
HAL Id: hal-03109818
https://hal.inrae.fr/hal-03109818v3

Submitted on 7 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Machine learning models based on molecular descriptors
to predict human and environmental toxicological

factors in continental freshwater
Rémi Servien, Eric Latrille, Dominique Patureau, Arnaud Hélias

To cite this version:
Rémi Servien, Eric Latrille, Dominique Patureau, Arnaud Hélias. Machine learning models based
on molecular descriptors to predict human and environmental toxicological factors in continental
freshwater. Peer Community Journal, 2022, 2, 15 p. �10.24072/pcjournal.90�. �hal-03109818v3�

https://hal.inrae.fr/hal-03109818v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


C EN T R E
MER S ENN E

Peer Community Journal is a member of the
Centre Mersenne for Open Scientific Publishing

http://www.centre-mersenne.org/

e-ISSN 2804-3871

Peer Community Journal
Section: Ecotoxicology and Environmental Chemistry

RESEARCH ARTICLE

Published
2022-02-07

Cite as
Rémi Servien, Eric Latrille,
Dominique Patureau and

Arnaud Hélias (2022)Machine
learning models based on

molecular descriptors to predict
human and environmental

toxicological factors in
continental freshwater, Peer
Community Journal, 2: e15.

Correspondence
remi.servien@inrae.fr

Peer-review
Peer reviewed and
recommended by

PCI Ecotoxicology and
Environmental Chemistry,

https://doi.org/10.24072/pci.
ecotoxenvchem.100001

This article is licensed
under the Creative Commons

Attribution 4.0 License.

Machine learning models based
on molecular descriptors to
predict human and environmental
toxicological factors in continental
freshwater
Rémi Servien ,1,2, Eric Latrille ,1,2, Dominique
Patureau ,2, and Arnaud Hélias ,3,4

Volume 2 (2022), article e15

https://doi.org/10.24072/pcjournal.90

Abstract
It is a real challenge for life cycle assessment practitioners to identify all relevant sub-
stances contributing to ecotoxicity. Once this identification has been made, the lack of
corresponding ecotoxicity factors can make the results partial and difficult to interpret.
So, it is a real and important challenge to provide ecotoxicity factors for a wide range
of compounds. Nevertheless, obtaining such factors using experiments is tedious, time-
consuming, andmade at a high cost. A modeling method that could predict these factors
from easy-to-obtain information on each chemical would be of great value. Here, we
present such a method, based on machine learning algorithms, that used molecular de-
scriptors to predict two specific endpoints in continental freshwater for ecotoxicological
and human impacts. The different tested machine learning algorithms show good per-
formances on a learning database and the non-linear methods tend to outperform the
linear ones. The cluster-then-predict approaches usually show the best performances,
which suggests that these predicted models must be derived for somewhat similar com-
pounds. Finally, predictions were derived from the validated model for compounds with
missing toxicity/ecotoxicity factors.
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Introduction 

Recent legislations such as the Registration, Evaluation, Authorization and restriction of Chemicals 
(REACH) regulation in the EU requires that manufacturers of substances and formulators register to provide 
toxicological and ecotoxicological data for substances with volume higher than one metric ton per year. 
Furthermore, the U.S. Environmental Protection Agency (EPA) has more than 85,000 chemicals listed under 
the Toxic Substances Control Act (Hinds and Weller, 2016). Therefore, robust toxicological and 
ecotoxicological data are quickly needed to make informed decisions on how to regulate new chemicals. 
These data must also be coupled with environmental exposures and sources data, to better understand 
the impact on the environment.  

To address the cause-effect relationships between the flow of molecules emitted by human activities 
and the consequences for ecosystems and humans, Life Cycle Assessment (LCA) offers a structured, 
operational, and standardized (Finkbeiner et al., 2006) methodological framework. Two main steps are at 
the core of this approach:  

Quantification of the masses of substances emitted into the environment through the Life Cycle 
Inventory (LCI). While it is possible to rely on databases that facilitate this inventory work for the 
background of the system under study, this task must nevertheless be carried out on a case-by-case basis 
to represent all the specificities of the foreground elements. This is the task of the LCA practitioner. 

