x)Φ′(x))ϕ(x) ,

for any C ′ > C, due to (H8a) and the fact that ϕ is positive. For x > x̄,

∂x[v1(t, x)ϕ(x)] ≤ ϕ(x̄)
(
‖a′(x)‖L∞(x̄,∞)ρ+ ‖b′(x)‖L∞(x̄,∞)

)
≤ C ′′ϕ(x) ,

for any constant C ′′ ≥
(
‖a′(x)‖L∞(x̄,∞)ρ+ ‖b′(x)‖L∞(x̄,∞)

)
. Thus Eq. (3.7) holds

true for any x and for a sufficiently large constant K.
Now let us deal with case (2). Let C and x∗ be defined from assumption (H8b).

Thanks to the continuity of u1(t) > Φ0 and that of Φ, we can show that there exists
δ > 0 and x0 > 0 such that

inf
t∈(0,T )

u1(t) > sup
x∈(0,x0)

Φ(x) + δ .

Let then x̄ = min(x∗, x0). For x ≤ x̄, then ϕ satisfies

(u1(t)− Φ(x))∂x(aϕ)(x) = (u1(t)− Φ(x))
C/a(x) + Φ′(x)

δ
(aϕ)(x)

≤ (C + a(x)Φ′(x))ϕ(x) ≤ (C ′ + a(x)Φ′(x))ϕ(x) ,

for any C ′ ≥ C, as u1(t)−Φ(x) ≥ δ but C/a(x) + Φ′(x) < 0 and ϕ is positive. The
case x > x̄ is managed as in the case (1) above. �
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Note that as the function ϕ is bounded from below by (3.8), we have for some
constant C > 0, ∫ ∞

0

|E(t, x)| dx ≤ C
∫ ∞

0

ϕ(x)|E(t, x)| dx, (3.9)

and, by the sublinearity of a in (1.6), aϕ is linearly bounded so that the integral∫∞
0
a(x)|ϕ(x)|f2(s, x) dx can be bounded on (0, T ). Hence, using (3.9) together

with (3.2)-(3.3) and (3.7) provides a priori all the estimates needed to close the
Gronwall loop. However, the function ϕ we have constructed does not fulfill the
requirements in Lemma 3.2; thus, a regularization argument is needed, for which
some care at x close to the origin is required. The control of the nucleation rate,
together with (3.4), will provide us with a suitable bound.

Lemma 3.6. Let assumption (H8a) or (H8b) hold true, and let ϕ be defined in
Lemma 3.5 above. Then, there exists C > 0 such that∫ ∞

0

ϕ(x)|E(t, x)| dx ≤
∫ ∞

0

ϕ(x)|E(0, x)| dx+ C

∫ t

0

∫ ∞
0

ϕ(x)|E(s, x)| dx dt

+ C

∫ t

0

|w(s)| dt+ C

∫ t

0

|E(s, 0)| dt .

Proof. To substitute the function ϕ defined in Lemma 3.5 into Eq. (3.2) from
Lemma 3.4, we need to truncate its support around zero. For each R > 1, let
χR ∈ D(R) with 0 ≤ χR ≤ 1, such that χR = 1 on (1/R,∞), with support in
[1/2R,∞), |χ′R| ≤ 4R on (1/2R, 1/R). Define ϕR = ϕχR on (0,∞). Set R > x̄ >
1/R. By Lemma 3.4, using that ϕR ≤ ϕ, that f2 ∈ L∞((0, T );L1((1 + x)dx)) and
that aϕ is bounded on (0, x̄), we get,∫ ∞

0

ϕR(x)|E(t, x)| dx ≤
∫ ∞

0

ϕ(x)|E(0, x)| dx

+

∫ t

0

∫ ∞
0

∂x[v1(s, x))ϕR(x)]|E(s, x)| dx dt

+ (‖aϕ‖L∞(0,x̄) +Krϕ(x̄))‖f2‖L∞(L1((1+x)dx))

∫ t

0

|w(s)| dt. (3.10)

where Kr follows from (1.6). Using Lemma 3.5 we deduce that there exists a
constant C > 0 such that

∂x[v1(t, x))ϕR(x)] = ∂x[v1(t, x)ϕ(x)]χR(x) + v1(t, x)ϕ(x)χ′R(x)

≤ Cϕ(x)χR(x) + 4R|v1(t, x)|ϕ(x)1(0,1/R)(x). (3.11)

Thus, from (3.11),∫ ∞
0

∂x[v1(s, x))ϕR(x)]|E(s, x)| dx ≤ C
∫ ∞

0

ϕ(x)|E(s, x)| dx

+ 4‖aϕ‖L∞(0,x̄)‖u1(t)− Φ‖L∞((0,T )×(0,x̄))R

∫ 1/R

0

|E(s, x)| dx

Introducing the equation above into Eq. (3.10) and letting R → ∞ we obtain the
desired estimate. �
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Proof of Theorem 1.8. We may now finish the proof of uniqueness. By Lemma 3.6,
equations (3.3), (3.4) and (3.9) combined with Gronwall’s lemma we have

|w(t)|+ |E(t, 0)|+
∫ ∞

0

ϕ(x)|E(t, x)| dx ≤ C
(
|E(0, 0)|+

∫ ∞
0

ϕ(x)|E(0, x)| dx
)
eCT

and we conclude the proof of Theorem 1.8 by taking f in
1 = f in

2 , so that E(0, x) = 0
for all x ≥ 0 and then u1(t) = u2(t), and f1(t, ·) = f2(t, ·). �

3.3. Criteria for global and local solutions. In this section we prove Theorem
1.9, stating criteria both for existence of global solutions and for existence of local
solutions for which u reaches the value Φ0 in finite time. Recall that for a solution
on [0, T ), by Lemma 1.3 we have that

du(t)

dt
=

∫ ∞
0

a(x)(Φ(x)− u(t))f(t, x) dx (3.12)

is continuous on [0, T ). We exploit this formulation in the current section. For that
aim let us introduce

Φsup := sup
x≥0

Φ(x), Φinf := inf
x≥0

Φ(x).

Note that 0 ≤ Φinf ≤ Φ0 ≤ Φsup, where Φsup need not be finite.

Lemma 3.7. Let the rates and initial datum satisfy the assumptions of Theorem
1.4 and let f ∈ C([0, T );w − L1((0,∞), (1 + x) dx)) be a solution to the Lifshitz-
Slyozov equation on [0, T ). Then the following assertions hold true:

(1) For t ∈ [0, T ), u(t) ≥ Φsup implies that u̇(t) ≤ 0.

(2) Assume that there is some t̄ ≥ 0 such that u(t̄) ∈ [Φinf ,Φ
sup]. We have u(t) ∈

[Φinf ,Φ
sup] for every t ∈ [t̄, T ).

(3) Assume that the solution is global (i.e. T =∞). Then, provided that ρ ≥ Φinf ,
both lim inft→∞ u(t) and lim supt→∞ u(t) belong to [Φinf ,Φ

sup].

Proof. All statements follow easily from Eq. (3.12). �

Proof of Theorem 1.9. To prove the first point we argue by contradiction. Let
f ∈ C([0, T );w−L1((0,∞), (1+x) dx)) be a solution with T <∞. Since Φ(x) ≥ Φ0,

d(u(t)− Φ0)

dt
=
du(t)

dt
≥ −(u(t)− Φ0)

∫ ∞
0

a(x)f(t, x) dx.

This entails

u(t)− Φ0 ≥ (u(0)− Φ0) exp

(
−
∫ t

0

∫ ∞
0

a(x)f(t, x) dx

)
.

Note that the integral of af is bounded on bounded time intervals. This is due to
the bound (1.6): mass conservation controls the linear part, while the boundedness
of n and u controls the constant part. Thus,

u(t)− Φ0 ≥ (u(0)− Φ0) exp

(
−T sup

t∈(0,T )

∫ ∞
0

a(x)f(t, x) dx

)
> 0 .

This implies that u(t) > Φ0 for every t ∈ [0, T ). Then, if we assume that T < ∞,
we deduce that u(T−) > Φ0. This enables us to apply Theorem 1.4 and extend
this solution to a larger time interval, which contradicts our premise.
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The second point is also proved by contradiction. Assume that we have a global
solution f ∈ C([0,∞);w − L1((0,∞), (1 + x) dx)). We start by deriving an upper
bound on u(t). Thanks to the convexity of Φ we have

Φ(x) ≤ Φ0 +
Φ(z)− Φ0

z
x

for all 0 < x < z. Now say that the support of f in is contained in [0, x0]. Note that

X(t; 0, x0) ≤ x0 + aρt

and hence the support of f(t, ·) is contained in [0, z(t)] for every t ≥ 0, where we
have denoted z(t) := x0 + at. Hence we have

du(t)

dt
=

∫ z(t)

0

a(x)(Φ(x)− u(t))f(t, x) dx

≤
∫ z(t)

0

[
Φ0 − u(t) +

Φ(z(t))− Φ0

z(t)
x

]
a(x)f(t, x) dx .

We remark that Φ(z(t)) ≤ Φ(x0) < Φ0, therefore we have

du(t)

dt
≤ −Φ0 − Φ(x0)

z(t)
a

∫ z(t)

0

xf(t, x) dx .

Using mass conservation,

du(t)

dt
≤ −Φ0 − Φ(x0)

z(t)
a(ρ− u(t)) ≤ 0 .

Hence u decreases and ρ− u(t) ≥ ρ− u(0). Then we conclude that

du(t)

dt
≤ −K 1

z(t)
= − K

x0 + at

where K = a(Φ0−Φ(x0))(ρ−u(0)). Integrating the differential inequality we obtain

u(t) ≤ u(0)− K

a
ln

(
1 +

a

x0
t

)
(3.13)

for every t ≥ 0. There is a unique value T̃ < ∞ such that the right-hand side of
(3.13) equals Φ0; then our premise is not compatible with Definition 1.2. �

4. Annex: Linear transport equations with degenerate transport
fields

The purpose of this section is to study the linear continuity equation having the
following form:

∂f(t, x)

∂t
+
∂[v(t, x)f(t, x)]

∂x
= 0 , t ∈ (0, T ) , x ∈ (0,∞) ,

limx→0+ v(t, x)f(t, x) = G(t) , t ∈ (0, T ),

f(0, x) = f in(x) , x ∈ (0,∞) .

