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Highlights:  14 

 Characterization factors (for human health and ecotoxicological impacts) were 15 

predicted using molecular descriptors. 16 

● Several linear or non-linear machine learning methods were compared. 17 

● A train and test procedure was applied to assess the performances of the methods. 18 

● Predictions using machine learning were good. 19 

● This methodology was then used to derive tens of characterization factors for USEtox. 20 

 21 

 22 

Abstract: It is a real challenge for life cycle assessment practitioners to identify all relevant 23 

substances contributing to the ecotoxicity. Once this identification has been made, the lack of 24 

corresponding ecotoxicity factors can make the results partial and difficult to interpret. So, it is 25 

a real and important challenge to provide ecotoxicity factors for a wide range of compounds. 26 

Nevertheless, obtaining such factors using experiments is tedious, time-consuming, and made 27 

at a high cost. A modeling method that could predict these factors from easy-to-obtain 28 

information on each chemical would be of great value. Here, we present such a method, based 29 

on machine learning algorithms, that used molecular descriptors to predict two specific 30 

endpoints in continental freshwater for ecotoxicological and human impacts. The method 31 

shows good performances on a learning database. Then, predictions were derived from the 32 

validated model for compounds with missing toxicity/ecotoxicity factors. 33 

 34 

Graphical abstract:  35 

 36 
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1. Introduction 6 

 7 

Recent legislations such as the Registration, Evaluation, Authorization and restriction of 8 

Chemicals (REACH) regulation in the EU requires that manufacturers of substances and 9 

formulators register to provide eco/toxicological data for substances with volume higher than 10 

one metric ton per year. As an example, the U.S. Environmental Protection Agency (EPA) has 11 

more than 85,000 chemicals listed under the Toxic Substances Control Act (Hinds and Weller, 12 

2016). The needed information has to be equivalent to the standard information requirement 13 

and adequate to draw overall conclusions with respect to the regulatory endpoints 14 

classification and labeling. Beyond specific regulatory needs, the same questions concern 15 

chemical substances that came from various sources and are potentially present in the 16 

environment.  17 

 18 

To address the cause-effect relationships between the flow of molecules emitted by human 19 

activities and the consequences for ecosystems and humans, LCA offers a structured, 20 

operational, and standardized (Finkbeiner et al., 2006) methodological framework. Two main 21 

steps are at the core of this approach:  22 

 Quantification of the masses of substances emitted into the environment through the 23 

Life Cycle Inventory (LCI). While it is possible to rely on databases that facilitate this 24 

inventory work for the background of the system under study, this task must 25 

nevertheless be carried out on a case-by-case basis to represent all the specificities 26 

of the foreground elements. To best describe human activities, their specificities must 27 

be represented on a case-by-case basis. This is the task of the LCA practitioner. 28 

 Calculation of the impacts on ecosystems and human health of these emitted masses. 29 

Due to the complexity of environmental mechanisms, it is not possible to (re)model 30 

impact pathways on a case-by-case basis. Therefore, LCA uses characterization 31 
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factors (CF) that multiply the emitted masses to determine the impacts. They are not 1 

recalculated for each study but provided within a Life Cycle Impact Assessment (LCIA) 2 

method. 3 

 4 

For a given impact, the LCIA method designer refers to the knowledge of the scientific 5 

community to model the mechanisms involved. For human toxicity and freshwater ecotoxicity, 6 

USEtox (Rosenbaum et al., 2008), was developed by life cycle initiative under the United 7 

Nations Environmental Programme (UNEP) and the Society for Environmental Toxicology and 8 

Chemistry (SETAC) (Henderson et al. 2011) to produce a transparent and consensus 9 

characterization model. USEtox is also used for the European Product Environmental 10 

Footprint (PEF) (Saouter et al., 2020). This model gathers in one single characterization factor 11 

the chemical fate, the exposure, and the effect for each of the several thousands of organic 12 

and inorganic compounds. If the structure of this multimedia model is always the same, to 13 

determine the CF of a molecule, numerous physico-chemical parameters (such as solubility, 14 

hydrophobicity, degradability) and detailed toxicological and ecotoxicological data must be 15 

provided. For example, EC50 values for at least three species from three different trophic 16 

levels are required for the ecotoxocological effect factor. 17 

 18 

Over the past few decades, thousands of tests (in laboratory and field) have been carried out 19 

to evaluate the potential hazard effects of chemicals (He et al., 2017). Usually, toxicity testing 20 

has relied on in vivo animal models, which is extremely costly and time-consuming (Xia et al., 21 

2008). In recent years, under societal pressures, there has been a significant paradigm shift 22 

in toxicity testing of chemicals from traditional in vivo tests to less expensive and higher 23 

throughput in vitro methods (National Research Council, 2007). However, it is still extremely 24 

hard to test the number of existing and ever-increasing numbers of new chemicals, which 25 

leaves their impacts largely unknown. That’s why more computational models are needed to 26 

complement experimental approaches to decrease the experimental cost and determine the 27 

prioritization for those chemicals which may need further in vivo studies. Such models already 28 

exist, like QSAR models that are mostly linear models based on the chemical structure of 29 

compounds (Danish QSAR database (DTU, 2015), ECOSAR (Mayo-Bean et al., 2011), VEGA 30 

(Benfenati et al., 2013)) and are used to predict ecotoxicological data (LC50) needed for 31 

REACH for example. Recently, machine learning algorithms have been used to predict 32 

hazardous concentration 50% (HC50) based on 14 physico-chemical characteristics (Hou et 33 

al., 2020a) or on 691 more various variables (Hou et al., 2020b). In the case of USEtox, despite 34 

its wide use in LCA, it only offers characterization factors for approximately 3000 chemicals 35 

and even for this limited number of compounds, 19% of ecotoxicity CFs and 67% of human 36 

toxicity CFs are missing. The objective of this article is thus to propose a new way of 37 

calculating CFs using machine learning approaches to solve the problem of nonlinearity that 38 

could affect a linear QSAR method. This makes it possible, when the CFs are not determined 39 

due to lack of time or lack of data, to propose values based solely on easily identifiable 40 

molecular descriptors. Here, the main differences with the above-cited methods are twofold: 41 

first, our input variables are only molecular descriptors that could be easily collected for any 42 

newly available compounds; second, our output variables are directly the CFs that are closer 43 

to the endpoints than the HC/LC50.  44 

 45 

Indeed, the USEtox model results can be extended to determine endpoint effects expressed 46 

as disability-adjusted life years (DALY) for human health impacts and potentially disappeared 47 

fraction of species (PDF) for ecotoxicological impacts. The PDF represents an increase in the 48 
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fraction of species potentially disappearing as a consequence of emission in a compartment 1 

while the DALY represents an increase in adversely affected life years. These endpoints are 2 

now consensual at an international level (Verones et al., 2017).  These two specific endpoints 3 

will be studied in the present paper through the emission of compounds in continental 4 

freshwater and will be named CFET for ecotoxicological impacts and CFHT for human ones. For 5 

this aim, we rely on the Typol tool with associated molecular descriptors and classification tool 6 

(Servien et al., 2014). 7 

 8 

 9 

2. Materials & Methods 10 

2.1. USEtox database 11 

 12 

The last version of the USEtox database was downloaded, namely the corrective release 2.12 13 

(USEtox, 2020). The whole USEtox 2.12 database contains 3076 compounds.  14 

 15 

2.2. TyPol database 16 

 17 

We recently developed TyPol (Typology of Pollutants), a classification method based on 18 

statistical analyses combining several environmental parameters (i.e., sorption coefficient, 19 

degradation half-life, Henry constant) and an ecotoxicological parameter (bioconcentration 20 

factor BCF), and structural molecular descriptors (i.e., number of atoms in the molecule, 21 

molecular surface, dipole moment, energy of orbitals). Molecular descriptors are calculated 22 

using an in silico approach (combining Austin Model1 and Dragon software). In the present 23 

paper, we only extract and use the molecular descriptors from the TyPol database, as this 24 

information could be easily collected for any new compound. The 40 descriptors included in 25 

the TyPol database have been selected based on a literature review on QSAR equations used 26 

to predict the main environmental processes as degradation, sorption, volatilization. These 40 27 

descriptors were the ones most frequently used in the equations, meaning describing the best 28 

the behaviour of organic compounds in the environment. They are constitutional, geometric, 29 

topological, and quantum-chemical descriptors (see Table 1). For more details, we refer the 30 

interested reader to Servien et al. 2014. Now, TyPol includes 549 compounds, which are 31 

mainly pesticides and their transformation products (Benoit et al. 2017, Traoré et al. 2018). 32 

