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 68 

Abstract 69 

Stress and reproduction are both essential functions for vertebrate survival, ensuring on one 70 

side adaptative responses to environmental changes and potential life threats, and on the other 71 

side production of progeny. With more than 25,000 species, teleosts constitute the largest 72 

group of extant vertebrates, and exhibit a large diversity of life cycles, environmental 73 

conditions and regulatory processes. Interactions between stress and reproduction are a 74 

growing concern both for conservation of fish biodiversity in the frame of global changes and 75 

for the development of sustainability of aquaculture including fish welfare. In teleosts, as in 76 

other vertebrates, adverse effects of stress on reproduction have been largely documented and 77 

will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate 78 

reproductive function in some teleost species in relation to their peculiar life cyles and this 79 

review will provide some examples. Our review will then mainly address the neuroendocrine 80 

axes involved in the control of stress and reproduction, namely the corticotropic and 81 

gonadotropic axes, as well as their interactions. After reporting some anatomo-functional 82 

specificities of the neuroendocrine systems in teleosts, we will describe the major actors of 83 

the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals 84 

and gonads) levels, with a special focus on the impact of teleost-specific whole genome 85 

duplication (3R) on the number of paralogs and their potential differential functions. We will 86 

finally review the current knowledge on the neuroendocrine mechanisms of the various 87 

interactions between stress and reproduction at different levels of the two axes in teleosts in a 88 

comparative and evolutionary perspective. 89 

 90 

 91 

 92 
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Introduction 93 

The first definition of stress by Selye in 1973 as “… the non-specific response of the body to 94 

any demand made upon it”, refers to a general adaptation syndrome as a response to a 95 

stressor, which is similar irrespective of its nature (Selye, 1973). Since then, various 96 

definitions have appeared in the literature but the most complete one proposed by Schreck 97 

defines stress as “the physiological cascade of events that occurs when an organism is 98 

attempting to resist death or re-establish homeostatic norms in face of an insult” (Schreck, 99 

2000). In response to a stressful situation and the recognition of a threat by the central 100 

nervous system, an adaptive compensatory non-specific response takes place with an initial 101 

adrenergic response and a subsequent synthesis and secretion of cortisol due to activation of 102 

the corticotropic axis, hypothalamus-pituitary-adrenal (HPA) in mammals, birds and reptiles, 103 

and hypothalamus-pituitary-interrenal gland/head kidney (HPI) in amphibians and teleosts. 104 

Activation of these endocrine pathways constitutes the primary responses, which lead to make 105 

energy available for systems involved in the stress responses. Thus, activation of the 106 

cardiovascular and respiratory responses accompanied by osmoregulatory disfunctions favour 107 

oxygen and energy substrates distribution and constitute the secondary responses. Tertiary 108 

responses refer to aspects of whole-animal performance and generally are maladaptative; they 109 

include changes in growth, swimming capacity, and modified behavioral patterns (feeding, 110 

aggression) [for reviews: (Barton, 2002; Gorissen and Flik, 2016; Schreck and Tort, 2016; 111 

Wendelaar Bonga, 1997)].   112 

Stress is, in most cases, reported to affect reproduction in a deleterious way, but may also 113 

induce positive outcomes and a substantial body of research has been dedicated to decipher 114 

the mechanisms underlying the complex relationships between stress and reproduction [for 115 

reviews: (Fuzzen et al., 2011; Leatherland et al., 2010; Milla et al., 2009; Pankhurst, 2016; 116 

Schreck, 2010)]. Since the first paper by Selye in 1939 (Selye, 1939) which proposed that 117 
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activation of the hypothalamo-pituitary-adrenal (HPA) axis inhibits the hypothalamo-118 

pituitary-gonads (HPG) axis, this paradigm has been established mainly in mammalian 119 

species (Chand and Lovejoy, 2011) but also in fish for which numerous reports emphasizing 120 

effects of corticosteroids on reproduction have been produced (Fuzzen et al., 2011; 121 

Leatherland et al., 2010; Milla et al., 2009; Pankhurst, 2016; Schreck, 2010) . In this paper, 122 

we will focus our interest on the relationships between stress and reproductive neuroendocrine 123 

axes, trying to decipher direct stress effects and separate them from systemic effects on other 124 

biological functions. Thanks to the recent progress brought by genomic studies, we will be 125 

able to integrate the most recent informations provided by molecular phylogeny analyses and 126 

describe effects of new actors, which appeared via different rounds of whole genome 127 

duplications. This review will focus on teleost fish but with an evolutionary perspective 128 

requiring comparison with other vertebrate species. 129 

 130 

1. Various interactions between stress, cortisol and reproduction in teleosts  131 

Many relationships between stress and reproduction, with the influence of environmental 132 

conditions, have been documented in natural situation and in aquaculture. In this context, we 133 

first consider in this section the effects of stressors on reproduction, which are frequently 134 

associated with high cortisol levels. 135 

1.1. Negative interactions between stress and reproduction 136 

Early works in many teleost species reported the deleterious effects of stress and stress-related 137 

increase of cortisol on gonadotropic axis and reproductive performance. Chronically-induced 138 

stress such as by confinement or captivity and acutely-induced stress such as by predators or 139 

by aquaculture practices (handling, frequent netting, tank draining, crowding, noise) result in 140 

reduced plasma androgen and oestrogen levels [brown trout Salmo trutta: (Pickering et al., 141 

1987); wild spotted seatrout Cynoscion nebulosus: (Safford and Thomas, 1987); rainbow trout 142 
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Oncorhynchus mykiss: (Pankhurst and Dedual, 1994); red gurnard Chelidonichthys kumu: 143 

(Clearwater and Pankhurst, 1997); striped trumpeter Latris lineata: (Morehead, 1998); roach 144 

Rutilus rutilus: (Pottinger et al., 1999); black bream Acanthopagrus butcheri: (Haddy and 145 

Pankhurst, 1999); sockeye salmon Oncorhynchus nerka: (Kubokawa et al., 1999); snapper 146 

Pagrus auratus: (Carragher and Pankhurst, 1991; Cleary et al., 2000); spiny damselfish 147 

Acanthochromis polyacanthus: (Pankhurst, 2001); striped bass Morone saxatilis: (Castranova 148 

et al., 2005); jundia Rhamdia quelen: (Soso et al., 2008); tilapia Oreochromis mossambicus: 149 

(Chabbi and Ganesh, 2012)]. Stress is also associated with reduced plasma vitellogenin (Vg) 150 

levels [brown and rainbow trout: (Campbell et al., 1994)]. It also decreases plasma luteinizing 151 

hormone (LH) levels [white sucker Catostomus commersoni: (Van Der Kraak et al., 1992)], 152 

suppresses LH secreting cell activity [tilapia: (Chabbi and Ganesh, 2012)], as well as 153 

decreases hypothalamic gonadotropin-releasing hormone 1 (GnRH1) mRNA levels [jack 154 

mackerel Trachurus japonicus: (Imanaga et al., 2014)]. After applied stress, impacts on final 155 

stages of reproduction are also observed such as delayed ovulation [rainbow trout: (Campbell 156 

et al., 1992; Contreras-Sanchez et al., 1998)], reduced egg size in females [brown and 157 

rainbow trout: (Campbell et al., 1994, 1992) ; Neolamprologus pulcher: (Mileva et al., 2011)] 158 

and reduced sperm counts in males [brown and rainbow trout: (Campbell et al., 1994)], 159 

increased gonadal atresia [(pike Esox lucius: (De Montalembert et al., 1978); red gurnard: 160 

(Clearwater and Pankhurst, 1997); snapper: (Cleary et al., 2000); Atlantic bluefin tuna 161 

Thunnus thynnus: (Corriero et al., 2011)], and reduced fecundity [rainbow trout : (Contreras-162 

Sanchez et al., 1998)]. Furthermore, impacts on progeny also occur such as reduced length 163 

[tropical damselfish Pomacentrus amboinensis: (McCormick, 2009, 2006, 1999, 1998)], 164 

decreased survival [brown and rainbow trout: (Campbell et al., 1994, 1992)] or occurrence of 165 

abnormalities [Atlantic cod Gadus morhua: (Morgan et al., 1999)] [for reviews: (Billard, 166 

1981; Pankhurst and Van der Kraak, 1997; Pankhurst, 2016; Pickering, 1989)].  167 
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Socially mediated stress response and downregulated reproductive function are observed in 168 

some teleosts, such as in cichlids. For example, subordinate (non-territorial) males of 169 

Astatotilapia (Haplochromis) burtoni display high expression of hypothalamic and pituitary 170 

corticotropin-releasing hormone (CRH) receptor as well as high plasma cortisol levels, but 171 

low mRNA levels of hypothalamic GnRH1 and of pituitary GnRH receptor, LH and FSH, as 172 

well as low plasma levels of LH and FSH, and androgens, compared to dominant (territorial) 173 

males [for review: (Maruska, 2014)].  174 

1.2. Positive interactions between cortisol and reproduction related to peculiar 175 

life cycles 176 

  1.2.1. Cortisol and environmentally-related spawning activity in some 177 

teleosts 178 

The catfish, Heteropneustes fossilis, awaits the onset of the monsoon rainfall for spawning in 179 

order to get favorable environmental conditions. Interestingly, in this species, plasma cortisol 180 

levels exhibit a peak at monsoon (Lamba et al., 1983; Sundararaj and Goswami, 1966a, 181 

1966b), and glucocorticoids are effective both in vivo and in vitro in inducing ovulation 182 

(Sundararaj and Goswami, 1977). In vivo administration of an ovulatory dose of LH in this 183 

species induces an increase in plasma levels of cortisol followed by an increase in sex steroid 184 

(T and E2) levels, while ACTH injection only stimulates cortisol levels. The authors suggest 185 

that gonadotropin acts at two loci, the interrenal and the ovary (Goswami et al., 1985). All 186 

these data indicate a potential positive role of cortisol in the induction of spawning in the 187 

catfish. Another striking example is the killifish Fundulus heteroclitus which exhibits 188 

synchronized spawning with the semilunar cycle of spring tides and a peak of plasma cortisol 189 

level coincides with spawning (Bradford and Taylor, 1987). 190 

  1.2.2. Cortisol and upstream reproductive migration in salmonids 191 
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Upstream migration and spawning require high energy reserve mobilization; in Atlantic 192 

salmon Salmo salar, for example, between 60% and 70% of the body reserves are spent 193 

during upstream migration and spawning (Jonsson et al., 1997). High plasma cortisol levels 194 

and interrenal hyperplasia have long been reported during the later stages of the spawning 195 

migration and at the time of spawning in various salmonids [Pacific sockeye salmon: 196 

(Donaldson and Fagerlund, 1972; Hane and Robertson, 1959; Idler et al., 1959); migratory 197 

(steelhead) rainbow trout: (Robertson et al., 1961); Atlantic salmon: (Schmidt and Idler, 198 

1962); kokanee salmon, landlocked form of sockeye salmon: (Carruth et al., 2000)]. However, 199 

one study in sockeye salmon reports that sexual maturation is not necessarily accompanied by 200 

elevated plasma cortisol levels (Fagerlund, 1967). Increased cortisol level is also described at 201 

spawning in non-migratory rainbow trout (Bry, 1985; Robertson et al., 1961). Altogether 202 

these studies indicate that high cortisol levels in salmonids are, at least, not deleterious to 203 

sexual maturation and spawning. 204 

  1.2.3. Cortisol and oceanic reproductive migration in eels 205 

The downstream and oceanic migrations of eels (Anguilla species), as well as their whole 206 

gonadal development from prepubertal stage to full sexual maturation, require both metabolic 207 

energy and metabolites that come exclusively from body stores [for review: (Palstra and van 208 

den Thillart, 2010)]. Clevestam and collaborators report that 45% of European eel (Anguilla 209 

Anguilla) from Baltic sea would be within 90% of complete energy depletion after migration 210 

and reproduction and 20% would have completey exhausted their initial fat reserves 211 

(Clevestam et al., 2011). Eel, at the silver prepubertal, downstream migratory, stage and 212 

during their subsequent reproductive oceanic migration and sexual migration, are fasting and 213 

all their metabolic stores, accumulated during the juvenile growth (yellow stage) phase, will 214 

be mobilized. In silver eels, an elevation of plasma cortisol levels is observed prior to 215 

downstream migration (Van Ginneken et al., 2007). Early studies of hypophysectomy and 216 
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adrenalectomy report the need of an intact pituitary-interrenal axis for maintenance of liver 217 

glycogen levels in eels [Anguilla anguilla: (Hatey, 1951); American eel Anguilla rostrata: 218 

(Butler, 1968)]. Cortisol induces mobilization of lipid and protein stores and stimulates 219 

hepatic neoglucogenesis [for review: (Butler, 1973); Japanese eel Anguilla japonica: (Chan 220 

and Woo, 1978); Anguilla anguilla: (Dave et al., 1979); Anguilla rostrata: (Butler, 1968; 221 

Foster and Moon, 1986)]. Cortisol also induces eel vertebral demineralization, by promoting 222 

both osteocytic osteolysis and osteoclastic resorption, allowing mobilization of phospho-223 

calcic stores necessary for vitellogenin synthesis (Sbaihi et al., 2009). Besides these actions 224 

on metabolism necessary for the eel migratory and reproductive processes, cortisol may also 225 

directly stimulate the gonadotropic axis, as shown by its positive effect on pituitary lhβ 226 

mRNA and LH protein content in vivo and in vitro [Anguilla anguilla: (Huang et al., 1999)]. 227 

Thus, in the eel, cortisol may both coordinate storage mobilization and participate in the 228 

induction of sexual maturation during reproductive migration.  229 

1.3. Cortisol and gonadal sex differentiation 230 

In some teleost fish species, gonadal sex determination and/or sex change are under the 231 

regulation of environmental factors. An increasing number of data proposes cortisol as a key 232 

factor integrating environmental cues (such as temperature or social status) to induce male sex 233 

determination/sex change [for reviews: (Fernandino et al., 2013; Fernandino and Hattori, 234 