(4.1)

For this problem we are given a bounded continuous function G on [0, T ). We are
interested in a class of transport fields v(t, x) that yield inflow behavior and that
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may eventually be degenerate at the origin. More specifically, we assume that v
can be factorized in the following way

v(t, x) = a(x)w(t, x) (4.2)

for all (t, x) ∈ ΩT , with the following assumptions:

There exists K > 0 such that |v(t, x)| ≤ K(1 + x) for all (t, x) ∈ ΩT . (A1)

∂xv ∈ L∞((0, T )× (1/R,∞)), ∀R > 0. (A2)

a ∈ C0([0,∞)) ∩ C1(0,∞) verifies that a(x) > 0 ∀x > 0. (A3)

w∈C0([0, T )×[0,∞)), ∂xw∈C0((0, T )×(0,∞))∩L∞((0, T )×(
1

R
,R))∀R > 0 (A4)

1
a ∈ L

1(0, 1) and lim
x→+∞

∫ x

0

1
a(y)dy = +∞ . (A5)

∂xw ∈ L1((0, T )× (0, 1)) . (A6)

We do not strive for optimality in our assumptions; rather, we present an assump-
tion set that is compatible with that of the main text. In that regard, here we
assume inward flow by the condition: There exists δ > 0 and x0 > 0 such that

∀(t, x) ∈ [0, T )× (0, x0), w(t, x) ≥ δ . (A7)

This condition is readily entailed by a property like w(t, 0) > 0 for all t ∈ [0, T )
thanks to the continuity; thus, it is not restrictive at all.

Remark 4.1 (Notations for partial derivatives). For functions of two variables like
v(t, x), during this section we always refers to the function ∂xv, as the partial deriv-
ative in the second variable. We shall use unambiguous expression like ∂yv(t, y) =
(∂xv)(t, y) at some places. When dealing with characteristics, we take the usual
convention that the variable that appears in the denominator of the partial deriva-
tive operator indicates in which variable the derivative is to be taken, consistently
with the independent variable being used.

The idea is that we expect to have a(0) = 0 and thus we factor out the degeneracy
of the transport field at the origin. It is easy to see that under our running assump-
tions (H1)–(H4) in the main text, the transport field v with w(t, x) := u(t)−Φ(x)
fulfills the former set of conditions and therefore the theory applies to the linear
problem that is considered in Sections 2 and 3, with G(t) := n(u(t)) and u(t) > Φ0.

Theorem 4.2. Let f in ≥ 0 satisfies (H6) and let all the assumptions (A1)-(A7)
of this section be satisfied. Then, there exists a unique solution f to (4.1), that is:

(1) f ∈ L∞
(
(0, T );L1((0,∞), (1 + x)dx)

)
∩C
(
[0, T );w−L1((0,∞), (1 + x)dx)

)
.

(2) For all ϕ ∈ C1
c ([0, T )× [0,∞)), there holds that∫ T

0

∫ ∞
0

(∂tϕ(t, x) + v(t, x)∂xϕ(t, x)) f(t, x) dx dt

+

∫ T

0

ϕ(t, 0)G(t) dt+

∫ ∞
0

ϕ(0, x)f in(x) dx = 0 . (4.3)

(3) There holds that limx→0 v(t, x)f(t, x) = G(t).
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Moreover, for any real function h locally bounded on (0,∞) such that h′ ∈ L∞(0,∞),
the solution f satisfies∫ ∞

0

h(x)f(t, x) dx =

∫ ∞
0

h(x)f in(x) dx+

∫ t

0

∫ ∞
0

v(s, x)h′(x)f(s, x) dx ds

+ h(0)

∫ t

0

G(s) ds . (4.4)

4.1. Characteristic curves and the reparametrization strategy. Due to the
lack of Lipschitz regularity, the analysis of the characteristic curves will be tackled
thanks to a reparametrization of the flow through a diffeomorphism, leading to
a positive lower bound of the time derivative of the reparametrized characteristic
curves at the boundary x = 0. Let us start by introducing the characteristic curves
s 7→ X(s) associated with the generic field v.

Lemma 4.3. For any (t, x) ∈ ΩT , there exists a unique maximal solution to
∂X(s; t, x)

∂s
= v(s,X(s; t, x)) ,

X(t; t, x) = x

(4.5)

with maximal interval Σt,x. Moreover, the following properties hold true:

(1) For any (t0, x0) ∈ ΩT and s0 ∈ Σt0,x0
, there exists a neighborhood of (s0, t0, x0)

in Σt0,x0 × ΩT such that (s, t, x) 7→ X(s; t, x) is well defined and continuously
differentiable;

(2) The semigroup property X(t; s,X(s; t, x)) = x is satisfied for every s ∈ Σt,x;

(3) For every s ∈ Σt,x we have

∂X(s; t, x)

∂x
:= J(s; t, x) = exp

(
−
∫ t

s

(∂xv)(τ,X(τ ; t, x)) dτ

)
,

∂X(s; t, x)

∂t
= −v(t, x)J(s; t, x) ;

(4.6)

(4) There exists a positive constant C(K,T ), which only depends on T and K from
(A1), such that

X(s; t, x) +

∣∣∣∣∂X(s; t, x)

∂s

∣∣∣∣ ≤ C(K,T )(1 + x) (4.7)

for all (t, x) in ΩT and s in Σt,x. As a consequence, each characteristic curve has
a finite limit in [0,∞) at the end points of Σt,x.

Proof. Existence, uniqueness and maximality readily follow from the Cauchy–Lips-
chitz theory for ordinary differential equations, since both v and ∂xv are continuous.
Point 1 is a classical regularity result, see [23, Chap. V Cor. 3.3]. Point 2 follows
from uniqueness. The derivatives in Point 3 are computed in a standard fashion
(see the textbook above). Finally, point 4 is a consequence of (A1) and Gronwall’s
lemma; this prevents the blow-up of the characteristics at the end points of Σt,x. �

Similarly to the main text, we define for all (t, x) ∈ ΩT the time

σt(x) := inf Σt,x .

This represents the backward lifetime of the characteristic, also introduced in [4].
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Lemma 4.4. Let (t, x) ∈ Ω∗T . If σt(x) = 0 then X(s; t, x) > 0 for all s in (0, t).
Otherwise, if σt(x) > 0 then lims→σt(x)+ X(s; t, x) = 0.

Proof. Since the characteristics take values in (0,∞), the first statement follows
from the definitions of Σt,x and σt(x). In the case σt(x) > 0, since a characteristic
curve has a finite limit at the lower end of Σt,x, this limit is either positive or zero.
But, if the limit is positive (say x̄), thanks to the Cauchy-Lipschitz theory we can
construct a prolongation of the characteristic curve in a neighborhood of (σt(x), x̄),
which contradicts the definition of σt(x). Therefore the limit at σt(x) vanishes. �

Now we introduce the reparametrization. Thanks to (A3) and (A5) we define

A(x) :=

∫ x

0

1

a(y)
dy for allx > 0.

Clearly, A is an increasing C1-diffeomorphism from (0,∞) into itself. Note that
both A and A−1 might be extended continuously at 0 by A(0) = A−1(0) = 0 and
we have (A−1)′(x) = a(A−1(x)) for all x > 0 and we can set (A−1)′(0) = a(0).
Then, we define the reparametrized transport field by

V (t, x) = w(t, A−1(x))

for each (t, x) in ΩT . Note that this reads V (t, x) = u(t)−Φ◦A−1(x) for the linear
problem in the main text. The associated trajectories are given by the following
result:

Lemma 4.5. For any (t, y) ∈ ΩT , there exists a unique maximal solution to
∂B(s; t, y)

∂s
= V (s,B(s; t, y)) ,

B(t; t, y) = y

(4.8)

with maximal interval Σ̃t,y. Moreover, the following properties hold true:

(1) For any (t0, y0)∈ ΩT and s0∈ Σ̃t0,y0 , there exists a neighborhood of (s0, t0, y0)

in Σ̃t0,y0 × ΩT such that (s, t, y) 7→ B(s; t, y) is well defined and continuously dif-
ferentiable;

(2) The semigroup property B(t; s,B(s; t, y)) = y is satisfied for every s ∈ Σ̃t,y.

(3) For any (t, x) ∈ ΩT , we have

Σ̃t,A(x) = Σt,x and B(s; t, A(x)) = A(X(s; t, x)) , for any s ∈ Σt,x . (4.9)

(4) For every s ∈ Σ̃t,y we have

∂B(s; t, y)

∂y
:= I(s; t, y) = exp

(∫ t

s

(a ∂xw) (τ,A−1(B(τ ; t, y))) dτ

)
,

∂B(s; t, y)

∂t
= −V (t, y)I(s; t, y) ;

(4.10)

Here and in what follows we understand that (a ∂xw)(t, x) = a(x) (∂xw)(t, x) in
order to ease some formulas.

The advantage with respect to the characteristics given by the original transport
field is that we have factored out the degeneracy of the transport field at the
origin; in such a way we avoid Peano-like phenomena [11]. Take for instance (4.2),
given the rates a(x) = x1/3, b(x) = x1/2 the transport field vanishes at the origin
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like x1/3 -given that the behavior about the origin is not Lipschitz we do not
expect uniqueness for the forward characteristics; however, we find that V (t, x) =
u(t)−( 2

3x)3/4, which does not have such pathological behavior and therefore makes
the associated integral curves easier to work with.

Proof. Fix (t, y) ∈ ΩT . Since both V and ∂xV are continuous, there exists a

unique solution s 7→ B(s; t, y) to (4.8), defined on a maximal interval Σ̃t,y ⊂ [0, T )
containing t and with range in (0,∞). Taking into account that

∂V (t, y)

∂y
= (a ∂xw) (t, A−1(y)) , for all y > 0 ,

all the stated properties follow easily as in Lemma 4.3, except maybe (4.9). We
now prove (4.9). Let (t, x) ∈ ΩT . First, s 7→ A(X(s; t, x)) is a solution to (4.8)

with A(X(t; t, x)) = A(x). Thus Σt,x ⊆ Σ̃t,A(x) and B(s; t, A(x)) = A(X(s; t, x))

for all s ∈ Σt,x. Define Y (s; t, x) = A−1(B(s; t, A(x))) for all s ∈ Σ̃t,A(x). Then Y

is a solution to the original equation (4.5) with Y (t; t, x) = x, thus Σ̃t,A(x) ⊆ Σt,x.