Calculation of the impacts on ecosystems and human health of these emitted masses. Due to the 
complexity of environmental mechanisms, it is not possible to (re)model impact pathways on a case-by-
case basis. Therefore, LCA uses characterization factors (CF) to assess the potential impacts of a compound. 
Concretely, if two compounds are emitted with the same mass, the one with the higher CFs will have the 
higher impact. Then, CFs are multiplied by the emitted masses of each compound to determine the 
impacts. CFs are not recalculated for each study but provided within a Life Cycle Impact Assessment (LCIA) 
method. 

For a given impact, the LCIA method designer refers to the knowledge of the scientific community to 
model the mechanisms involved. For human toxicity and freshwater ecotoxicity, USEtox® (Rosenbaum et 
al., 2008), was developed by life cycle initiative under the United Nations Environmental Programme 
(UNEP) and the Society for Environmental Toxicology and Chemistry (SETAC) (Henderson et al. 2011) to 
produce a transparent and consensus characterization model. USEtox® is also used for the European 
Product Environmental Footprint (PEF) (Saouter et al., 2020). This model gathers in one single 
characterization factor the chemical fate, the exposure, and the effect for each of the several thousands of 
organic and inorganic compounds. Then, the USEtox® model results can be extended to determine 
endpoint effects expressed as total (i.e. cancer and non-cancer) disability-adjusted life years (DALY) for 
human health impacts and potentially disappeared fraction of species (PDF) for ecotoxicological impacts. 
The PDF represents an increase in the fraction of species potentially disappearing as a consequence of 
emission in a compartment while the DALY represents an increase in adversely affected life years. These 
endpoints are now consensual at an international level (Verones et al., 2017).   

If the structure of the USEtox® multimedia model is always the same, to determine the CF of a molecule, 
numerous physicochemical parameters (such as solubility, hydrophobicity, degradability) and detailed 
toxicological and ecotoxicological data must be provided. For example, EC50 values (i.e. the effective 
concentration required to have a 50% effect) for at least three species from three different trophic levels 
are required for the ecotoxocological effect factor.  

Over the past few decades, thousands of tests (in laboratory and field) have been carried out to 
evaluate the potential hazard effects of chemicals (He et al., 2017). Usually, toxicity testing has relied on in 
vivo animal models, which is extremely costly and time-consuming (Xia et al., 2008). In recent years, under 
societal pressures, there has been a significant paradigm shift in toxicity testing of chemicals from 
traditional in vivo tests to less expensive and higher throughput in vitro methods (National Research 

Council, 2007). However, it is still extremely difficult to test existing chemicals due to their large and 
ever increasing number, which leaves their impacts largely unknown. For example, in a recent study, 
Aemig et al. (2021) studied the potential impacts on Human health and aquatic environment of the release 
of 286 organic and inorganic micropollutants at the scale of France. One of their conclusion was that, due 
to a lack of characterization factors, these impacts could be assessed only for 1/3 of these molecules. That 
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is why more computational models are needed to complement experimental approaches to decrease the 
experimental cost and determine the prioritization for those chemicals which may need further in vivo 
studies. Such models already exist, like QSAR models that are mostly linear models based on the chemical 
structure of compounds (Danish QSAR database (DTU, 2015), ECOSAR (Mayo-Bean et al., 2011), VEGA 
(Benfenati et al., 2013)) and are used to predict ecotoxicological data (LC50) needed for REACH for 
example. Recently, machine learning algorithms have been used to predict some midpoints based on 
molecular descriptors and environmental parameters (Marvuglia et al., 2014 and 2015; Song et al., 2017; 
Lysenko et al 2018) and a first review on this subject could be found in Wu and Wang (2018). After these 
first works, predictions of hazardous concentration 50% (HC50) based on 14 physicochemical 
characteristics (Hou et al., 2020a) or on 691 more various variables (Hou et al., 2020b) were carried out. 
Nevertheless, their input variables need some experiments and could be difficult to collect. This problem 
was tackled by Song et al. (2021) who predicted Lethal Concentration 50 (LC50) based on 2000 easy-to-
obtain molecular descriptors. In the case of USEtox®, despite its wide use in LCA, it only offers 
characterization factors for approximately 3000 chemicals and even for this limited number of compounds, 
19% of ecotoxicity CFs and 67% of human toxicity CFs are missing.  