 33 
Table 1 – List of the 40 molecular descriptors in TyPol 34 

Category Molecular descriptors   

Constitutional Number of atoms Number of non-H 
atoms 

Number of hydrogen atoms 

 Number of hydrogen 
atoms 

Number of carbon 
atoms 

Number of nitrogen atoms 

 Number of oxygen 
atoms 

Number of phosphorus 
atoms 

Number of sulfur atoms 

 Number of fluorine 
atoms 

Number of chlorine 
atoms 

Number of halogen atoms 

 Number of bonds Number of non-H 
bonds 

Number of double bonds 

 Number of triple bonds Number of multiple 
bonds 

Number of rotatable bonds 

 Number of aromatic 
bonds 

Sum of conventional 
bond order 

Number of rings 

 Number of circuits Molecular weight 
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Geometric  Connolly molecular 
surface area 

  

Topological Connectivity index of 
order 0 

Connectivity index of 
order 1 

Connectivity index of order 2 

 Connectivity index of 
order 3 

Connectivity index of 
order 4 

Connectivity index of order 5 

 Valence connectivity 
index of order 0 

Valence connectivity 
index of order 1 

Valence connectivity index of 
order 2 

 Valence connectivity 
index of order 3 

Valence connectivity 
index of order 4 

Valence connectivity index of 
order 5 

Quantum-
chemical 

Polarizability Electric dipole moment HOMO energy 

 LUMO energy Total energy  

 1 
  2 
 3 

2.3. Machine learning methods 4 

 5 

To predict the CFs using the molecular descriptors we use three modelling methods combined. 6 

The first method is a linear well-known prediction method namely the Partial Least Squares 7 

(PLS) (Wold, 1985). It finds the multidimensional directions in the observable variable 8 

(molecular descriptor) space that explains the maximum multidimensional variance direction 9 

in the predicted variable (CF) space. That provides a linear regression model based on the 10 

observable variables to predict the predicted variable. We also choose to compare two non-11 

linear machine learning methods: the random forest (Breiman 2001) and the support vector 12 

machines (SVM) (Drucker et al. 1996). Random forests are a machine learning method, for 13 

classification or, in our case, regression, that operate by constructing a multitude of decision 14 

trees that uses a random subset of the training data and limits the number of variables used 15 

at each split and outputting the mean prediction (regression) of the individual trees. SVM 16 

constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional space in which 17 

the problem is linearly separable. 18 

 19 

These choices allow us to compare several ideas. The PLS is a simple linear method that will 20 

not exhibit good performances if the underlying relationship is not linear. The SVM and RF 21 

methods are well-known non-linear machine learning algorithms that used to show good 22 

results in this kind of problem (Hou et al., 2020a).  23 

 24 

All the models were computed in the freeware R (R core team, 2019). The PLS has been 25 

computed using the package mixOmics (Rohart et al., 2017), the random forests using the 26 

package randomForest (Liaw et al., 2002), and the SVM using the package e1071 (Meyer et 27 

al., 2019). These 3 modelling methods have some parameters that needed to be fixed: the 28 

number of latent components for the PLS (fixed using the tune.pls function), the number of 29 

variables randomly sampled as candidates at each split for the random forests (selected using 30 

the tune.randomForest function) and, for the SVM, the gamma parameter of the radial kernel 31 

and the cost of constraints violation (using the tune.svm function). All these different tune 32 

functions are based on cross-validation. 33 

 34 

2.4. Clustering-based model 35 

 36 
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A recent popular way to make predictions is to use a cluster-then-predict approach. That is, 1 

clustering is used for pre-classification which is to arrange a given collection of input patterns 2 

into natural meaningful clusters. Then, the clustering results are used to construct a predictor 3 

in each cluster. The main idea of the cluster-then-predict approach is that if the clustering 4 

performs well the prediction will be easier by modeling only similar compounds. If a new 5 

compound with no CFET and/or CFHT is investigated, the clustering can easily be applied to it 6 

before the prediction model itself. The cluster-then-predict approach has already been applied 7 

with success in various domains such as sentiment prediction (Sony et al., 2015), finance 8 

(Tsai et al., 2014), chemometrics (Minh Maï Le et al., 2018). So we decided to use the 9 

clustering given by the TyPol application (more details in Servien et al., 2014) based on the 10 

whole database and the molecular descriptors. Note that the TyPol clustering has already 11 

been shown relevant on various occasion: in combination with mass spectrometry to 12 

categorize tebuconazole products in soil (Storck et al., 2016), to explore the potential 13 

environmental behaviour of putative chlordecone transformation products (Benoit et al., 2017) 14 

or to classify pesticides with similar environmental behaviors (Traore et al., 2018). This 15 

clustering is given in Supplementary Figure S1. 16 

 17 

2.5. Comparison procedure 18 

 19 

To assess the performances of the different models we will use the following procedure: 20 

1. Split each cluster between a training set (85% of the dataset) and a test set (15%). 21 

The test set is not used for any step of the procedure (such as the imputation of the 22 

missing data, the calibration of the parameters …). 23 

2. Imputation of the NA values (less than 1%) in the descriptor matrix using the NIPALS 24 

algorithm (Wold, 1985). 25 

3. Tune the parameters and train the specific models on the training set. We have 3 global 26 

models to train (PLS, random forest, and SVM) and the cluster-then-test models (PLS, 27 

random forest and SVM for each cluster). 28 

4. Test the different models on the test set. Compute the absolute error. 29 

5. Back to step 1. 30 

 31 

For cluster 5, the 3 global models are the only ones available as we can’t define a cluster-32 

then-test model due to a lack of data. The whole algorithm is repeated 200 times. All the 33 

performances are compared in terms of absolute error. The absolute error is the absolute 34 

difference between the prediction and the true value. It has been shown to be the most natural 35 

and unambiguous measure of error (Willmott et Matsuura, 2005). For each cluster, we chose 36 

the model with the lowest median absolute error. 37 

 38 

Then, the best model is calibrated and computed on the whole cluster. Finally, it is applied to 39 

the compounds, according to their clusters, with a CFET (or a CFHT) equals to NA to provide a 40 

prediction. For the compounds in cluster 5, this best model cannot be a cluster-then-predict 41 

one and, by consequence, is a global one. A 95% prediction interval is also derived for each 42 

prediction. The type of model and its corresponding parameters are fixed during this process, 43 

according to the best model of the cluster. For example, if the best model of cluster 1 was the 44 

random forest approach, random forest models are used with the parameters optimized during 45 

the previous step. Then, we perform a leave-one-out bootstrap on the dataset that was used 46 

to compute the model (the whole dataset if the model is global, only the data lying in the 47 

dedicated cluster if that is a cluster-then-predict model) and a new model is computed on this 48 
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leave-one-out sample. A prediction is carried for each leave-one-out model and the 2.5% and 1 

97.5% quantile of these predictions are computed and considered as the prediction interval 2 

(Hou et al., 2020a). 3 

 4 

The five more important descriptors are then derived for each chosen model. For a random 5 

forest model, these descriptors are calculated using variable permutations (Breiman, 2001), 6 

for the SVM they are the descriptors with the higher coefficients in absolute value. 7 

 8 

3. Results 9 

 10 

3.1. Descriptive analysis of the intersection of the TyPol and the USEtox 11 

databases 12 

 13 

 As the objective of this proof-of-concept study is to predict USEtox CFET and CFHT using the 14 

molecular descriptors contained in TyPol, we could only use the compounds that are present 15 

in both databases. This results in 274 compounds that are detailed in Table S1 in 16 

supplementary material and the range of their CFET and CFHT values are summarized in the 17 

boxplots in Figures 1 and 2. Note that for the 274 common compounds there are 15 NA values 18 

for the CFET and 102 for the CFHT.  19 

 20 
Figure 1- Boxplots of the CFET for the USEtox database and the common molecules between 21 

the USEtox and the TyPol databases. This CFET is equal to the log10(PDF.m3.d.kg-1). 22 
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 1 
Figure 2 Boxplots of the CFHT for the USEtox database and the common molecules between 2 

the USEtox and the TyPol databases. This CFHT is equal to log10((DALY+ε).kg-1). The ε is 3 

needed as some values of the DALY are exactly equal to zero. ε has been chosen equal to 4 