Therefore, Σ̃t,A(x) = Σt,x and (4.9) holds. �

Remark 4.6. We will frequently use in the proofs below that the derivatives ofX and
B with respect to their third argument are positive. In other words, uniqueness en-
sures that characteristics cannot cross and hence we have the following monotonicity
property: given x < y, then for all s ∈ Σt,x ∩ Σt,y we have X(s; t, x) < X(s; t, y)
and B(s; t, A(x)) < B(s; t, A(y)).

The control of the time derivative of X at the boundary x = 0 is stated next,
thanks to the characteristics B.

Lemma 4.7. For every (t, x) ∈ ΩT and τ ∈ Σt,x such that X(τ ; t, x) < x0, with
x0 defined in (A7), the following holds:

(1) The map s 7→ X(s; t, x) is an increasing C1-diffeomorphism from (σt(x), τ) to
(0, X(τ ; t, x)),

(2) for every s ∈ (σt(x), τ) we have the lower bound

∂A(X(s; t, x))

∂s
=
∂B(s; t, A(x))

∂s
≥ δ .

Moreover, for every (t, x) ∈ ΩT , there holds that

(3) Σt,x = (σt(x), T ) if t ∈ (0, T ), while Σ0,x = [0, T ),

(4) for every s ∈ [t, T ) we have X(s, t, x) ≥ min(x, x0).

Proof. Let (t, x) ∈ ΩT , we may rewrite (4.5) as

∂X(s; t, x)

∂s
= a(X(s; t, x))w (t, (X(s; t, x))) .

Since a is positive, the flow verifies a(z)w(t, z) > a(z)δ > 0 for all (t, z) ∈ [0, T ) ×
(0, x0), which shows that the interval (0, x0) is negatively invariant. In other words,
if there exists τ ∈ Σt,x such that X(τ ; t, x) < x0 then, X(s; t, x) < x0 and

∂B(s; t, A(x))

∂s
= V (s,B(s; t, A(x))) = w(s,X(s; t, x)) ≥ δ ,

for all s ∈ (σt(x), τ), which proves the second point. Thus, the first point fol-
lows directly from this fact and using that A is increasing with B(s; t, A(x)) =
A(X(s; t, x)). We then prove the last two points. As (0, x0) is negatively invariant,
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and since the flow is positive on (0, x0), this also proves that (0, x) is negatively
invariant for each x ∈ (0, x0). We claim that (x,∞) is positively invariant for all
x ∈ (0, x0]. This can be proved arguing by contradiction: Let y ∈ (x,∞) and
t ∈ [0, T ); if there exists s > t such that X(s; t, y) ≤ x, then for all times τ ≤ s, we
have that X(τ, t, y) ≤ x because (0, X(s; t, y)) is negatively invariant. We deduce
that X(t; t, y) = y ≤ x, which contradicts the premise and yields our claim. In
fact, this argument readily entails X(s; t, x) ≥ min(x0, x) for all (t, x) ∈ ΩT and
s ∈ Σt,x ∩ (t, T ). We conclude thanks to the lower bound and remarking that
the Cauchy-Lipschitz theory allows to prolongate solutions up to time T by the
regularity of v. �

The following technical lemma turns out to be crucial to bound the derivatives
of B, see equations in (4.10). This result also shows that assumption (H4) in the
main text, Φ′ ∈ L1(0, 1), is close to be optimal to prevent concentration in finite
time. This is mirrored by Assumption (A6) in this general framework.

Lemma 4.8. Let δ > 0 and x0 be given by Assumption (A7). For all t ∈ (0, T ),
(s, τ, s0) ∈ (0, t]3, x1 ∈ (0, x0] and x > 0, if στ (x) ≤ s ≤ s0 and X(s0; τ, x) < x1,
then there holds that∫ s0

s

|(a ∂xw) (r,X(r; τ, x))| dr ≤ 1

δ

∫ t

0

∫ x1

0

|∂yw(r, y)| dydr .

Proof. We notice that thanks to Lemma 4.7 we have

X(r; τ, x) < X(s0; τ, x) < x1 < x0 for all r ∈ (στ (x), s0) .

Hence, using Eq. (4.5) and (A7),∫ s0

s

|(a ∂xw) (r,X(r; τ, x))| dr =

∫ s0

s

∣∣∣∣ (∂xw)(r,X(r; τ, x))

w(r,X(r; τ, x))

∂X(r; τ, x)

∂r

∣∣∣∣ dr
≤ 1

δ

∫ s0

s

∣∣∣∣(∂xw)(r,X(r; τ, x))
∂X(r; τ, x)

∂r

∣∣∣∣ dr
=

1

δ

∫ X(s0;τ,x)

X(s;τ,x)

|(∂xw)(θ(y), y)| dy (4.11)

where θ : (0, X(s0; τ, x))→ (στ (x), s0) is the inverse map of the C1-diffeomorphism
s 7→ X(s; τ, x) on (σt(x), s0) -here we use the first point of Lemma 4.7. Then we
notice that 0 < X(s; τ, x) < X(s0; τ, x) < x1 and s0 < t, so that we can write

1

δ

∫ X(s0;τ,x)

X(s;τ,x)

|(∂xw)(θ(y), y)| dy =
1

δ

∫ X(s0;τ,x)

X(s;τ,x)

∫ s0

s

|∂yw(r, y)|1θ(y)=r drdy

≤ 1

δ

∫ x1

0

∫ t

0

|∂yw(r, y)| drdy .

�

4.2. Diffeomorphism through the characteristic curves. Let us define, sim-
ilarly to the main text, for each t ∈ [0, T ):

xc(t) = inf{x > 0 |σt(x) = 0} .

Lemma 4.9. For each t ∈ (0, T ) we have the following properties:

(1) The value xc(t) is finite and positive,
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(2) σt is a nonincreasing map which is positive on (0, xc(t)),

(3) σt vanishes on (xc(t),∞).

Moreover, for t = 0 we have: xc(0) = 0 and σ0 is constantly equal to zero.

Proof. Step 1. Proof that σt is nonincreasing. Let t ∈ [0, T ) and 0 < x < y. If
σt(y) = 0 then σt(x) ≥ σt(y) = 0 by definition. Assume now that σt(y) > 0;
we prove the monotonicity in this case by a contradiction argument. Therefore,
let us assume that σt(y) > σt(x). By Remark 4.6, X(s; t, x) < X(s; t, y) for all
s ∈ (σt(x) ∨ σt(y), T ) and we have

0 ≤ lim
s→σt(x)∨σt(y)

X(s; t, x) ≤ lim
s→σt(x)∨σt(y)

X(s; t, y) .

Now thanks to our assumption σt(y) > σt(x) and Lemma 4.4, we obtain

0 ≤ X(σt(y); t, x) ≤ lim
s→σt(y)

X(s; t, y) = 0 ,

which entails X(σt(y); t, x) = 0. But this contradicts the definition of the maximal
interval Σt,x. Thus, σt(x) ≥ σt(y) as desired.

Step 2. Proof that xc(t) is finite, i.e. that {x > 0 | σt(x) = 0} is not empty.
Let t ∈ [0, T ), y > 0 and x = X(t; 0, y) > 0. By the semigroup property, we
have that X(s; t;x) = X(s; 0, y) for all s ∈ (σt(x), T ). Since Σ0,y = [0, T ), the
trajectory s 7→ X(s; t, x) is defined on [0, T ) and hence σt(x) = 0. This proves that
{x > 0 | σt(x) = 0} is not empty, thus xc(t) is finite and nonnegative.

Step 3. Separation by xc(t). Let {xn} ⊂ {x > 0 | σt(x) = 0} be a nonincreasing
sequence converging to xc(t). Since σt is nonincreasing then 0 ≤ σt(x) ≤ σt(xn) = 0
for any x > xn. Thus (xc(t),∞) = ∪n≥1(xn,∞) ⊂ {x > 0 | σt(x) = 0}. However,
if x is such that σt(x) = 0 then x ≥ xc(t) by definition, which proves that the
former inclusion is an equality. Moreover, if xc(t) > 0, for any x ∈ (0, xc(t)) we
have σt(x) > 0 by the construction of xc(t).

Step 4. xc(t) is positive. Let t ∈ (0, T ). It is sufficient to construct some x > 0
satisfying σt(x) > 0, as then xc(t) ≥ x > 0. Let δ > 0 and x0 > 0 given by (A7).
Thus, for all x ∈ (0, x0) and s ∈ (σt(x), t), since X(t; t, x) = x < x0 we have, by
Lemma 4.7, that

B(t; t, A(x))−B(s; t, A(x)) ≥ δ(t− s), that is, B(s; t, A(x)) ≤ A(x)− δ(t− s) .
Now we are ready to conclude by a contradiction argument. Contrary to what we
want, suppose that σt(x) = 0 for all x ∈ (0, x0). This enables us to compute the
limit lims→0B(s; t, A(x)) ≤ A(x) − δt for all x ∈ (0, x0). This entails that there
exists x1 ∈ (0, x0) such that

lim
s→0

B(s; t, A(x1)) ≤ A(x1)− δt < 0 ,

since A is continuous and A(0) = 0. This contradicts that, for all s ∈ (0, t),
B(s; t, A(x1)) = A(X(s; t, x1)) > 0, after Lemma 4.4. Thus, there is some x > 0
such that σt(x) > 0. This concludes the proof of Lemma 4.9. �

We address now the diffeomorphism given by x 7→ X(t; 0, x). The first part of
Prop. 2.2 in the main text is a particular consequence of the following result (with
s = 0):

Lemma 4.10. For each t ∈ (0, T ) and s ∈ [0, t) the following statements hold true:

(1) We have X(t; s, 0+) := limx→0+ X(t; s, x) ∈ (0, xc(t)).
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(2) The map x 7→ X(t; s, x) is an increasing C1-diffeomorphism from (0,∞) to
(X(t; s, 0+),∞).

(3) The semigroup property X(t; τ,X(τ ; s, 0+)) = X(t; s, 0+) holds ∀τ ∈ [s, T ).

(4) We have X(t; 0, 0+) = xc(t) and X(t; s, xc(s)) = xc(t).

(5) The bound xc(t) ≤ C(K,T ) holds with the constant in (4.7).