2019; Goikoetxea et al., 2017; Liu et al., 2017; Perry and Grober, 2003; Solomon-Lane et al., 235 

2013; Todd et al., 2016)]. Cortisol administration or stress-induced cortisol release (including 236 

high temperature-induced effects) promotes masculinization in a number of teleosts [rainbow 237 

trout: (van den Hurk and van Oordt, 1985); pejerrey Odontesthes bonariensis: (Hattori et al., 238 

2009); Japanese flounder Paralichthys olivaceus: (Yamaguchi et al., 2010); Southern flounder 239 

Paralichthys lethostigma: (Mankiewicz et al., 2013); three-spot wrasse Halichoeres 240 

trimaculatus: (Nozu and Nakamura, 2015); black sea bass Centropristis striata: (Miller et al., 241 
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2019); medaka Oryzias latipes (Hayashi et al., 2010); orange spotted grouper Epinephelus 242 

coioides (Chen et al., 2020)]. Several potential pathways are described for cortisol triggering 243 

maleness: cross-talk between glucocorticoid and androgen metabolism (11β-hydroxysteroid 244 

dehydrogenase, 11βHSD, and 11β-hydroxylase, Cyp11b, enzymes) promoting the synthesis 245 

of 11-ketotestosterone (11KT); inhibition of aromatase (cyp19a1a) expression, leading to a 246 

shift in steroidogenesis from estrogens to androgens; and upregulation of anti-Müllerian 247 

homone (amh) expression [for reviews: (Fernandino et al., 2013; Fernandino and Hattori, 248 

2019; Goikoetxea et al., 2017; Liu et al., 2017; Perry and Grober, 2003; Solomon-Lane et al., 249 

2013)]. In the pejerrey, cortisol increases the expression of hsd11b2, the gene for 11βHSD, an 250 

enzyme which deactivates cortisol to cortisone and catalyzes the final step in 11-KT synthesis 251 

(Fernandino et al., 2012). Typical DNA binding sites of glucocorticoid receptor (GR) i.e. 252 

glucocorticoid response elements (GRE) are identified in the cyp19a1a promoter in the goby 253 

Gobiodon histrio (Gardner et al., 2005) and in the black sea bass (Miller et al., 2019). 254 

Interestingly, GR is also shown to directly interact with cAMP-responsive element (CRE) on 255 

cyp19a1a promoter of Japanese flounder, down-regulating the expression of aromatase 256 

(Yamaguchi et al., 2010). Temperature-dependent sex determination (TSD) is shown to 257 

involve regulation of DNA methylation of the cyp19a1a promoter [European sea bass 258 

Dicentrarchus labrax: (Navarro-Martín et al., 2011)], and such epigenetic modifications may 259 

also be a mechanism by which cortisol regulates aromatase expression.  260 

All these studies highlight the role of cortisol as a mediator between environmental conditions, 261 

especially temperature, and male sex determination in various teleost species. This confers to 262 

cortisol a key-role in the potential impact of global climatic change on the modification of sex 263 

ratio in some teleost species and its consequences on population sustainability. 264 

1.4. Animal welfare, environment, stress and reproduction 265 
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Concerns about fish welfare have increased considerably during the recent years owing to the 266 

growing public interest for the negative impacts of intensification in aquaculture and for 267 

scientific debate about pain in fish. Many authors agree on a definition for which welfare is 268 

not only based on physical health but also lack of mental suffering and presence of positive 269 

feelings (Huntingford et al., 2006; Segner et al., 2012; Sneddon et al., 2016; Stevens et al., 270 

2017; Toni et al., 2019). In this context, most of the welfare issues are related to stress 271 

responses, experience of pains, growth problems, incidence of disease, abnormal behaviors 272 

and less frequently to degradated breeding with negative impact on male or female 273 

reproduction. These effects observed in aquaculture environment are not only the 274 

consequence of exposure of adult fish to stressors (e.g. confinement, handling, hypoxia or 275 

poor water quality) but also associated with abnormal behavior or impossibility to develop a 276 

normal behavior created by captive environment (Sneddon et al., 2016). Thus, one potential 277 

consequence of confinement is irregular spawners which suffer from a low fertilisation rate 278 

and a broken ovulatory rhythm (Kjesbu, 1989; Patterson et al., 2004). Intense swimming 279 

activity during chase and capture can also be sufficient to compromise reproduction 280 

(Pankhurst and Van der Kraak, 1997). Repeated acute confinement stress during the spawning 281 

season as well as poor body condition or food deprivation have also negative effects on 282 

fecundity in cod, all effects which have been suggested to be related to altered energy 283 

allocation (Bogevik et al., 2012; Kjesbu et al., 1991; Kjesbu, 1989; Lambert and Dutil, 2000). 284 

Behavioral needs can also be a welfare issue, not only by preventing maltreatment but also by 285 

providing adult fish resources to perform natural behavioural repertoire necessary for 286 

reproduction, accommodations which are species specific (Sneddon et al., 2016). Sometimes 287 

also, search for optimal performance in aquaculture can lead to welfare issue in relation to 288 

reproduction. In salmon aquaculture, early maturation can be a significant welfare issue. The 289 

maturation process is energetically expensive which is reflected in early maturing salmon by 290 
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decreased growth rate and increased mortality through susceptibility to pathogens (Gjerde, 291 

1984; Thorpe, 1994). Selection for both fast growth and late sexual maturation has been 292 

considered problematic as it has been suggested that there is a correlation between the 293 

phenotypes fast growth and early sexual maturation (Thorpe et al., 1983). The importance of 294 

energy cost for reproduction also appears when considering exercised female sockeye salmon 295 

compared to non-exercised fish: they displayed lower lipid content, delayed maturity, lower 296 

egg deposition rate and higher egg mortality prior to ovulation (Chellappa and Huntingford, 297 

1989; Hansen et al., 2010). Methods used in aquaculture for egg collection from female is 298 

also a crucial procedure for fish reproduction in salmonid aquaculture: comparison between 299 

various methods (massage of the fish abdomen versus pressure of gas) in rainbow trout 300 

indicated that air stripping led to better quality of eggs and better juvenile survival rate 301 

(Kowalski et al., 2018). In recreational fisheries, studies on angling and release of nesting 302 

species during the spawning season reported decreased progenity survival and paternal nest 303 

abandonment and impaired care (Cooke et al., 2000; Hanson et al., 2007; Philipp et al., 1997). 304 

However, specific investigations on gonadal development of final maturation find very few 305 

adverse effects (Booth et al., 1995; Hall et al., 2009; Lowerre-Barbieri et al., 2011). 306 

Moreover, when testing effects of mild angling and release on golden perch Macquaria 307 

ambigua, normal gonadal development is observed in angled fish, a result attributed to the 308 

flexible reproductive strategy of that species and benigness of the mouth hooking (Hall et al., 309 

2017). These results illustrate the complexity of welfare questions related to reproduction, 310 

which certainly need to take into account the specificity of the fish species and/or the 311 

characterisitics of the environment and stressors.  312 

 313 

2. Overview of neuroendocrine stress and reproductive axes in teleosts 314 

2.1. Teleost specific traits compared to other vertebrates 315 
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In mammals, brain-pituitary-peripheral glands axes are a classical schema when describing 316 

the endocrine regulation of major physiological functions, such as reproduction with the 317 

gonadotropic axis or stress with the corticotropic axis. Similar structures are observed in 318 

teleost fish which also present specificities which need to be considered for understanding 319 

stress/reproduction relationship in these species. 320 

 2.1.1. Anatomo-functional specificities 321 

2.1.1.1. Pituitary regionalisation and direct innervation  322 

The pituitary gland is a vertebrate innovation [for reviews: (Dufour et al., 2020; Sower, 323 

2018)]. In all vertebrates, the pituitary consists of the adenohypophysis and the 324 

neurohypophysis. The adenohypophysis has been subdivided by early studies into the pars 325 

distalis and the pars intermedia, with in tetrapods, an additional pars tuberalis [for reviews: 326 

(De Beer, 1923; Dores, 2017)]. In contrast to tetrapods in which cells of the pars distalis seem 327 

widely distributed, in teleosts, the different types of cells of the pars distalis are regionalised 328 

[Poecilia formosa and latipinna (Olivereau and Ball, 1964); European eel (Olivereau, 1967); 329 

Atlantic halibut  Hippoglossus hippoglossus  (Weltzien et al., 2004); zebrafish Danio rerio 330 

(Pogoda and Hammerschmidt, 2007); for reviews: (Schreibman et al., 1973; Trudeau and 331 

Somoza, 2020; Zohar et al., 2010)]. This allowed an anatomical subdivision of the pars 332 

distalis (PD), in teleosts, into an anterior region, the rostral pars distalis (RPD) composed of 333 

lactotropes (prolactin cells) and corticotropes (corticotropin, ACTH cells), and a posterior 334 

region, the proximal (or caudal) pars distalis (PPD) composed of somatotropes (growth 335 

hormone cells), thyreotropes (thyrotropin TSH cells) and gonadotropes (luteinizing hormone 336 

LH and follicle stimulating hormone FSH cells). Interestingly, in teleosts, the two 337 

gonadotropins, LH and FSH, are expressed in different pituitary cells, in contrast to the 338 

situation observed in mammals which produce LH and FSH in the same pituitary cell [for 339 

review: (Kanda, 2019)]. This feature allowed Golan and collaborators to investigate in 340 
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zebrafish the differential organization of LH and FSH cells and they reported that LH cells are 341 

coupled via strong gap-junction, while FSH cells show long cytoplasmic extension to 342 

maintain contact, possibly explaining their differential release patterns (Golan et al., 2016). In 343 

teleosts as in tetrapods, the pars intermedia of the pituitary contains melanotrope cells which 344 

produce MSH (melanocyte-stimulating hormone) from the same precusor as ACTH. 345 

In tetrapods, brain hypophysiotropic neurons project to the median eminence at the basis of 346 

the hypothalamus and release their neurohormones into the hypophyseal portal vascular 347 

system, which carries them to the pars distalis. Differently, in teleosts, the axonal endings of 348 

the brain hypophysiotropic neurons terminate in close vicinity to the cells of the 349 

adenohypophysis providing a direct innervation [for review: (Trudeau and Somoza, 2020; 350 

Zohar et al., 2010)].  351 

2.1.1.2. Caudal neurosecretory system 352 

The caudal neurosecretory system (CNSS) is unique to some non-mammalian vertebrates 353 

such as teleosts (Osteichthyes) and elasmobranchs (Chondrichthyes). It is situated in the 354 

posterior region of the spinal cord and it comprises large neurosecretory neurons named after 355 

their discoverer, the Dahlgren cells (Dahlgren, 1914). These neurons project their axons to a 356 

neurohaemal organ, the urophysis, where neuropeptides are released into the renal portal 357 

system via the caudal vein to the head kidney [for reviews: (Bern and Takasugi, 1962; 358 

McCrohan et al., 2007; Winter et al., 2000)]. Two of these neuropeptides were first isolated 359 

from CNSS and named urotensins: urotensin I in white sucker Catostomus commersoni 360 

(Lederis et al., 1982) and common carp Cyprinus carpio (Ichikawa et al., 1982) and urotensin 361 

II in the goby Gillichthys mirabilis (Pearson et al., 1980). Urotensin I is related to CRH [for 362 

review: (Lovejoy et al., 2014)] and urotensin II to somatostatin [for review: (Tostivint et al., 363 

2014)]. Apart from these urotensins, the CNSS produces two other neuropeptides, CRH and 364 

parathyroid hormone-related protein, as well as a neurotransmitter, acethylcholine [for 365 
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review: (McCrohan et al., 2007)]. In teleosts, together with the preoptic area of the brain, the 366 

CNSS is the major source of CRH and urotensins [European flounder Platichthys flesus: (Lu 367 

et al., 2004); rainbow trout: (Bernier et al., 2008; Craig et al., 2005); zebrafish: (Alderman 368 

and Bernier, 2009)], two neuropeptides which are involved in the stress axis (cf § 2.2.2.1).  369 

2.1.2. Teleost specific whole genome duplication  370 

Two whole genome duplications (WGD) likely occurred in ancestral vertebrates and are 371 

named 1R and 2R for first and second round of WGD, respectively [for review: (Dehal and 372 

Boore, 2005)]. An additional WGD specifically occurred at the basis of the teleost lineage, 373 

referred to as teleost specific WGD (TWGD) or as 3R for third round of WGD [for review: 374 

(Meyer and Van De Peer, 2005)]. WGD events led to the expansion of gene numbers. This 375 

additional WGD in teleosts would have favored the evolutionary success and the remarkable 376 

biological diversity of teleosts, the largest vertebrate group. Concerning the neuroendocrine 377 

axes, the 3R is at the origin of additional paralogs for a number of actors of both gonadotropic 378 

and corticotropic axes in teleosts. Further additional WGD occurred more recently 379 

independently in some teleost groups, such as in salmonids (Lien et al., 2016; Robertson et 380 

al., 2017) and in carps (Larhammar and Risinger, 1994; Wang et al., 2012) and are referred to 381 

as 4R for fourth round of WGD. Conservation of duplicated paralogs may be related to 382 

amplification of function, sharing of multiple preexisting functions (subfunctionalization) or 383 

acquisition of new function (neofunctionalization) [for review: (Dufour et al., 2020)]. 384 

2.2. The corticotropic axis 385 

2.2.1. Main actors of the corticotropic axis in vertebrates 386 

In all vertebrates, stress response is regulated by the corticotropic axis (HPA in mammals and 387 

sauropsids and HPI in amphibians and teleosts) [for review: (Gorissen and Flik, 2016)]. The 388 

neurohormone, corticotropin-releasing hormone (CRH), as its name indicates, controls the 389 

production and release of corticotropin (also named adrenocorticotropic hormone, ACTH), at 390 
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the pituitary level. ACTH is the result of tissue-specific post-translational processing of 391 

proopiomelanocortin (POMC), together with melanocyte stimulating hormone (MSH), and β-392 

endorphin (β-END). ACTH and MSH, called melanocortins (MC) act via MC receptors 393 