1e-10 to be below the minimum of the USEtox database (5e-9). 5 

 6 

We could see on these two figures that the common compounds present higher CFET and 7 

CFHT values than the one of the complete USETox database: it focuses on the more 8 

dangerous compounds as their boxplots are above the USEtox counterparts. 9 

 10 

The Typol clustering focused on the common compounds is plotted in Supplementary Figure 11 

S2 and the boxplots of each molecular descriptor per cluster are given in Supplementary 12 

Figure S3 with different indicators in Table S2. We could see that they are clustered in 5 groups 13 

with different sizes (respectively 33 compounds in the first black cluster, 122 compounds in 14 

the second red cluster, 91 compounds in the third green cluster, 27 compounds in the fourth 15 

blue cluster, and one compound in the fifth brown cluster). Cluster 1 grouped compounds with 16 

a high number of aromatic bonds, double bonds, rotatable bonds, and multiple bonds. Cluster 17 

2 is an intermediate one between clusters 1 and 3, with less extreme values. Cluster 3 is made 18 

of compounds with the lowest molecular mass. Cluster 4 gathered compounds presenting a 19 
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high number of halogens, rings, and circuits. The unique compound in the fifth cluster is 1 

erythromycin (highest molecular mass and number of H and C, lowest number of rings) and, 2 

obviously, no cluster-then-predict model could be built for this cluster 3 

 4 

As a first analysis of the clustering given by TyPol, we could see in Figure 3 below the boxplots 5 

of the CFET and CFHT within the 5 clusters. 6 

 7 

 8 
Figure 3- Boxplot by cluster for the CFET and CFHT values. Note that the unique compound of 9 

Cluster 5 has no CFHT value. The size of the clusters and the numbers of NA are gathered in 10 

the legend. 11 

 12 

The predictions will be made difficult for the CFET of cluster 1 as it covers a wide range whereas 13 

it includes a relatively small number of compounds. On the contrary, cluster 3 covers a small 14 

range with no extreme values and includes a high number of compounds, for this cluster the 15 

cluster-then-predict approach could produce interesting results.  16 

 17 

3.2. Models and prediction of the CFET 18 

3.2.1. Performances of the machine learning methods 19 
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The methodology described in the previous section was applied to our dataset and gave the 1 

results gathered in Figure S4 for the global results and in Figure 4 for the results detailed on 2 

each cluster. 3 

 4 
 5 

Figure 4 - Performances of the different methods in terms of the log of the absolute error of 6 

the CFET with respect to the different clusters. In each cluster, the models are coloured from 7 

green (best) to red (worst) according to their median of the absolute error. 8 

 9 

The performances are not similar in each cluster. For example, performances of all methods 10 

for cluster 1 are very poor (median absolute error above 1) whereas performances for cluster 11 

4 seem good despite its smallest size (median absolute error around 0.6). So, a future 12 

prediction of an unknown compound which lies in cluster 1 will be less reliable than in other 13 

clusters. Note that we could not test this in the next section as no NA value is present in this 14 

cluster 1. 15 

 16 

The cluster-then-predict methods seem more appropriate in each cluster. The cluster-then-RF 17 

approach has the best performances (with a global median absolute error equals to 0.64 and 18 

the best performances on clusters 2 and 3), even if there is not a big difference between the 19 

different methods. The cluster-then-SVM is also the best method for the two clusters 1 and 4. 20 

The linear methods (PLS and cluster-then-PLS) have higher absolute errors but are 21 

competitive. The individual predictions of the best method in each cluster are reported in 22 

Figure S5. 23 

 24 

3.2.2. Prediction with the best model 25 

 26 

Then we apply the best model in each cluster: a cluster-then-predict approach using SVM for 27 

clusters 1 and 4 and using random forest for clusters 2 and 3. To compare the different models 28 

in each cluster and give an idea of what are the important molecular descriptors we provide 29 

the five most important molecular descriptors for each cluster in the following table.  30 
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 1 

Table 1- The five most important molecular descriptors for each best model for each cluster. 2 

The most important descriptors are in the first line of the table. 3 

Cluster 1: cluster-

then-SVM model 

Cluster 2: cluster-

then-RF model 

Cluster 3: cluster-

then-RF model 

Cluster 4: cluster-

then-SVM model 

HOMO energy 

Number of Chlorine 

atoms Number of triple bonds 

Number of double 

bonds 

Molecular surface area 

Number of halogen 

atoms Molecular mass 

Number of Nitrogen 

atoms 

Number of Sulfur 

atoms 

Number of Oxygen 

atoms 

Number of Phosphorus 

atoms HOMO energy 

Connectivity index chi-

5 Molecular mass 

Number of Oxygen 

atoms Number of triple bonds 

Connectivity index chi-

3 Number of bonds 

Number of halogen 

atoms Electric dipole moment 

 4 

We could see in this Table that the important molecular descriptors strongly differ from one 5 

cluster to another, highlighting the usefulness of the cluster-then-predict approaches. 6 

 7 

Then the models were used to predict the missing CFET of the common compounds between 8 

USEtox and TyPol databases. These values are by consequence new estimations of the CFET 9 

for compounds on which we have no information. The prediction intervals are relatively small: 10 

less than 0.5 log10 in a log scale which highlights the robustness of the estimation. They are 11 

given in Table S3. No NA value was present in cluster 1 with no prediction for this cluster. For 12 

cluster 2 gathering molecules with intermediate molecular mass, 9 CFET values were predicted 13 

for various kinds of compounds. One value concerns the antibiotic sulfamethazine and its 14 

value is quite near to the one of sulfamethoxazole and sulfadiazine of the same sulphonamide 15 

antibiotic family constituted of the sulphonamide group (-S(=O)2-NR2R3). Cluster 3 grouped 16 

compounds with the lowest molecular mass and the lowest median CFET like ibuprofen, 17 

phthalates, cresol constituted of monoaromatic ring substituted with methyl, carboxylic groups. 18 

The CFET prediction for acetylsalicylic acid seemed coherent with the value of the nearest 19 

compounds (herbicides mecoprop) of this group. Cluster 4 gathered compounds with the 20 

highest median CFET and that presented a high number of rings halogenated or not, like PAH 21 

and hormones. The 5 CFET predicted concerned 4 PAHs and 1 hormone. By comparison to 22 

the 2 other PAHs present in this cluster, the 4 predicted CFET are quite similar and higher. 23 

Concerning the prediction for the hormone, the CFET is intermediate between the CFET of the 24 

3 other hormones in the cluster. It seems that all these 5 predicted values are very closed, 25 

falling near the median value of this cluster.  26 

 27 

 28 

3.3. Models and prediction of the CFHT 29 

3.3.1. Performances of the methods 30 

 31 

Let us recall that we have more NA values for the CFHT (102) than for the CFET (15). The 32 

performances of the methods are illustrated in the following figure. 33 
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 1 
Figure 5- Performances of the different methods in terms of the log of the absolute error of 2 

the CFHT with respect to the different clusters. In each cluster, the models are coloured from 3 

green (best) to red (worst) according to their median of the absolute error. 4 

 5 

 6 

We observe that, despite its small size (11 compounds), the CFHT of the first cluster are well 7 

predicted (with the best performance for the cluster-then-RF approach). It could be explained 8 

by the small range of the CFHT values of this cluster, as illustrated on the boxplot in Figure 3. 9 

The performances of all the methods are comparable on clusters 2 and 3 where the best 10 

method is the SVM. Cluster 4 seems to be the more difficult to predict: all the methods have 11 

their worst results on this cluster and, if the SVM has an acceptable median absolute error of 12 

0.82, all the medians of the other methods are above 1.3. Global performances of the different 13 

methods are given in Supplementary Figure S6. 14 

 15 

3.3.2. Prediction with the best model 16 

 17 

The global SVM model was then calibrated and computed on the whole dataset. It was then 18 

used to predict the compound of clusters 2, 3, 4, and 5. Let us recall that there is a lonely 19 

molecule in cluster 5 and, as it has a NA value for its CFHT, the best global model (SVM) is 20 

used. For cluster 1, a cluster-then-RF model is computed. The more important descriptors of 21 

these two models are gathered in the following table.  22 

 23 

Table 2- Five most important molecular descriptors for each best model for each cluster. 24 