The objective of this article is thus to propose a new way of calculating CFs using machine learning 
approaches to solve the problem of nonlinearity that could affect a linear QSAR method. This makes it 
possible, when the CFs are not determined due to lack of time or lack of data, to propose values based 
solely on easily identifiable molecular descriptors. Here, the main differences with the above-cited 
methods are twofold: first, our input variables are only molecular descriptors that could be easily collected 
for any newly available compounds; second, our output variables are directly the CFs that are closer to the 
endpoints (DALY and PDF) than the HC50 or the LC50 (i.e. the acute aquatic toxicity experimental 
threshold). These two specific endpoints will be studied in the present paper through the emission of 
compounds in continental freshwater and will be named CFET for ecotoxicological impacts and CFHT for 
human ones. To address this aim, we will test different methods (linear and non-linear) and assess their 
performances, to build a robust model that could predict CFs that are currently lacking. 

Materials & Methods 

USEtox® database 
The last version of the USEtox® database was downloaded, namely the corrective release 2.12 

(USEtox®, 2020). The whole USEtox® 2.12 database contains 3076 compounds. The CFs were computed 
using the default landscape. 

TyPol database 
We recently developed TyPol (Typology of Pollutants), a classification method based on statistical 

analyses combining several environmental parameters (i.e., sorption coefficient, degradation half-life, 
Henry constant) and an ecotoxicological parameter (bioconcentration factor BCF), and structural molecular 
descriptors (i.e., number of atoms in the molecule, molecular surface, dipole moment, energy of orbitals). 
Molecular descriptors are calculated using an in silico approach (combining Austin Model1 and Dragon 
software). In the present paper, we only extracted and used the molecular descriptors from the TyPol 
database, as this information could be easily collected for any new compound. The 40 descriptors included 
in the TyPol database have been selected based on a literature review on QSAR equations used to predict 
the main environmental processes as degradation, sorption, volatilization. These 40 descriptors were the 
ones most frequently used in the equations, meaning describing the best the behaviour of organic 
compounds in the environment. By consequence, even if no environmental parameters were directly 
incorporated as input in our model, some information that is directly linked to them were included in the 
40 molecular descriptors. These descriptors are constitutional, geometric, topological, and quantum-
chemical descriptors (see Table 1); 35 described the 2D-structure of the compound while the other five are 
linked to its 3D-structure. An important advantage of the unique use of molecular descriptors is that they 
are easily and quickly computable for not yet synthesized compounds. For more details, we refer the 
interested reader to Servien et al. (2014) and to Mamy et al. (2015) where the choice of the 40 molecular 
descriptors is described in details. Now, TyPol gathers 526 compounds, including pesticides, persistent 
chemicals, pharmaceuticals and their transformation products (Benoit et al. 2017, Traoré et al. 2018). 
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Table 1 – List of the 40 molecular descriptors in TyPol 

Category Molecular descriptors   

Constitutional Number of atoms Number of non-H atoms Number of hydrogen atoms 

 Number of chlorine atoms Number of carbon atoms Number of nitrogen atoms 

 Number of oxygen atoms Number of phosphorus atoms Number of sulfur atoms 

 Number of fluorine atoms Number of circuits Number of halogen atoms 

 Number of bonds Number of non-H bonds Number of double bonds 

 Number of triple bonds Number of multiple bonds Number of rotatable bonds 

 Number of aromatic bonds Sum of conventional bond 
order 

Number of rings 

 Molecular weight 
 

  

Geometric  Connolly molecular surface area   

Topological Connectivity index of order 0 Connectivity index of order 1 Connectivity index of order 2 

 Connectivity index of order 3 Connectivity index of order 4 Connectivity index of order 5 

 Valence connectivity index of 
order 0 

Valence connectivity index of 
order 1 

Valence connectivity index of order 2 

 Valence connectivity index of 
order 3 

Valence connectivity index of 
order 4 

Valence connectivity index of order 5 

Quantum-chemical Polarizability Electric dipole moment HOMO energy 

 LUMO energy Total energy  

  