(MCR), while β-END acts via opioid receptors. ACTH from the corticotrophs of the pars 394 

distalis of the pituitary controls via type 2 MCR (melanocortin-2 receptor, MC2R), 395 

glucocorticoid production and release from adrenal cortex cells in amniotes or interrenal cells 396 

in amphibians and teleosts. Major glucocorticoids are cortisol in most mammals and ray 397 

finned fish and corticosterone in most birds, amphibians and reptiles [for review: (Aerts, 398 

2018)]. MC2R, in teleosts as in tetrapods, is ligand selective as it can only be activated by 399 

ACTH and not by MSH, and requires coexpression with an accessory protein, melanocortin-2 400 

receptor accessory protein (MRAP) for trafficking to the cell surface [for reviews: (Dores, 401 

2016; Dores et al., 2016)]. Glucocorticoids negatively feedback on the brain (hypothalamic 402 

CRH) / pituitary (ACTH) corticotropic axis [for reviews: (Bernier et al., 2009; Faught et al., 403 

2016; Gorissen and Flik, 2016)]; this negative feedback regulation of the HPI axis involves 404 

glucocorticoid receptor (GR) signaling pathway.  405 

2.2.2. Specific features of the corticotropic axis in teleosts 406 

The hypothalamic regulation of corticotropes and melanotropes in teleosts has already been 407 

extensively reviewed by Bernier and collaborators (Bernier et al., 2009). 408 

  2.2.2.1. CRH and related peptides and their receptors 409 

CRH, first isolated from sheep hypothalamus, together with urotensin I (UI) isolated from the 410 

CNSS of the white sucker (Lederis et al., 1982) and the common carp (Ichikawa et al., 1982), 411 

and with sauvagine (SVG) isolated from the skin of the amphibian Phylomedusa sauvagei 412 

(Montecucchi et al., 1980), form a large family of peptides. Later on, urocortins were 413 

identified in mammals and also found to be related to CRH: urocortin 1 (Ucn1), ortholog of 414 

UI and SVG (Vaughan et al., 1995); urocortin 2 [Ucn2: (Reyes et al., 2001)] and urocortin 3 415 
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[Ucn3: (Lewis et al., 2001)] [for review: (Lovejoy and Balment, 1999)]. All these peptides, 416 

CRH and urocortins in mammals and CRH and UI/SVG in teleosts and amphibians, represent 417 

the CRH/urocortin family. 418 

The complex evolutionary scenario of this family was recently clarified by Cardoso and 419 

collaborators (Cardoso et al., 2016). As previously suggested by Hwang and collaborators, 420 

two ancestral crh/ucn1 and ucn2/ucn3 genes likely arose by specific gene duplication before 421 

vertebrate WGD events (Hwang et al., 2013). Both ancestral genes were duplicated twice in 422 

ancestral vertebrates via 1R and 2R, followed by some paralog losses, leading to up to 5 423 

genes (crh1, crh2, ucn1 issued from ancestral crh/ucn1; ucn2, ucn3, issued from ancestral 424 

ucn2/ucn3) in extant representative species of some vertebrate lineages such as 425 

chondrichthyans, holosteans and actinistians (Cardoso et al., 2016). Teleost specific 3R 426 

resulted in the duplication of crh1 into two paralogs crh1a and crh1b conserved in many 427 

species [for review: (Cardoso et al., 2016)]. Crh2 may have been lost in recent teleosts 428 

(Cardoso et al., 2016), while one 3R-crh2 paralog has been conserved  in basal groups of 429 

teleosts [(Maugars et al., 2016) and Maugars et al. unpublished data].  430 

The involvement of CRH in the stress response in teleosts is well-documented [for reviews: 431 

(Flik et al., 2006; Gorissen and Flik, 2016)]. Teleost crhb (crh1b) paralog is widely expressed 432 

in the brain of various teleost species [goldfish Carassius auratus: (Bernier et al., 1999); 433 

flounder Platichthys flesus: (Lu et al., 2004); zebrafish: (Alderman and Bernier, 2007); 434 

Japanese eel: (Amano et al., 2014); Astatotilapia burtoni: (Carpenter et al., 2014); 435 

Schizothorax prenanti: (Wang et al., 2014)]. To our knowledge, the expression of the crha 436 

(crh1a) paralog was only investigated in Astatotilapia burtoni and zebrafish: in the zebrafish, 437 

crha expression is restricted to the lateral tuberal nucleus of the ventral hypothalamus, while 438 

in A. burtoni, no crha expression is detected in the brain (Grone and Maruska, 2015). The 439 

authors also show that, while both forms are expressed in the retina of Astatotilapia burtoni, 440 
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only crhb expression is observed in the retina of zebrafish (Grone and Maruska, 2015). These 441 

first data suggest species-specific variations in the respective roles of 3R-duplicated crh1 442 

paralogs in teleosts. 443 

In mammals, CRH binds to G-protein coupled receptors, CRHR1 and CRHR2, which belong 444 

to the class 2 subfamily B1 of secretin-like receptor superfamily. Crhr1 was duplicated via 445 

teleost-3R into two paralogs (crhr1a and crhr1b) which were conserved in many extant 446 

teleosts, while one of 3R-duplicated crhr2 paralogs would have been lost [for review: 447 

(Cardoso et al., 2014)]. CRHR1s are thought to mediate CRH action along the 448 

corticotropic/stress axis, as, like mammalian CRHR1, teleost CRHR1s have similar affinity 449 

for CRH and UI/Ucn1 while CRHR2 has higher affinity for UI and urocortins (2 and 3) than 450 

for CRH [catfish Ameirus nebulosus: (Arai et al., 2001); chum salmon Oncorhynchus keta: 451 

(Pohl et al., 2001); common carp: (Manuel et al., 2014)]. 452 

The ACTH-releasing action of CRH has been demonstrated in vitro in many teleost species 453 

[goldfish : (Fryer et al., 1984); rainbow trout: (Baker et al., 1996; Pierson et al., 1996); 454 

gilthead sea bream Sparus aurata: (Rotllant et al., 2001, 2000); Mozambique tilapia 455 

Oreochromis mossambicus: (Van Enckevort et al., 2000); common carp: (Metz et al., 2004)], 456 

as in mammals (Rivier et al., 1983; Rivier and Plotsky, 1986), birds (Carsia et al., 1986) and 457 

amphibians (Tonon et al., 1986). In the common carp, the release of ACTH is stimulated by 458 

CRH but only when ACTH cells are submitted to DA inhibition (Metz et al., 2004). 459 

CRH stimulates not only ACTH release, but also α-MSH release, in various teleosts such as 460 

in Mozambique tilapia (Lamers et al., 1994; Van Enckevort et al., 2000), gilthead sea bream 461 

(Rotllant et al., 2001), red porgy Pagrus pagrus (Van Der Salm et al., 2004) and common 462 

carp (Van Den Burg et al., 2005). This α-MSH-releasing effect of CRH is also reported in 463 

mammals such as rat (Meunier et al., 1982; Proulx-Ferland et al., 1982). In contrast, in an 464 

amphibian, the frog Rana ridibunda, while CRH is a potent stimulator of ACTH release by 465 
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anterior pituitary cells, it is ineffective on α-MSH release by neurointermediate lobes in 466 

vitro (Tonon et al., 1986).  467 

Other CRH-related peptides such as UI and sauvagine can induce in goldfish the release in 468 

vitro of ACTH (Fryer et al., 1984, 1983), as well as of α-MSH (Tran et al., 1990). 469 

Interestingly, UI and SVG are equipotent to CRH in stimulating ACTH release by rat anterior 470 

pituitary cells (Rivier et al., 1983), while in the frog Rana ridibunda, they are unable to 471 

stimulate ACTH release (Tonon et al., 1986). Concerning α-MSH, UI and SVG induce its 472 

release by the neurointermediate lobe in vitro in Xenopus laevis (Verburg-Van Kemenade et 473 

al., 1987), but not in Rana ridibunda (Tonon et al., 1986). In addition to its action on the 474 

pituitary, UI is able to directly stimulate cortisol release, and to potentiate ACTH-stimulatory 475 

effect, on interrenals in vitro in rainbow trout (Arnold-Reed and Balment, 1994) and 476 

European flounder (Kelsall and Balment, 1998). Finally, in maturing masou salmon 477 

Oncorhynchus masou, UI rather than CRH could be involved in the control of 478 

hypercortisolemia, as hypothalamic uI expression rises in correlation with enhanced cortisol 479 

secretion, while crh expression does not (Westring et al., 2008). 480 

In the rainbow trout, both crh and uI expressions in the brain (hypothalamus and preoptic 481 

area) increase in response to various stressors: hyperosmotic challenge (Craig et al., 2005), 482 

hyperammonemia, isolation (Bernier et al., 2008) as well as hypoxia (Bernier et al., 2008; 483 

Bernier and Craig, 2005). Notably, crh and uI expressions increase also in the caudal 484 

neurosecretory system (CNSS) in response to various stressors in the rainbow trout 485 

[hyperosmotic challenge: (Craig et al., 2005); hyperammonemia: (Bernier et al., 2008)] and in 486 

the olive Japanese flounder, Paralichthys olivaceus [acute hypothermal stress: (Yuan et al., 487 

2020)]. In the European flounder, net restraint induces an increase in crh expression in the 488 

CNSS, but not in the hypothalamus, as well as an increase in CNSS cortisol receptors in 489 

addition to an increase in plasma cortisol levels (Lu et al., 2004). In this species, 490 
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glucocorticoid receptors have been colocalized with UI in the CNSS (Bond et al., 1999). All 491 

these data suggest the possible involvement of the CNSS in the stress-specific regulation of 492 

cortisol production in teleosts and the existence of an extra-pituitary feedback system on 493 

CNSS for the suppression of cortisol secretion. Earlier in vivo studies already reported the 494 

possible involvement of CNSS in the regulation of the corticotropic axis: injection of 495 

urophysis extracts or synthetic Catostomus commersoni UI in flounder induces an elevation 496 

of cortisol (Arnold-Reed and Balment, 1989); in goldfish, urophysectomy produces marked 497 

elevation of hypothalamic UI-like activity, pituitary ACTH and plasma cortisol, which can 498 

not be observed in urophysectomized fish receiving dexamethasone (Woo et al., 1985). More 499 

functional investigations are needed to assess the possibility of a major contribution of CNSS 500 

CRH-related peptides to the regulation of cortisol secretion and stress responses. 501 

  2.2.2.2. Dopamine and other neurohormones 502 

*Dopamine  503 

In mammals, different data have been reported concerning the effects of dopamine (DA) on 504 

ACTH release between in vitro and in vivo studies. Treatment of rat anterior pituitary glands 505 

(Van Loon and Kragt, 1970) or human corticotroph adenoma cells (Ishibashi and Yamaji, 506 

1981) with DA lowers ACTH release. In contrast, administration of DA agonists to rats 507 

elevates plasma ACTH concentrations and subsequently plasma corticosterone levels, and this 508 

elevation is prevented by pretreatment with DA antagonists (Borowsky and Kuhn, 1992; 509 

Ježová et al., 1985). An α-MSH-release inhibitory effect of DA is observed in amphibians 510 

[Rana pipiens: (Saland et al., 1982); Rana ridibunda : (Jenks et al., 1985); Xenopus laevis : 511 

(Verbug-Van Kemenade et al., 1986)].  512 

Possible involvement of DA in the hypothalamic regulation of teleost corticotropes and 513 

melanotropes has been suggested by Metz and colleagues. As basal ACTH release increases 514 

slowly and steadily over time when pituitary glands of common carp are incubated in vitro, 515 
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they conclude that ACTH release is under a predominant inhibitory control in vivo (Metz et 516 

al., 2004). They also show that DA inhibits ACTH release and is necessary for CRH-517 

stimulation of ACTH release (Metz et al., 2004). It was previously reported that DA was able 518 

to inhibit in vitro α-MSH release by goldfish (Omeljaniuk et al., 1989) and red porgy (Van 519 

Der Salm et al., 2004) pituitaries as well as by Mozambique tilapia neurointermediate lobes 520 

(Lamers et al., 1991). In vitro treatment with DA D2 receptor agonists inhibits α-MSH release, 521 

while DA D1 receptor agonists have a stimulatory effect on α-MSH release, in Mozambique 522 

tilapia exposed to water with low pH (acid stress) (Lamers et al., 1997). Overall, these results 523 

support an involvement of DA in the regulation of ACTH and α-MSH release probably 524 

interdependently with CRH pathway [for review: (Gorissen and Flik, 2016)].  525 

*Serotonin  526 

In mammals, serotonin (5-hydroxytryptamine, 5-HT), a monoamine neurotransmitter, is 527 

known to stimulate the HPA axis [for review: (Dinan, 1996)] and to control stress coping [for 528 

review: (Puglisi-Allegra and Andolina, 2015)]. 5-HT mainly acts on the brain, but it can also 529 

act directly on the adrenal and pituitary glands [for review: (Dinan, 1996)]. The brain network 530 

involves CRH, GABA and glutamate neurons [for review: (Puglisi-Allegra and Andolina, 531 

2015)].  532 

Similar results have been reported in teleost fish. Injection of a selective agonist for serotonin 533 

receptor 5-HT1A (8-OH-DPAT) results in increased plasma cortisol concentrations in some 534 

teleosts [rainbow trout: (Winberg et al., 1997); Gulf toadfish Opsanus beta: (Medeiros et al., 535 

2010); goldfish: (Lim et al., 2013)]. In the Arctic charr Salvelinus alpinus, comparison 536 

between stressed and unstressed fish show that this selective agonist has a stimulatory effect 537 

on the HPI axis in unstressed fish, while having a suppressive effect on the stress-induced 538 

activation of the HPI axis in fish stressed by handling and ip injections (Höglund et al., 2002). 539 

In the Gulf toadfish, injection of 8-OH-DPAT results in increased hypothalamic crh mRNA 540 