The most important descriptors are in the first line of the table. 25 

Cluster 1 : : cluster-then-RF model Cluster 2, 3, 4 and 5: SVM model 

Number of Fluorine atoms Number of halogen atoms 

Connectivity index chi-5 Electric dipole moment 
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Connectivity index chi-1 Number of double bonds 

Number of circuits Number of Chloride atoms 

Number of rings Number of Oxygen atoms 

 1 

Then, this model was used to predict the CFHT value for the 102 common compounds without 2 

a CFHT value. These predictions are reported in Supplementary Table S4. As for the CFET, the 3 

small width of the prediction interval (less than a log10 in a log scale) highlights the robustness 4 

of the approach even with a relatively small number like estimations made for compounds that 5 

lie in cluster 1. In this cluster 1, CFHT for a phthalate (DEHP) is already known, but the one for 6 

diisodecyl and diisononyl phthalate was predicted with value in the same range. The 3 cyclines 7 

(tetracycline, aureomycin, and oxytetracycline) present in cluster 1, presented also similar 8 

predicted CFHT. This was also the case for triclosan and triclocarban in cluster 2. Similar 9 

predicted and known CFHT were found for four herbicides from the substituted urea family 10 

(linuron, diuron, monolinuron, isoproturon) in cluster 3. Cluster 4 gathered a small number of 11 

molecules but with the highest median CFHT, the predicted CFHT of the organochlorine 12 

insecticide isodrin was similar to another congener of the same family, aldrin. 13 

 14 

4. Discussion 15 

 16 

It is a real and important challenge to provide characterization factors for a wide range of 17 

compounds. Obviously, it is expected that these new calculated factors have an acceptable 18 

margin of error. As reported in UNEP/SETAC (2019), it is commonly assumed that the 19 

uncertainty of the characterization factors can vary by approximately 2-3 orders of log-20 

magnitude (Rosenbaum et al. 2008) or significantly higher (up to 7 orders) if all sources of 21 

uncertainty are considered (Douziech et al. 2019). Using our methodology, we can exhibit a 22 

median absolute error of 0.62 log for the prediction of the CFET and 0.75 log for the prediction 23 

of the CFHT. These results are very promising as they are below the level of uncertainty 24 

commonly assumed and as they are based on molecular descriptors that could be easily 25 

obtained for each compound without ecotoxicity factor. Based on this fact we could already 26 

provide 15 new CFET and 102 new CFHT for the common molecules between USEtox and 27 

TyPol without a previous value. 28 

 29 

The idea of predicting ecotoxicity characterization factors for chemicals using machine 30 

learning algorithms has already been used (Hou et al., 2020a and 2020b). But, here, our 31 

findings go further. Indeed, we show that we could directly obtain accurate estimations of 32 

endpoint values from easy-to-obtain molecular descriptors. This will open the door to the fast 33 

characterization of each new unknown compound that appears, including transformation 34 

products. We also show that the cluster-then-predict approach can give better performances 35 

than the usual ones. This local approach confirms that local models could be an efficient 36 

prediction method when heterogeneity of data generates nonlinear relations between the 37 

response and the explicative variables (Lesnoff et al., 2020). 38 

 39 

5. Conclusion 40 

 41 

In a recent study, Aemig et al. (2021) studied the potential impacts on Human health and 42 

aquatic environment of the release of 286 micropollutants (organic and inorganic) at the scale 43 
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of France. One of their conclusion was that, due to a lack of characterization factors, these 1 

impacts could be assessed only for 1/3 of these molecules. This paper fills this gap by 2 

providing a new modeling method to derive characterization factors from easily obtainable 3 

molecular descriptors. By consequence, these missing characterization factors, as well as 4 

those of new molecules, could now be quickly estimated with an overall good precision. More 5 

generally, one of the key factors in the evaluation of toxicity and ecotoxicity in LCA lies in the 6 

construction of the characterization factors: a task requiring a large amount of data and a 7 

consequent investment of time. The use of machine learning allows us to go beyond these 8 

constraints. This makes it possible to obtain characterization factor values in a fast and simple 9 

way, which can be used as long as conventionally established CFs are not available. 10 
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1. Supplemental Figures 

 
Figure S1- Clustering based on molecular descriptors produced by TyPol on the 526 

molecules of the database. We represent here the two first axes of the PLS and the five 

different clusters in different colours. 

 

 



2 
 

 
Figure S2- Focus on the 274 common molecules of TyPol & USEtox. The cluster 5 in brown 

is reduced to a single molecule so the cluster-then-predict methodology cannot be applied for 

it. 
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Figure S3 – Boxplots of the 40 molecular descriptors for the clustering given by TyPol on the 

common compounds of TyPol & USEtox. 
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Figure S3 (continued) 
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Figure S3 (continued) 
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Figure S3 (continued) 
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Figure S3 (continued) 
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Figure S4- Performances of the different methods in terms of absolute error of the CFET. The 

models are coloured from green (best) to red (worst) according to their median of the 

absolute error. 
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Figure S5- Estimation of CFET according to the value in Usetox . The estimation is the 

median of the estimation made using the best method of the cluster during the comparison 

procedure. The bar represents the 5% and the 95% quantiles of these individual estimations.  
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Figure S6- Boxplots of the log of the absolute error for the CFHT estimation for the 6 different 

methods. The models are coloured from green (best) to red (worst) according to their median 

of the absolute error. 

 

2. Supplemental Tables 

 

Table S1- CAS number and name of the 274 common compounds between TyPol and USEtox 

databases and their associated CFET and CFHT values. NA means that the there is no value in 

USEtox for this compound. 

CAS Name CFHT CFET Cluster 

101-20-2 Triclocarban NA 6.79E+05 2 

101-21-3 Chlorpropham 9.60E-06 2.74E+03 3 

101-42-8 Fenuron NA 1.39E+03 3 

101200-48-0 Tribenuron-methyl 1.80E-05 3.39E+02 1 

101205-02-1 Cycloxydim NA 1.56E+02 2 
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1024-57-3 Heptachlor epoxide 0.81 3.17E+05 4 

102851-06-9 tau-Fluvalinate NA 4.28E+05 1 

103-90-2 Acetamide, n-(4-hydroxyphenyl) 1.00E-06 4.33E+01 3 

1031-07-08 Endosulfan sulfate NA 1.05E+05 4 

103361-09-7 Flumioxazin NA 2.38E+05 1 

104-40-5 P-nonylphenol NA 3.24E+04 2 

10540-29-1 Tamoxifen NA 4.40E+05 1 

105512-06-9 Clodinafop-propargyl NA 1.39E+04 2 

106-44-5 P-cresol NA 5.51E+02 3 

1071-83-6 Glyphosate 4.30E-07 1.60E+02 3 

107534-96-3 Tebuconazole 2.00E-05 3.43E+04 2 

108-62-3 Metaldehyde (tetramer) NA 1.23E+02 3 

110488-70-5 Dimethomorph NA 1.37E+03 1 

111479-05-1 Propaquizafop NA 6.71E+04 1 

111991-09-4 Nicosulfuron NA 3.25E+02 1 

114-07-08 Erythromycin NA 1.07E+04 5 

114369-43-6 Fenbuconazole 2.80E-05 5.87E+04 2 

115-29-7 Endosulfan 8.10E-05 2.97E+05 4 

116-06-03 Aldicarb 0.00028 2.35E+04 3 

117-81-7 Di-(2-ethylhexyl)-phthalate (DEHP) 4.10E-06 1.61E+02 1 

117-84-0 Di(n-octyl) phthalate NA 1.51E+01 1 

118-74-1 Hexachlorobenzene 0.0091 5.13E+04 3 

119446-68-3 Difenoconazole NA 6.43E+04 1 

0120-12-7 Anthracene 0.0029 1.51E+05 3 

120-72-9 Indole 0 2.95E+03 3 

120068-37-3 Fipronil 0.00089 1.08E+06 2 

121-75-5 Malathion 5.80E-07 3.11E+04 2 

1214-39-7 1h-purin-6-amine, n-(phenylmethyl)- NA 5.01E+02 2 

121552-61-2 Cga 219417 (cyprodinil) NA 1.40E+04 2 

122-14-5 Fenitrothion 8.80E-05 9.87E+04 2 

122-34-9 Simazine 7.50E-05 3.89E+04 3 
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12427-38-2 Maneb 1.20E-05 3.44E+04 3 