Proof. In the sequel we use δ > 0 and x0 > 0 given by (A7). Let t ∈ (0, T )
and s ∈ [0, t). Lemma 4.7 ensures that Σ0,x = [0, T ) and Σs,x = (σs(x), T ) for
all x > 0. Then x 7→ X(t; s, x) is continuously differentiable on (0,∞) by the
Cauchy–Lipschitz theory. Its derivative, given by (4.6), is strictly positive. Thus,
the map x 7→ X(t; s, x) is strictly increasing and then a diffeomorphism onto its
image. We prove below that limx→∞X(t; s, x) = +∞ for any s ∈ [0, t), that
X(t; 0, 0+) = xc(t), that 0 < X(t, s, 0+) < xc(t) for s ∈ (0, t) and the semigroup
properties. The bound on xc(t) in item (5) is a direct consequence of the bound
(4.7) at the limit x→ 0.

Step 1. Proof of limx→∞X(t; s, x) = ∞. We fix y > 0. Using the bound (4.7)
with x = X(t; s, y) we deduce that

X(τ ; t,X(t; s, y)) ≤ C(K,T )(1 +X(t; s, y)) , ∀ τ ∈ Σs,y = (σs(y), T ) = (σt(x), T ).

Setting τ = s we obtain

y ≤ C(K,T )(1 +X(t; s, y)) .

This concludes the proof by taking the limit y →∞.

Step 2. Proof that X(t; s, 0+) > 0. Let {xn} a positive, decreasing sequence
converging to zero. By Lemma 4.7, either X(t; s, xn) > x0 or B(t; s,A(xn)) −
A(xn) ≥ δ(t− s). Thus,

lim
n→∞

X(t; s, xn) ≥ min(x0, A
−1(δ(t− s))) > 0 .

Step 3. Proof of X(t; 0, 0+) = xc(t). Let t ∈ (0, T ). We take a positive, non-
increasing sequence {xn} converging to zero. As x 7→ X(t; 0, x) is monotonically
increasing we can define

x̄ := lim
x→0

X(t; 0, x) = lim
xn↘0

X(t; 0, xn) .

Note that σt(X(t; 0, xn)) = 0 and then X(t; 0, xn) ≥ x̄ ≥ xc(t), as xc(t) =
inf {x > 0 | σt(x) = 0}.

We prove that x̄ = xc(t) by a contradiction argument. Assume that

x̄ > xc(t). (4.12)

Let y ∈ (xc(t), x̄); we have σt(y) = 0 as y > xc(t). Since y < x̄ ≤ X(t; 0, xn) for
any n, we obtain

lim
s→0

X(s; t, y) ≤ lim
s→0

X(s; t,X(t; 0, xn)) = lim
s→0

X(s; 0, xn) = xn .

Passing to the limit n→∞ we deduce that

lim
s→0

X(s; t, y) = 0 , and hence lim
s→0

B(s; t, A(y)) = 0

by the continuity of A at zero.
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Consider now y1, y2 such that xc(t) < y1 < y2 < x̄. There holds that

B(s; t, A(y2))−B(s; t, A(y1)) =

∫ y2

y1

∂B(s; t, A(z))

∂z
dz

=

∫ y2

y1

∂B(s; t, y)

∂y

∣∣∣∣
y=A(z)

dz

a(z)
. (4.13)

We look for a lower bound on this quantity. Note that σt(y2) = 0 and that
lims→0X(s; t, y2) = 0. Thus, there exists s0 such that X(s0; t, z) < X(s0; t, y2) <
x0 for any z ∈ (y1, y2). Now we use Lemma 4.8: for any s ∈ (0, s0) we have that∫ s0

s

|(a ∂xw) (r,X(r; t, z))| dr ≤ 1

δ

∫ t

0

∫ x0

0

|∂ξw(r, ξ)| dξdr

and from Eq. (4.10) we deduce that for any z ∈ (y1, y2),

∂B(s; t, y)

∂y

∣∣∣∣
y=A(z)

≥ exp

(
−1

δ

∫ t

0

∫ x0

0

|∂ξw(r, ξ)| dξdr

−
∫ t

s0

|(a ∂xw) (r,X(r; t, z))| dr
)

:= c1(z) > 0 . (4.14)

Hence, as the lower bound on Eq. (4.14) is independent of s, letting s→ 0 in (4.13)
we obtain

0 >

∫ y2

y1

c1(z)

a(z)
dz ,

which is a contradiction. Thus assumption (4.12) is absurd and therefore X(t; 0, 0+)
= x̄ = xc(t).

Step 4. Semigroup property in (4). Recall that X(t; s,X(s; 0, x)) = X(t; 0, x)
for all x > 0 and s ∈ (0, t). By continuity we can pass to the limit x → 0 so that
X(t; s,X(s; 0, 0+)) = X(t; 0, 0+). Thanks to Step 3 this reads X(t; s, xc(s)) = xc(t).

Step 5. Proof that X(t; s, 0+) < xc(t) and the semigroup property in point (3).
Let t ∈ (0, T ), s ∈ (0, t) and x < x0. To start we point out that the limit X(t, s, 0+)
exists since x 7→ X(t; s, x) is positive and monotonically increasing. By Lemma 4.7,
there holds that X(s; 0, x) > min(x, x0) = x for any s ∈ (0, t). Thus, by Remark
4.6,

X(t; 0, x) = X(t; s,X(s; 0, x)) ≥ X(t; s, x) .

Taking x → 0+, we deduce that xc(t) = X(t; 0, 0+) ≥ X(t; s, 0+). Now we recall
that X(s; 0, 0+) = xc(s) > 0 by Lemma 4.9. Thus, for y ∈ (0, xc(s)) we have, by
Remark 4.6,

X(t; s, 0+) ≤ X(t; s, y) ≤ X(t; s, xc(s)) = xc(t).

Then it follows that xc(t) > X(t; s, 0+) as desired: if we had xc(t) = X(t; s, 0+)
for some s > 0, we would deduce that X(t; s, y) = xc(t) for any y ∈ (0, xc(s)),
which contradicts that x 7→ X(t; s, x) is a diffeomorphism onto (0,∞). Finally,
since X(t; τ,X(τ ; s, x)) = X(t; s, x) for all τ ∈ (s, T ), by continuity at the limit
x→ 0 we obtain the semigroup property in point (3). �

A useful consequence of Lemma 4.10 is the next lemma,

Lemma 4.11. For any 0 < s1 < s2 < t we have X(t; s2, 0
+) < X(t; s1, 0

+).
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Proof. This can be shown by a contradiction argument; let us first assume that
X(t; s2, 0

+) > X(t; s1, 0
+). Since x 7→ X(t; s1, x) is a diffeomorphism from (0,∞)

to (X(t; s1, 0
+),∞), there exists x > 0 such that X(t; s1, x) = X(t; s2, 0

+). Now
we have that X(s2; t,X(t; s2, 0

+)) = 0 thanks to semigroup properties, but we also
have

X(s2; t,X(t; s2, 0
+)) = X(s2; t,X(t; s1, x)) = X(s2; s1, x) > 0

by Lemma 4.7 -recall that s2 > s1- and we reach a contradiction.
In the case X(t; s2, 0

+) = X(t; s1, 0
+) we conclude that 0 = X(s2; t,X(t; s2, 0

+)) =
X(s2; s1, 0

+) > 0 by Lemma 4.10, a contradiction again. �

Now we address the map given by s 7→ σ−1
t (s). The second part of Prop. 2.2, in

the main text, is a particular consequence of the following result:

Proposition 4.12. For each t ∈ (0, T ), the map s 7→ σ−1
t (s) is a decreasing C1-

diffeomorphism from (0, t) to (0, xc(t)) satisfying,

σ−1
t (s) ≤ C(K,T )

with C(K,T ) the constant in (4.7). Its derivative is given by

∂σ−1
t (s)

∂s
= −a(σ−1

t (s))w(s, 0) exp

(
−
∫ t

s

(a ∂xw) (τ, σ−1
τ (s)) dτ

)
(4.15)

for all t ∈ (0, T ) and s ∈ (0, t). Moreover, σ−1
t (s) = limx→0+ X(t; s, x) and

σ−1
τ (σt(x)) = X(τ ; t, x) for all (t, x) ∈ Ω∗T and τ ∈ Σt,x.

We divide the proof of Proposition 4.12 into several auxiliary lemmas.

Lemma 4.13. For all t ∈ (0, T ), σt is (strictly) decreasing on (0, xc(t)) and

lim
y→0+

X(t, σt(x), y) = x for any x ∈ (0, xc(t)). (4.16)

Proof. Let δ > 0 and x0 given by (A7). Fix t ∈ (0, T ) and 0 < y < x < xc(t). We
know from Lemma 4.9 that σt(y) ≥ σt(x) and we will prove that equality cannot
hold. Let us assume that σt(x) = σt(y) and argue by contradiction. By Lemma
4.4, there exists s0 ∈ (σt(x), t) such that X(s0; t, x) < x0 and by Remark 4.6 we
also have X(s0; t, z) < x0 for all z ∈ (y, x). By Lemma 4.8,∣∣∣∣∫ t

s

(a ∂xw) (r,X(r; t, z)) dr

∣∣∣∣ ≤ 1

δ

∫ t

0

∫ x0

0

|∂xw(r, ξ)| dξdr

+

∫ t

s0

|(a ∂xw) (r,X(r; t, z))| dr (4.17)

for all s ∈ (σt(x), s0) and z ∈ (y, x). Using Lemma 4.7 and the bound (4.7) we can
now estimate

0 < xm := X(s0; t, y) ≤ X(τ ; t, y) ≤ X(τ ; t, z) ≤ xM := C(K,T )(1 + x)

for all z ∈ (y, x) and τ ∈ (s0, t). We then have from Eq. (4.17),∣∣∣∣∫ t

s

(a ∂xw) (r,X(r; t, z)) dr

∣∣∣∣ ≤ 1

δ

∫ t

0

∫ x0

0

|∂ξw(r, ξ)| dξdr+ ‖a ∂xw‖L∞(ω̃) . (4.18)
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with ω̃ := (0, T )× (xm, xM ). Finally, by Eqs (4.10) and (4.18) we deduce that

B(s; t, A(x))−B(s; t, A(y))

≥ exp

(
−1

δ

∫ t

0

∫ x0

0

|∂ξw(r, ξ)| dξdr − ‖a ∂xw‖L∞(ω̃)

)∫ x

y

1

a(z)
dz .