 22 

levels and ACTH release from the pituitary and these effects are inhibited by crowding stress 541 

(Medeiros et al., 2014). However in goldfish, injection of this agonist has no effect at the 542 

brain level but rather acts at interrenal tissue to stimulate cortisol secretion (Lim et al., 2013).  543 

In vitro, 5-HT stimulates cortisol release by interrenals in Gulf toadfish [kidney pieces: 544 

(Medeiros and McDonald, 2012)] and in goldfish [superfused head kidney tissue: (Lim et al., 545 

2013)]. In goldfish, Lim and colleagues demonstrate the involvement of multiple 5-HT 546 

receptor subtypes (5-HT1A and 5-HT4) in the interrenal paracrine effect of 5-HT (Lim et al., 547 

2013), while in Gulf toadfish, Medeiros and McDonald show that 5-HT4 does mediate 5-HT 548 

action but 5-HT1A does not (Medeiros and McDonald, 2012).  549 

* Thyrotropin-releasing hormone  550 

In mammals and in adult amphibians, thyrotropin-releasing hormone (TRH) is the main 551 

neurohormone controlling the thyrotropic axis i.e. the synthesis and release of thyrotropin 552 

(TSH) at the pituitary level, which stimulates the production of thyroid hormones at the 553 

thyroid level. This TSH-releasing role seems to be taken on by CRH in larval amphibians, 554 

reptiles and birds [for reviews: (De Groef et al., 2006; Galas et al., 2009)]. In teleosts, 555 

investigations on the in vitro effect of TRH on pituitary TSH production show either no effect 556 

[common carp: synthesis, (Kagabu et al., 1998); mRNA levels, (Geven et al., 2009); coho 557 

salmon Oncorhynchus kisutch, release: (Larsen et al., 1998)] or a stimulatory effect [bighead 558 

carp Aristichthys nobilis, mRNA levels: (Chatterjee et al., 2001; Chowdhury et al., 2004); 559 

Japanese eel, mRNA levels: (Han et al., 2004)]. CRH acts as a TSH-releasing factor on coho 560 

salmon pituitary cells (Larsen et al., 1998), but has no effect on tshβ mRNA levels in 561 

common carp pituitary glands in vitro (Geven et al., 2009). 562 

Conversely to the effect of CRH on TSH, TRH can exert an ACTH-releasing effect in teleosts 563 

as shown by in vitro studies [goldfish pituitary dispersed cells: (Tran et al., 1989);  gilthead 564 

sea bream pituitary: (Rotllant et al., 2000)]. TRH is also a potent stimulator of α-MSH release 565 
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by the pars intermedia in many teleost species [goldfish: (Tran et al., 1989); tilapia: (Lamers 566 

et al., 1991); rainbow trout: (Schwartzentruber et al., 1994); gilthead sea bream: (Rotllant et 567 

al., 2000); red porgy: (Van Der Salm et al., 2004)]. This α-MSH-releasing effect of TRH is 568 

also observed in amphibians [Rana ridibunda: (Tonon et al., 1980); Xenopus laevis: (B. 569 

Verburg-Van Kemenade et al., 1987)].  570 

After a stress (prolonged crowding), in the gilthead sea bream, the pituitary presents a 571 

differential response of ACTH and α-MSH to TRH and CRH treatments: the stimulation of 572 

ACTH by CRH is attenuated, but not the stimulation of ACTH by TRH, while both CRH and 573 

TRH stimulation of α-MSH are enhanced (Rotllant et al., 2000). In Mozambique tilapia, a 574 

dual organization of the stress axis has been demonstrated, as after exposure to low-pH water, 575 

the CRH/ACTH axis is replaced by a TRH/di-acetylated α-MSH axis for the production of 576 

cortisol (Lamers et al., 1994). Overall, these results suggest the involvement of TRH in the 577 

regulation of corticotropes and melanotropes, notably during exposure to stress.  578 

*Arginine vasotocin, isotocin and arginine vasopressin  579 

Arginine vasotocin (AVT), isotocin (IST) and arginine vasopressin (AVP) are all peptides 580 

produced by neurons of the preoptic nucleus and released by the neurohypophysis. AVT and 581 

IST are present in non-mammalian vertebrates and closely related to mammalian AVP.  582 

As in mammals, these neuropeptides are able to stimulate the release of ACTH in vitro 583 

[goldfish: (Fryer et al., 1985); trout: (Baker et al., 1996; Bond et al., 2007; Pierson et al., 584 

1996)] and thus increase plasma cortisol levels in teleosts in vivo [goldfish: (Fryer and Leung, 585 

1982); trout: (Baker et al., 1996; Bond et al., 2007; Pierson et al., 1996)]. In addition, in 586 

mammals and birds [for review: (Cornett et al., 2012)], they potentiate the stimulatory action 587 

of CRH on ACTH in vivo and in vitro (Gillies et al., 1982; Rivier and Vale, 1983; Turkelson 588 

et al., 1982). In teleosts, contradictory data are available concerning a possible synergy with 589 

CRH on ACTH release in vitro: they do synergize in trout (Baker et al., 1996), while they do 590 
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not in goldfish (Fryer et al., 1985)]. In the frog Rana ridibunda, no potentiation of CRH-591 

induced ACTH release is observed when anterior pituitary cells are incubated with a 592 

combination of AVP and CRH (Tonon et al., 1986).  593 

In rainbow trout, a study shows that AVT mRNA levels in neurons of the preoptic nucleus are 594 

elevated during acute stress but not chronic stress (Gilchriest et al., 2000). 595 

  2.2.2.3. POMC-derived peptides and their receptors 596 

*POMC-derived peptides 597 

Pro-opiomelanocortin (POMC), together with proenkephalin (PENK), prodynorphin (PDNY) 598 

and proorphanin (PNOC), form the opioid/orphanin gene family [(Sundström et al., 2010); for 599 

review: (Dores et al., 2002)]. POMC is post-translationally processed and some of the 600 

peptides obtained undergo further modifications such as C-terminal amidation and N-601 

acetylation [for reviews: (Dores and Baron, 2011; Takahashi and Mizusawa, 2013)]. POMC 602 

organizational plan varies among vertebrates [for reviews: (Dores and Baron, 2011; Dores 603 

and Lecaude, 2005)]. POMC is the precursor for ACTH, melanotropins (α-, β- and γ- MSH), 604 

corticotropin-like intermediate peptide (CLIP), lipotropins (β- and γ- LPH) and β-endorphin, 605 

in tetrapods and lungfish (Amemiya et al., 1999a; Nakanishi et al., 1979). Chondrichthyans 606 

have an additional melanotropin, δ-MSH (Amemiya et al., 1999b). Teleosts lack γ-MSH 607 

(Kitahara et al., 1988; Lee et al., 1999), but pomc-β of cichlids and pomacentrids encodes a 608 

novel melanocortin peptide, ε-MSH, the result of a tandem duplication of the segment 609 

encoding ACTH (Harris et al., 2014). In all these vertebrates, the adenohypophysis possesses 610 

two cell populations that express POMC: in the pars distalis (PD), the corticotropes in which 611 

POMC is processed to ACTH (and β-lipotropin), and in the pars intermedia (PI), the 612 

melanotropes in which POMC is processed to ACTH, which is further cleaved to give α-613 

MSH, corticotropin-like intermediate peptide and β-endorphin [for review: (Takahashi and 614 

Mizusawa, 2013)]. Differently, agnathans possess two ‘POMC’ genes: pro-opiocortin (POC), 615 
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which encodes ACTH and a different β-endorphin, is expressed in the pars distalis; pro-616 

opiomelanotropin (POM), which encodes α-, and β- MSH, and β-endorphin, is expressed in 617 

the pars intermedia (Takahashi et al., 2012, 1995). 618 

Teleost 3R gave rise to pomc gene duplicates: pomc-α (a or A) and pomc-β (b or B), with 619 

pomc-β having lost a functional β-endorphin (De Souza et al., 2005). Further independent 620 

gene duplications during teleost evolution resulted in duplicates of pomc-α such as in halibut 621 

and carp [pomc-I and –II: (De Souza et al., 2005)], sea bream [pomc-α1 and -α2: (Cardoso et 622 

al., 2011)] and Astatotilapia burtoni [pomc-α1 and -α2: (Harris et al., 2014)]. In barfin 623 

flounder Verasper moseri, a third pomc gene, named pomc-C, was also identified (Takahashi 624 

et al., 2006); pomc-C belongs to the pomc-β clade while pomc-A and-B belong to the pomc-α 625 

clade and thus should be renamed -β, -α1 and -α2, respectively, according to Cardoso and 626 

collaborators (Cardoso et al., 2011). In rainbow trout, apart from pomc-B, pomc-A1 and -A2 627 

are likely the result of the salmonid genome duplication (4R) (Leder and Silverstein, 2006).  628 

As in other vertebrates [e.g. in rodents: (Kraicer et al., 1973)], ACTH is produced in teleosts 629 

from POMC by both the pars distalis (PD; corticotropes) and the pars intermedia (PI; 630 

melanotropes) of the pituitary, but ACTH of the pars intermedia is further cleaved to produce 631 

smaller peptides and cortisol feedbacks only on the pars distalis ACTH [for review: (Fryer 632 

and Lederis, 1986)]. In tetraodon Tetraodon nigroviridis, pomc-α and not pomc-β is 633 

expressed in the PD, while both are expressed in the PI (De Souza et al., 2005). In the sea 634 

bream, pomc-α2 and not pomc-α1 is expressed in the PD, while only pomc-α1 is expressed in 635 

the PI (Cardoso et al., 2011). In the pituitary of barfin flounder, all three pomc genes present 636 

in this species are expressed in the PD (Takahashi et al., 2006). In Astatotilapia burtoni 637 

(Harris et al., 2014) and rainbow trout (Leder and Silverstein, 2006), all three pomc are 638 

expressed in the pituitary, but no indication of the region is reported. This indicates species-639 

specific variation in the expression of the various pomc paralogs by the PD corticotropic cells 640 
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through teleost radiation. 641 

Species-specific variations among teleosts may also concern the pomc paralog linked to stress 642 

response. In the gilthead sea bream, an enhanced pituitary expression of pomc-α2 (pomc-b in 643 

the paper) and a decreased one of pomc-α1 (pomc-a in the paper) are observed after acute 644 

stress due to air exposure (Skrzynska et al., 2018)], leading the authors to link pomc-α2 and 645 

not pomc-α1 to stress response in sea bream. However, in the same species, no change in the 646 

expression of both paralogs was previously reported after exposure to other acute stress, 647 

chasing and persecution (Toni et al., 2015). In Rhamdia quelen, both pituitary pomc-α2 648 

(pomcb in the paper) and pomc-α1 (pomca in the paper) expressions are unchanged after 649 

stressful situation (transport) (Saccol et al., 2018). In contrast, in the Senegalese sole, Solea 650 

senegalensis, pomc-α1 (pomc-a in the paper) expression in the pituitary is down-regulated in 651 

juveniles chronically stressed by high stocking density, whereas pomc-α2 (pomc-b in the 652 

paper) expression levels remain unaffected (Wunderink et al., 2012). All these data in three 653 

different species do not lead to clear conclusions concerning a preferential involvement of one 654 

or another pomc paralog in stress response among teleosts.  655 

An in vitro corticotropic action (i.e. induction of cortisol release from head kidney) of α-MSH 656 

(desacetyl and diacetyl forms) has been reported in rainbow trout (Rance and Baker, 1981), 657 

Mozambique tilapia (Lamers et al., 1992) and barfin flounder (Kobayashi et al., 2011), but 658 

not in common carp (Metz et al., 2005). 659 

*Melanocortin receptors 660 

In tetrapods, five MCRs have been identified. In teleost fish, the number of receptors 661 

increases up to six in zebrafish, which has two MC5R paralogs (mc5ra and mc5rb) 662 

(Västermark and Schiöth, 2011), while pufferfish Fugu has only four, with no melanocortin 663 

mc3r and only one copy of melanocortin mc5r (Logan et al., 2003). Concerning the ligand 664 

selectivity of MCRs, all of the paralogous MCRs can be activated by both ACTH and α-MSH 665 
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in extant cartilaginous fishes, while in extant teleosts and tetrapods, MC2R can be activated 666 

only by ACTH. The appearance of MRAP1 paralleled the emergence of this MC2R ligand 667 

selectivity [for reviews: (Dores, 2016; Dores et al., 2016)].  668 

In mammals, the MCRs have distinct expression site and functions [for reviews: (Cone, 2006; 669 

Dores et al., 2014)]: MC1R, expressed in melanocytes, is involved in skin and hair 670 

pigmentation; MC2R, expressed in adrenal cortex, is involved in adrenal steroidogenesis and 671 

stress response; MC3R and MC4R, expressed in the brain, are involved in the control of 672 

energy homeostasis; MC5R, expressed in a variety of exocrine glands, such as sebaceous, 673 

lacrimal and preputial glands, is involved in exocrine gland secretion. These features can be 674 

also found in teleosts but some peculiarities can be noted. Of particuliar interest, mc5r is co-675 

expressed with mc2r in the interrenal of several teleosts [rainbow trout: (Aluru and Vijayan, 676 

2008; Haitina et al., 2004); common carp Cyprinus carpio: (Metz et al., 2005); barfin 677 

flounder: (Kobayashi et al., 2011)], as in the chicken adrenal (Takeuchi and Takahashi, 1998) 678 

and Xenopus tropicalis interrenal/kidney (Dores and Garcia, 2015), suggesting a possible role 679 

of MC5R in the regulation of HPI/HPA axis in these non-mammalian vertebrates.  680 