Machine learning methods 
To predict the CFs using the molecular descriptors we used three modeling methods combined. The 

first method is a linear well-known prediction method namely the Partial Least Squares (PLS) (Wold, 1985). 
It finds the multidimensional directions in the observable variable (molecular descriptor) space that 
explains the maximum multidimensional variance direction in the predicted variable (CF) space. That 
provides a linear regression model based on the observable variables to predict the predicted variable. We 
also chose to compare two machine learning methods adapted to non-linear problems: the random forest 
(Breiman 2001) and the support vector machines (SVM) (Drucker et al. 1996). Random forests are a 
machine learning method, for classification or, in our case, regression, that operate by constructing a 
multitude of decision trees that uses a random subset of the training data and limits the number of 
variables used at each split and outputting the mean prediction (regression) of the individual trees. SVM 
constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional space in which the problem 
is linearly separable. 

These choices allowed us to compare several ideas. The PLS is a simple linear method that will not 
exhibit good performances if the underlying relationship is not linear. The SVM and RF methods are well-
known non-linear machine learning algorithms that used to show good results in this kind of problem (Hou 
et al., 2020a).  

All the models were computed in the freeware R (R core team, 2019). The PLS has been computed using 
the package mixOmics (Rohart et al., 2017), the random forests using the package randomForest (Liaw et 
al., 2002), and the SVM using the package e1071 (Meyer et al., 2019). These 3 modeling methods have 
some parameters that needed to be fixed: the number of latent components for the PLS (fixed using the 
tune.pls function), the number of variables randomly sampled as candidates at each split for the random 
forests (selected using the tune.randomForest function) and, for the SVM, the gamma parameter of the 
radial kernel and the cost of constraints violation (using the tune.svm function). All these different tune 
functions are based on cross-validation (i.e. a training/test procedure to find the best value for the 
parameters) using default function values. 

Clustering-based model 
A recent popular way to make predictions is to use a cluster-then-predict approach. That is, clustering 

is used for pre-classification which is to arrange a given collection of input patterns into natural meaningful 
clusters. Then, the clustering results are used to construct a predictor in each cluster. The main idea of the 
cluster-then-predict approach is that if the clustering performs well, the prediction will be easier by 
modeling only similar compounds. If a new compound with no CFET and/or CFHT is investigated, the 
clustering can easily be applied to it before the prediction model itself. The cluster-then-predict approach 
has already been applied with success in various domains such as sentiment prediction (Sony et al., 2015), 
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finance (Tsai et al., 2014), chemometrics (Minh Maï Le et al., 2018). So we decided to use the clustering 
given by the TyPol application (more details in Servien et al., 2014). Note that the TyPol clustering has 
already been shown relevant on various occasion: in combination with mass spectrometry to categorize 
tebuconazole products in soil (Storck et al., 2016), to explore the potential environmental behaviour of 
putative chlordecone transformation products (Benoit et al., 2017) or to classify pesticides with similar 
environmental behaviors (Traore et al., 2018; Mamy et al., 2021). So, the clustering procedure of TyPol was 
applied on the whole database of 526 compounds using the 40 molecular descriptors. This approach 
provided us a global clustering based on all the available information contained in the TyPol database. It is 
based on PLS, hierarchical clustering and an optimal choice of the number of clusters and is detailed in 
Servien et al. (2014). The obtained clustering is given in Supplementary Figure S1 and relies on 5 different 
clusters. The Supplementary Figure S2 represents this clustering restricted to the common molecules 
between TyPol and USEtox®. We could see that, as the cluster 5 is only constituted of one compound, the 
cluster-then-predict-models cannot be applied. 

Based on this clustering, we then defined three other competing methods. For these methods, a 
different model (with different parameters) was derived for the compounds in each cluster. Consequently, 
six different models were calibrated and tested for each CF prediction: global PLS, global SVM, global 
random forest, cluster-then-PLS, cluster-then-SVM and cluster-then-Random Forest.     