We may now take the limit s→ σt(x) = σt(y) thanks to Lemma 4.4 to deduce that∫ x
y

1
a(z) dz ≤ 0. This contradicts the strict positivity of a. Thus, σt(y) > σt(x).
We proceed now to the proof of the limit (4.16). Let x ∈ (0, xc(t)) be such

that σt(x) > 0. We remark that by Lemma 4.10, the limit X(t;σt(x), 0+) exists.
As a first step we prove that this limit is greater or equal than x. Let {xn} a
positive decreasing sequence towards zero. Using Lemma 4.7, X(s;σt(x), xn) ≥
min(xn, x0) > 0, for all s ∈ (σt(x), T ). Thus, (σt(x), T ) ⊆ Σt,X(t;σt(x),xn). By
definition of σt, we have

σt (X(t;σt(x), xn)) ≤ σt(x) and then X(t;σt(x), xn) ≥ x
(otherwise it contradicts the fact that σt is decreasing). Moreover, by Remark 4.6,
X(t;σt(x), xn) is a decreasing sequence. Hence it converges to some y ≥ x.

We show now that y = x arguing by contradiction. Assume that y > x. For
z ∈ (x, xc(t) ∧ y) we have that 0 < σt(z) < σt(x) by the first part of the proof.
Then Remark 4.6 yields, for all s > σt(x) and n ∈ N,

X(s; t, x) < X(s; t, z) < X(s; t, y) ≤ X(s; t,X(t;σt(x), xn)) = X(s;σt(x), xn) .

Taking the limit s→ σt(x) we obtain

0 ≤ X(σt(x); t, z) ≤ xn .
Taking now the limit n → ∞ leads to X(σt(x); t, z) = 0, which contradicts that
0 < σt(z) < σt(x) by Lemma 4.4. Then y = x, which concludes the proof. �

Lemma 4.14. For all t ∈ (0, T ), σt is a (strictly) decreasing homeomorphism from
(0, xc(t)) to (0, t).

Proof. Step 1. Proof of σt(xc(t)) = 0. By definition, σt(xc(t)) = inf Σt,xc(t), and
Σt,xc(t) = {s ≥ 0;X(s; t, xc(t)) > 0}. By point (4) in Lemma 4.10, we have
X(s; t, xc(t)) = xc(s). Thus, Σt,xc(t) = {s ≥ 0;xc(s) > 0}. Thanks to Lemma
4.9, xc(s) is positive for any s > 0 and hence σt(xc(t)) = inf Σt,xc(t) = 0.

In the next two steps, we characterize the sequential continuity of σt both from
the left and from the right. There is no loss of generality in restricting ourselves to
monotone sequences.

Step 2. The map x 7→ σt(x) is left continuous. Let x ∈ (0, xc(t)] and let
{xn} ⊂ (0, xc(t)) be an increasing sequence converging to x with xn < x for all
n ≥ 1. By Lemma 4.13, σt(x

n) > σt(x) for all n ≥ 1 and {σt(xn)} is a decreasing
sequence, thus it converges. To show the sequential continuity of σt we argue by
contradiction; therefore we assume that σt(x

n) converges to s > σt(x). Note that
in particular σt(x

n) ≥ s. Assumption (A7) provides us with δ > 0 and x0 such that
w(t, y) ≥ δ for all y ∈ (0, x0), so that V (t, A(y)) ≥ δ and then

∂B(t; s,A(y))

∂s
≤ −δI(t; s,A(y)) ≤ 0 , for s ∈ (σt(x), σt(x

n)).

Thus, as A−1 is increasing, we have that

X(t;σt(x
n), y) ≤ X(t; s, y) ≤ X(t;σt(x), y) for all y ∈ (0, x0).
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Using Lemma 4.13 we may take the limit y → 0 to obtain

xn ≤ X(t; s, 0+) ≤ x.
Taking next the limit n → ∞ we deduce that X(t; s, 0+) = x = X(t;σt(x), 0+),
which contradicts Lemma 4.11 since we had assumed that s > σt(x). Therefore
σt(x

n) converges to σt(x) as desired.

Step 3. The map x 7→ σt(x) is right continuous. Let x ∈ (0, xc(t)) and take
{xn} a decreasing sequence converging to x and such that x < xn < xc(t). Thus
{σt(xn)} is increasing and σt(x

n) < σt(x). We show again the sequential continuity
by means of a contradiction argument. Assume that σt(x

n)→ s < σt(x) and hence
σt(x

n) < s. Similarly to Step 2, for any y < x0 we have

X(t;σt(x
n), y) ≥ X(t; s, y) > X(t;σt(x), y) .

Using Lemma 4.13 and taking the limit y → 0 we obtain

xn ≥ X(t; s, 0+) ≥ x .
Now we deduce that X(t; s, 0+) = x taking the limit n→∞. But for u ∈ (s, σt(x))
we have X(u; s, 0+) > 0 and also

X(u; s, 0+) = X(u; t,X(t; s, 0+)) = X(u; t, x) > 0

by Lemma 4.10, which contradicts that u < σt(x). This shows that σt(x
n)→ σt(x)

as n→∞.

Step 4. Proof of limx→0 σt(x) = t. Let {xn} be a positive decreasing sequence
converging to zero. Then σt(x

n) ≤ t is increasing and converges to s̄ ∈ (0, t]. We
use a contradiction argument to prove that s̄ = t. Assume that s̄ < t. There exists
N ≥ 1 such that xn < min(x0, xc(t)) for all n ≥ N . By Lemma 4.7,

A(xn)−B(s; t, A(xn)) ≥ δ(t− s) for all s ∈ (σt(x
n), t) andn ≥ N.

Then, for η ∈ (0, t− s̄) we have that B(t− η; t, A(xn)) is well defined for all n ≥ N
and

B(t− η; t, A(xn)) ≤ A(xn)− δη .
We can choose n large enough such that A(xn)− ηδ < 0, since A(xn) converges to
zero. This contradicts that B(t − η; t, A(xn)) > 0 by construction. Thus we must
have s̄ = t.

Step 5. Conclusion. Putting together what we have proved so far, σt is a
strictly decreasing, positive and continuous function on (0, xc(t)). Therefore it is
an homeomorphism onto its image (0, t) since limx→0 σt(x) = t, and, by continuity,
limx→xc(t) σt(x) = 0.

�

Lemma 4.15. There holds that

σ−1
t (s) = lim

x→0
X(t; s, x) ≤ C(K,T ) for all t ∈ (0, T ) and s ∈ (0, t)

with C(K,T ) the constant in (4.7).

Proof. Let t ∈ (0, T ) and s ∈ (0, t). Consider a positive decreasing sequence {xn}
converging to zero; note that {X(t; s, xn)} is a decreasing sequence. Thus, by
Lemma 4.14, {σt(X(t; s, xn))} is increasing and verifies that σt(X(t; s, xn)) ≤ s;
hence σ−1

t (s) ≤ X(t; s, xn). Since the sequence {X(t; s, xn)} decreases, it converges
to some x̄ ≥ σ−1

t (s) and in particular X(t; s, xn) ≥ x̄ for all n ≥ 1. We argue
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by contradiction to show that equality holds. Assume x̄ > σ−1
t (s) and let y ∈

(σ−1
t (s), x̄), hence σt(y) < s and X(s; t, y) > 0. But y < x̄ ≤ X(t; s, xn) and

then X(s; t, y) < xn → 0 as n → ∞, which contradicts that X(s; t, y) > 0. Thus
x̄ = σ−1

t (s) as claimed. The bound is obtain by taking the limit x→ 0 in (4.7). �

Lemma 4.16. For all t ∈ (0, T ), σ−1
t is a decreasing C1-diffeomorphism from (0, t)

to (0, xc(t)) and its derivative is given by Eq. (4.15).

Proof. For any t ∈ (0, T ), s ∈ (0, t) and x > 0 we have from Eq. (4.10) that

B(t; t, A(x))−B(t; s,A(x)) =

∫ t

s

∂B(t; τ,A(x))

∂τ
dτ

= −
∫ t

s

w(τ, x) exp

(
−
∫ t

τ

(a ∂xw) (r,X(r; τ, x)) dr

)
dτ . (4.19)

We want to take the limit x → 0+ in this equation, since as x → 0+ we have
B(t, t, A(x)) = A(x) → 0 and also B(t; s,A(x)) = A(X(t; s, x)) → A(σ−1

t (s)) from
Lemma 4.15, as x→ 0+. Interchanging the limit and the integral we get a formula
for σ−1

t (s) that will enable us to compute the derivatives. We split this argument
in three steps.

Step 1. We justify that for all t ∈ (0, T ) and τ ∈ (0, t),

lim
x→0+

∂B(t; τ,A(x))

∂τ

= − lim
x→0+

w(τ, x) exp

(
−
∫ t

τ

(a ∂xw) (r,X(r; τ, x)) dr

)
= −w(τ, 0) exp

(
−
∫ t

τ

(a ∂xw) (r, σ−1
r (τ)) dr

)
. (4.20)

Let t ∈ (0, T ), τ ∈ (0, t). To prove the limit in (4.20), we will split the integral
above in two parts,∫ t

τ

(a ∂xw) (r,X(r; τ, x)) dr =

∫ τ0

τ

(a ∂xw) (r,X(r; τ, x)) dr

+

∫ t

τ0

(a ∂w) (r,X(r; τ, x)) dr . (4.21)

Here τ0 is chosen small enough and independent of x, so that it allows to make the
change of variable r 7→ z = X(r; τ, x) (as in the proof of Lemma 4.8) on (τ, τ0) and
to be away from zero on (τ0, t).