  2.2.2.4. Corticosteroids and their receptors 681 

*Glucocorticoids 682 

In fish, corticosteroids are synthetized by the interrenal tissue, a tissue embedded inside the 683 

anterior part of the kidney and homologous to the adrenal cortex in mammals. Corticosteroids 684 

are steroid hormones divided into glucocorticoids and mineralocorticoids. Even if cortisol is 685 

the major corticosteroid in teleosts [for review: (Mommsen et al., 1999)], others such as 11-686 

deoxycortisol (17, 21 dihydroxy-4-pregnene-3,20 dione), 11-deoxycorticosterone (DOC) and 687 

corticosterone are also detected in plasma of teleosts [for review: (Butler, 1973); winter 688 

flounder Pseudopleuronectes americanus: (Campbell et al., 1976); rainbow trout Salmo 689 

gairdneri: (Campbell et al., 1980)]. All teleosts so far studied lack aldosterone, which is the 690 



 28 

principal mineralocorticoid in mammals (Gilmour, 2005), and it is generally accepted that 691 

cortisol exerts both glucocorticoid and mineralocorticoid actions in teleosts (McCormick, 692 

2001; McCormick et al., 2008). DOC is shown to be a potent agonist of mineralocorticoid 693 

receptor (MR) (Sturm et al., 2005). Study in rainbow trout has shown a sustained up-694 

regulation of plasma DOC levels during a confinement stress time-course. However, the low 695 

DOC levels compared to cortisol measured in the plasma do not favour an activity of DOC 696 

through MR receptors (Kiilerich et al., 2018) and physiological relevance of this hormone 697 

action is still unclear in fish (Prunet et al., 2006).  698 

*Glucocorticoid and mineralocorticoid receptors 699 

Glucocorticoid and mineralocorticoid receptors (GR and MR respectively) are corticosteroid 700 

receptors which belong to the nuclear receptor superfamily [for review: (Bury, 2017)]. In 701 

teleosts, 3R gave rise to duplicated gr (gr1 and gr2) with one receptor (GR1) retaining a 9 702 

aminoacid insert which does not exist in GR2 [for review: (Bury, 2017)]. Zebrafish is an 703 

exception as this species conserved only one of the two gr paralogs (Schaaf et al., 2008). In 704 

some teleosts, GR1 has two splice variants, GR1a and GR1b [rainbow trout: (Takeo et al., 705 

1996); Haplochromis burtoni: (Greenwood et al., 2003); Tetraodon and Takifugu species: 706 

(Stolte et al., 2006); marine medaka Oryzias dancena: (M. Kim et al., 2011)]. 3R gave also 707 

rise to duplicated mr (mr1 and mr2) which have been both conserved in a basal teleost, the 708 

European eel [(Lafont et al., 2014) and Lafont et al. unpublished data], while only the mr1 709 

paralog would have been conserved in extant teleosts so far studied [for review: (Baker and 710 

Katsu, 2019)]. As they are issued from the 3R, these two mr paralogs in the eel should rather 711 

be named mra and mrb, according to the commonly used nomenclature for teleost 3R-712 

paralogs. However, they must be distinguished from the two mr forms previously found in the 713 

rainbow trout, named rtmra and rtmrb (Sturm et al., 2005), which may represent allelic 714 

variants or paralogs issued from salmonid-4R of mr1. 715 
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GR1 and GR2 present differential affinities (sensitivities) and show distinct functionality with 716 

GR2 having a higher hormonal transcriptional activity at equimolar concentration and higher 717 

sensitivity (Bury et al., 2003). This difference in sensitivity is not restricted to the 718 

salmoniformes and have been also observed with the two GRs in Pantodon buchholzi (Li et 719 

al., 2012), carp (Stolte et al., 2008), marine medaka (Oryzias dacena) (M. Kim et al., 2011), 720 

and the Japanese medaka (Oryzias latipes) (Miyagawa et al., 2015). From such in vitro 721 

differences in functionality, one can hypothetize that the two teleost GRs may have different 722 

roles: the hypersensitive GR2 could play a prominent role during basal circulatory cortisol 723 

concentrations (unstressed) whereas the less sensitive GR1 may become prominent during 724 

stressful situations when cortisol levels are high [(Bury et al., 2003); for review: (Bury, 725 

2017)]. So far, such functionally distinct roles have not been established in fish. However, a 726 

recent study of stress effects in salmonids shows differential contribution of the corticosteroid 727 

receptors in the regulation of HPI axis activity (Kiilerich et al., 2018) and suggests a negative 728 

feedback regulation of cortisol release at the pituitary level via MR, while a short loop 729 

regulation occurs at the interrenal level via GR in rainbow trout exposed to 7 day-730 

confinement. The authors also observe the presence of the 2 GR and the MR in hypophysial 731 

ACTH cells confirming the regulation of the HPI axis at the pituitary level by both GRs and 732 

MR. Similar conclusions have been also suggested when studying in the Atlantic salmon 733 

effects of unpredictable chronic stress or to repeated chasing stress (Madaro et al., 2016, 734 

2015). In the common carp, Stolte and collaborators report that, in fish exposed to prolonged 735 

and strong stressors, mRNA levels of all three corticosteroid receptors (gr1, gr2 and mr) are 736 

down-regulated in some brain regions, but not in CRH neurons or pituitary ACTH cells 737 

(Stolte et al., 2008), suggesting a role of all three receptors in stress regulation in this species. 738 

In zebrafish (Schaaf et al., 2008), the single gr (gr2) gene has two splice variants,  grα and  739 

grβ (Hollenberg et al., 1985), with a variant lacking the C-terminal portion of the GR as 740 
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described in human (Hollenberg et al., 1985). In human, grβ may act as a dominant-repressor 741 

of the wildtype variant (Bamberger et al., 1995).  These splicing variants are co-expressed in a 742 

number of zebrafish tissues (brain, spleen, liver, intestine, heart, gills and muscle), grα 743 

mRNA levels being significantly higher than those of grβ (Schaaf et al., 2008). Despite initial 744 

data suggesting that grβ has a key role in the negative regulation of grα (Chatzopoulou et al., 745 

2015), a recent study by the same group using transgenic zebrafish with inducible expression 746 

of grβ suggests that this isoform does not have a functional role in transcription regulation 747 

(Chatzopoulou et al., 2017). Functional roles of corticosteroid receptors during stress have 748 

been studied in this fish species using mutant fish. Thus, GR knockout zebrafish show an 749 

inability to cope with stressor such as placement into an unfamiliar environment, even after 750 

repeated exposure (Ziv et al., 2013). These fish also show hypercortisolemia and fail to 751 

exihibit a cortisol stress response, while KO zebrafish for MR have a delayed but sustained 752 

cortisol response (Faught and Vijayan, 2018). Both KO mutants do not show the hyperactivity 753 

in response to light observed in wild type zebrafish (Faught and Vijayan, 2018). These recent 754 

data suggest distinct but complementary roles for GR and MR in the development and 755 

regulation of the stress axis in zebrafish: MR represses HPI axis during development while 756 

GR regulates basal cortisol levels in the context of negative feedback regulation during stress. 757 

Both receptors are also involved in the control of stress-related behaviour in zebrafish (Faught 758 

and Vijayan, 2018). Such a role in the regulation of stress-related behaviour is suggested in 759 

medaka as well (Sakamoto et al., 2016). 760 

 761 

2.3. The gonadotropic axis 762 

2.3.1. Main actors of the gonadotropic axis in vertebrates 763 

The brain-pituitary-gonadal axis is responsible for the control of the reproductive function in 764 

all vertebrates. It regulates gamete production, sexual secondary characters and behaviors, as 765 
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well as key-steps of the life cycle such as puberty, seasonal reproduction or sex change in 766 

some hermaphrodic species including teleost representatives. 767 

The brain integrates various environmental and social cues, such as temperature, photoperiod, 768 

habitat conditions, presence of partners, as well as internal cues such as developmental stage, 769 

size, nutritional status and energy stores, via various neuronal networks which converge into 770 

the positive or negative regulation of the activity of gonadotropin-releasing hormone (GnRH) 771 

hypophysiotropic neurons considered as the master control of reproduction (Gore, 2002). 772 

GnRH binds to its cognate membrane receptor (GnRH-R) expressed by the pituitary 773 

gonadotrope cells, and which belongs to the rhodopsin-like, class A, G-protein coupled 774 

receptor (GPCR) superfamily [for reviews: (Flanagan and Manilall, 2017; Millar et al., 775 

2004)]. GnRH stimulates the synthesis and release of the gonadotropins, LH and FSH. 776 

The two pituitary gonadotropins, LH and FSH are glycoprotein hormones, composed of two 777 

subunits alpha and beta. The alpha subunit, named glycoprotein hormone alpha subunit 778 

(Gpα), is common to both gonadotropins, LH, FSH and to the thyrotropin, TSH, while the 779 

beta subunit is specific to each hormone [for reviews: (Cahoreau et al., 2015; Pierce and 780 

Parsons, 1981)]. LH and FSH bind to their respective GPCR membrane receptors LHR and 781 

FSHR expressed by the gonads. The gonadotropins activate gonadal functions, gametogenesis 782 

and steroidogenesis. The enzymatic pathway of the biosynthesis of sex steroids is largely 783 

conserved among vertebrates. Sex steroids, androgens, estrogens, progestagens, bind to their 784 

respective nuclear receptors, AR, ER, PR, belonging to the nuclear receptor superfamily [for 785 

review: (Mangelsdorf et al., 1995)]. As more recently discovered, steroid may also act via 786 

binding to GPCR membrane receptors, such as estradiol-membrane receptor and progesterone 787 

membrane receptor [for review: (Thomas, 2012)]. Sex steroids act on multiple targets, 788 

including the gonads themselves, a variety of peripheral tissues as well as the brain and 789 

pituitary, where they exert positive and negative feedback controls on the gonadotropic axis.  790 
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2.3.2. Specific features of the gonadotropic axis in teleosts 791 

  2.3.2.1. GnRHs and their receptors 792 

Up to three gnrh genes are present in extant teleosts, a larger number than in mammals (up to 793 

two genes), which had been initially attributed to the 3R. However, subsequent comparative 794 

studies revealed the presence of three gnrh genes also in basal vertebrate representatives such 795 

as a chondrichthyan, the catshark, Scyliorhynus canicula and a basal sarcopterygian, the 796 

coelacanth, Latimeria chalumnae. Phylogeny and synteny studies support the 1R/2R origin of 797 

the three vertebrate gnrh and their inheritance by the teleost lineage. In contrast, 3R had no 798 

impact on the gnrh gene number in extant teleosts, indicating an early loss of 3R-paralogs in 799 

this lineage [for reviews: (D. K. Kim et al., 2011; Roch et al., 2011; Tostivint, 2011)]. A 800 

maximum of three gnrh (1, 2, 3) genes are thus present in teleosts, such as in medaka, while 801 

additional, independent and species-specific losses led to the presence of only two gnrh genes 802 

in some species, e.g. gnrh1 and 2 in the eel, or gnrh2 and 3 in the zebrafish. The situation is 803 

more complex concerning GnRH receptors. Recent studies indicate that a large number of 804 

GnRH receptors resulted from 1R/2R as well as from local gene duplications in ancestral 805 

vertebrates; subsequently, several independent gene loss events led to a variable number of 806 

gnrhr genes throughout vertebrate evolution. In teleosts, 3R-duplicated paralogs as well as 807 

additional duplications in some lineages increased the number of GnRH-R [up to 5 in 808 

acanthopterygians and 6 in salmonids: (Ciani et al., 2020)] as compared to other 809 

actinopterygians, with species-specific variations among teleosts due to independent gene 810 

losses [(Ciani et al., 2020); for reviews: (Roch et al., 2014; Sefideh et al., 2014; Williams et 811 

al., 2014)].  812 

2.3.2.2. Dopamine and other neurohormones 813 

*Dopamine 814 
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A crucial control is exerted by dopaminergic neurons which directly inhibit the gonadotrope 815 

cell activity and counteract the effect of GnRH, as first discovered in cyprinids by Peter and 816 

collaborators and retrieved in many other teleosts species including basal representatives such 817 

as the eel [for reviews: (Dufour et al., 2010, 2005)]. In relation with environmental and 818 

internal cues, and in a species-specifc manner, this dopaminergic control of gonadotropic cells 819 

plays key roles in various reproductive steps in teleosts such as puberty, final oocyte 820 

maturation and ovulation, spermiation, or sex change [for reviews: (Dufour et al., 2010, 821 

2005)]. A major inhibitory role of DA in regulating reproduction is also reported in 822 

amphibians, especially in the control of spawning [for review: (Vu and Trudeau, 2016)]. 823 

Beside GnRH and DA, a variety of other neurohomones can also directly regulate the activity 824 

of teleost gonadotrophs, with species-specific variations, such as kisspeptin (Kiss), 825 

gonadotropin-inhibitory hormone (GnIH), neurokinin, gamma-aminobutyric acid (GABA), 826 

noradrenaline, serotonin etc [for reviews: (Dufour et al., 2020; Zohar et al., 2010)]. As 827 

proposed by Trudeau, these multiple independent controls of gonadotropic cells may provide 828 

compensatory regulatory mechanisms, possibly explaining the low or no impact of KO of 829 

major genes such as kiss or gnrh observed in recent studies (Trudeau, 2018). Species-specific 830 

variations in the multiple controls of gonadotrophs highlight the evolutionary plasticity of the 831 

brain-pituitary anatomo-functional relationships in the teleost lineage, which may have 832 

favored the remarkable diversity of their reproductive cycles. 833 

*GnIH 834 

Gonadotropin-inhibitory hormone (GnIH or RFRP-3 in mammals), a RFamide peptide, was 835 

discovered from quail brain by Tsutsui and collaborators and found to be involved in the 836 

direct inhibitory pituitary regulation of LH (Tsutsui et al., 2000). Shortly after, the GnIH 837 

precursor was shown to encode two other peptides (Satake et al., 2001). Since then, gnih gene 838 

homologs, encoding multiple peptides, have been identified in other vertebrates [for reviews: 839 
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(Muñoz-Cueto et al., 2017; Tsutsui et al., 2018)]. These peptides, in mammals, also possess 840 

an inhibitory action on gonadotropins, while in amphibians they have GH-releasing effects 841 