Comparison procedure of the models 
To assess the performances of the different models we used the following procedure: 

1. Split each cluster (the whole dataset if the model is global, only the data lying in the dedicated 
cluster if that is a cluster-then-predict model) between a training set (85% of the dataset) and 
a test set (15%) (Pareto principle). The test set is not used for any step of the procedure (such 
as the imputation of the missing data, the calibration of the parameters …). 

2. Imputation of the NA (Not Available, i.e. missing) values (less than 1%) in the descriptor matrix 
using the NIPALS algorithm (Wold, 1985). 

3. Tune the parameters and train the specific models by performing cross-validation on the 
training set. We have 3 global models to train (PLS, random forest, and SVM) and the cluster-
then-test models (PLS, random forest and SVM for each cluster). 

4. Test the different models on the test set. Compute the absolute error. 
5. Back to step 1. 

The whole algorithm was repeated 200 times. All the performances were compared in terms of 
absolute error. The absolute error is the absolute difference between the prediction and the true value. It 
has been shown to be the most natural and unambiguous measure of error (Willmott et Matsuura, 2005) 
and is chosen to be easily comparable to the assumed error on the experimental CFs (2-3 logs, see 
Rosenbaum, 2008). For each cluster, we chose the model with the lowest median absolute error. 

Predictions 
Then, the best model was calibrated and computed on the whole cluster. Finally, it was applied to the 

compounds, according to their clusters, with a CFET (or a CFHT) equals to NA to provide a prediction. For the 
compounds in cluster 5, this best model cannot be a cluster-then-predict one and, by consequence, is a 
global one. To assess the robustness of our prediction we derived a 95% prediction interval for each 
prediction. The type of model and its corresponding parameters were fixed during this process, according 
to the best model of the cluster. For example, if the best model of cluster 1 was the random forest 
approach, random forest models are used with the parameters optimized during the previous step. Then, 
we performed a leave-one-out bootstrap on the dataset that was used to compute the model (the whole 
dataset if the model is global, only the data lying in the dedicated cluster if that is a cluster-then-predict 
model) and a new model was computed on this leave-one-out sample. A prediction was carried for each 
leave-one-out model (i.e. n-1 models if n is the number of compounds of the, eventually global, cluster) 
and the 2.5% and 97.5% quantile of these predictions were computed and considered as the prediction 
interval (Hou et al., 2020a). The whole modeling process is summarized in the following Figure 1. 
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Figure 1 Schematic representation of the modeling procedure adopted in the paper. 

The five molecular descriptors contributing the most to the prediction were then derived for each 
chosen model to assess the differences between models and to interpret their relevance. For a random 
forest model, these descriptors are calculated using variable permutations (Breiman, 2001), for the SVM 
they are the descriptors with the higher coefficients in absolute value. 

Results 

Descriptive analysis of the intersection of the TyPol and the USEtox® databases 
 As the objective of this proof-of-concept study was to predict USEtox® CFET and CFHT using the 

molecular descriptors contained in TyPol, we could only use the compounds that are present in both 
databases. This resulted in 274 compounds that are detailed in Table S1 in supplementary material and the 
range of their CFET and CFHT values are summarized in the boxplots in Figures 2 and S3. Note that for the 
274 common compounds there are 15 NA values for the CFET and 102 for the CFHT.  
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Figure 2 Boxplots of the CFHT for the USEtox® database and the common molecules between the 
USEtox® and the TyPol databases. This CFHT is equal to log10((DALY+ε).kg-1). The ε is needed as some 

values of the DALY are exactly equal to zero. ε has been chosen equal to 1e-10 to be below the minimum 
of the USEtox® database (5e-9). 

 

We could see on these two figures that the common compounds present higher CFET and CFHT values 
than the one of the complete USEtox® database: it focuses on the more dangerous compounds as their 
boxplots are above the USEtox® counterparts and they cover the whole order of magnitude of the CFs of 
the USEtox® database. 