128639-02-1 Carfentrazone-ethyl NA 1.17E+05 2 

129-00-0 Pyrene 0.00047 6.47E+05 2 

131-11-3 Dimethylphthalate (DMP) NA 8.35E+01 3 

131341-86-1 Fludioxonil NA 4.94E+04 2 

131860-33-8 Azoxystrobin NA 3.85E+04 1 

13194-48-4 O-ethyl s,s-dipropyl phosphorodithioate 0.00049 1.06E+05 2 

133-06-02 Captan 7.60E-06 4.24E+04 2 

133-07-03 Folpet 4.80E-06 5.58E+05 2 

135158-54-2 Cga 245704 NA 9.02E+03 3 

13684-56-5 Desmedipham NA 4.23E+04 2 

13684-63-4 Phenmedipham 1.30E-06 2.10E+04 2 

137-26-8 Thiram 1.20E-05 2.90E+05 3 

138261-41-3 Imidacloprid 6.80E-06 1.60E+03 2 

140-66-9 P-(1,1,3,3-tetramethylbutyl)phenol NA 1.74E+04 2 

142459-58-3 Fluthiamide NA 8.71E+04 2 

143-50-0 Kepone 0.042 5.95E+05 4 

143390-89-0 Bas 490f 1.20E-06 8.18E+04 2 

14698-29-4 Oxolinic acid 6.50E-06 1.09E+05 2 

148-79-8 Thiabendazole 3.70E-06 1.70E+04 3 

15299-99-7 

N,n-diethyl-2-(1-

naphthalenyloxy)propanamide 1.90E-06 1.96E+03 2 

15307-86-5 Diclofenac 0.00043 9.72E+02 2 

15545-48-9 Chlortoluron NA 1.34E+03 3 

1563-38-8 Carbofuran phenol NA 2.57E+03 3 

1563-66-2 Carbofuran 1.00E-04 5.61E+04 2 

15687-27-1 Ibuprofen 0 1.17E+02 3 

1570-64-5 2-methyl-4-chlorophenol NA 3.64E+03 3 

1582-09-08 Trifluralin 9.30E-05 5.38E+04 2 

15972-60-8 Alachlor NA 3.81E+04 2 

16118-49-3 Carbetamide NA 1.08E+03 2 
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16672-87-0 Ethephon 1.40E-05 6.80E+02 3 

1689-84-5 Bromoxynil 8.80E-06 8.23E+03 3 

1689-99-2 Bromoxynil octanoate 5.10E-06 9.27E+04 2 

1698-60-8 Chloridazon NA 4.65E+03 3 

1702-17-6 3,6-dichloropicolinic acid NA 4.55E+02 3 

173584-44-6 Dpx-mp062 NA 7.78E+04 1 

1746-01-06 2,3,7,8-TetraCDD 1.70E+03 4.72E+06 2 

1746-81-2 Monolinuron NA 9.65E+03 3 

1897-45-6 Chlorothalonil 1.00E-05 5.72E+05 3 

19044-88-3 Oryzalin 3.10E-06 1.10E+05 2 

191-24-2 Benzo[g,h,i]perylene 0.00073 NA 4 

1912-24-9 Atrazine 5.40E-05 4.37E+04 3 

1918-00-9 Dicamba 6.30E-06 9.43E+02 3 

1918-02-1 Picloram 2.00E-06 1.59E+03 3 

1918-16-7 Propachlor 4.40E-06 3.72E+04 3 

1929-77-7 Vernolate 1.50E-05 2.20E+03 3 

193-39-5 Indeno[1,2,3-cd]-pyrene 0.019 NA 4 

19666-30-9 Oxadiazon 0.00075 3.20E+05 2 

205-99-2 Benzo[b]fluoranthene 0.081 NA 4 

2050-68-2 PCB-15 NA 2.74E+04 3 

2051-60-7 PCB-1 NA 2.05E+03 3 

2051-61-8 PCB-2 NA 1.55E+03 3 

206-44-0 Fluoranthene 0.001 5.70E+04 2 

207-08-09 Benzo[k]fluoranthene 0.035 NA 4 

21087-64-9 Metribuzin 4.20E-06 4.73E+03 3 

21725-46-2 Cyanazine 0.00043 4.28E+04 3 

218-01-09 Chrysene 0.013 NA 2 

22071-15-4 Ketoprofen 0 NA 2 

2303-16-4 Diallate 0.00021 2.25E+03 3 

2303-17-5 Triallate 4.30E-05 9.34E+03 2 

23103-98-2 Pirimicarb 6.90E-06 8.24E+02 2 
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2312-35-8 Propargite 1.00E-04 7.21E+04 2 

23135-22-0 Oxamyl 1.10E-05 8.09E+03 3 

23564-05-08 Thiophanate-methyl 4.70E-06 3.64E+03 2 

2385-85-5 Mirex 0.024 8.59E+02 4 

23950-58-5 Pronamide 3.70E-05 2.15E+03 2 

197143 Dodine 4.40E-07 8.51E+03 2 

24579-73-5 Propamocarb 1.40E-06 8.27E+01 3 

25057-89-0 Bentazone 3.30E-06 1.00E+02 2 

25812-30-0 Gemfibrozil 3.60E-05 NA 2 

26225-79-6 Ethofumesate NA 1.96E+03 2 

26761-40-0 Diisodecyl phthalate NA 1.30E+00 1 

26787-78-0 Amoxicillin NA 5.28E+06 1 

27304-13-8 Oxychlordane NA 7.16E+04 4 

27314-13-2 Norflurazon 4.10E-06 2.54E+04 2 

28553-12-0 Diisononyl phthalate NA 9.50E+00 1 

2921-88-2 Chloropyrifos 0.0012 3.12E+06 2 

297-78-9 Isobenzan 0 8.14E+04 4 

298-46-4 Carbamazepine 6.30E-06 3.90E+02 2 

3060-89-7 Metobromuron NA 6.72E+02 3 

309-00-2 Aldrin 0.033 1.34E+05 4 

32809-16-8 Procymidone 3.30E-06 4.51E+02 2 

330-54-1 Diuron 1.80E-05 3.00E+04 3 

330-55-2 Linuron 9.90E-05 9.93E+04 3 

33284-50-3 PCB-7 NA 2.21E+04 3 

333-41-5 Diazinon 0.00042 9.26E+04 2 

3337-71-1 Asulam 2.20E-06 1.08E+02 3 

3347-22-6 Dithianone 1.40E-05 2.12E+04 2 

33629-47-9 Butralin NA 9.85E+04 2 

3380-34-5 5-chloro-2-(2,4-dichlorophenoxy)phenol NA 6.60E+04 2 

34014-18-1 Tebuthiuron 4.10E-06 6.35E+03 3 

34123-59-6 Isoproturon NA 5.78E+04 3 
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34256-82-1 Acetochlor NA 3.38E+04 2 

34883-43-7 2,4'-dichlorobiphenyl NA 2.52E+04 3 

35554-44-0 Imazalil base 2.50E-05 8.14E+03 2 

36734-19-7 Rovral (Iprodione) 2.30E-05 3.11E+04 2 

3739-38-6 M-phenoxybenzoic acid NA 2.31E+02 2 

39148-24-8 Fosetyl-aluminium 3.30E-07 7.45E+02 2 

40321-76-4 1,2,3,7,8-pentachlorodibenzo-p-dioxin NA 5.71E+08 4 

40487-42-1 Pendimethalin 1.60E-06 2.29E+05 2 

41394-05-02 Metamitron NA 2.49E+02 3 

41483-43-6 Bupirimate NA 8.41E+03 2 

41859-67-0 Bezafibrate 3.00E-05 6.43E+02 2 

42835-25-6 Flumequine NA 4.33E+03 2 

42874-03-03 Oxyfluorfen 0.002 3.19E+04 2 

439-14-5 Diazepam 0 NA 2 

443-48-1 Metronidazole 3.80E-06 8.07E+01 3 

465-73-6 Isodrin NA 6.08E+05 4 

481-39-0 5-hydroxy-1,4-naphthoquinone NA 4.60E+04 3 

50-28-2 Estradiol 0 1.12E+08 4 

50-29-3 p,p'-DDT 0.0065 1.39E+05 2 

50-32-8 Benzo[a]pyrene 0.032 8.44E+03 4 

50-78-2 Acetylsalicylic acid 0 NA 3 

51-03-6 Piperonyl butoxide 1.80E-05 2.06E+04 2 

51207-31-9 2,3,7,8-TetraCDF NA 4.45E+08 2 

51218-45-2 Metolachlor 3.30E-06 3.35E+04 2 

51338-27-3 Diclofop-methyl NA 6.48E+04 2 

51481-61-9 Cimetidine 0 NA 2 

518-47-8 Fluorescein sodium NA 1.09E+01 2 

52315-07-08 Cypermethrin 1.10E-05 2.51E+07 1 

52645-53-1 Permethrin 4.10E-06 5.88E+05 1 

52888-80-9 Prosulfocarb NA 1.55E+04 2 

52918-63-5 Deltamethrin 2.00E-05 1.72E+06 1 
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53-16-7 Estrone NA 1.18E+04 4 