[for review: (Dufour et al., 2020)]. Recently, it was demonstrated that only a single gnih gene 842 

was present in representative species of elopomorphs (Anguilla species), the most basal group 843 

of teleosts, as well as in the other teleosts (Maugars et al., 2020). This result indicates a loss 844 

of one of the two 3R-duplicated gnih paralogs shortly after the 3R (Maugars et al., 2020). 845 

Depending on teleost species, inhibitory [e.g. European eel (Pasquier et al., 2018); common 846 

carp (Peng et al., 2016); zebrafish (Spicer et al., 2017)], stimulatory [e.g. sockeye salmon 847 

(Amano et al., 2006); grass puffer Takifugu niphobles (Shahjahan et al., 2011); tilapia 848 

Oreochromis niloticus (Biran et al., 2014); catla Catla catla (Kumar et al., 2019); half-smooth 849 

tongue sole Cynoglossus semilaevis (Wang et al., 2019)] or a lack of effect [e.g. goldfish (Qi 850 

et al., 2013); Astyanax altiparanae (Branco et al., 2019)] of GnIH have been described for 851 

gonadotropins in vitro [for review: (Muñoz-Cueto et al., 2017; Tsutsui et al., 2018; Ubuka 852 

and Parhar, 2018)], suggesting a large variability of GnIH function in reproduction across 853 

teleosts. 854 

* Kisspeptin 855 

Kisspeptin, another RF-amide peptide, is encoded by the Kiss-1 gene, a metastasis suppressor 856 

gene, isolated in 1996 from melanoma cells (Lee et al., 1996). This 54 amino-acid peptide, 857 

also called metastin, is processed into shorter peptides which all bind to kisspeptin receptor, 858 

KissR (or GPR54) (Ohtaki et al., 2001). In 2003, three research groups discovered the key 859 

role of the kisspeptin system in the activation of gonadotropic axis and the control of 860 

reproduction in human and mice (de Roux et al., 2003; Funes et al., 2003; Seminara et al., 861 

2004). In vivo and in vitro studies further demonstrate the stimulatory role of kisspeptin at 862 

different levels of the gonadotropic axis: hypothalamus (GnRH neurons), pituitary (LH cells) 863 

and gonads [for reviews: (Pinilla et al., 2012; Putteeraj et al., 2016)]. The few available 864 
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studies in amphibians and reptiles also suggest a stimulatory role of kisspeptin on the HPG 865 

axis, while this system might have been lost in some birds [for review: (Dufour et al., 2020)]. 866 

However, data in teleosts report stimulatory, no or inhibitory effects of kisspeptin peptides on 867 

GnRH or gonadotropins, suggesting a large variabilty of the role of Kiss system in eleost 868 

reproduction according to species [for reviews: (Dufour et al., 2020; Tena-Sempere et al., 869 

2012)]. Up to four paralogs of Kiss and KissR resulted from 1R and 2R in early vertebrates, 870 

but subsequent gene losses led to the presence of only a single Kiss gene and a single KissR 871 

gene in human. In teleosts, due to paralog losses, no impact of 3R on the number of both Kiss 872 

and KissR genes has been found, leading to a maximum of two Kiss and three KissR genes, 873 

which is no more than in a non-teleost actinopterygian such as the gar, Lepisosteus oculatus 874 

[for reviews: (Pasquier et al., 2014, 2012)].  875 

2.3.2.3. Gonadotropins and their receptors 876 

As in mammals, only two gonadotropins, LH and FSH, are present in all extant teleosts, 877 

including basal representative species such as the eel (elopomorphs) (Yoshiura et al., 1999), 878 

indicating an early loss after 3R of the putative additional 3R-paralogs [for review: (Dufour et 879 

al., 2020)]. In tetrapods, LH and FSH bind to their respective receptors, LHR and FSHR. As 880 

recently shown, an additional lhr paralog arose from a local gene duplication in ancestral 881 

actinopterygians, and the two lhr (lhr1 and lhr2) where inherited by the teleost lineage 882 

(Maugars and Dufour, 2015). Due to gene losses after 3R, the number of gonadotropin 883 

receptors did not further increase in teleosts with a single fshr and up to two lhr. Additional 884 

independent and species-specific gene losses led to the presence of a single lhr in some 885 

teleosts, such as only lhr1 in medaka and lhr2 in zebrafish (Maugars and Dufour, 2015).  886 

  2.3.2.4. Sex steroids and their receptors 887 
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Gonadal sex steroids are produced from cholesterol by a succession of enzymatic activities. In 888 

teleosts, 3R duplication of a key-enzyme, the aromatase (Cyp19a1a and b), has been largely 889 

documented [for review: (Zhang et al., 2014)].  890 

Sex steroid nuclear receptors have been duplicated by 3R and the conservation of most of the 891 

paralogs led to the presence of a larger number of nuclear receptors in teleosts as compared to 892 

mammals [for review: (Ogino et al., 2018)]. This is also the case for the steroid membrane 893 

receptors. Concerning estradiol receptors, tetrapods possess two nuclear receptors (ESR1 also 894 

named ERα, and ESR2 also named ERß) and a single membrane receptor (GPER) while 895 

teleosts, as a result of 3R, possess three nuclear receptors (esr1 and duplicated esr2a and 896 

esr2b) and two membrane receptors (gpera and gperb) (Lafont et al., 2016). One of the 897 

duplicated esr1 paralog would have been lost shortly after 3R. A species-specific gene loss 898 

occurred in zebrafish, which possesses a single gper paralog, while both gpera and b paralogs 899 

have been conserved in the other teleosts investigated so far (Lafont et al., 2016). For 900 

androgen receptors, 3R also generated two ar paralogs (ara and arb) in teleosts (Ogino et al., 901 

2009). Recently, Morini and colleagues revealed the presence of duplicated progesterone 902 

nuclear receptors (pgra or pgr1, and pgrb or pgr2) in the eel, which originated from 3R. In 903 

other teleosts however only a single pgr (orthologous to eel pgrb/pgr2) has been found, and 904 

synteny analysis indicates the loss of pgra (pgr1) paralog in the teleost lineage after the 905 

emergence of the basal teleost group of elopomorphs (Morini et al., 2017). Two pgr paralogs 906 

are reported in the goldfish, likely resulting from 4R. The evolutionary history of membrane 907 

progestin receptors is even more complex as five isoforms have been characterized in 908 

vertebrates (Morini et al., 2017). The conservation of multiple steroid receptor genes in 909 

teleosts likely reflects subfonctionalization and neofunctionalization processes, which may 910 

have contributed to species-specific diversification of sexual chararacters, regulatory 911 

processes and reproductive cycles throughout teleost radiation. 912 
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 913 

3. Neuroendocrine mechanisms of the interactions between corticotropic and 914 

gonadotropic axes in teleosts 915 

3.1. Regulatory effects of actors of the corticotropic axis on the gonadotropic axis 916 

 3.1.1. Roles of corticosteroids and their receptors 917 

3.1.1.1. Expression and role along the gonadotropic axis 918 

In the rainbow trout, GR are expressed in GnRH- and dopaminergic neurons as well as on 919 

gonadotrope cells [(Teitsma et al., 1999); for review: (Teitsma et al., 1998)]. In addition, GR 920 

and ER colocalize in the same neurons and pituitary cells [for review: (Teitsma et al., 1998)]. 921 

In Astatotilapia burtoni, both GR1 and GR2 are expressed in GnRH1 neurons in the preoptic 922 

area (Korzan et al., 2014). A direct action of cortisol on GnIH neurons and targets is 923 

suggested in teleosts by the presence of several GR responsive elements (GRE) in the 924 

promoters of zebrafish gnih and gnih receptor (Ogawa and Parhar, 2014). GRs are also 925 

expressed in gonads in various teleosts [midshipman Porichthys notatus: (Arterbery et al., 926 

2010) ; Astatotilapia burtoni: (Maruska and Fernald, 2011)]. 927 

MR is expressed in brain, especially in GnRH1 neurons [Astatotilapia burtoni: (Korzan et al., 928 

2014)], and in gonads of various teleosts [Haplochromis burtoni: (Greenwood et al., 2003); 929 

rainbow trout: (Milla et al., 2008; Sturm et al., 2005); midshipman Porichthys notatus: 930 

(Arterbery et al., 2010); Astatotilapia burtoni: (Maruska and Fernald, 2011); for review: 931 

(Takahashi and Sakamoto, 2013)]. 932 

These expression patterns of GR and MR along the gonadotropic axis suggest potential major 933 

actions of glucocorticoids on reproductive functions at different levels, involving endocrine 934 

loops and/or paracrine/autocrine regulations. 935 

Corticosteroids themselves are produced by gonads in teleosts [for review: (Kime, 1993)]. 936 

Cortisol is present in sperm and seminal fluid [Pacific herring Clupea harengus and North sea 937 
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plaice Pleuronectes platessa: (Scott et al., 1991b, 1991a)]. 11-deoxycortisol is produced by 938 

the ovary [Gillichthys mirabilis and Microgadus proximus: (Colombo et al., 1973); sea bass: 939 

(Colombo et al., 1978); Jenynsia lineata: (Tesone and Charreau, 1980); goldfish: (Kime et al., 940 

1992)] and testis [Jenynsia lineata: (Tesone and Charreau, 1980)]. Like 11-deoxycortisol, 11-941 

deoxycorticosterone (DOC) is an important product of ovarian [Leptocottus armatus, 942 

Gillichthys mirabilis and Microgadus proximus: (Colombo et al., 1973); sea bass: (Colombo 943 

et al., 1978)] and/or testicular [Jenynsia lineata: (Tesone and Charreau, 1980)] 944 

steroidogenesis. Future studies should investigate whether ACTH, gonadotropins or both, 945 

associated or not to other factors are regulating such corticosteroid production by gonads in 946 

fish.  947 

3.1.1.2. In vivo effects of corticosteroids 948 

Pioneer works in loach Misgurnus fossilis (Kirshenblatt, 1952), conger Conger conger 949 

(Mousset, 1957) and European eel (Fontaine et al., 1964) show that injection of 950 

glucocorticoids (desoxycorticosterone acetate) has positive effects on reproduction as it is 951 

able to induce oocyte maturation and spawning. In the catfish Heteropneustes fossilis also, 952 

adrenal corticosteroids (cortisol, cortisone and desoxycorticosterone acetate) are shown to be 953 

effective in inducing ovulation and spawning in hypophysectomized gravid fish, suggesting a 954 

direct positive action on the ovary independently of the pituitary (Sundararaj and Goswami, 955 

1966a). Use of metopiron, an adrenocortical inhibitor which can induce « chemical 956 

interrenalectomy », allows to show that LH-induced effect on ovulation and spawning in 957 

catfish was interrenal-dependent (Sundararaj and Goswami, 1966b). Treatment with cortisol 958 

increases pituitary gonadotropin in juvenile rainbow trout [implant: (Crim et al., 1981)] and 959 

prepubertal European eel [injection: (Dufour et al., 1983; Huang et al., 1999)]. Altogether, 960 

these data suggest positive interactions of glucocorticoids on the HPG axis at both juvenile 961 

and adult stages in some teleost species. 962 
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In contrast, a lot of studies report negative effects of glucocorticoids on the reproductive axis. 963 

Most of them are conducted in salmonids. In the brown trout, implantation of cortisol to 964 

sexually maturing male and female fishes result in smaller gonads, lower plasma levels of sex 965 

steroids and pituitary gonadotropin content (Carragher et al., 1989). Differently, in the 966 

maturing male rainbow trout, a cortisol implant decreases plasma gonadotropin levels while 967 

having no effects on other parameters (plasma sex steroids, pituitary gonadotropin content 968 

and gonad size) (Carragher et al., 1989). In the rainbow trout, intraperitoneal implant of 969 

cortisol decreases hepatic E2-binding site concentration, but increases plasma E2-binding 970 

capacity in immature females (Pottinger and Pickering, 1990) and decreases ER and Vg 971 

expression in maturating females (Lethimonier et al., 2000). Cortisol injection depresses 972 

plasma E2 and T levels, without affecting plasma gonadotropin levels in vitellogenic rainbow 973 

trout (Pankhurst and Van Der Kraak, 2000). In the male rainbow trout, testicular mr 974 

expression and plasma DOC increase around the time of spermiation, and the co-975 

administration of DOC with 17α, 20β-dihydroprogesterone decreases the spermatocrit value 976 

and therefore increases the sperm fluidity (Milla et al., 2008). In Atlantic salmon, Eriksen and 977 

collaborators report impact on progeny of maternal exposure to cortisol (implant), including 978 

increased mortality and prevalence of deformities, reduced development and yolk-sac volume 979 

(Eriksen et al., 2007, 2006). During a field study on spawning grounds, use in female pink 980 

Pacific salmon Oncorhynchus gorbuscha of cortisol implant which further increases 981 

endogenous cortisol levels, impairs reproductive success (fewer eggs) and survival 982 

(McConnachie et al., 2012). The use of metyrapone, which prevents the synthesis of cortisol 983 

from 11-deoxycortisol by inhibiting 11β-hydroxylase, does not change reproductive success 984 

(McConnachie et al., 2012). Altogether, these studies indicate that endogenous physiological 985 

cortisol levels, which raise at the time of upstream migration and spawning in salmonids (cf 986 

§1.2.2), do not impair reproduction, although higher levels may have a negative effect 987 
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(McConnachie et al., 2012).  988 

Deleterious reproductive in vivo effects of corticosteroids have also been shown in other 989 

teleost species. In immature male common carp fed with cortisol-containing food pellets over 990 

pubertal period, brain sGnRH content, pituitary lh and fsh mRNA levels, plasma LH levels 991 

and testicular androgen (T and 11KT) secretion are decreased (Consten et al., 2001a). 992 

Testicular development in this species is retarded by this long-term cortisol treatment 993 

(Consten et al., 2001a, 2001b). In contrast, dietary administered cortisol to channel catfish 994 