Clustering of the compounds 
The global Typol clustering of Supplementary Figure S1 with only the common compounds is plotted in 

Supplementary Figure S2 and the boxplots of each molecular descriptor per cluster are given in 
Supplementary Figure S4 with different indicators in Table S2. We could see that they are clustered in 5 
groups with different sizes (respectively 33 compounds in the first black cluster, 122 compounds in the 
second red cluster, 91 compounds in the third green cluster, 27 compounds in the fourth blue cluster, and 
one compound in the fifth brown cluster). Cluster 1 grouped compounds with a high number of aromatic 
bonds, double bonds, rotatable bonds, and multiple bonds. Cluster 2 is an intermediate one between 
clusters 1 and 3, with less extreme values. Cluster 3 is made of compounds with the lowest molecular mass. 
Cluster 4 gathered compounds presenting a high number of halogens, rings, and circuits. The unique 
compound in the fifth cluster is erythromycin (highest molecular mass and number of H and C, lowest 
number of rings) and, obviously, no cluster-then-predict model could be built for this cluster 

As a first analysis of the clustering given by TyPol, we could see in Figure 3 below the boxplots of the 
CFET and CFHT within the 5 clusters. 
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Figure 3- Boxplot by cluster for the CFET and CFHT values. Note that the unique compound of Cluster 5 
has no CFHT value. The size of the clusters and the numbers of NA are gathered in the legend. 

The predictions will be made difficult for the CFET of cluster 1 as it covers a wide range whereas it 
includes a relatively small number of compounds. On the contrary, cluster 3 covers a small range with no 
extreme values and includes a high number of compounds, for this cluster the cluster-then-predict 
approach could produce interesting results.  

Performances of the machine learning methods 

For the prediction of the CFET 

The methodology described in the previous section was applied to our dataset and gave the results 
gathered in Figure 4 for each cluster. 
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Figure 4 - Performances of the different methods (RF: random forest, PLS: partial least squares, SVM: 
support vector machines) in terms of the log of the absolute error of the CFET with respect to the 

different clusters for 200 repetitions. In each cluster, the models are coloured from dark blue (best) to 
clear blue (worst) according to their median of the absolute error. The red dotted line represents an 

absolute error of 1 log that is considered as acceptable (Rosebaum et al. 2008 ; Douziech et al., 2019). 

The performances were not similar from one cluster to another. For example, performances of all 
methods for cluster 1 were very poor (median absolute error above 1) whereas performances for cluster 4 
seemed good despite its smallest size (median absolute error around 0.6). Therefore, a future prediction 
of an unknown compound which lies in cluster 1 will be less reliable than in other clusters. Note that we 
could not test this in the next section as no NA value is present in this cluster 1. 

The cluster-then-predict methods seemed more appropriate in each cluster. The cluster-then-RF 
approach had the best performances (with a global median absolute error equals to 0.64 and the best 
performances on clusters 2 and 3), even if there was not a big difference between the different methods. 
The cluster-then-SVM was also the best method for the two clusters 1 and 4. The linear methods (PLS and 
cluster-then-PLS) had higher absolute errors but were competitive. The individual predictions of the best 
method in each cluster are reported in Figure S5. 

Prediction for the CFHT 
Let us recall that we have more NA values for the CFHT (102) than for the CFET (15). The performances 

of the methods are illustrated in the following figure. 
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Figure 5- Performances of the different methods (RF: random forest, PLS: partial least squares, SVM: 
support vector machines) in terms of the log of the absolute error of the CFHT with respect to the 

different clusters for 200 repetitions. In each cluster, the models are coloured from dark blue (best) to 
clear blue (worst) according to their median of the absolute error. The red dotted line represents an 

absolute error of 1 log that is considered as acceptable (Rosebaum et al. 2008 ; Douziech et al., 2019). 

We observed that, despite its small size (11 compounds), the CFHT of the first cluster were well 
predicted (with the best performance for the cluster-then-RF approach). It could be explained by the small 
range of the CFHT values of this cluster, as illustrated on the boxplot in Figure 3. The performances of all 
the methods were comparable on clusters 2 and 3 where the best method was the SVM. Cluster 4 seemed 
to be the most difficult to predict: all the methods had their worst results on this cluster and, if the SVM 
had an acceptable median absolute error of 0.82, all the medians of the other methods were above 1.3. 
Global performances of the different methods were given in Supplementary Figure S6. Note that, as for 
CFET, the linear methods based on PLS were outperformed by the other ones. 