Let ε > 0 and consider δ > 0 and x0 > 0 given by (A7). We recall that ∂xw
is integrable by assumption (A6), therefore, we can find x1 ∈ (0, x0) such that∫ T

0

∫ x1

0
|∂yw(r, y)| dydr < δε/2. Let now x2 ∈ (0, x1). There exists τ0 ∈ (τ, t)

such that X(τ0; τ, x2) < x1 by continuity in the first variable. Hence X(τ0; τ, x) <
X(τ0; τ, x2) < x1 for all x ∈ (0, x2) by Remark 4.6. Using Lemma 4.8 with a similar
reasoning as in (4.11) we have that

0 ≤
∫ τ0

τ

|(a ∂xw) (r,X(r; τ, x))| dr ≤ 1

δ

∫ t

0

∫ x1

0

|∂yw(r, y)| dydr ≤ ε

2
(4.22)
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for all x ∈ (0, x2). Also, by Fatou’s lemma, as x→ 0,∫ τ0

τ

∣∣(a ∂xw) (r, σ−1
r (τ))

∣∣ dr ≤ ε

2
. (4.23)

For the second term in Eq. (4.21), we bound the integrand uniformly in x. Indeed,
by the bound (4.7) that is C(K,T ) > 0 independent of τ , we have X(r; τ, x) ≤
xM := C(K,T )(1 + x0) for all r ∈ (τ, T ) and x ∈ (0, x2). We also have

B(τ0; τ,A(x)) ≥ δ(τ0 − τ) +A(x) ≥ δ(τ0 − τ) (4.24)

by Lemma 4.7. Thus, there holds that

x0 > X(τ0; τ, x) ≥ xm:= A−1(δ(τ0 − τ)) > 0 for allx ∈ (0, x2),

which entails, by Lemma 4.7, that

X(r; τ, x) = X(r; τ0, X(τ0; τ, x)) ≥ X(τ0; τ, x) ≥ xm
for all r ≥ τ0 and for every x ∈ (0, x2). Hence, the map r 7→ (a ∂xw)(r,X(r; τ, x))
is uniformly bounded in r ∈ (τ0, t) and x ∈ (0, x2), which justifies that

lim
x→0+

∫ t

τ0

(a ∂xw) (r,X(r; τ, x)) dr =

∫ t

τ0

(a ∂xw) (r, σ−1
r (τ)) dr. (4.25)

Finally, by Eqs. (4.25), (4.22) and (4.23) we deduce that for all ε > 0,

lim
x→0+

∣∣∣∣∫ t

τ

(
(a ∂xw) (r,X(r; τ, x))− (a ∂xw) (r, σ−1

r (τ))
)
dr

∣∣∣∣ ≤ ε
and in this way we obtain (4.20).

Step 2. Now we bound the derivative of B in order to pass to the limit x→ 0 in
Eq. (4.19). Let t ∈ (0, T ). We split the integral in (4.19) in three parts, again with
the idea of separating the contributions where X(r; τ, x) is close to zero and away
from it:∫ t

s

w(τ, x) exp

(
−
∫ t

τ

(a ∂xw) (r,X(r; τ, x)) dr

)
dτ

=

∫ t

t0

w(τ, x) exp

(
−
∫ t

τ

(a ∂xw) (r,X(r; τ, x)) dr

)
dτ

+

∫ t0

s

w(τ, x) exp
(
−
∫ τ+τ0

τ

(a ∂xw) (r,X(r; τ, x)) dr

−
∫ t

τ+τ0

(a ∂xw) (r,X(r; τ, x)) dr
)
dτ .

This holds for some 0 < t0 < t0 + τ0 < t, with t0 sufficiently close to t and τ0
small enough, both independent from x, as we explain in what follows. Consider
again δ > 0 and x0 > 0 given by (A7) and let x1 ∈ (0, x0). As X(t; t, x1) = x1, by
continuity, there exists t0 < t such that X(t; τ, x1) < x0 for all τ ∈ (t0, t) and hence

X(r; τ, x) < X(t; τ, x) < X(t; τ, x1) < x0 , for all r ∈ (τ, t), x ∈ (0, x1), τ ∈ (t0, t) .

Using Lemma 4.8, we get that∣∣∣∣∫ t

τ

(a ∂xw) (r,X(r; τ, x)) dr

∣∣∣∣ ≤ 1

δ

∫ t

0

∫ x0

0

|∂yw(r, y)| dydr

for all τ ∈ (t0, t) and x ∈ (0, x1).
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Let now τ ∈ (0, t0). Since x1 < x0 there exists 0 < τ0 < t − t0 such that
A(x1) + ρτ0 < A(x0). Hence by Eq. (4.8),

B(τ + τ0; τ,A(x)) ≤ A(x) + ρτ0 ≤ A(x0) for allx ∈ (0, x1)

and by Lemma 4.7,

X(r; τ, x) < X(τ + τ0; τ, x) < x0 for all r ∈ (τ, τ + τ0).

Note that the condition on τ0 ensures τ + τ0 < t whenever τ ∈ (0, t0). On the other
hand we have

B(τ + τ0; τ,A(x)) ≥ A(x) + δτ0 ≥ δτ0
and, by Lemma 4.7, X(r; τ, x) ≥ xm := A−1(δτ0) for all r ∈ (τ + τ0; t) and x ∈
(0, x1). Since X(r; τ, x) ≤ xM := C(K,T )(1 + x1) for all τ ∈ (0, T ), r ∈ (τ, T ) and
x ∈ (0, x1), we let ω̃ := (0, T )× (xm, xM )) and then we have∣∣∣∣∫ t

τ+τ0

(a ∂xw) (r,X(r; τ, x)) dr

∣∣∣∣ ≤ T ‖a ∂xw‖L∞(ω̃)

for all τ ∈ (0, t0) and x ∈ (0, x1). Note that xm does not depend here on τ ∈ (0, t0),
contrary to the construction from Eq. (4.24). Finally, by Lemma 4.8,∣∣∣∣∫ τ+τ0

τ

(a ∂xw) (r,X(r; τ, x)) dr

∣∣∣∣ ≤ 1

δ

∫ t

0

∫ x0

0

|∂yw(r, y)| dydr.

Combining these results we obtain that
∂B(t; τ,A(x))

∂τ
is uniformly bounded in

τ ∈ (0, t) and x ∈ (0, x1), namely∣∣∣∣∂B(t; τ,A(x))

∂τ

∣∣∣∣ ≤ ‖w‖L∞(ω̃) exp

(
2

δ
‖∂xw‖L1((0,T )×(0,x0)) + T ‖a ∂xw‖L∞(ω̃)

)
.

Step 3. Now we pass to the limit x→ 0 in Eq. (4.19), where the interchange of
limits and integrals is justified and we obtain

σ−1
t (s) = A−1

(∫ t

s

w(τ, 0) exp

(
−
∫ t

τ

(a ∂xw) (r, σ−1
r (τ)) dr

)
dτ

)
for all t ∈ (0, T ) and s ∈ (0, t). Clearly the right-hand side is continuously differen-
tiable since A−1 is and we easily identify the derivative of σ−1

t (s).
�

4.3. Representation formula and regularity properties. Once we have the
tools introduced in the previous subsection we can proceed to prove the statements
of Theorem 4.2. Thanks to Lemma 4.10 and Proposition 4.12, we define, for a.e.
(t, x) ∈ Ω∗T ,

f(t, x) = f in(X(0; t, x))J(0; t, x)1(xc(t),∞)(x)+G(σt(x))|σ′t(x)|1(0,xc(t))(x) . (4.26)

This ensures that f solves (4.1). We now provide several intermediate statements
that serve as a proof of the remaining points in Theorem 4.2. Recall that f in

satisfies (H6).

Lemma 4.17. The family {f(t, ·) | t ∈ (0, T )} constructed via Eq. (4.26) is weakly
relatively compact in L1((0,∞), (1 + x)dx). In particular,

sup
t∈[0,T )

∫ ∞
0

(1 + x)f(t, x) dx <∞. (4.27)
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Proof. The result will follow as a consequence of Dunford-Pettis’ theorem, see e.g.
[18, Chap. IV.8] . Since f is nonnegative, we are to prove the following:

(1) Bound (4.27),

(2) lim
n→+∞

sup
t∈[0,T ]

∫ ∞
n

f(t, x)(1 + x) dx = 0,

(3) For all ε > 0, there exists δ > 0 such that

sup
t∈[0,T ]

∫
E

f(t, x)(1 + x) dx < ε

for every Lebesgue measurable set E with measure |E| < δ.

Point 1. We integrate Eq. (4.26) and use the diffeomorphisms in Lemma 4.10
and Proposition 4.12 to obtain∫ ∞

0

f(t, x) dx =

∫ ∞
0

f in(x) dx+

∫ t

0

G(s) ds,

for each t ∈ (0, T ). This is uniformly bounded since G is bounded and f in belongs
to L1((0,∞), (1 + x)dx). In a similar way, using the bound (4.7) and the bound in
Proposition 4.12 we have that for each t ∈ (0, T ),∫ ∞

0

xf(t, x) dx =

∫ ∞
0

X(t; 0, x)f in(x) dx+

∫ t

0

σ−1
t (s)G(s) ds

is uniformly bounded. This proves (4.27).
Point 2. Note first that there exists a constant C(K,T ) > 0 such that xc(t) ≤

C(K,T ) for all t ∈ (0, T ); this follows from bound (4.7) and Lemma 4.10. Choose
N large enough such that N ≥ xc(t) for all t ∈ (0, T ). Then, integrating (4.26) and
changing variables we obtain that∫ ∞

n

(1 + x)f(t, x) dx =

∫ ∞
X(0;t,n)

(1 +X(t, 0, x))f in(x) dx

for all t ∈ (0, T ) and n ≥ N . Since X(t, 0, x) ≤ C(K,T )(1 + x) again from bound
(4.7), we have that∫ ∞

n

(1 + x)f(t, x) dx ≤ C(K,T )

∫ ∞
X(0;t,n)

(1 + x)f in(x) dx

increasing the value of the constant C(K,T ) if needed. Next we notice that n ≤
C(K,T )(1 + X(0; t, n)) after (4.7) and the semigroup property. Hence, thanks to
integrability of f in, we can pass to the limit n → ∞, uniformly in t, to obtain the
desired property.