Ictalurus punctatus does not modify reproduction (Small, 2004). In the Arctic char, co-995 

exposure to cortisol and E2 results in reduced plasma Vg levels and no change in Vg mRNA 996 

levels, suggesting a post-transcriptional action of cortisol (Berg et al., 2004). Implantation of 997 

cortisol causes retardation of the ovarian growth and depression of plasma sex steroid levels 998 

in tilapia Oreochromis mossambicus [female: (Foo and Lam, 1993a); male: (Foo and Lam, 999 

1993b)]. Later, Gennotte and collaborators show that cortisol treatment induces both positive 1000 

(reduction of the time before ovulation) and negative (reduction of fecundity) effects on the 1001 

reproduction in other tilapia species, Oreochromis niloticus (Gennotte et al., 2012).  1002 

In the cinnamon clownfish, Amphiprion melanopus, injection of cortisol increases gnih 1003 

mRNA, and reduces sbGnRH mRNA and plasma levels of LH and FSH (Choi et al., 2017). 1004 

As, in this teleost species, GnIH inhibits gonadotropin expression (Choi et al., 2016), cortisol 1005 

treatment leads to a dual negative effect on gonadotropin via an increase in GnIH and 1006 

decrease in GnRH. A similar upregulation of hypothalamic gnih (rfrp3) mRNA levels is 1007 

observed in rats after acute or chronic immobilization/restraint stress (Kirby et al., 2009; 1008 

Yang et al., 2017), upregulation which is abolished by adrenalectomy (Kirby et al., 2009) . 1009 

Concerning the effect of stress or corticosteroid treatment on the kisspeptin system, all the 1010 

available data have been obtained in rodents [for reviews: (Acevedo-Rodriguez et al., 2018; 1011 

Iwasa et al., 2018)] and show a reduction of hypothalamic Kiss1 and KissR1 mRNA levels 1012 
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[rat, restraint stress or subcutaneous injection of corticosterone: (Kinsey-Jones et al., 2009); 1013 

mice, implant containing corticosterone: (Luo et al., 2016); mice, restraint stress: (Yang et al., 1014 

2017)]. It would be relevant to investigate the regulation of the kisspeptin system by stress 1015 

and corticosteroids in teleosts, which show different effects of kisspeptin on the control of 1016 

gonadotropins according to the species. 1017 

3.1.1.3. In vitro effects of corticosteroids 1018 

In vitro investigations pin-point the direct actions of cortisol at the different levels of the HPG 1019 

axis. In the rat hypothalamic rfrp-expressing cell line (rHypoE-23) (Gingerich et al., 2009), 1020 

treatment with corticosterone increases gnih(rfrp) mRNA levels and the application of a GR 1021 

antagonist blocks this increase (Gojska and Belsham, 2014; Son et al., 2014). In vitro 1022 

investigations should be developed in teleosts, using hypothalamic neurons, to study possible 1023 

direct effects of corticosteroids on the various neuronal populations (GnRH, DA, GnIH and 1024 

kisspeptin) involved in the gonadotropic axis. 1025 

At the pituitary level, cortisol affects reproduction-related gene expression in Atlantic cod 1026 

pituitary cultures (von Krogh et al., 2019). In this species, cortisol has dual effects on fshβ 1027 

expression, stimulating expression in cells from mature fish, while inhibiting expression in 1028 

cells from spent fish (von Krogh et al., 2019). In contrast, cortisol has no direct effect on lhβ 1029 

expression (von Krogh et al., 2019). While gnrhr2a transcript levels largely increase 1030 

following cortisol treatment, gnrhr1b expression decreases in cells from spent fish and was 1031 

unaffected at other maturity stages (von Krogh et al., 2019). In the prepubertal European eel, 1032 

cortisol increases LH cellular content and lhβ mRNA levels by pituitary cells in culture 1033 

(Huang et al., 1999). Future studies should investigate the effects of corticosteroids on the 1034 

levels of other pituitary targets such as GnIH and kisspeptin receptors in different teleost 1035 

species, considering that, in teleosts, GnIH and kisspeptin possess direct inhibitory or 1036 

stimulatory effects on the pituitary depending on the species. 1037 
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At the liver level, dexamethasone inhibits both basal and E2-stimulated ER expression and 1038 

subsequent Vg expression in trout hepatocyte aggregates (Lethimonier et al., 2000). This is 1039 

achieved via an inhibition by GR of the transcriptional factor CCAAT/enhancer-binding 1040 

protein (C/EPBβ) binding to the ER promoter region (Lethimonier et al., 2002). 1041 

At the gonadal level, different data are available on the direct effect of cortisol on female 1042 

gonadal steroidogenesis depending on species [(Pankhurst, 1998); for review: (Pankhurst, 1043 

2016)]. A decrease in E2 and T release by cultured ovarian follicles after cortisol treatment 1044 

has been observed in rainbow trout (Carragher and Sumpter, 1990), while no such effect has 1045 

been reported in goldfish, common carp and Pagrus auratus (Pankhurst et al., 1995). In the 1046 

rainbow trout, cortisol is shown to have suppressive effects on basal and LH- or cAMP-1047 

stimulated T and E2 production and secretion, but no effect on basal or LH-stimulated 1048 

17,20β-dihydroxy-4-pregnene-3-one (17,20β-P) (Barkataki et al., 2011; Reddy et al., 1999). 1049 

In the same species, cortisol is reported to enhance the efficiency of gonadotropin to induce 1050 

intrafollicular oocyte maturation (Jalabert, 1975) and to positively regulate the secretion of 1051 

follicular 17α-hydroxy-20β-dihydroprogesterone (DHP) induced by gonadotropin in vitro 1052 

(Jalabert and Fostier, 1984). All these data suggest that, in the rainbow trout, cortisol has a 1053 

positive (or no) effect on the synthesis of progestagen (Maturation Inducing Steroid, MIS) 1054 

during final oocyte maturation, while being inhibitor at earlier stages of oogenesis, on the 1055 

production of T and E2 during vitellogenesis. In the zebrafish, cortisol does not inhibit hCG-1056 

stimulated E2 production, while ACTH did (Alsop et al., 2009). In other teleost species, 1057 

glucocorticoids are also able to act on final oocyte maturation. Glucocorticoids have been 1058 

shown to induce in vitro oocyte maturation in the goldfish [desoxycorticosterone: (Jalabert et 1059 

al., 1973)] and ovulation in the medaka [cortisol: (Hirose, 1976)]. In the amago salmon 1060 

(Oncorhynchus rhodurus), DOC can enhance oocyte maturation induced by gonadotropin or 1061 

by DHP in vitro (Young et al., 1982). Cortisol treatment induces DNA damage on zebrafish 1062 
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stage I and II follicles, and increases mc2r expression in stage II follicles in vitro (Sousa et al., 1063 

2015). 1064 

Data on male gonadal steroidogenesis, even if fewer, seem more consistent than those on 1065 

female steroidogenesis. In the common carp, treatment of male testes in vitro with 1066 

dexamethasone reduces the induction of androgen secretion by carp pituitary extract (Consten 1067 

et al., 2002). Consten and collaborators have previously reported a decreased in vitro 1068 

production of testicular androgen during early stages of puberty in the common carp fed with 1069 

cortisol (Consten et al., 2000). In male rainbow trout, DOC possesses an inhibitory effect on 1070 

the testicular production of DHP in vitro (Milla et al., 2008). In the Japanese eel, in vitro 1071 

cortisol treatment induces DNA replication in spermatogonia and enhances the 1072 

spermatogonial proliferation stimulated by 11KT, revealing a stimulatory effect of cortisol on 1073 

spermatogenesis (Ozaki et al., 2006). 1074 

 3.1.2. Roles of POMC-derived peptides 1075 

Other stress-related endocrine factors have also been studied for their involvement in the 1076 

regulation of the HPG axis. 1077 

Pomca-deficient zebrafish, obtained with a TALENs approach, have enhanced somatic 1078 

growth, reduced anxiety-related behavioral responses, and exhibit hypocortisolism associated 1079 

with hyperandrogenism (Shi et al., 2019). The authors suggest that the hypocortisolemia and 1080 

hyperandrogenism are probably due to the changes in expression of interrenal steroidogenic 1081 

enzymes involved in the synthesis of cortisol (downregulation of hsd3 expression) and 1082 

androgens (upregulation of cyp17a1a and cyp19a1a expression), respectively (Shi et al., 1083 

2019).  1084 

In vitro experiments show a direct role of ACTH on zebrafish ovaries: ACTH treatment 1085 

suppresses hCG-stimulated E2 release from ovarian follicles (Alsop et al., 2009), and induces 1086 

a high level of oocyte vacuolization, as well as DNA damage on stage I and II follicles (Sousa 1087 
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et al., 2015). In agreement with the direct action of ACTH on the gonads, the ACTH receptor 1088 

MC2R is highly expressed in gonads of various teleosts [rainbow trout: (Aluru and Vijayan, 1089 

2008); zebrafish: (Agulleiro et al., 2010; Alsop et al., 2009); barfin flounder: (Kobayashi et al., 1090 

2011); sea bass: (Agulleiro et al., 2013)].  1091 

Another POMC-related peptides, the opioid peptide β-endorphin, is also produced and 1092 

released in response to stressors in teleosts [gilthead sea bream: (Arends et al., 1999; Mosconi 1093 

et al., 1998); tilapia: (Chabbi and Ganesh, 2012)]. This peptide may be involved in the 1094 

reproductive response to stress as a suppression of LH secretion, an inhibition of vitellogenic 1095 

follicular growth and a reduction of gonado-somatic index (GSI) are observed in tilapia 1096 

injected with β-endorphin (Chabbi and Ganesh, 2013; Ganesh and Chabbi, 2013). Treatment 1097 

with naltrexone, an opioid receptor antagonist, attenuates these inhibitory effects of β-1098 

endorphin in tilapia (Chabbi and Ganesh, 2013; Ganesh and Chabbi, 2013). In common carp, 1099 

naltrexone stimulates the in vitro LH release from whole pituitary gland as well as from 1100 

dispersed pituitary cells, revealing direct paracrine pituitary effects of opioids (Socha et al., 1101 

2003).  1102 

 3.1.3. Roles of CRH 1103 

The direct and indirect effects of CRH on the gonadotropic axis have been well-documented 1104 

in mammals [for reviews: (Chand and Lovejoy, 2011; Kageyama, 2013)]. CRH, injected 1105 

centrally [ovariectomized female rat: (Ono et al., 1984; Rivier and Vale, 1984); intact and 1106 

castrated male rat: (Frias et al., 1999)], but not peripherally [human: (D’Agata et al., 1984); 1107 

rat: (Ono et al., 1984; Rivier and Vale, 1984)], inhibits LH release. Centrally administered 1108 

CRH also down-regulates Kiss1 and Kiss1r mRNA levels in ovariectomized E2 replaced 1109 

female rats (Kinsey-Jones et al., 2009). Central administration of α-helical CRH, a non-1110 

selective CRH-R antagonist, reverses the inhibitory effect of stress on pulsatile release of LH 1111 

in castrated male rat (Rivier et al., 1986). In vitro, CRH down-regulates GnRH release from 1112 
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rat hypothalamic slices and this inhibition is suppressed by α-helical CRH (Nikolarakis et al., 1113 

1986). In parallel to its central inhibitory effect, CRH is also able to act at the pituitary level 1114 

through CRH-R2 to inhibit LH release in mice (Raftogianni et al., 2018). Previous data in rat 1115 

failed to show any effect of CRH on LH release in vitro (Ono et al., 1984). 1116 

In teleosts, there are very few investigations regarding CRH action on the gonadotropic axis. 1117 

Injection of CRH to stripped tilapia Oreochromis mossambicus resulted in diminished 1118 

immunoreactive LH content in the pituitary, lower GSI and absence of vitellogenic follicles in 1119 

the ovary (Chabbi and Ganesh, 2014). The glucocorticoid synthesis inhibitor, metyrapone, 1120 

abolishes the inhibitory effects of CRH treatment on LH secretion and follicle growth, 1121 

demonstrating an action via cortisol (Chabbi and Ganesh, 2014). Direct pituitary or gonadal 1122 

effect of CRH needs to be investigated through in vitro studies. CRH-R mRNAs have already 1123 

been detected in the pituitary [catfish Ameiurus nebulosus: (Arai et al., 2001); common carp: 1124 

(Huising et al., 2004); Astatotilapia burtoni: (Chen and Fernald, 2008); tilapia Oreochromis 1125 

mossambicus: (Aruna et al., 2015, 2012)], but future investigations should aim at determining 1126 

whether these receptors are expressed in other cell types than corticotrophs, notably in 1127 

gonadotrophs. CRH-R are also expressed in the ovary [Astatotilapia burtoni: (Chen and 1128 

Fernald, 2008); olive flounder Paralichthys olivaceus: (Zhou et al., 2019)], which suggests a 1129 

direct action of CRH on the gonads.   1130 

 1131 

3.2. Regulatory effects of actors of the gonadotropic axis on the corticotropic axis 1132 

Conversely, some studies reveal a role of actors of the gonadotropic axis on the corticotropic 1133 

axis in teleosts. 1134 

 3.2.1. Roles of sex steroids 1135 

In the sockeye salmon, gonadectomy blocks the cortisol prespawning rise (Donaldson and 1136 

Fagerlund, 1970; Robertson, 1961) and sex steroids, estrogens and androgens, can induce 1137 
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interrenal hyperplasia as well as increase in plasma cortisol levels in both intact and 1138 

gonadectomized fish [(Donaldson and Fagerlund, 1969; Fagerlund and Donaldson, 1969); for 1139 

review: (Dickhoff, 1989)]. The situation is different in the rainbow and brown trout in which 1140 

implantation of T and 11-KT attenuates ACTH and cortisol-elevation after confinement stress, 1141 

while E2 implantation increases stress-induced ACTH and cortisol levels (Pottinger et al., 1142 