Best model predictions 

Best models for the CFET 

Using our methodology, we could exhibit a median absolute error of 0.62 log for the prediction of the 
CFET on the whole dataset using the best models. If we looked closer on Table S3, we could see that the 
median of our estimations is below 0.6 log except for cluster 1 (above 1 log).  

Then we calibrated the best models on the whole dataset of each cluster: a cluster-then-predict 
approach using SVM for clusters 1 and 4 and using random forest for clusters 2 and 3. To compare the 
different models in each cluster and give an idea of what were the important molecular descriptors we 
provided the five most important molecular descriptors for each cluster in the Table S4. We could see in 
this table that the important molecular descriptors strongly differ from one cluster to another. 

Then the models were used to predict the missing CFET of the common compounds between USEtox® 
and TyPol databases. These values were by consequence new estimations of the CFET for compounds on 
which we had no information. The prediction intervals were relatively small: less than 0.5 log10 in a log scale 
which highlighted the robustness of the estimation. They are given in Table S5. No NA value was present 
in cluster 1 with no prediction for this cluster. For cluster 2 gathering molecules with intermediate 
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molecular mass, 9 CFET values were predicted for various kinds of compounds. One value concerns the 
antibiotic sulfamethazine and its value is quite near to the one of sulfamethoxazole and sulfadiazine of the 
same sulphonamide antibiotic family constituted of the sulphonamide group (-S(=O)2-NR2R3). Cluster 3 
grouped compounds with the lowest molecular mass and the lowest median CFET like ibuprofen, 
phthalates, cresol constituted of monoaromatic ring substituted with methyl, carboxylic groups. The CFET 
prediction for acetylsalicylic acid seemed coherent with the value of the nearest compounds (herbicides 
mecoprop) of this group. Cluster 4 gathered compounds with the highest median CFET and that presented 
a high number of rings halogenated or not, like PAH and hormones. The 5 CFET predicted concerned 4 PAHs 
and 1 hormone. By comparison to the 2 other PAHs present in this cluster, the 4 predicted CFET were quite 
similar and higher. Concerning the prediction for the hormone, the CFET was intermediate between the 
CFET of the 3 other hormones in the cluster. It seems that all these 5 predicted values were very closed, 
falling near the median value of this cluster.  

Best models for the CFHT 

The best models had a global median of 0.75 log for the prediction of the CFHT. We could see on the 
results gathered on Table S6 that the best performances are for cluster 1 and that they are comparable for 
the other clusters. 

Then, the global SVM model was calibrated and computed on the whole dataset. It was used to predict 
the compound of clusters 2, 3, 4, and 5. Let us recall that there was a single molecule in cluster 5 and, as it 
has a NA value for its CFHT, the best global model (SVM) was used. For cluster 1, a cluster-then-RF model 
was computed. The most important descriptors of these two models are gathered in the Table S7 and, as 
for CFET, were strongly different between the different best models.  

Then, this model was used to predict the CFHT value for the 102 common compounds without a CFHT 
value. These predictions are reported in Supplementary Table S8. As for the CFET, the small width of the 
prediction interval (less than a log10 in a log scale) highlighted the robustness of the approach even with a 
relatively small number like estimations made for compounds that lie in cluster 1. In this cluster 1, CFHT for 
a phthalate (DEHP) was already known, but the one for diisodecyl and diisononyl phthalate was predicted 
with value in the same range. The 3 cyclines (tetracycline, aureomycin, and oxytetracycline) grouped in 
cluster 1, presented also similar predicted CFHT. This was also the case for triclosan and triclocarban in 
cluster 2. Similar predicted and known CFHT were found for four herbicides from the substituted urea family 
(linuron, diuron, monolinuron, isoproturon) in cluster 3. Cluster 4 gathered a small number of molecules 
but with the highest median CFHT, the predicted CFHT of the organochlorine insecticide isodrin was similar 
to another congener of the same family, aldrin. 