53-70-3 Dibenz(a,h)anthracene 0.14 3.05E+03 4 

53112-28-0 Pyrimethanil NA 1.70E+03 3 

54-31-9 Furosemide 3.70E-06 NA 2 

55179-31-2 Bitertanol 9.30E-05 8.11E+03 2 

55219-65-3 Triadimenol 1.50E-05 2.85E+03 2 

55335-06-03 Triclopyr NA 2.43E+03 3 

555-37-3 Neburon NA 2.68E+04 2 

5598-13-0 Chlorpyrifos methyl 0.0012 3.64E+05 2 

56-38-2 Parathion 0.00011 3.40E+06 2 

56-55-3 Benz[a]anthracene 0.0086 6.77E+05 2 

563-12-2 Ethion 0.0013 1.05E+05 4 

57-41-0 Phenytoin 3.30E-05 NA 2 

57-62-5 Aureomycin NA 4.33E+02 1 

57-63-6 Ethinyl estradiol 0.0079 1.57E+06 4 

57-68-1 Sulfamethazine 1.20E-06 NA 2 

57-74-9 Chlordane 0.12 9.17E+04 4 

57653-85-7 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin NA 1.52E+06 4 

57837-19-1 Metalaxyl 1.60E-06 4.78E+02 2 

57966-95-7 Cymoxanil NA 5.45E+03 3 

58-08-2 Caffeine 0 3.49E+04 3 

58-14-0 Pyrimethamine 0 2.98E+03 2 

58-89-9 Gamma-HCH (lindane) 0.0012 1.44E+05 3 

5915-41-3 Terbuthylazine NA 2.36E+05 3 

5989-27-5 D-limonene 4.80E-06 1.45E+02 3 

60-51-5 Dimethoate 1.10E-05 8.95E+03 3 

60-54-8 Tetracycline NA 1.25E+02 1 

60-57-1 Dieldrin 0.15 3.10E+05 4 

60168-88-9 Fenarimol 0.00012 1.73E+04 2 

60207-90-1 Propiconazole 4.10E-05 1.11E+04 2 

608-73-1 1,2,3,4,5,6-hexachlorocyclohexane 0.00077 6.99E+04 3 



17 
 

61-82-5 Amitrole 7.00E-05 4.90E+02 3 

61213-25-0 Flurochloridone NA 1.05E+04 2 

62-73-7 Dichlorvos 0.00041 3.62E+05 3 

62924-70-3 Flumetralin NA 4.81E+05 1 

63-25-2 Carbaryl 9.50E-05 2.29E+04 3 

64-19-7 Acetic acid NA 2.50E+01 3 

64902-72-3 Chlorsulfuron 7.80E-06 6.12E+03 2 

66215-27-8 Cyromazine 2.10E-05 1.56E+03 3 

66246-88-6 Penconazole 0.00013 8.39E+03 2 

67129-08-02 Metazachlor NA 3.72E+03 2 

67375-30-8 alpha-Cypermethrin 1.40E-05 1.75E+07 1 

67564-91-4 Fenpropimorph NA 5.89E+03 2 

67747-09-05 Prochloraz 0.0027 1.96E+05 2 

68-35-9 Sulfadiazine NA 5.87E+03 2 

68359-37-5 Cyfluthrin 3.80E-05 2.44E+08 1 

69-53-4 Ampicillin NA 1.53E+02 2 

69377-81-7 Fluroxypyr NA 1.46E+03 3 

70630-17-0 Metalaxyl-M NA 1.08E+03 2 

7085-19-0 Mecoprop 3.80E-05 4.31E+02 3 

709-98-8 Propanil 1.20E-05 2.07E+05 3 

72-20-8 Endrin 0.019 5.90E+06 4 

72-33-3 Mestranol 0 NA 4 

72-54-8 DDD 0.35 1.36E+06 2 

72-55-9 p,p'-DDE 0.0042 3.51E+05 2 

723-46-6 Sulfamethoxazole 1.30E-06 2.35E+03 2 

731-27-1 Tolyfluanide NA 1.80E+05 2 

732-11-6 Phosmet 2.20E-05 6.91E+05 2 

73334-07-03 Iopromide 6.40E-07 1.20E+01 1 

73590-58-6 Omeprazole 1.30E-05 NA 2 

738-70-5 Trimethoprim 7.50E-06 4.98E+02 2 

74070-46-5 Aclonifen NA 3.31E+05 2 



18 
 

74223-64-6 Metsulfuron-methyl 1.60E-06 1.07E+04 2 

759-94-4 Eptc 6.20E-06 8.54E+02 3 

76-44-8 Heptachlor 0.021 6.73E+04 4 

77732-09-03 Oxadixyl NA 7.93E+01 2 

79-57-2 Oxytetracylcine NA 6.81E+03 1 

79-94-7 

2,2-bis(4-hydroxy-3,5-

dibromophenyl)propane NA 3.09E+04 2 

79127-80-3 Fenoxycarb NA 1.65E+04 2 

79277-27-3 Harmony 3.10E-05 6.43E+04 2 

79622-59-6 Fluazinam NA 3.45E+05 1 

80-05-7 4,4'-Isopropylidenediphenol 3.00E-06 4.18E+03 2 

8001-35-2 Toxaphene  0.23 5.27E+05 4 

8018-01-7 Mancozeb 5.80E-06 2.63E+04 3 

80844-07-01 Etofenprox 0.0011 2.11E+02 1 

81-81-2 Warfarin 0.0011 2.70E+02 2 

81777-89-1 Clomazone NA 3.89E+03 2 

82558-50-7 Isoxaben 1.80E-05 2.72E+04 2 

82657-4-3 Bifenthrin 0.00034 3.29E+06 1 

83-79-4 Rotenone 0.00012 2.16E+05 1 

83164-33-4 Diflufenican NA 8.48E+02 1 

0834-12-8 Ametryne NA 3.80E+04 3 

84-66-2 Diethylphthalate (DEP) 3.70E-08 2.11E+02 3 

84-74-2 Dibutylphthalate (DBP) 3.20E-07 3.16E+03 2 

85-01-8 Phenanthrene 0.00039 8.21E+03 3 

85-41-6 Phthalimide NA 4.21E+02 3 

85-68-7 Butyl benzyl phthalate 7.70E-07 2.83E+03 2 

86-50-0 Methyl azinphos 8.40E-05 2.69E+05 2 

86-73-7 Fluorene 7.70E-05 1.80E+03 3 

86-87-3 Naphthaleneacetic acid 0 6.43E+01 3 

87-51-4 Indole-3-acetic acid 0 4.60E+02 3 

87-86-5 Pentachlorophenol 0.00038 4.53E+04 3 

87392-12-9 S-Metolachlor NA 5.72E+04 2 
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87674-68-8 Dimethenamid NA 7.02E+04 2 