1996). In the rainbow trout, in vivo treatment with 11KT suppresses interrenal responsiveness 1143 

to ACTH in vitro (Young et al., 1996), while DHP stimulates cortisol production by interrenal 1144 

tissue cultured in vitro (Barry et al., 1997). McQuillan and collaborators compared the in vitro 1145 

effect of E2 on cortisol synthesis by interrenals of the chinook salmon, Oncorhynchus 1146 

tshawytscha and rainbow trout: they show that E2 suppresses the ability of juvenile and 1147 

mature chinook salmon interrenals to produce cortisol, whereas it has no effect in the rainbow 1148 

trout (McQuillan et al., 2003). These data reveal potential differences among species and 1149 

reproductive stage concerning the role of sexual steroids in the induction of hypercortisolemia 1150 

in salmonids. 1151 

Interestingly, the interrenal in fish has been reported to produce androgen [rainbow trout: 1152 

(Arai et al., 1969); coho salmon: (Schreck et al., 1989); tilapia Oreochromis mossambicus: 1153 

(Balm et al., 1989); African catfish, Clarias gariepinus: (Vermeulen et al., 1995)], as in 1154 

mammals [for review: (Rainey and Nakamura, 2008)]. In human, the production and secretion 1155 

of adrenal androgens (dehydroepiandrosterone, DHEA and its sulfate ester, DHEAS) in the 1156 

midchildhood, termed adrenarche, has been involved in the timing of puberty (Remer et al., 1157 

2010). Such a role of interrenal androgens could be also envisioned in teleosts. 1158 

A potential remarkable interaction between reproductive and stress actors is illustrated by the 1159 

recent finding of the ability of progesterone to bind to the mineralocorticoid receptor MR. 1160 

Recent in vitro studies indicate that progesterone can activate MR in the elephant shark 1161 

Callorhinchus milii, in ray-finned fishes including trout (Sturm et al., 2005) and zebrafish 1162 
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(Fuller et al., 2019; Katsu and Baker, 2018) and in chickens, with an EC50 of less than 1 nM 1163 

for these MRs, which makes this steroid a potential physiological activator of these MRs [for 1164 

review: (Baker and Katsu, 2020)]. Moreover, in the elephant shark and ray-finned fish, MR 1165 

are expressed in several tissues, including ovaries and testis (Katsu et al., 2019; Milla et al., 1166 

2008; Sturm et al., 2005). This led Baker and Katsu to suggest that progesterone may have 1167 

multifaceted physiological roles through MR in these species [for review: (Baker and Katsu, 1168 

2020)].  1169 

3.2.2. Roles of other actors 1170 

Injection of salmon gonadotropin to sockeye salmon has no impact on plasma cortisol or 1171 

cortisone levels nor on interrenal activity (Donaldson and McBride, 1974). However, in 1172 

catfish Heteropneustes fossilis, in vitro studies suggest that gonadotropin (LH) stimulates the 1173 

interrenal to produce corticosteroids which in turn act on the oocytes to induce maturation 1174 

(Sundararaj and Goswami, 1977). Such studies in Heteropneustes fossilis highlight the 1175 

complex synergy between gonadotropic and corticotropic axes in the induction of oocyte final 1176 

maturation, ovulation and spawning in response to monsoon-related environmental cues (cf 1177 

§1.2.1). 1178 

Other actors of the gonadotropic axis, such as GnRH, might act on the corticotropic axis in 1179 

teleosts as evidenced in mammals. GnRH is shown to stimulate ACTH release from the rat 1180 

pituitary (Gambacciani et al., 1988) and also to regulate the expression of pituitary 1181 

corticotropin-releasing hormone binding protein (CRH-BP) by gonadotrope-like cell line 1182 

(Westphal and Seasholtz, 2005), highlighting the potential importance of GnRH/CRH 1183 

interactions at the pituitary level in the interface between stress and reproductive axes. To our 1184 

knowledge such investigations have not yet been performed in teleosts. 1185 

Recent cyto-anatomical studies suggest a potential role of GnIH not only in the gonadotropic 1186 

axis but also in the corticotropic axis in teleosts. In tilapia, GnIH (LPXRFa) axons are closely 1187 
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associated with various pituitary cell types including gonadotrophs, corticotrophs and 1188 

melanotrophs, and GnIH receptors (LPXRFa-Receptor) are expressed in LH, ACTH and 1189 

alpha MSH cells [(Ogawa et al., 2016); for review: (Muñoz-Cueto et al., 2017)]. It would be 1190 

very interesting now to clarify whether GnIH is involved in the regulation of these cell types 1191 

and in the production of ACTH and MSH. 1192 

 1193 

Conclusion and perspectives 1194 

Stress impact on reproduction has long been studied in teleosts, especially in the frame of 1195 

aquaculture. However, most of the accumulated data come from studies on the possible action 1196 

of peripheral hormone, cortisol, on sexual maturation. Emerging data in mammals show that 1197 

actors of higher levels (especially brain) should catch researcher attention. The teleost specific 1198 

whole genome duplication (3R) had made such studies perhaps more difficult, multiplicating 1199 

the number of genes, but thanks to the recent publications of an increasing number of teleost 1200 

genomes and the development of molecular and genome editing technology tools, it is now 1201 

possible to investigate their respective functions across teleost species diversity. Thus future 1202 

directions should aim, for example, at dissecting mechanisms of action of the different 1203 

paralogs of genes involved in the corticotropic axis and in the caudal neurosecretory system in 1204 

the regulation of various levels of the gonadotropic axis. Such studies are all the more 1205 

important that the present review gives multiple examples of species-specific regulatory 1206 

mechanisms which probably reflect the wide species-specific plasticity of fish reproductive 1207 

responses when fish are exposed to stressful situations. 1208 
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 2745 
 2746 

Figure legends 2747 

 2748 

Figure 1: Stress and reproduction neuroendocrine axes in teleosts.  2749 

The figure displays the main actors and regulatory pathways of the stress neuroendocrine axis 2750 

(corticotropic axis: brain-pituitary-interrenals; green arrows) and of the reproduction 2751 

neuroendocrine axis (gonadotropic axis: brain-pituitary-gonads; blue arrows). The Caudal 2752 

Neurosecretory System (CNSS) which may be involved in the stress axis in teleost is 2753 

indicated in relation to the corticotropic axis. The liver, which plays a key role in reproduction 2754 

in teleosts as in other oviparous vertebrates by producing vitellogenin, is indicated in relation 2755 

to the gonadotropic axis. Abbreviations: AVP, arginine vasopressin; AR, androgen receptor; 2756 

CNSS, caudal neurosecretory system; CRH, corticotropin-releasing hormone; CRH-R, 2757 

corticotropin-releasing hormone receptor; DA, dopamine; DHP,  17-hydroxy-20-2758 

dihydroprogesterone; DOC, 11-deoxycorticosterone; E2, estradiol; ER, estrogen receptor; 2759 

FSH, follicle stimulating hormone; FSH-R, follicle stimulating hormone receptor; GnIH, 2760 

gonadotropin inhibitory hormone; GnRH, gonadotropin-releasing hormone; GnRH-R, 2761 

gonadotropin-releasing hormone receptor; GR, glucocorticoid receptor; kiss, kisspeptin; kiss-2762 

R, kisspeptin receptor; LH, luteinising hormone; LH-R, luteinising hormone receptor; MC2R, 2763 

melanocortin receptor 2; other P, other progestins; POMC, proopiomelanocortin; PR, 2764 

progestin receptor; T, testosterone; TRH, thyrotropin releasing hormone; UI, urotensin I; Vg, 2765 

vitellogenin; 5-HT, 5 hydroxytryptamine, or serotonin; 11-KT, 11-ketotestosterone. 2766 

 2767 
Figure 2: Effects of corticotropic axis on gonadotropic axis in vertebrates.  2768 

The figure illustrates current knowledge on the regulatory actions (green arrows) exerted by 2769 

typical actors of the corticotropic axis (brain-pituitary-interrenal) on the gonadotropic and 2770 
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liver axis (brain-pituitary-gonad-liver). Abbreviations: ACTH, adrenocorticotropin; β-end, β-2771 

endorphin; CRH, corticotropin-releasing hormone; E2, estradiol; FSH, follicle stimulating 2772 

hormone; GnIH, gonadotropin inhibitory hormone; GnRH, gonadotropin-releasing hormone; 2773 

GR, glucocorticoid receptor; kiss, kisspeptin; LH, luteinising hormone; MC2R, melanocortin 2774 

receptor 2; MR, mineralocorticoid receptor; T, testosterone; 11-KT, 11-ketotestosterone;. 2775 

 2776 
Figure 3: Effects of gonadotropic axis on corticotropic axis in vertebrates.  2777 

The figure illustrates current knowledge on the regulatory actions (blue arrows) exerted by 2778 

typical actors of the gonadotropic axis (brain-pituitary-gonad) on the corticotropic axis (brain-2779 

pituitary-interrenal). Abbreviations: ACTH, adrenocorticotropin; AR, androgen receptor; 2780 

CRH, corticotropin-releasing hormone; CRH-BP, corticotropin-releasing hormone binding 2781 

protein; DHP,  17-hydroxy-20-dihydroprogesterone; E2, estradiol; ER, estrogen receptor; 2782 

FSH, follicle stimulating hormone; GnIH, gonadotropin inhibitory hormone; GnRH, 2783 

gonadotropin-releasing hormone; LH, luteinising hormone; LH-R, luteinising hormone 2784 

receptor; other P, other progestins; PR, progestin receptor; T, testosterone; Vg, vitellogenin; 2785 

11-KT, 11-ketotestosterone. 2786 

 2787 

Table Legends 2788 

 2789 

Table 1: Major actors of the corticotropic axis in human and teleosts.  2790 

This table underlines the expansion of gene numbers in teleosts due to teleost-specific whole 2791 

genome duplication (3R). In teleosts, some of the paralogs have been lost in some species. 2792 

Supplemental paralogs issued from additional whole genome duplication (4R, which occurred 2793 

in salmonids and carps) are not indicated. Abbreviations: CRH, corticotropin-releasing 2794 

hormone; CRH-R, corticotropin-releasing hormone receptor; POMC, proopiomelanocortin; 2795 
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MCR, melanocortin receptor; GR, glucocorticoid receptor; MR, mineralocorticoid receptor; 2796 

UI, urotensin I. 2797 

 2798 

Table 2: Major actors of the gonadotropic axis in human and teleosts. 2799 

This table underlines the larger gene numbers in teleosts due to teleost-specific whole genome 2800 

duplication (3R) but also to the conservation of paralogs resulting from early vertebrate whole 2801 

genome duplications (1R and 2R), or from local gene duplication (see the text for details). In 2802 

teleosts, some of the paralogs have been lost in some species. Supplemental paralogs issued 2803 

from additional whole genome duplication (4R, which occurred in salmonids and carps) are 2804 

not indicated. Abbreviations: GnRH, gonadotropin-releasing hormone; GnRH-R, 2805 

gonadotropin-releasing hormone receptor; GnIH, gonadotropin inhibitory hormone; kiss, 2806 

kisspeptin; kiss-R, kisspeptin receptor; LHβ, luteinising hormone; FSHβ, follicle stimulating 2807 

hormone; LH-R, luteinising hormone receptor; FSH-R, follicle stimulating hormone receptor; 2808 

ER, estrogen receptor; esr, nuclear estrogen receptor; gper, membrane estrogen receptor; AR, 2809 

androgen receptor; PR, progestin receptor; pgr, nuclear progestin receptor; mpgr, membrane 2810 

progestin receptor. 2811 

 2812 

 2813 
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Table 1: Major actors of the corticotropic axis in human and teleosts.  

 

Protein Gene Human Teleosts References / Review articles 

CRH crh crh1 

 

crh2 

crh1a 

crh1b 

crh2 

Lovejoy et al 2014; Cardoso et al 2016 

Maugars et al 2016 

CRH-R crhr crhr1 

 

crhr2 

crhr1a 

crhr1b 

crhr2 

Cardoso et al 2014; Lovejoy et al 2014 

POMC pomc pomc pomc-α1 

pomc-α2 

pomc-β 

Dores and Lecaude 2005; Cardoso et al 

2011; Dores and Baron 2011 

MC1R 

MC2R 

MC3R 

MC4R 

MC5R 

mc1r 

mc2r 

mc3r 

mc4r 

mc5r 

mc1r 

mc2r 

mc3r 

mc4r 

mc5r 

mc1r 

mc2r 

mc3r 

mc4r 

mc5ra 

mc5rb 

Vastermark and Schioth 2011; Dores et 

al 2014, 2016 

GR gr gr gr1 

gr2 

Bury 2017 

MR mr mr mr1 

mr2 

Lafont et al 2014; Baker and Katsu 2019 

UI uI  uI Lovejoy et al 2014 

 

 



Table 2: Major actors of the gonadotropic axis in human and teleosts. 
 

Protein Gene Human Teleosts References / Review articles 

GnRH gnrh gnrh1 

gnrh2 

gnrh1 

gnrh2 

gnrh3 

Kim et al 2011; Roch et al 2011; 

Tostivint 2011 

GnRH-R gnrhr gnrhr-I Up to 5 gnrhr Roch et al 2014; Sefideh et al 

2014; William et al 2014; Ciani 

et al 2020 

GnIH gnih gnih/rfrp gnih Tsutsui et al 2018; Maugars et al 

2020 

Kiss kiss kiss1 kiss1 

kiss2 

Pasquier et al 2012, 2014 

Kiss-R kissR kiss1R kiss1R 

kiss2R 

kiss3R 

Pasquier et al 2012, 2014 

LHβ lhβ lhβ lhβ Dufour et al 2020 

FSHβ fshβ fshβ fshβ Dufour et al 2020 

LH-R lhr lhcgr lhr1 

lhr2 

Maugars and Dufour 2015 

FSH-R fshr fshr fshr Maugars and Dufour 2015 

ER esr 

 

 

gper 

esr1 

esr2 

 

gper 

esr1 

esr2a 

esr2b 

gpera 

gperb 

Lafont et al 2016; Ogino et al 

2018 

 

Lafont et al 2016 

AR ar ar ara 

arb 

Ogino et al 2009 

PR pgr 

 

mpgr 

pgr 

 

multiple 

pgra 

pgrb 

multiple 

Morini et al 2019 

 

Morini et al 2019 

 