Discussion 

It is a real and important challenge to provide characterization factors for a wide range of compounds. 
Obviously, it is expected that these new calculated factors have an acceptable margin of error. As reported 
in UNEP/SETAC (2019), it is commonly assumed that the uncertainty of the characterization factors can 
vary by approximately 2-3 orders of log-magnitude (Rosenbaum et al. 2008) or significantly higher (up to 7 
orders) if all sources of uncertainty are considered (Douziech et al. 2019). The results obtained in the 
previous section are very promising as they are below the level of uncertainty commonly assumed and as 
they are based on molecular descriptors that could be easily obtained for each compound without 
ecotoxicity factor. Based on this fact we could already provide 15 new CFET and 102 new CFHT for the 
common molecules between USEtox® and TyPol without a previous value. 

The idea of predicting ecotoxicity characterization factors for chemicals using machine learning 
algorithms has already been used (Hou et al., 2020a and 2020b). But, here, our findings go further. Indeed, 
we show that we could directly obtain accurate estimations of endpoint values from easy-to-obtain 
molecular descriptors. This will open the door to the fast characterization of each new unknown compound 
that appears, including transformation products. We also show that the cluster-then-predict approach can 
give better performances than the approach without the clustering step. This local (i.e. cluster-then-
predict) approach confirms that local models could be an efficient prediction method when heterogeneity 
of data generates nonlinear relations between the response and the explanatory variables (Lesnoff et al., 
2020).  
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Across the clusters and models, there is a general trend that the non-linear models tend to outperform 
the linear ones. This suggests that a linear model is not fully adequate to capture the complexity of the 
relationship between the molecular descriptors and the CFs. However, the use of linear model for e.g. a 
QSAR is likely due to the ease of interpreting its coefficients, while interpretation is much more challenging 
for machine learning approaches such as random forest or SVM. Thus, the advantages or drawbacks of 
linear/non-linear approaches must be balanced according to the final goal of each study. Here, as the main 
goal is to calculate the most accurate CFs, non-linear models seem more suited.  We must also mention 
that a new emerging field is developing tools needed to help making black-box models (e.g. random forest) 
more interpretable (Bénard et al., 2021).  

The difficult interpretability of the machine learning models used in this study can thus be viewed as a 
limitation. On another side, even if we already had an acceptable number of compounds in our training 
datasets, the model accuracies would benefit of the inclusion of new compounds. These compounds could 
be carefully chosen to improve the models where there is a clear need (i.e. where the performances of the 
models are not good enough), for example in the cluster 1 for CFET or in the cluster 4 for CFHT.  

One of the interests of USEtox® and its three-step structure (fate - exposure - effect) is that it can be 
adapted to some specific contexts (a more accurate and spatialized fate model, a different exposure...) 
while keeping the steps that are not modified.  However, these adaptations of USEtox® are not widely used 
and are reserved for advanced users. Our approach does not allow this, with a direct one-step estimation 
of CFs. It was designed to provide default CF values for molecules where information is missing. We have 
chosen to directly predict the CF by simplicity, as the first tests revealed that doing three models (for the 
three steps) and then calculating the CFs produced less accurate results. It would however be an interesting 
perspective to estimate only some of the stages by these learning approaches and to combine them with 
stages modelled in a classical way in USEtox® 

Conclusion 

This paper presents a modeling method to derive characterization factors from easily obtainable 
molecular descriptors. The results presented here show that models that can handle non-linearity and that 
could be adapted to a small number of compounds (using the cluster-then-predict approaches) are the 
best suited. The cluster-then-predict approaches could also be more accepted by the users, as they allow 
to consider mainly the compounds similar to the one under investigation. By consequence, the missing 
characterization factors, as well as those of new molecules, could now be quickly estimated with an overall 
good precision as performed in Servien et al. (2021). More generally, one of the key factors in the 
evaluation of toxicity and ecotoxicity in LCA lies in the construction of the characterization factors: a task 
requiring a large amount of data and a consequent investment of time. The use of machine learning allows 
us to go beyond these constraints and to propose a new methodology in the LCA framework. This makes it 
possible to obtain characterization factor values in a fast and simple way, which can be used as long as 
conventionally established CFs are not available. 
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