88-99-3 O-phthalic acid NA 2.60E+02 3 

886-50-0 Terbutryn 0.00063 3.22E+04 3 

88671-89-0 Myclobutanil 6.30E-06 1.49E+04 2 

90-43-7 2-Phenylphenol 4.10E-06 4.55E+03 3 

9006-42-2 Metiram 4.90E-07 1.03E+03 3 

90717-03-06 Quinmerac NA 2.49E+02 2 

91465-08-06 Lambda-cyhalothrin NA 6.93E+07 1 

92-52-4 Biphenyl 6.80E-07 1.10E+03 3 

93106-60-6 Enrofloxacin NA 1.69E+06 1 

94-74-6 2-Methyl-4-chlorophenoxyacetic acid 6.80E-05 9.40E+02 3 

94-75-7 2-(2,4-dichlorophenoxy)acetic acid 1.60E-05 4.30E+02 3 

94-82-6 2,4-DB 9.50E-06 6.92E+02 3 

94125-34-5 Prosulfuron NA 9.07E+04 1 

94361-06-05 Cyproconazole NA 2.30E+03 2 

95-48-7 o-cresol 5.40E-07 2.96E+02 3 

95-76-1 3,4-Dichloroaniline NA 5.24E+03 3 

97-23-4 Phenol,2,2'-methylenebis 4-chloro NA 3.02E+04 2 

98-86-2 Acetophenone 4.50E-08 3.63E+01 3 

99-30-9 2,6-dichloro-4-nitroaniline 1.00E-05 8.25E+03 3 

99607-70-2 Cloquintocet-mexyl NA 7.00E+03 2 

999-81-5 Chlormequat chloride 0 8.83E+01 3 

 

 

Table S2 - Summary of the descriptors included in the whole TyPol database (in the first three 

columns) and for the 274 compounds common between TyPol and UseTox databases (in the 

last three columns) 

Descriptors TyPol TyPol & UseTox 

 Min global Max global Nb NA (%) Min commun 

Max 

commun Nb NA (%) 

Connectivity index 

chi-0 3.58 44.67 1.09 3.58 38.96 1.46 
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Connectivity index 

chi-1 1.73 29.5 0.18 1.73 23.43 0 

Connectivity index 

chi-2 1.73 27.87 1.09 1.73 23.46 1.46 

Connectivity index 

chi-3 0 24.49 0.18 0 19.66 0 

Connectivity index 

chi-4 0 20.34 1.09 0 14.47 1.46 

Connectivity index 

chi-5 0 16.52 1.09 0 11.81 1.46 

Electric dipole 

moment -8.8 24.14 0.18 -8.8 15.19 0 

HOMO energy -15.04 -0.26 0.18 -15.04 -1.81 0 

LUMO energy -9.96 8.47 0.18 -4.38 4.63 0 

Molecular mass 16 873.2 0 16 791.12 0 

Molecular surface 

area (Connolly) 0 698.85 0 0 560.27 0 

Number of Carbon 

atoms 2 48 0 2 37 0 

Number of Chlorine 

atoms 0 12 0 0 12 0 

Number of Fluorine 

atoms 0 6 0 0 6 0 

Number of 

Hydrogen atoms 0 116 0 0 67 0 

Number of Nitrogen 

atoms 0 44 0 0 44 0 

Number of Oxygen 

atoms 0 15 0 0 13 0 

Number of 

Phosphorus atoms 0 3 0 0 3 0 

Number of Sulfur 

atoms 0 4 0 0 4 0 

Number of aromatic 

bonds 0 27 0.18 0 27 0 
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Number of atoms 8 134 0 8 118 0 

Number of bonds 4 140 0.18 7 113 0 

Number of circuits 0 47 0.18 0 47 0 

Number of double 

bonds 0 10 0.18 0 6 0 

Number of halogen 

atoms 0 12 0 0 12 0 

Number of multiple 

bonds 0 27 0.18 0 27 0 

Number of non-H 

atoms 4 62 0 4 51 0 

Number of non-H 

bonds 2 68 0.18 3 46 0 

Number of rings 0 7 0.18 0 6 0 

Number of 

rotatable bonds 0 28 0.18 0 20 0 

Number of triple 

bonds 0 3 0.18 0 2 0 

Polarizability 5.13 94.85 0.18 5.13 75.99 0 

Sum of 

conventional bond 

order 0 74 0.18 0 55 0 

Total energy -11625.4 5030.03 0.18 -10037.4 -952.91 0 

Valence 

connectivity index 

chi-0 2.36 38.22 1.09 2.36 32.94 1.46 

Valence 

connectivity index 

chi-1 0.93 22.86 1.09 0.93 18.49 1.46 

Valence 

connectivity index 

chi-2 0.52 18.96 1.09 0.52 16.47 1.46 

Valence 

connectivity index 

chi-3 0 17.47 1.09 0 17.29 1.46 
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Valence 

connectivity index 

chi-4 0 15.94 1.09 0 15.9 1.46 

 

 

Table S3- Predicted CFET for the common compounds of the two databases with NA CFET in 

USEtox. The unit is the USEtox one. 

CAS Name Cluster 

Predicted 

CFET 

Lower bound of the 

prediction intervals 

Upper bound of the 

prediction intervals 

191-24-2 Benzo[g,h,i]perylene 4 176978 164318 187562 

193-39-5 

Indeno[1,2,3-cd]-

pyrene 4 176978 164318 187562 

205-99-2 Benzo[b]fluoranthene 4 176846 164198 187499 

207-08-9 Benzo[k]fluoranthene 4 176896 164244 187523 

218-01-9 Chrysene 2 25996 14315 28110 

22071-15-4 Ketoprofen 2 5318 4395 6023 

25812-30-0 Gemfibrozil 2 13174 12189 16126 

439-14-5 Diazepam 2 4687 4545 7272 

50-78-2 Acetylsalicylic acid 3 451 399 542 

51481-61-9 Cimetidine 2 5371 4304 5863 

54-31-9 Furosemide 2 23463 20978 30042 

57-41-0 Phenytoin 2 4109 2941 4368 

57-68-1 Sulfamethazine 2 5177 4826 6983 

72-33-3 Mestranol 4 178155 165342 188398 

73590-58-6 Omeprazole 2 6781 4992 7587 

 

Table S4- Predicted CFHT for the common compounds without a CFHT value. The predicted 

CFHT are rounded at two decimal digits (in USEtox unit). 

CAS Name Cluster 

Predicted 

CFHT 

Lower bound for the 

prediction intervals 

Upper bound for the 

prediction intervals 

101-20-2 Triclocarban 2 2.3E-04 2.0E-04 2.4E-04 

101-42-8 Fenuron 3 2.5E-05 1.9E-05 3.2E-05 

101205-02-1 Cycloxydim 2 8.6E-06 6.9E-06 1.2E-05 

102851-06-9 tau-Fluvalinate 1 4.7E-05 3.1E-05 1.1E-04 

1031-07-08 Endosulfan sulfate 4 1.4E-03 1.1E-03 1.6E-03 
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103361-09-7 Flumioxazin 1 2.1E-05 1.7E-05 2.7E-05 

104-40-5 P-nonylphenol 2 3.7E-06 3.2E-06 5.3E-06 

10540-29-1 Tamoxifen 1 1.0E-04 2.3E-05 1.1E-04 

105512-06-9 Clodinafop-propargyl 2 4.9E-05 4.3E-05 5.6E-05 

106-44-5 P-cresol 3 1.7E-06 1.2E-06 2.1E-06 

108-62-3 

Metaldehyde 

(tetramer) 3 5.5E-06 4.8E-06 6.7E-06 

110488-70-5 Dimethomorph 1 2.0E-05 1.5E-05 2.8E-05 

111479-05-1 Propaquizafop 1 2.9E-05 1.8E-05 6.2E-05 

111991-09-4 Nicosulfuron 1 2.7E-05 1.9E-05 2.9E-05 

114-07-08 Erythromycin 5 1.8E-04 1.5E-04 2.2E-04 

117-84-0 Di(n-octyl) phthalate 1 9.9E-06 7.7E-06 2.4E-05 

119446-68-3 Difenoconazole 1 3.3E-05 2.0E-05 4.3E-05 

1214-39-7 

1h-purin-6-amine, n-

(phenylmethyl) 2 6.2E-06 5.5E-06 7.7E-06 

121552-61-2 

Cga 219417 

(Cyprodinil) 2 2.0E-05 1.8E-05 2.4E-05 

128639-02-1 Carfentrazone-ethyl 2 8.3E-05 6.6E-05 9.9E-05 

131-11-3 

Dimethylphthalate 

(DMP) 3 2.0E-06 1.9E-06 2.2E-06 

131341-86-1 Fludioxonil 2 1.7E-05 1.5E-05 2.0E-05 

131860-33-8 Azoxystrobin 1 7.0E-05 3.6E-05 8.2E-05 

135158-54-2 Cga 245704 3 2.1E-06 2.0E-06 2.5E-06 

13684-56-5 Desmedipham 2 1.0E-05 9.9E-06 1.2E-05 

140-66-9 

P-(1,1,3,3-

tetramethylbutyl)phe

nol 2 3.9E-06 3.2E-06 5.4E-06 

142459-58-3 Fluthiamide 2 2.9E-05 2.3E-05 3.3E-05 

15545-48-9 Chlortoluron 3 6.4E-06 5.7E-06 7.2E-06 

1563-38-8 carbofuran phenol 3 3.0E-06 2.5E-06 3.8E-06 

1570-64-5 

2-methyl-4-

chlorophenol 3 9.8E-07 7.9E-07 1.3E-06 

15972-60-8 Alachlor 2 7.0E-06 6.4E-06 9.3E-06 
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16118-49-3 Carbetamide 2 2.5E-06 2.3E-06 2.9E-06 