Point 3. Let E be a Lebesgue measurable set. We estimate the integrals over
E ∩ (0, xc(t)) and E ∩ (xc(t),∞) separately. Thanks to Eqs. (4.6) and (4.7), we
have∫

E∩(xc(t),∞)

(1 + x)f(t, x) dx =

∫
E∩(xc(t),∞)

(1 + x)f in(X(0; t, x))J(0; t, x) dx

≤ C(T )

∫
X(0;t,E∩(xc(t),∞))

(1 + x)f in(x) dx (4.28)
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for some constant C(T ) > 0 independent of time t ∈ [0, T ). Let x0 be given by (A7)
and let x̄ be such that X(s; 0, x0) ≤ x̄ for all s ∈ [0, T ) which is possible thanks to
Eq. (4.7). Note that for all s, t ∈ [0, T ) and x > x̄ we have

X(s; t, x) > X(s; t, x̄) > X(s; t,X(t; 0, x0)) = X(s; 0, x0) > x0

This is due to the monotonicity (Remark 4.6), the semigroup property and invari-
ance. Now we estimate the measure of X(0; t, E ∩ (xc(t),∞)) for t ∈ [0, T ) as
follows:

|X(0; t, E ∩ (xc(t),∞))| =
∫
E∩(xc(t),∞)

J(0; t, x) dx

≤
∫
E∩(xc(t),x̄)

J(0; t, x) dx+ |E ∩ (x̄,∞)| exp
(
‖∂xv‖L∞((0,T )×(x0,∞))

)
. (4.29)

Here we used Eq. (4.6) and (A2). Next we proceed to bound the Jacobian. Since
A(X(0; t, x)) = B(0; t, A(x)) using the derivatives in the third variable for X and
B we get

J(0; t, x) =
a(X(0; t, x))

a(x)
I(0; t, A(x))

for all x > xc(t), with I in Eq. (4.10). To proceed further we use Eq. (4.7) to fix
x∗ such that X(0; t, x) ≤ x∗ for all x ∈ (xc(t), x̄). By Eq. (4.29) above, we obtain

|X(0; t, E∩(xc(t),∞))| ≤ ‖a‖L∞(0,x∗)

∫
E∩(xc(t),x̄)

I(0; t, A(x))

a(x)
dx+C(T )|E| . (4.30)

We now bound I. Given x ∈ (xc(t), x̄), we either have X(0; t, x) < x0 or X(0; t, x) ≥
x0; we discuss both cases in turn. On one hand, if X(0; t, x) ≥ x0 we use Lemma
4.7 to deduce that for all s ∈ (0, T ), x0 ≤ X(s; t, x) ≤ x∗. Thus, noticing that a∂xw
is locally bounded on ΩT , because of (A3) and (A4),

I(0; t, A(x)) ≤ exp
(
‖a∂xw‖L∞((0,T )×(x0,x∗))

)
. (4.31)

On the other hand, if X(0; t, x) < x0, there exists s0 such that X(s0; t, x) = x0 and
then X(s; t, x) < x0 for all s ∈ (0, s0). So, by Lemma 4.8

|I(0; t, A(x))| ≤ exp

(
1
δ

∫ T

0

∫ x0

0

∂yw(r, y) dydr + ‖a∂xw‖L∞((0,T )×(x0,x∗))

)
.

(4.32)
In conclusion, combining Eqs. (4.30), (4.31) and (4.32) we obtain

|X(0; t, E ∩ (xc(t),∞))| ≤ C(T )

(∫
E∩(0,x̄)

1

a(x)
dx+ |E|

)
.

Given that 1/a ∈ L1(0, 1) and f in(x) is integrable, Eq. (4.28) entails

lim
|E|→0

sup
t∈[0,T ]

∫
E∩(xc(t),∞)

(1 + x)f(t, x) dx = 0 . (4.33)

It remains to do the same with∫
E∩(0,xc(t))

(1 + x)f(t, x) dx =

∫
E∩(0,xc(t))

(1 + x)G(σt(x))|σ′t(x)| dx .
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Recall that G(t) and xc(t) are uniformly bounded on (0, T ). Therefore, there is
some C(T ) such that∫

E∩(0,xc(t))

(1 + x)f(t, x) dx ≤ C(T )

∫
E∩(0,xc(t))

|σ′t(x)| dx. (4.34)

We now consider this last integral. We observe that for all x ∈ (0, xc(t))

σ′t(x) =
1

σ−1
t
′(σt(x))

= − 1

a(x)w(σt(x), 0)
exp

(∫ t

σt(x)

(a ∂xw) (τ,X(τ ; t, x)) dτ

)
,

(4.35)
where we used that X(τ ; t, x) = σ−1

τ (σt(x)) by Proposition 4.12. Thanks to Lemma
4.4 we have that lims→σt(x)X(s; t, x) = 0 whenever x ∈ (0, xc(t)). Thus, for each
(t, x) ∈ (0, T ) × (0, xc(t)), there exists s0 ∈ (σt(x), t] such that X(s; t, x) < x0 for
all s ∈ (σt(x), s0) where x0 is given by (A7). Using Lemma 4.8,∫ t

σt(x)

(a ∂xw)(τ,X(τ ; t, x)) dτ≤ 1

δ

∫ T

0

∫ x0

0

|∂y(r, y)| dydr+‖a ∂xw‖L∞((0,T )×(x0,C(T )) .

Here C(T ) > 0 is some constant which bounds X(s; t, x) uniformly in s, t ∈ (0, T )
and x ∈ (0, xc(t)) -see Lemma 4.3. Finally, thanks to (A7), we have

|σ′t(x)| ≤ C(T )

δa(x)

for all s ∈ (0, T ), again by Lemma 4.7. The right-hand side of this last estimate is
integrable around the origin by (A5) and hence, by Eq. (4.34),

lim
|E|→0

∫
E∩(0,xc(t))

(1 + x)f(t, x) dx ≤ C(T )

δ
lim
|E|→0

∫
E∩(0,xc(t))

1

a(x)
dx = 0. (4.36)

Combining limits (4.33) and (4.36) finishes the proof. �

Lemma 4.18. The function f in Eq. (4.26) satisfies∫ T

0

∫ ∞
0

(∂tϕ(t, x) + v(t, x)∂xϕ(t, x))f(t, x) dx dt

+

∫ ∞
0

ϕ(0, x)f in(x) dx+

∫ T

0

ϕ(t, 0)G(t) dt = 0 (4.37)

for all ϕ ∈ C1
c ([0, T )× [0,∞)).

Proof. Let ϕ ∈ C1
c ([0, T )× [0,+∞)), and define

ψ(t, x) = −(∂tϕ(t, x) + v(t, x))∂xϕ(t, x)), (t, x) ∈ ΩT . (4.38)

Using the definition of f in Eq. (4.26), its integrability in Lemma 4.17 and equa-
tion (4.38), we obtain∫ T

0

∫ ∞
0

(∂tϕ(t, x) + v(t, x))∂xϕ(t, x))f(t, x) dx dt

= −
∫ T

0

∫ ∞
xc(t)

ψ(t, x)f in(X(0; t, x))J(0; t, x) dx dt

−
∫ T

0

∫ xc(t)

0

ψ(t, x)G(σt(x))|σ′t(x)| dx dt . (4.39)
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Using the changes of variables in Lemma 4.10 and Proposition 4.12 with Fubini’s
theorem, we have∫ T

0

∫ ∞
xc(t)

ψ(t, x)f in(X(0; t, x))J(0; t, x) dx dt

=

∫ ∞
0

(∫ T

0

ψ(t,X(t; 0, x))

)
f in(x) dx dt , (4.40)

and∫ T

0

∫ xc(t)

0

ψ(t, x)G(u(σt(x)))|σt(x)′| dx dt

=

∫ T

0

(∫ T

s

ψ(t, σ−1
t (s)) dt

)
G(s) ds . (4.41)

By the definition of the characteristics curves (4.5) and using the definition of ψ in
Eq. (4.38), we have

∂

∂s
[ϕ(s,X(s; t, x))] = −ψ(s,X(s; t, x)) (4.42)

for all (t, x) ∈ ΩT and s ∈ (σt(x), T ). We stress that this equation remains true
for t = 0 since, by Lemma 4.4, X(s; 0, x) > 0 for all s > 0. Hence, integrating
Eq. (4.42) over (0, T ) and since ϕ(T, x) = 0 for all x > 0, this yields

ϕ(0, x) =

∫ T

0

ψ(t;X(t; 0, x)) dt

for x > 0. We can insert this relation into equation (4.40) to obtain∫ T

0

∫ ∞
xc(t)

ψ(t, x)f in(X(0; t, x))J(0; t, x) dx dt =

∫ ∞
0

ϕ(0, x)f in(x) dx dt . (4.43)

Finally, by Proposition 4.12, we have ψ(t, σ−1
t (s)) = limx→0 ψ(t,X(t; s, x)).

Thus, using the dominated convergence theorem and equation (4.42),∫ T

s

ψ(t, σ−1
t (s)) dt = lim

x→0

∫ T

s

ψ(t,X(t; s, x)) dt = ϕ(t, 0)

for all t ∈ (0, T ). Replacing this last relation in Eq. (4.41) we obtain∫ T

0

∫ xc(t)

0

ψ(t, x)G(u(σt(x)))|σt(x)′| dx dt =

∫ T

0

ϕ(t, 0)G(t) dt . (4.44)

Inserting Eqs. (4.43) and (4.44) into Eq. (4.39) ends the proof. �

Now we prove points (1) and (3) in Theorem 4.2. We can show that Eq. (4.37)
is satisfied by f whenever ϕ(t, x) = g(t)h(x), with g ∈ C1

c (0, T ) and h ∈ C0
c ([0,∞))

with h′ ∈ L∞(0,∞). This follows from a standard regularization argument, to-
gether with the fact that f belongs to L∞((0, T );L1(0,∞)), Eq. (4.27), and the
fact that the rates are locally bounded. Then, again by regularization, Eq. (4.37)
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is shown to be true for h locally bounded and such that h′ ∈ L∞(0,∞), namely,∫ T

0

g′(t)

∫ ∞
0

h(x)f(t, x) dx+

∫ T

0

g(t)

∫ ∞
0

v(t, x)h′(x)f(t, x) dx dt

+ h(0)

∫ T

0

g(t)G(t) dt = 0 .

Here we used that f belongs to L∞((0, T );L1((0,∞), (1 + x)dx)) and the sublin-
earity of v in (A1); note that h has a well-defined limit at the origin. This entails
that the map t 7→

∫∞
0
h(x)f(t, x) dx has a bounded time derivative, which yields

(4.4). We have in particular that t 7→
∫∞

0
(1 + x)h(x)f(t, x) dx is continuous for

all h ∈ C0
c (0,∞), which is improved up to h ∈ L∞(0,∞) thanks to Lemma 4.17

and implies the claimed regularity of f . To finish the proof we analyze the limit in
point (3). Let t ∈ (0, T ), we have

f(t, x) = G(σt(x))|σ′t(x)| a.e. x ∈ (0, xc(t)) .

Since the right-hand side is continuous in x we may choose a version of f that is
continuous on (0, xc(t)). Then from Eq. (4.35)

v(t, x)f(t, x) = G(σt(x))
w(t, x)

w(σt(x), 0)
e

(∫ t
σt(x)

(a ∂xw)(τ,X(τ ;t,x)) dτ
)
.

Thanks to Proposition 4.12, the factor in front of the exponential converges to G(t)
as x→ 0+. It remains to prove that

lim
x→0+

∫ t

σt(x)

(a ∂xw) (τ,X(τ ; t, x)) dτ = 0 .

Consider x0 and δ given by(A7) and let x < x0 so that for all τ ∈ (σt(x), t) we have
X(τ ; t, x) < x0. Then, by Lemma 4.8,∫ t

σt(x)

(a ∂xw) (τ,X(τ ; t, x)) dτ ≤ 1

δ

∫ t

0

∫ x

0

|∂y(r, y)| dydr .

This last term vanishes as x→ 0, which concludes the proof.
Finally, uniqueness follows from a classical duality argument. Let ψ ∈ C1

c (Ω∗T ).

We have that ϕ(t, x) = −
∫ T
t
ψ(s,X(s; t, x))ds is a solution of

∂tϕ+ v∂xϕ = −ψ, ϕ(T, x) = 0 ,

so that for any two solutions f1 and f2 with initial data f in, there holds that∫ T

0

∫ ∞
0

ψ(f1 − f2) = 0 .

5. Annex: Proof of Lemma 3.4 for uniqueness

We start by proving the following classical result on tail density with the notation
of Sec. 3.2.

Lemma 5.1. We have, for i = 1, 2, that Fi ∈ L∞((0, T );L1(0,∞))∩L∞(Ω∗T ), that
∂xFi = −fi belongs to L∞((0, T );L1((0,∞), (1 + x) dx)) and also that ∂tFi belongs
to L∞((0, T );L1(0,∞)). Moreover, they satisfy∫ ∞

0

Fi(t, x) dx =

∫ ∞
0

xfi(t, x) dx (5.1)
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for all t ∈ (0, T ), and

∂tFi + vi∂xFi = 0 , in D′(Ω∗T ) . (5.2)

Proof. Recall that fi belongs to L∞((0, T );L1((0,∞), (1 + x) dx)). The bounded-
ness of Fi is an obvious consequence of the integrability of fi and the definition in
Eq. (3.1), together with the regularity of the derivative in x. Integrability of Fi
and formula (5.1) follow from Tonelli’s Theorem. Eq. (5.2) is obtained using test
functions of the form ϕ(t, x) =

∫ x
0
ψ(t, y) dy, for ψ ∈ D(Ω∗T ), in Eq. (1.5) together

with Fubini’s theorem. Finally, the regularity of the time derivatives follows from
Eq. (5.2), the sublinearity of the rates and the regularity of ∂xFi = fi. �

Proof of Lemma 3.4. By Lemma 5.1 we deduce

∂tE = −v1∂xF1 + v2∂xF2 = −v1∂xE + awf2 , inD′(Ω∗T ) . (5.3)

By Lemma 5.1 and Eq. (5.3), for any real function β defined on R, continuously
differentiable with bounded derivatives, we have

∂tβ(E) = −v1∂xβ(E) + awf2β
′(E) , in D′(Ω∗T ) .

In particular we are led to

d

dt

∫ ∞
0

ϕ(x)β(E(t, x)) dx =

∫ ∞
0

∂x[v1(t, x)ϕ(x)]β(E(t, x)) dx

+

∫ ∞
0

a(x)w(t)f2(t, x)β′(E(t, x))ϕ(x) dx

for all ϕ belonging to D(0,∞). Note that the distributional derivative ∂tβ(E)
belongs to L∞(0, T ). This is due to E being bounded, f2 being integrable against
(1 + x), the sublinearity of a in (1.6), the fact that u1 and u2 are bounded and the
boundedness of β′. We obtain∫ ∞

0

ϕ(x)β(E(t, x)) dx ≤
∫ ∞

0

ϕ(x)β(E(0, x)) dx

+

∫ t

0

∫ ∞
0

∂x[v1(s, x)ϕ(x)]β(E(s, x)) dx dt

+ ‖β′‖L∞
∫ t

0

|w(s)|
∫ ∞

0

a(x)|ϕ(x)|f2(s, x) dx dt (5.4)

for any ϕ belonging to D(0,∞).
To obtain Eq. (3.2) in Lemma 3.4, we use a regularization procedure. Let ϕ a

nonnegative function belonging to C0([0,∞)), such that ϕ vanishes in a neighbor-
hood of zero, and ϕ′ ∈ L∞(0,∞) is compactly supported. To be able to substitute
ϕ into Eq. (5.4), we need to regularize it to make it infinitely derivable and to
truncate its support for large x. For each R > 1, denote by χR a real function
in D(R) with 0 ≤ χR ≤ 1, such that χR = 1 on (0, R), with compact support in
(0, R+ 1), and |χ′R| ≤ 2 on (R,R+ 1). Let {gε} be a standard mollifying sequence.
Define ϕεR = ϕR ∗ gε with ϕR = ϕχR on (0,∞). We shall substitute ϕεR into (5.4)
and take the limits ε→ 0 and R →∞ in turn. Note that ϕεR converges uniformly
to ϕR on R as ε → 0. Moreover, the support of ϕεR is contained in [0, R + 1 + ε].
For the time being, assume that β is a nonnegative function on R, continuously
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differentiable with |β′| ≤ 1 and β(0) = 0. Observe that β(y) ≤ |y| for all x ∈ R;
since |E(t, x)| is bounded on ΩT , it follows that

lim
ε→0

∫ ∞
0

ϕεR(x)β(E(t, x)) dx =

∫ ∞
0

ϕR(x)β(E(t, x)) dx <∞ ,

for any t ∈ [0, T ). Then, since f2 belongs to L∞
(
(0, T );L1((0,∞); (1 + x) dx)

)
and

a is sublinear by (1.6), we have

lim
ε→0

∫ t

0

∫ ∞
0

a(x)f2(t, x)ϕεR(x) dx dt =

∫ t

0

∫ ∞
0

a(x)f2(t, x)ϕR(x) dx dt

for all t ∈ (0, T ). Now, we remark that∫ t

0

∫ ∞
0

∂x(v1(s, x)ϕεR(x))β(E(s, x)) dx dt

=

∫ t

0

∫ ∞
0

{∂xv1(s, x)ϕεR(x) + v1(s, x)ϕ′R ∗ gε(x)}β(E(s, x)) dx dt.

On one hand, as a and b are continuously differentiable on (0,∞), ϕR is compactly
supported and E belongs to L∞(ΩT ), we have

lim
ε→0

∫ t

0

∫ ∞
0

∂xv1(s, x)ϕεR(x)β(E(s, x)) dx dt

=

∫ t

0

∫ ∞
0

∂xv1(s, x)ϕR(x)β(E(s, x)) dx dt.

On the other hand, note that (ϕχR)′ is bounded with compact support, thus
(ϕχR)′ ∗ gε converges to (ϕχR)′ almost everywhere. But ϕχR has compact support
and a and b are continuous, hence bounded on this support. Moreover, E belongs
to L∞(ΩT ), so, via the dominated convergence theorem we have

lim
ε→0

∫ t

0

∫ ∞
0

v1(s, x)ϕ′R(x) ∗ gε(x)β(E(s, x)) dx dt

=

∫ t

0

∫ ∞
0

v1(s, x)ϕ′R(x)β(E(s, x)) dx dt.

Recapitulating, using that ϕR ≤ ϕ, we get∫ ∞
0

ϕR(x)β(E(t, x)) dx ≤
∫ ∞

0

ϕ(x)|E(0, x)| dx

+

∫ ∞
0

∂x[v1(t, x)ϕR(x)]β(E(t, x)) dx

+

∫ t

0

|w(s)|
∫ ∞

0

a(x)f2(s, x)ϕ(x) dx ds . (5.5)

We may now pass in the limit R→∞ in Eq. (5.5). We have, for any t ∈ (0, T ), by
integration by parts (recall that ϕ vanishes around the origin),∫ ∞

0

∂x[v1(t, x)ϕR(x)]β(E(t, x)) dx = −
∫ ∞

0

v1(t, x)ϕR(x)∂xE(t, x)β′(E(t, x)) dx

(5.6)
As β′ is bounded and v1(t, x)∂xE(t, x) integrable, we may pass in the limit R→∞
in the right-hand side of Eq. (5.6) using the dominated convergence theorem. As
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ϕ′ is compactly supported and ϕ vanishes around the origin, ∂x[v1(t, x)ϕ(x)] is
bounded, and we may perform an integration by parts in the other way, to obtain

lim
R→∞

∫ ∞
0

∂x[v1(t, x)ϕR(x)]β(E(t, x)) dx =

∫ ∞
0

∂x[v1(t, x)ϕ(x)]β(E(t, x)) .

Thus, letting R→∞ in (5.5), we get∫ ∞
0

ϕ(x)β(E(t, x)) dx ≤
∫ ∞

0

ϕ(x)|E(0, x)| dx

+

∫ ∞
0

∂x[v1(t, x)ϕ(x)]β(E(t, x)) dx

+

∫ t

0

|w(s)|
∫ ∞

0

a(x)f2(s, x)ϕ(x) dx ds . (5.7)

We then use the approximation of the absolute value β(x) = |x|− ε/2 for |x| > ε
and β(x) = 1

2εx
2 for |x| ≤ ε in the above equation (5.7) and we let ε → 0 (note

again that ∂x[v1(t, x)ϕ(x)] is bounded). We thus obtain Eq. (3.2).
We now prove Eqs. (3.3)-(3.4). For t ∈ (0, T ),

|w(t)| =
∣∣∣∣∫ ∞

0

xf1(t, x) dx−
∫ ∞

0

xf2(t, x) dx

∣∣∣∣ .
In virtue of (5.1), E belongs to L∞((0, T );L1(0,∞)) and

|w(t)| ≤
∫ ∞

0

|E(t, x)| dx

for all t ∈ (0, T ). Finally, thanks to Lemma 1.3,

Fi(t, 0) = Fi(0, 0) +

∫ t

0

n(ui(s)) dt

for i = 1, 2 and hence by (H5’) there exists Kn such that

|E(t, 0)| ≤ |E(0, 0)|+Kn

∫ t

0

|w(s)| ds

where Kn is the Lipschitz constant of n on [Φ0, ρ]. �
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