1698-60-8 Chloridazon 3 6.4E-06 5.9E-06 7.3E-06 

1702-17-6 

3,6-dichloropicolinic 

acid 3 5.4E-06 4.9E-06 6.1E-06 

173584-44-6 Dpx-mp062 1 4.6E-05 2.7E-05 1.0E-04 

1746-81-2 Monolinuron 3 4.8E-06 4.4E-06 5.4E-06 

2050-68-2 PCB-15 3 7.5E-05 5.8E-05 8.6E-05 

2051-60-7 PCB-1 3 1.4E-05 1.2E-05 1.7E-05 

2051-61-8 PCB-2 3 1.4E-05 1.1E-05 1.6E-05 

26225-79-6 Ethofumesate 2 6.1E-06 5.5E-06 7.4E-06 

26761-40-0 Diisodecyl phthalate 1 1.2E-05 8.1E-06 4.0E-05 

26787-78-0 Amoxicillin 1 1.5E-05 1.2E-05 2.3E-05 

27304-13-8 Oxychlordane 4 4.6E-02 4.1E-02 4.9E-02 

28553-12-0 Diisononyl phthalate 1 1.5E-05 1.0E-05 4.5E-05 

3060-89-7 Metobromuron 3 8.5E-06 7.9E-06 9.2E-06 

33284-50-3 PCB-7 3 5.2E-05 4.1E-05 6.0E-05 

33629-47-9 Butralin 2 2.3E-06 2.2E-06 2.8E-06 

3380-34-5 

5-chloro-2-(2,4-

dichlorophenoxy)phe

nol 2 2.2E-04 1.8E-04 2.4E-04 

34123-59-6 Isoproturon 3 3.2E-06 2.8E-06 3.9E-06 

34256-82-1 Acetochlor 2 6.8E-06 6.1E-06 9.1E-06 

34883-43-7 2,4'-dichlorobiphenyl 3 4.8E-05 3.8E-05 5.5E-05 

3739-38-6 

M-phenoxybenzoic 

acid 2 6.5E-04 5.2E-04 7.3E-04 

40321-76-4 

1,2,3,7,8-

pentachlorodibenzo-

p-dioxin 4 1.3E-02 1.1E-02 1.4E-02 

41394-05-02 Metamitron 3 4.0E-06 3.6E-06 4.7E-06 

41483-43-6 Bupirimate 2 3.6E-06 3.4E-06 4.4E-06 

42835-25-6 Flumequine 2 1.1E-05 9.9E-06 1.3E-05 

465-73-6 Isodrin 4 1.7E-02 1.4E-02 1.8E-02 
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481-39-0 

5-hydroxy-1,4-

naphthoquinone 3 2.8E-06 2.4E-06 3.2E-06 

51207-31-9 2,3,7,8-TetraCDF 2 3.4E-03 2.8E-03 3.8E-03 

51338-27-3 Diclofop-methyl 2 6.7E-05 5.9E-05 7.4E-05 

518-47-8 Fluorescein sodium 2 2.3E-04 2.0E-04 2.6E-04 

52888-80-9 Prosulfocarb 2 4.6E-06 4.1E-06 6.1E-06 

53-16-7 Estrone 4 7.1E-05 5.9E-05 9.1E-05 

53112-28-0 Pyrimethanil 3 8.3E-06 6.9E-06 1.0E-05 

55335-06-03 Triclopyr 3 2.4E-05 2.2E-05 2.8E-05 

555-37-3 Neburon 2 1.1E-05 9.8E-06 1.2E-05 

57-62-5 Aureomycin 1 2.9E-05 2.0E-05 8.7E-05 

57653-85-7 

1,2,3,6,7,8-

hexachlorodibenzo-p-

dioxin 4 3.0E-02 2.3E-02 3.2E-02 

57966-95-7 Cymoxanil 3 4.2E-06 3.9E-06 4.5E-06 

5915-41-3 Terbuthylazine 3 5.9E-06 5.3E-06 6.8E-06 

60-54-8 Tetracycline 1 2.9E-05 2.1E-05 8.3E-05 

61213-25-0 Flurochloridone 2 7.4E-05 6.5E-05 8.6E-05 

62924-70-3 Flumetralin 1 3.4E-05 2.0E-05 3.9E-05 

64-19-7 Acetic acid 3 4.7E-06 3.2E-06 5.4E-06 

67129-08-02 Metazachlor 2 1.4E-05 1.3E-05 1.6E-05 

67564-91-4 Fenpropimorph 2 1.1E-05 9.4E-06 1.6E-05 

68-35-9 Sulfadiazine 2 2.6E-06 2.4E-06 3.0E-06 

69-53-4 Ampicillin 2 1.2E-05 1.1E-05 1.4E-05 

69377-81-7 Fluroxypyr 3 1.8E-05 1.6E-05 2.1E-05 

70630-17-0 Metalaxyl-M 2 2.9E-06 2.6E-06 3.7E-06 

731-27-1 Tolyfluanide 2 2.9E-05 2.5E-05 3.1E-05 

74070-46-5 Aclonifen 2 7.6E-06 7.1E-06 8.7E-06 

77732-09-03 Oxadixyl 2 2.6E-06 2.4E-06 3.0E-06 

79-57-2 Oxytetracylcine 1 2.5E-05 2.0E-05 8.0E-05 
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79-94-7 

2,2-bis(4-hydroxy-3,5-

Dibromophenyl)propa

ne 2 8.0E-04 6.0E-04 8.9E-04 

79127-80-3 Fenoxycarb 2 8.1E-06 7.6E-06 9.8E-06 

79622-59-6 Fluazinam 1 4.7E-05 2.8E-05 6.0E-05 

81777-89-1 Clomazone 2 1.4E-06 1.2E-06 1.8E-06 

83164-33-4 Diflufenican 1 5.7E-05 2.9E-05 6.4E-05 

834-12-8 Ametryne 3 6.7E-06 6.3E-06 7.9E-06 

85-41-6 Phthalimide 3 1.6E-06 1.4E-06 1.9E-06 

87392-12-9 S-Metolachlor 2 8.6E-06 7.7E-06 1.2E-05 

87674-68-8 Dimethenamid 2 9.8E-06 8.9E-06 1.2E-05 

88-99-3 O-phthalic acid 3 1.9E-06 1.8E-06 2.1E-06 

90717-03-06 Quinmerac 2 4.5E-06 4.3E-06 5.2E-06 

91465-08-06 Lambda-cyhalothrin 1 6.8E-05 2.9E-05 9.0E-05 

93106-60-6 Enrofloxacin 1 1.9E-05 1.4E-05 2.6E-05 

94125-34-5 Prosulfuron 1 2.9E-05 1.9E-05 3.3E-05 

94361-06-05 Cyproconazole 2 1.4E-05 1.4E-05 1.7E-05 

95-76-1 3,4-dichloroaniline 3 5.0E-06 4.0E-06 5.9E-06 

97-23-4 

Phenol,2,2'-

methylenebis 4-

chloro 2 1.1E-04 9.0E-05 1.2E-04 

99607-70-2 Cloquintocet-mexyl 2 2.0E-05 1.8E-05 2.4E-05 

 

 


